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Primordial gravitational waves (GWs) carry the imprints of the dynamics of the universe during its
earliest stages. With a variety of GW detectors being proposed to operate over a wide range of frequencies,
there is great expectation that observations of primordial GWs can provide us with an unprecedented
window to the physics operating during inflation and reheating. In this work, we closely examine the effects
of the regime of reheating on the spectrum of primordial GWs observed today. We consider a scenario
wherein the phase of reheating is described by an averaged equation of state (EoS) parameter with an abrupt
transition to radiation domination as well as a scenario wherein there is a gradual change in the effective
EoS parameter to that of radiation due to the perturbative decay of the inflaton. We show that the
perturbative decay of the inflaton leads to oscillations in the spectrum of GWs, which, if observed, can
possibly help us decipher finer aspects of the reheating mechanism. We also examine the effects of a
secondary phase of reheating arising due to a brief epoch driven possibly by an exotic, noncanonical, scalar
field. Interestingly, we find that, for suitable values of the EoS parameter governing the secondary phase
of reheating, the GWs can be of the strength as suggested by the recent NANOGrav observations.
We conclude with a discussion of the wider implications of our analysis.

DOI: 10.1103/PhysRevD.104.063513

I. INTRODUCTION

The inflationary scenario offers the most attractive
mechanism for the generation of the primordial perturba-
tions (for the original discussions, see Refs. [1–4]; for
reviews, see, for example, Refs. [5–14]). The existence of
primordial gravitational waves (GWs) is one of the pro-
found predictions of inflationary dynamics (for the initial
discussions, see, for example, Refs. [15,16]; for recent
reviews on the generation of primary and secondary GWs,
see, for instance, Refs. [17,18]). If the primordial GWs or
their imprints are detected, it will not only prove the
quantum origin of the perturbations, it can also, in
principle, provide us with insights into the fundamental
nature of gravitation. The primordial GWs provide a unique
window to probe the dynamics of our universe during its
very early stages, which seems difficult to observe by any
other known means. However, the extremely weak nature
of the gravitational force makes the detection of GWs rather
challenging. Decades of effort toward detecting GWs have
finally achieved success only in the past few years with the

observations of GWs from merging binary black
holes and neutron stars by LIGO [19–30]. These observa-
tions have led to a surge of experimental proposals
across the globe to observe GWs over a wide range of
frequencies. The proposed GW observatories include
advanced LIGO (10–103 Hz) [31], ET (1–104 Hz) [32,33],
BBO (10−3–10 Hz) [34–36], DECIGO (10−3–1 Hz)
[37–40], eLISA (10−5–1 Hz) [41–43], and SKA
(10−9−10−6 Hz) [44].
Apart from various astrophysical mechanisms that can

generate GWs, as we mentioned, inflation provides an
exclusivemechanism to produceGWs of quantummechani-
cal origin (for discussions on the generation of primary
and secondary GWs, see, for instance, Refs. [45–58] and
references therein). The tensor perturbations generated
from the quantum vacuum are amplified during inflation,
which subsequently evolve through the various phases of
the universe until they reach the GW detectors today.
Therefore, the spectrum of primordial GWs today is a
convolution of their origin as well as dynamics. On the one
hand, they contain the signatures of the mechanism that
generates them, viz. the specific model that drives inflation
as well as the initial conditions from which the perturba-
tions emerge. On the other, they also carry the imprints of
the dynamics of the subsequent cosmological phases as the
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GWs propagate through them. As is well known, immedi-
ately after inflation, the universe is expected to be reheated
through the decay of the inflaton into radiation, which
eventually leads to the epoch of radiation domination.
In this work, we shall examine the evolution of primordial
GWs with special emphasis on the effects due to the
epoch of reheating. Specifically, our aim is to decode
the mechanism of reheating from the spectrum of GWs
today.
Over the years, major cosmological observations have

considerably improved the theoretical understanding of the
various epochs of our universe [59–61]. However, because
of the lack of direct observational signatures, the phase of
reheating remains poorly understood. The effects of reheat-
ing on the dynamics of GWs have already been examined
in the standard cosmological scenario (see, for instance,
Refs. [62–69]) as well as in certain nonstandard scenarios
(see, for example, Refs. [70–80]). Moreover, the imprints
of specific microscopic physical effects on the spectrum of
GWs—such as decoupling neutrinos [81,82] or the varia-
tion in the number of relativistic degrees of freedom in the
early universe [83–85]—have also been explored. In this
work, we shall study the effects of reheating on the
spectrum of primordial GWs over a wide range of scales
and illustrate the manner in which the spectrum captures
specific aspects of the different phases. We shall consider
two of the simplest reheating mechanisms. We shall first
consider a scenario wherein the reheating phase is
described by an averaged equation of state (EoS) param-
eter, with reheating ending instantaneously [86–88]. We
shall then consider a scenario wherein there is a gradual
change in the EoS parameter from its initial value during
the phase of coherent oscillations to its eventual value
during radiation domination achieved through the pertur-
bative decay of the inflaton [89–93]. We shall explicitly
illustrate the effects of the reheating dynamics on the
spectrum of GWs. It seems worthwhile to highlight here
that the following aspects of the reheating dynamics can, in
principle, be decoded from the spectrum of primordial
GWs: (i) the shape of the inflaton potential near its
minimum, which is responsible for the end of inflation
and the dynamics during reheating; (ii) the decay width of
the inflaton, which governs the entire process of reheating
and therefore determines the reheating temperature; and
(iii) the thermalization timescale over which the EoS
parameter during the period of coherent oscillations of
the inflaton say, wϕ, is modified to the EoS parameter
corresponding to radiation. Further, it is expected that
determining the inflaton decay width and the thermalization
timescale would not only permit us to arrive at the form of
the coupling between the inflaton and radiation but also
help us understand the nature of the coupling among all the
relativistic degrees of freedom. We shall briefly discuss
these possibilities in this work, and we shall return to
examine the issue in greater detail in a future effort.

Finally, we shall also consider the implications of our
analysis on the recent observations involving the pulsar-
timing data by the North American Nanohertz Observatory
for Gravitational Waves (NANOGrav), which has been
attributed to stochastic GWs [94,95]. A variety of mech-
anisms that can possibly occur in the early universe have
been explored in the literature to explain this interesting
observation [58,58,96–109]. We find that introducing a
secondary phase of reheating—apart from the original,
inflaton driven, primary reheating phase—can account for
the NANOGrav observations. We introduce an exotic,
noncanonical scalar field to drive such a phase and show
that a suitable EoS for the noncanonical field can lead to
primordial GWs of strength as observed by NANOGrav.
This paper is structured as follows. In Sec. II, we shall

briefly sketch the arguments leading to the standard scale-
invariant spectrum of GWs generated in de Sitter inflation.
We shall also discuss the typical inflationary model that we
shall have in mind when we later discuss the effects due to
reheating. Moreover, we shall introduce the dimensionless
density parameter ΩGW characterizing the spectrum of
GWs. In Sec. III, we shall discuss the evolution of the
tensor perturbations during the epoch of reheating. We shall
first consider the scenario wherein the epoch of reheating is
described by an averaged EoS parameter associated with
the inflaton. Such a description allows us to arrive at
analytic solutions for the tensor perturbations during the
epoch. We shall also consider the scenario of perturbative
reheating wherein we take into account the continuous
decay of the inflaton into radiation. As it proves to be
involved in constructing analytical solutions for the back-
ground as well as the tensor perturbations in such a case, we
shall resort to numerics. In Sec. IV, we shall briefly discuss
the evolution of the tensor perturbations during the epoch
of radiation domination and arrive at the spectrum of GWs
today by comparing the behavior of the energy density of
GWs in the sub-Hubble domain with that of radiation. In
Secs. Vand VI, we shall evaluate the dimensionless energy
density of GWs today that arise in the two types of
reheating scenarios mentioned above. We shall focus on
the spectrum of primordial GWs over wave numbers (or,
equivalently, frequencies) that correspond to small scales
which reenter the Hubble radius during either the epochs of
reheating or radiation domination. In Sec. VII, we shall
numerically evaluate the inflationary tensor power spec-
trum and discuss the behavior of the spectrum of GWs
today close to the scale that leaves the Hubble radius at the
end of inflation. In Sec. VIII, we shall outline the manner in
which we should be able to decode various information
concerning the epochs of inflation and reheating from the
observations of the anisotropies in the cosmic microwave
background (CMB) and the spectrum of GWs today. In
Sec. IX, we shall evaluate the spectrum of GWs in a
scenario involving late time production of entropy and
discuss the implications for the recent observations by
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NANOGrav. Last, in Sec. X, we shall conclude with a
summary of the main results.
Before we proceed further, a few clarifications concern-

ing the conventions and notations that we shall adopt are in
order.We shall work with natural units such that ℏ ¼ c ¼ 1,
and set the reduced Planckmass to beMPl ¼ ð8πGÞ−1=2.We
shall adopt the signature of the metric to be ð−;þ;þ;þÞ.
Note that Latin indices shall represent the spatial coordi-
nates, except for k, which shall be reserved for denoting
the wave number of the tensor perturbations, i.e., GWs.
We shall assume the background to be the spatially
flat Friedmann-Lemaître-Robertson-Walker (FLRW) line
element described by the scale factor a and the Hubble
parameterH. Also, an overprime shall denote differentiation
with respect to the conformal time η. We should mention
that the frequency, say, f, is related to the wave number k of
the tensor perturbations through the relation

f ¼ k
2π

¼ 1.55 × 10−15
�

k
1 Mpc−1

�
Hz; ð1Þ

and, as convenient, we shall refer to the spectrum of GWs in
terms of either wave numbers or frequencies.

II. SPECTRUM OF GWs GENERATED
DURING INFLATION

In this section, we shall briefly recall the equation
governing the tensor perturbations and arrive at the spec-
trum of GWs generated in de Sitter inflation. We shall
also introduce the dimensionless energy density of GWs,
which is the primary observational quantity of interest in
this work.

A. Generation of GWs during inflation

Let hij denote the tensor perturbations characterizing the
GWs in a FLRWuniverse. When these tensor perturbations
are taken into account, the line element describing the
spatially flat, FLRW universe can be expressed as [110]

ds2 ¼ a2ðηÞf−dη2 þ ½δij þ hijðη; xÞ�dxidxjg: ð2Þ

Since the tensor perturbations are transverse and traceless,
they satisfy the conditions ∂ihij ¼ 0 and hii ¼ 0. We shall
assume that no anisotropic stresses are present. In such a
case, the first order Einstein’s equations then lead to
the following equation of motion for the tensor perturba-
tions hij:

h00ij þ 2
a0

a
h0ij −∇2hij ¼ 0: ð3Þ

On quantization, the tensor perturbations can be
decomposed in terms of the Fourier modes hk as follows
[5–14]:

ĥijðη; xÞ ¼
Z

d3k

ð2πÞ3=2 ĥ
k
ijðηÞeik·x

¼
X
λ¼þ;×

Z
d3k

ð2πÞ3=2 ½â
λ
kε

λ
ijðkÞhkðηÞeik·x

þ âλ†k ε
λ�
ij ðkÞh�kðηÞe−ik·x�; ð4Þ

where the quantity ελijðkÞ represents the polarization tensor,
with the index λ denoting the polarization þ or × of
the GWs. The polarization tensor obeys the relations
δijελijðkÞ ¼ kiελijðkÞ ¼ 0, and we shall work with the

normalization such that εijλðkÞελ0�ij ðkÞ ¼ 2δλλ
0
. In the above

decomposition, the operators ðâλk; âλ†k Þ denote the annihi-
lation and creation operators corresponding to the tensor
modes associated with the wave vector k. They obey the
following commutation relations: ½âλk; âλ

0
k0 � ¼ ½âλ†k ; âλ

0†
k0 � ¼ 0

and ½âλk; âλ
0†
k0 � ¼ δð3Þðk − k0Þδλλ0 . In the absence of sources

with anisotropic stresses, the Fourier mode hk satisfies the
differential equation

h00k þ 2
a0

a
h0k þ k2hk ¼ 0: ð5Þ

The tensor power spectrum PTðkÞ is defined through the
relation

h0jĥijk ðηÞĥk
0
ijðηÞj0i ¼

ð2πÞ2
2k3

PTðkÞδð3Þðkþ k0Þ; ð6Þ

where the vacuum state j0i is defined as âλkj0i ¼ 0 for all k
and λ. On utilizing the above decomposition in terms of the
Fourier modes, we obtain that

PTðkÞ ¼ 4
k3

2π2
jhkj2; ð7Þ

and it is often assumed that the spectrum is evaluated on
super-Hubble scales during inflation.
Motivated by the form of the second order action

governing the tensor perturbation hij, the Fourier mode
hk is usually written in terms of the Mukhanov-Sasaki
variable uk as hk ¼ ð ffiffiffi

2
p

=MPlÞðuk=aÞ. The Mukhanov-
Sasaki variable uk satisfies the differential equation [5–14]

u00k þ
�
k2 −

a00

a

�
uk ¼ 0: ð8Þ

We shall focus on the simple case of slow roll inflation
and work in the de Sitter approximation wherein the scale
factor is given by aðηÞ ¼ ð1 −HIηÞ−1, withHI denoting the
constant Hubble scale during inflation. In such a case,
a00=a ¼ 2H2

I =ð1 −HIηÞ2, and the solution to Eq. (8) corre-
sponding to the Bunch-Davies initial condition is given by
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ukðηÞ ¼
1ffiffiffiffiffi
2k

p
�
1þ iHIaðηÞ

k

�
e−ikη: ð9Þ

Or, equivalently, we can write that

hkðηÞ ¼ hkðaÞ ¼
ffiffiffi
2

p

MPl

iHIffiffiffiffiffiffiffi
2k3

p
�
1 −

ik
HIaðηÞ

�
e−ik=HI eik=½HIaðηÞ�

ð10Þ

withaðηÞbeinggiven by the deSitter formmentioned above.
Let us assume that inflation ends at the conformal time ηf
such that 0 < ηf < H−1

I , and let af ¼ aðηfÞ. Under these
conditions, upon using the above solution, the tensor power
spectrum at af can be obtained to be

PTðkÞ ¼
2H2

I

π2M2
Pl

�
1þ k2

k2f

�
; ð11Þ

where kf ¼ afHI is themode that leaves theHubble radius at
the end of inflation. For k ≪ kf, the above spectrum reduces
to

PTðkÞ ≃
2H2

I

π2M2
Pl

; ð12Þ

which is the well-known scale invariant spectrum often
discussed in the context of de Sitter inflation [5–14].
Actually, in slow roll inflation, the tensor power spectrum
will contain a small spectral tilt, which we shall choose to
ignore in our discussion.We should emphasize the point that
the above scale invariant spectrum is valid only for k ≪ kf
since thedeSitter formfor thescale factorwouldnothold true
close to the end of inflation. Therefore, in our discussion
below, we shall mostly restrict ourselves to wave numbers
such thatk < 10−2kf . InSec.VII,we shall evaluate the tensor
power spectrum numerically in the inflationary model of
interest to arrive at the present day spectrum of GWs near kf.

B. A typical inflationary model of interest

In order to illustrate the results later, we shall focus on a
specific inflationary model that permits slow roll inflation.
We shall consider the so-called α-attractor model, which
unifies a large number of inflationary potentials (in this
context, see Refs. [111,112]). If ϕ is the canonical scalar
field driving inflation, the model is described by the
potential VðϕÞ of the form

VðϕÞ ¼ Λ4

�
1 − exp

�
−

ffiffiffiffiffiffi
2

3α

r
ϕ

MPl

��2n
; ð13Þ

where, as we shall soon discuss, the scale Λ can be
determined using the constraints from the observations
of the anisotropies in the CMB. It is worth pointing out here
that, for n ¼ 1 and α ¼ 1, the above potential reduces to the

Higgs-Starobinsky model [113,114]. We should also men-
tion that the potential (13) contains a plateau at suitably
large values of the field, which is favored by the CMB
data [59].
Let Nk denote the e-fold at which the wave number k

leaves the Hubble radius, when counted from the end of
inflation. For the potential (13), the quantity Nk can easily
be determined in the slow roll approximation to be (see, for
instance, Ref. [115])

Nk ≃
3α

4n

"
exp

 ffiffiffiffiffiffi
2

3α

r
ϕk

MPl

!
− exp

 ffiffiffiffiffiffi
2

3α

r
ϕf

MPl

!

−
ffiffiffiffiffiffi
2

3α

r  
ϕk

MPl
−

ϕf

MPl

!#
; ð14Þ

where ϕk and ϕf denote the values of the field when the
mode with wave number k crosses the Hubble radius and at
the end of inflation, respectively. It is easy to show that ϕf
can be expressed in terms of the parameters α and n as

ϕf

MPl
≃

ffiffiffiffiffiffi
3α

2

r
ln

�
2nffiffiffiffiffiffi
3α

p þ 1

�
: ð15Þ

As we mentioned, the parameter Λ can be determined by
utilizing the constraints from the CMB. One finds that the
parameter can be expressed in terms of the scalar amplitude
AS, the scalar spectral index nS, and the tensor-to-scalar
ratio r as follows:

Λ ¼ MPl

�
3π2rAS

2

�
1=4

×

"
2nð1þ 2nÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ 6αð1þ nÞð1 − nSÞ

p
4nð1þ nÞ

#
n=2

:

ð16Þ

Given the best-fit values for the inflationary parameters AS
and nS as well as the upper bound on r from Planck [59],
evidently, using the above relation, we can choose a set of
values for the parameters Λ, α, and n describing the
potential (13) that are compatible with the CMB data.
As we shall see, to evolve the background beyond

inflation, we shall require the value of the energy density
of the scalar field at the end of inflation, say, ρf . One finds
that the quantity ρf can be expressed in terms of the
corresponding value of the potential, say, Vf , as

ρf ¼
3

2
Vf : ð17Þ

It is useful to note here that the value of the potential (13) at
the end of inflation is given by

HAQUE, MAITY, PAUL, and SRIRAMKUMAR PHYS. REV. D 104, 063513 (2021)

063513-4



Vf ¼ VðϕfÞ ¼ Λ4

�
2n

2nþ ffiffiffiffiffiffi
3α

p
�

2n
: ð18Þ

We should mention that, hereafter, we shall set the
parameter α to be unity.

C. The dimensionless energy density of GWs

Let us turn now to discuss the observable quantity of our
interest, viz. the dimensionless energy density of GWs. We
shall be interested in evaluating the quantity over the
domain of wave numbers that reenter the Hubble radius
during the epochs of reheating and radiation domination.
The energy density of GWs at any given time, say,

ρGWðηÞ, is given by (see, for example, Refs. [63,110])

ρGWðηÞ ¼
M2

Pl

4a2

�
1

2
hĥ02iji þ

1

2
hj∇ĥijj2i

�
; ð19Þ

where the expectation values are to be evaluated in the
initial Bunch-Davies vacuum imposed in the sub-Hubble
regime during inflation. The energy density per logarithi-
mic interval, say, ρGWðk; ηÞ, is defined through the relation

ρGWðηÞ ¼
Z

∞

0

d ln kρGWðk; ηÞ: ð20Þ

Upon using the mode decomposition (4) and the above
expressions for ρGWðηÞ, we obtain the quantity ρGWðk; ηÞ
to be

ρGWðk; ηÞ ¼
M2

Pl

a2
k3

2π2

�
1

2
jh0kðηÞj2 þ

k2

2
jhkðηÞj2

�
: ð21Þ

The corresponding dimensionless energy density
ΩGWðk; ηÞ is defined as

ΩGWðk; ηÞ ¼
ρGWðk; ηÞ
ρcðηÞ

¼ ρGWðk; ηÞ
3H2M2

Pl

; ð22Þ

where ρc ¼ 3H2M2
Pl is the critical density at time η.

The observable quantity of interest is the dimensionless
energy density ΩGWðk; ηÞ evaluated today, which we shall
denote as ΩGWðkÞ. We shall often refer to ΩGWðkÞ or,
equivalently, ΩGWðfÞ [recall that f is the frequency
associated with the wave number k; cf. Eq. (1)], as the
spectrum of GWs today. In the following sections, we shall
evolve the tensor perturbations through the epochs of
reheating and radiation domination. As we shall see, at
late times during radiation domination, once all the wave
numbers of interest are well inside the Hubble radius, the
energy density of GWs behave in a manner similar to that
of the energy density of radiation. We shall utilize this
behavior to arrive at the spectrum of GWs today.

III. EVOLUTION OF GWs DURING REHEATING

In order to follow the evolution of the tensor perturba-
tions postinflation, it proves to be convenient to write (in
this context, see, for instance, Ref. [63])

hkðηÞ ¼ hPkχkðηÞ; ð23Þ

where hPk denotes the primordial value evaluated at the end
of inflation and is given by [cf. Eq. (10)]

hPk ¼ hkðafÞ ¼
ffiffiffi
2

p

MPl

iHIffiffiffiffiffiffiffi
2k3

p
�
1 −

ik
kf

�
e−ik=HI eik=kf : ð24Þ

The quantity χk is often referred to as the tensor transfer
function, which obeys the same equation of motion as hk,
viz. Eq. (5). Clearly, the strength of the primordial GWs
observed today will not only depend on the amplitude of
the tensor perturbations generated during inflation but also
on their evolution during the subsequent epochs. In this
section, we shall discuss the evolution of the transfer
function χk during the epoch of reheating. As we mentioned
earlier, we shall consider two types of scenarios for
reheating. We shall first consider the case wherein the
period of reheating is described by the constant EoS
parameter, say, wϕ, often associated with the coherent
oscillations of the scalar field around the minimum of the
inflationary potential. We shall assume that the transition to
radiation domination occurs instantaneously after a certain
duration of time. In such a case, as we shall see, the transfer
function χk can be arrived at analytically. We shall then
consider the scenario of perturbative reheating wherein
there is a gradual transfer of energy from the inflaton to
radiation. It seems difficult to treat such a situation
analytically and, hence, we shall examine the problem
numerically.
To follow the evolution of GWs in the postinflationary

regime, we shall choose to work with the rescaled scale
factor as the independent variable rather than the conformal
time coordinate. If we define A ¼ a=af , where af ¼ aðηfÞ
is the scale factor at the end of inflation, then we find that
the equation governing the transfer function χk is given by

d2χk
dA2

þ
�
4

A
þ 1

H
dH
dA

�
dχk
dA

þ ðk=kfÞ2
ðH=HIÞ2A4

χk ¼ 0; ð25Þ

where we recall that kf ¼ afHI denotes the wave number
that leaves the Hubble radius at the end of inflation. Our
aim now is to solve the above equation for the transfer
function during the epoch of reheating. As is evident from
the equation, the evolution of GWs is dictated by the
behavior of the Hubble parameter. Therefore, if we can first
determine the behavior of the Hubble parameter during
reheating, we can solve the above equation to understand
the evolution of transfer function χk during the epoch. We
shall also require the initial conditions for the transfer
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function χk and its derivative dχk=dA at the end of inflation,
i.e., when a ¼ af or, equivalently, when A ¼ 1. Since we
have introduced the transfer function through the relation
(23), clearly,

χIkðA ¼ 1Þ ¼ 1: ð26Þ

Also, on using the solution (10) and the expression (24) for
hPk , we find that

dχIkðA ¼ 1Þ
dA

¼ −
ðk=kfÞ2

1 − iðk=kfÞ
≃ 0; ð27Þ

where the final equality is applicable when k ≪ kf . We
shall make use of these initial conditions to determine the
transfer function during the epoch of reheating.
In the following two subsections, we shall discuss the

solutions in the two scenarios involving the instantaneous
and gradual transfer of energy from the inflaton to
radiation.

A. Reheating described by an averaged EoS parameter

Let us first consider the scenario wherein the epoch of
reheating is dominated by the dynamics of the scalar field
as it oscillates at the bottom of an inflationary potential,
such as the α-attractor model (13) we had introduced
earlier. In such a case, the evolution of the scalar field
can be described by an averaged EoS parameter, say, wϕ

[86–88]. The conservation of energy implies that the energy
density of the inflaton behaves as ρϕ ∝ a−3ð1þwϕÞ, which, in
turn, implies that the Hubble parameter behaves as
H2 ¼ H2

IA
−3ð1þwϕÞ. Note that H ¼ HI when A ¼ 1, as

required. As a result, during such a phase, Eq. (25)
governing the tensor transfer function reduces to the form

d2χk
dA2

þ ð5 − 3wϕÞ
1

2A
dχk
dA

þ ðk=kfÞ2
A1−3wϕ

χk ¼ 0: ð28Þ

The general solution to this differential equation can be
expressed as

χRHk ðAÞ¼A−ν
�
CkJ−ν=γ

�
k
γkf

Aγ

�
þDkJν=γ

�
k
γkf

Aγ

��
;

ð29Þ

where JαðzÞ denote Bessel functions of order α, while the
quantities ν and γ are given by

ν ¼ 3

4
ð1 − wϕÞ; γ ¼ 1

2
ð1þ 3wϕÞ: ð30Þ

The coefficients Ck and Dk can be arrived at by using the
conditions (26) and (27) for the transfer function χk and its
derivative dχk=dA at the end of inflation, i.e., when A ¼ 1.

We find that the coefficients Ck and Dk can be expressed as
follows:

Ck ¼
πk
2γkf

�
1

1 − iðk=kfÞ
��

k
kf
Jν=γ

�
k
γkf

�

−
�
1 −

ik
kf

�
Jðν=γÞþ1

�
k
γkf

��
csc

�
πν

γ

�
; ð31aÞ

Dk ¼ −
πk
2γkf

�
1

1 − iðk=kfÞ
��

k
kf
J−ν=γ

�
k
γkf

�

þ
�
1 −

ik
kf

�
J−ðν=γÞ−1

�
k
γkf

��
csc

�
πν

γ

�
: ð31bÞ

We shall later make use of these coefficients and the
solution (29) to eventually arrive at the spectrum of GWs
today. It is useful to note here that the quantity dχRHk =dA is
given by

dχRHk
dA

¼ k
kf
A−1þγ−ν

�
CkJ−ðν=γÞ−1

�
k
γkf

Aγ

�

−DkJðν=γÞþ1

�
k
γkf

Aγ

��
: ð32Þ

We should mention here that the duration of the reheat-
ing phase characterized by the number of e-folds Nre and
the reheating temperature Tre can be expressed in terms of
the equation of state parameter wϕ and the inflationary
parameters as follows (in this context, see, for example,
Refs. [87,88]):

Nre ¼
4

ð3wϕ − 1Þ
�
N� þ

1

4
ln

�
30

π2gr;re

�
þ 1

3
ln

�
11gs;re
43

�

þ ln

�
k�

a0T0

�
þ ln

�
ρ1=4f

HI

��
; ð33aÞ

Tre ¼
�

43

11gs;re

�
1=3
�
a0HI

k�

�
e−ðN�þNreÞT0; ð33bÞ

where T0 ¼ 2.725 K is the present temperature of the CMB
and H0 denotes the current value of the Hubble parameter.
Moreover, note that k�=a0 represents the CMB pivot scale,
with a0 denoting the scale factor today. We shall assume
that k�=a0 ≃ 0.05 Mpc−1. We should also point out that N�
denotes the number of e-folds prior to the end of inflation
when the pivot scale k� leaves the Hubble radius.

B. The case of perturbative reheating

As a second possibility, we shall consider the perturba-
tive reheating scenario (for recent discussions, see, for
instance, Refs. [91,93]). In such a case, after inflation, the
inflaton energy density, say, ρϕ, gradually decays into the
radiation energy density, say, ρR, with the decay process
being governed by the Boltzmann equations. As a result,
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the effective EoS parameter during the reheating phase
becomes time dependent. In our analysis below, for
simplicity, we shall assume that the EoS parameter wϕ

of the scalar field during the reheating phase remains
constant. Such an assumption is valid as far as the
oscillation timescale of the inflaton is much smaller than
the Hubble timescale. This turns out to be generally true
when the field is oscillating immediately after the end of
inflation, and we should point out that such a behavior has
also been seen in lattice simulations [116–118]. Hence, for
a wide class of inflationary potentials that behave as
VðϕÞ ∝ ϕ2n near the minimum, the time averaged EoS
parameter of the inflaton can be expressed as wϕ ¼
ðn − 1Þ=ðnþ 1Þ [119]. We should emphasize that this
scenario is different from the one considered in the previous
section wherein the explicit decay of the inflaton field was
not taken into account. Specifically, in the earlier case, the
energy density of the inflaton was supposed to be converted
instantaneously into the energy density of radiation at a
given time, leading to the end of the phase of reheating. In
due course, we shall demonstrate the manner in which the
detailed mechanism of reheating leaves specific imprints on
the spectrum of primordial GWs observed today.
Let us define the following dimensionless variables to

describe the comoving energy densities of the scalar field
and radiation

ΦðAÞ ¼ ρϕ
m4

ϕ

A3ð1þwϕÞ; RðAÞ ¼ ρR
m4

ϕ

A4; ð34Þ

where mϕ denotes the mass of the inflaton. Also,
let Γϕ represent the decay rate of the inflaton to radiation.
In such a case, the Boltzmann equations governing the
evolution of the energy densities ρϕ and ρR can be
expressed as [91,93,120]

dΦ
dA

þ
ffiffiffi
3

p
MPlΓϕ

m2
ϕ

ð1þwϕÞ
A1=2Φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΦ=A3wϕÞþðR=AÞ
p ¼ 0; ð35aÞ

dR
dA

−
ffiffiffi
3

p
MPlΓϕ

m2
ϕ

ð1þwϕÞ
A3ð1−2wϕÞ=2Φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΦ=A3wϕÞþðR=AÞ
p ¼ 0: ð35bÞ

Note that the tensor transfer function χk is essentially
governed by the behavior of the Hubble parameter H
[cf. Eq. (25)]. It proves to be difficult to solve the above set
of equations analytically. Therefore, to arrive at the Hubble
parameter during the epoch of reheating, we shall solve the
Boltzmann equations (35) numerically with the following
conditions imposed at the end of inflation:

ρϕðA ¼ 1Þ ¼ ρf ¼
3

2
Vf ; ρRðA ¼ 1Þ ¼ 0; ð36Þ

where we recall that Vf is the value of the inflationary
potential at the end of inflation. We should point out that,

for the inflationary potential (13) of our interest, Vf is given
by Eq. (18).
We should also clarify a couple of points in this regard.

In the case of perturbative reheating, the phase of reheating
is assumed to be complete when H ¼ Γϕ. In other words,
we require

H2ðAreÞ ¼
1

3M2
Pl

½ρϕðAre; nS;ΓϕÞ þ ρRðAre; nS;ΓϕÞ� ¼ Γ2
ϕ;

ð37Þ

where Are ¼ are=af , with are denoting the scale factor when
reheating has been achieved. In fact, this corresponds to the
point in time when the rate of transfer of the energy from
the inflaton to radiation is the maximum. The associated
reheating temperature can then be determined from the
energy density of radiation ρR through the relation

Tre ¼
�

30

π2gr;re

�
1=4

ρ1=4R ðAre; nS;ΓϕÞ: ð38Þ

In fact, later, to arrive at the results on the spectrum of GWs
today, along with specific values for the parameters
describing the inflationary potential (that are consistent
with the CMB data), we shall also choose a value of Tre.
Having fixed the value of Tre, we shall make use of
Eq. (33b) to arrive at Nre and thereby determine the value
Γϕ using the condition HðAreÞ ¼ Γϕ.
With the solutions to the coupled background equa-

tions (35) at hand, we shall proceed to solve the differential
equation (25) for the transfer function χk during reheating.
To illustrate the nature of the solutions, we have plotted the
behavior of the Hubble parameter H and the transfer
function χk in Fig. 1 during the period of perturbative
reheating. We have chosen specific values for the EoS
parameter wϕ, the reheating temperature Tre, and wave
number k in plotting the figures. We have considered a
wave number so that the mode reenters the Hubble radius
during the period of reheating. As one would have
expected, while the amplitude of the transfer function is
a constant on super-Hubble scales, it decreases as the
mode reenters the Hubble radius and begins to oscillate
once inside.

IV. EVOLUTION DURING RADIATION
DOMINATION AND THE SPECTRUM

OF GWs TODAY

The Hubble parameter during the radiation dominated
epoch evolves as

H2 ¼ H2
re
A4
re

A4
ð39Þ

with Hre and Are denoting the Hubble parameter and the
rescaled scale factor at the end of reheating, respectively.
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During radiation domination, the transfer function is
governed by the equation

d2χk
dA2

þ 2

A
dχk
dA

þ ðk=kreÞ2
A2
re

χk ¼ 0; ð40Þ

where kre ¼ areHre is the mode that reenters the Hubble
radius at the end of the reheating era. The above differential
equation can be immediately solved to arrive at the
following general solution:

χRDk ðAÞ ¼ 1

A
fEke−iðk=kreÞ½ðA=AreÞ−1� þ Fkeiðk=kreÞ½ðA=AreÞ−1�g:

ð41Þ
The coefficients Ek and Fk need to be determined by
matching this solution and its derivative with the solution
(29) during the epoch of reheating and its derivative at
A ¼ Are. Upon carrying out the matching at the junction
between the eras of reheating and the radiation domination,
we find that the coefficients Ek and Fk can be expressed as

Ek ¼
Are

2

��
1þ ikre

k

�
χRHk ðAreÞ þ

ikre
k

Are
dχRHk ðAreÞ

dA

�

¼ i
Are

2

kre
k
Ek; ð42aÞ

Fk ¼
Are

2

��
1 −

ikre
k

�
χRHk ðAreÞ −

ikre
k

Are
dχRHk ðAreÞ

dA

�

¼ −i
Are

2

kre
k
F k; ð42bÞ

where we have also introduced the quantities Ek and F k
which we shall make use of later. At this stage, we should
mention that the quantities χRHk ðAreÞ and dχRHk ðAreÞ=dA and
hence the coefficients Ek and Fk will depend on the details
of the reheating mechanism. In particular, they will be
different for two of the types of reheating mechanisms
under consideration.
Since we have set hk ¼ hPkχk, where hPk denotes

the primordial amplitude of the tensor perturbations
[cf. Eq. (21)], the energy density of GWs ρGWðk; ηÞ is
given by [cf. Eq. (23)]

ρGWðk; ηÞ ¼
M2

Pl

a2
k3

2π2
jhPk j2

�
1

2
jχRD0

k ðηÞj2 þ k2

2
jχRDk ðηÞj2

�
:

ð43Þ

On using the definition (7) of the inflationary tensor
power spectrumPTðkÞ, this energy density of GWs can be
expressed as

ρGWðk; ηÞ ¼
M2

Pl

4a2
PTðkÞ

�
1

2
jχRD0

k ðηÞj2 þ k2

2
jχRDk ðηÞj2

�
:

ð44Þ

Upon substituting the solution (41) in the above expres-
sion, we obtain ρGWðk; ηÞ to be

FIG. 1. The evolution of the Hubble parameter H (in blue, on the left) and the amplitude of the tensor transfer function χk for a given
wave number (in blue, on the right), obtained numerically in the case of the perturbative reheating scenario, have been plotted as a
function of A ¼ a=af over the domain 1 ≤ A ≤ Are, which corresponds to the period of reheating. We have also indicated the lapse in
time in terms of e-folds (counted from the end of inflation) on the top of the two figures. We have assumed that wϕ ¼ 0 and have set
Tre ¼ 103 GeV in plotting the quantities. We have chosen the wave number to be k ≃ 2 × 1012 Mpc−1, which corresponds to the
frequency of f ≃ 3 × 10−3 Hz [cf. Eq. (1)]. The wave number has been chosen so that it reenters the Hubble radius during the epoch of
reheating. The slope of the straight line describing HðAÞ (on the left) is −3=2, which is consistent with wϕ ¼ 0. We find that the slope
changes as A approaches Are indicating the beginning of the transition to the radiation dominated epoch. The vertical line (in red, on the
right) indicates the time when the mode reenters the Hubble radius. As expected, the transfer function proves to be constant on super-
Hubble scales, and it oscillates once the mode is inside the Hubble radius.
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ρGWðk;ηÞ¼
M2

Plk
2

8a2fA
4
PTðkÞ

�
ðjEkj2þjFkj2Þ

�
2þ
�
kreAre

kA

�
2
�

þEkF�
k

�
kreAre

kA

�
2
�
1þ 2ikA

kreAre

�
e−2iðk=kreÞ½ðA=AreÞ−1�

þE�
kFk

�
kreAre

kA

�
2
�
1−

2ikA
kreAre

�
e2iðk=kreÞ½ðA=AreÞ−1�

�
:

ð45Þ

We had mentioned earlier that we shall be interested
in the range of wave numbers which reenter the Hubble
radius during the epochs of reheating and radiation
domination. At late times during radiation domination
such that A=Are ≫ 1, all the modes of our interest would
be well inside the Hubble radius, i.e., kA ≫ 1. In such a
case, we find that the above expression for ρGWðk; ηÞ
simplifies to be

ρGWðk; ηÞ ¼
M2

Plk
2

4a2fA
4
PTðkÞðjEkj2 þ jFkj2Þ: ð46Þ

Hence, the corresponding dimensionless parameter
describing the energy density of GWs, viz. ΩGWðk; ηÞ,
is given by

ΩGWðk; ηÞ ¼
k2

12a2fH
2A4

PTðkÞðjEkj2 þ jFkj2Þ

¼ k2reA2
re

48a2fH
2A4

PTðkÞðjEkj2 þ jF kj2Þ; ð47Þ

where we have made use of the expressions (42) relating
the coefficients Ek and Fk to the quantities Ek and F k.
During radiation domination,H2A4 ¼ H2

reA4
re. Also, recall

that kre ¼ areHre. On using these relations at late times
during radiation domination, we obtain that

ΩGWðk; ηÞ ¼
PTðkÞ
48

ðjEkj2 þ jF kj2Þ: ð48Þ

The task that remains is to explicitly determine the
quantities Ek and F k. In the special case of instantaneous
reheating, Are ¼ 1 and kre ¼ kf . Therefore, on using the
conditions (26) and (27), one can readily show that

Ek ¼
1−2iðk=kfÞ−2ðk2=k2f Þ

1− iðk=kfÞ
; F k ¼

1

1− iðk=kfÞ
: ð49Þ

For k ≪ kf, we find that Ek ≃ Fk ≃ 1, which lead to

ΩGWðk; ηÞ ¼
PTðkÞ
24

¼ H2
I

12π2M2
Pl

; ð50Þ

where, in arriving at the final expression, we have made
use of the scale invariant inflationary tensor power

spectrum (12). In other words, the dimensionless density
parameter ΩGWðk; ηÞ is strictly scale invariant over all
wave numbers in the instantaneous reheating scenario.
Evidently, such a behavior can be expected to hold true
even when we have an epoch of reheating with wϕ ¼ 1=3,
a result we shall encounter in due course.
Note that the energy density of GWs behaves as a−4

[cf. Eq. (46)], exactly as the energy density of radiation
does. Such a behavior should not come as a surprise, and it
arises due to the fact that the modes of interest are well
inside the Hubble radius at late times (say, close to the
epoch of radiation-matter equality) during radiation domi-
nation. On utilizing this property, the dimensionless energy
density parameter ΩGWðkÞ today can be expressed in terms
of ΩGWðk; ηÞ as follows:

ΩGWðkÞh2 ¼
�
gr;eq
gr;0

��
gs;0
gs;eq

�
4=3

ΩRh2ΩGWðk; ηÞ

≃
�
gr;0
gr;eq

�
1=3

ΩRh2ΩGWðk; ηÞ; ð51Þ

where ΩR denotes the present day dimensionless energy
density of radiation. We should mention that, while gr;eq
and gr;0 represent the number of relativistic degrees of
freedom at equality and today, respectively, gs;eq and gs;0
represent the number of such degrees of freedom that
contribute to the entropy at these epochs. Further, the
Hubble parameter today, as usual, has been expressed
as H0 ¼ 100h km sec−1Mpc−1.
The spectrum of primordial GWs in the reheating

scenario with an averaged EoS parameter can be expected
to be different when compared to the one arising in the
perturbative reheating scenario, In the following two
sections, we shall derive the spectrum of primordial
GWs at the present epoch in the two cases.

V. SPECTRUM OF GWs IN REHEATING
DESCRIBED BY AN AVERAGED EoS

PARAMETER

Before we go on to discuss the results, we should
mention that the spectrum of GWs arising in the scenario
wherein the epoch of reheating is described by an averaged
EoS parameter and the transition to radiation domination is
assumed to occur instantaneously at a given time has been
evaluated earlier in the literature (see, for instance,
Refs. [62,65,71]; for a recent discussion, see Ref. [80]).
However, we find that, in the earlier investigations, the
initial conditions that determine the dynamics during
reheating have not always been chosen to be consistent
with the dynamics during inflation. In this work, we shall
consider a specific model of inflation, and we shall show
that model dependent initial conditions play a primary role
in determining the range of frequencies that reenter the
Hubble radius during reheating. Therefore, in this section,
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we shall reanalyze the effect of the averaged EoS parameter
during reheating (with appropriate initial conditions) on the
spectrum of GWs. We shall briefly discuss the derivation of
the spectrum of GWs and arrive at the shape of the
spectrum in the domains k < kre and k > kre. In the next
section, we shall compare the results with those that arise in
the case of perturbative reheating.
It should be clear from the expression (48) that we shall

require the quantities Ek and F k to arrive at the spectrum of
GWs. Using Eqs. (42), we can express Ek and F k as

Ek ¼
�
1 −

ik
kre

�
χRHk ðAreÞ þ Are

dχRHk ðAreÞ
dA

; ð52aÞ

F k ¼
�
1þ ik

kre

�
χRHk ðAreÞ þ Are

dχRHk ðAreÞ
dA

: ð52bÞ

Also, recall that the transfer function at the end of the
epoch of reheating χRHk ðAreÞ is given by Eq. (29), with the
coefficients Ck and Dk being described by Eqs. (31).
During radiation domination, we have H2A4 ¼ H2

reA4
re.

Since kf ¼ afHI and kre ¼ areHre, we find that we can
write Are ¼ ðkf=kreÞ1=γ . As a result, the Bessel functions in
the expression (29) for χRHk ðAreÞ depend on the ratio
ðk=kreÞ. Note that, in contrast, the coefficients Ck and
Dk depend only on the ratio k=kf . As we mentioned earlier,
we have been interested in arriving at the spectrum over
wave numbers such that k < 10−2kf . For small z, the Bessel
function JαðzÞ behaves as (see, for instance, Ref. [121])

lim
z≪1

JαðzÞ ≃
1

Γð1þ αÞ
�
z
2

�
α

; ð53Þ

where ΓðzÞ denotes the Gamma function. Clearly, in such a
limit, the Bessel functions involving the largest negative
value for the index α can be expected to dominate. Since
0 ≤ wϕ ≤ 1, the quantities ν and γ are always positive
[cf. Eq. (30)]. Hence, in the limit k ≪ kf , we find that it is
the term involving Dk in Eq. (29) that will dominate. For
the above reasons, the quantity χRHk ðAreÞ can be approxi-
mated as follows:

χRHk ðAreÞ ≃ A−ν
re DkJν=γ

�
k

γkre

�
; ð54Þ

with the coefficient Dk being given by

Dk ≃ −
π

Γð−ν=γÞ csc
�
πν

γ

��
k

2γkf

�
−ν=γ

: ð55Þ

Let us first arrive at the shape of the spectrum in the
domain k ≪ kre. In such a domain, we can use the form
(53) for the Bessel function Jν=γ½k=ðγkreÞ� that appears in
the expression (54) above for χRHk ðAreÞ. On doing so and

utilizing the identity ΓðzÞΓð1 − zÞ ¼ π= sinðπzÞ [121], we
find that, in the domain k ≪ kre, the quantity χRHk ðAreÞ
reduces to unity. Under the same conditions, we find that
the quantity dχRHk ðAreÞ=dA vanishes. Therefore, it should
be evident from the expressions (52) that, in the limit
k ≪ kre, Ek ≃ F k ≃ 1. In other words, the spectrum of GWs
today is scale invariant over this domain, and its present day
amplitude is given by

ΩGWðkÞh2 ≃
�
gr;0
gr;eq

�
1=3

ΩRh2
PTðkÞ
24

≃ΩRh2
H2

I

12π2M2
Pl

: ð56Þ

In arriving at the final expression, we have assumed that
gr;0 ≃ gr;eq and have made use of the tensor power
spectrum (12) arising in de Sitter inflation. We should
mention that this result is the same as in the case of
instantaneous reheating. This result should come as a
surprise since these large scale modes are on super-
Hubble scales during the epoch of reheating and hence
are not influenced by it.
Let us now turn to the domain k ≫ kre. Since the limit

k ≪ kf continues to be valid, the term involving Dk in
Eq. (29) remains the dominant term. Therefore, χRHk ðAreÞ is
again described by Eq. (54), with Dk given by Eq. (55).
However, the argument of the Bessel function in Eq. (54) is
now large. For large z, the Bessel function JαðzÞ behaves as
(see, for instance, Ref. [121])

lim
z≫1

JαðzÞ ≃
ffiffiffiffiffi
2

πz

r
cos ½z − πα − ðπ=4Þ�: ð57Þ

Therefore, in the domain k ≫ kre, we find that the quantity
χRHk ðAreÞ and its derivative dχRHk ðAreÞ=dA behave as

χRHk ðAreÞ ≃ −
1ffiffiffi
π

p Γ
�
1þ ν

γ

��
k

2γkre

�
−ðν=γÞ−ð1=2Þ

× cos

�
k

2γkre
−
πν

γ
−
π

4

�
; ð58aÞ

Are
dχRHk ðAreÞ

dA
≃ −

2γffiffiffi
π

p Γ
�
1þ ν

γ

��
k

2γkre

�
−ðν=γÞþð1=2Þ

× sin

�
k

2γkre
−
πν

γ
−
π

4

�
; ð58bÞ

with ν and γ being given by Eq. (30). On substituting these
expressions in Eqs. (52), we obtain the corresponding Ek
and F k to be
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Ek ≃ F �
k ≃ −

2iγffiffiffi
π

p Γ
�
1þ ν

γ

��
k

2γkre

�
−ðν=γÞþð1=2Þ

× exp i

�
k

2γkre
−
πν

γ
−
π

4

�
ð59Þ

so that

jEkj2 ¼ jF kj2 ¼
4γ2

π
Γ2

�
1þ ν

γ

��
k

2γkre

�
nGW

; ð60Þ

where we have defined nGW to be

nGW ¼ 1 −
2ν

γ
¼ −

2ð1 − 3wϕÞ
1þ 3wϕ

: ð61Þ

If we substitute these results in the expression (51), we
obtain the spectrum of GWs today in the domain k ≫ kre
to be

ΩGWðkÞh2 ≃
�
gr;0
gr;eq

�
1=3

ΩRh2
PTðkÞ
24

jEkj2

≃ΩRh2
H2

I

12π2M2
Pl

4γ2

π
Γ2

�
1þ ν

γ

��
k

2γkre

�
nGW

:

ð62Þ

In other words, for wave numbers such that k ≫ kre, the
spectrum of GWs today has the index nGW. Notably, the
index vanishes when wϕ ¼ 1=3. Also, while the spectrum
is blue for wϕ > 1=3, it is red for wϕ < 1=3. Moreover, in
the extreme cases wherein wϕ vanishes or is unity, we have
nGW ¼ −2 and nGW ¼ 1, respectively.
On utilizing the expression (29) for the transfer

function during reheating and the expressions (42) to
determine the quantities Ek and F k, we can arrive at the
complete spectrum of GWs by substituting the expres-
sions in Eq. (48). In Fig. 2, we have plotted the spectrum
of GWs today that arise in the case of the α-attractor
model (13) for a set of values of the EoS parameter wϕ. In
plotting the spectra, we have chosen the other parameters
in such a fashion that the reheating temperature is
Tre ¼ 3 GeV in all the cases. The figure clearly illustrates
the qualitative features we discussed above: (i) the
spectrum is strictly scale invariant for k < kre, and
(ii) the spectrum has the index nGW for k > kre. We have
plotted the spectra for wϕ ¼ ð0; 1=3; 1=2; 2=3Þ, which
correspond to the values n ¼ ð1; 2; 3; 5Þ for the index
in the potential (13). We should mention that these
cases lead to the indices nGW ¼ ð−2; 0; 2=5; 2=3Þ, as
expected. In the figure, we have also included the
sensitivity curves of the some of the current and forth-
coming GW observatories (for a discussion on the
sensitivity curves, see Ref. [122] and the associated
web page). Interestingly, we find that, for a set of

inflationary and reheating parameters, the spectra already
intersect the sensitivity curves. Moreover, we find
that the Big-Bang Nucleosynthesis (BBN) bound, viz.
ΩGWðkfÞh2 ≤ 10−6 (in this context, see, for instance,
Ref. [123] and the reviews [17,18]), can be violated
for wϕ > 1=3, which leads to constraints on the EoS
parameter wϕ for a given kf and vice versa. As we have
emphasized, Fig. 2 depicts the interesting dependence of
the value of kf on the inflationary model parameter n due
to different initial conditions at the beginning of reheat-
ing. This interdependence of kf and the EoS parameter wϕ

can be translated into the constraints on the reheating
temperature Tre and scalar spectral index nS through the
aforementioned BBN bound. For instance, in the figure,
the spectrum corresponding to wϕ ¼ 2=3 clearly crosses
the BBN bound at large frequencies. These clearly
suggest that observations of the spectrum of GWs today
can lead to interesting constraints on the primordial
physics.

FIG. 2. The behavior of the dimensionless energy density of
primordial GWs observed today, viz. ΩGWðfÞ, has been plotted
over a wide range of frequencies. The spectrum has been obtained
analytically, and it corresponds to the case wherein the post-
inflationary phase is described by the EoS parameter wϕ and
reheating is expected to occur instantaneously at a given time.
We have considered the scenario wherein the inflationary
potential is described by the α-attractor model (13). We have
illustrated the spectra for the cases wherein n ¼ ð1; 2; 3; 5Þ (in
black, brown, green, and magenta), which correspond to
wϕ ¼ ð0; 1=3; 1=2; 2=3Þ. We should mention that we have chosen
the parameters such that Tre ¼ 3 GeV in all the cases. In the
figure, we have also included the sensitivity curves of the
different ongoing and forthcoming GW observatories (in varied
colors, on top). Note that, as expected, the spectrum is strictly
scale invariant for frequencies such that f < fre ¼ kre=ð2πÞ.
However, for larger frequencies such that f > fre, while the
spectrum has a red tilt for wϕ < 1=3, it has a blue tilt for
wϕ > 1=3. Interestingly, we find that, for a suitably large value of
wϕ, the spectrum of GWs already intersect the sensitivity curves
of some of the observatories over a certain range of frequencies.
Moreover, we find that, for a high value of wϕ, the spectra cross
the BBN bound of ΩGWh2 < 10−6 at suitably large frequencies.
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VI. SPECTRUM OF GWs IN THE CASE OF
PERTURBATIVE REHEATING

In the perturbative reheating scenario, the inflaton
continuously transfers its energy to radiation after the
end of the inflationary epoch. As a result, the effective
EoS parameter during the reheating era, say, weff , becomes
time dependent. It can be expressed as

weff ¼
3wϕρϕ þ ρR
3ðρϕ þ ρRÞ

; ð63Þ

where we recall that the evolution of the energy densities of
the inflaton and radiation, viz. ρϕ and ρR, are governed by
the Boltzmann equations (35), while wϕ is the EoS
parameter describing the inflaton. Such a time dependence
of the effective EoS parameter has been explicitly dem-
onstrated earlier (see, for example, Refs. [91,93]). It has
been illustrated that, while immediately after the termina-
tion of inflation, weff is approximately equal to wϕ, and
after a certain time, the effective EoS parameter smoothly
transits from wϕ to 1=3, which indicates the onset of the
epoch of radiation domination. We should emphasize again
here that such a reheating scenario is different from the case
considered in the previous section where the inflaton
energy density is assumed to be converted instantaneously
into radiation after a certain period of time. Specifically, in
the previous reheating scenario, weff remains equal to wϕ

during the whole of the reheating era and, at a particular
time, weff sharply changes to 1=3. These differences in the

dynamics of the reheating scenarios should be reflected in
the spectrum of GWs today. The corresponding features in
the GW spectrum can, in principle, help us probe the
microscopic mechanisms operating during the era of
reheating.
We shall now proceed to compute the spectrum of GWs

at the present time, i.e., ΩGWðkÞ or, equivalently, ΩGWðfÞ,
in the case of the perturbative reheating scenario. As we had
discussed, we shall analyze this case numerically. With the
solution to the Hubble parameterHðAÞ at hand, we proceed
to solve for the transfer function χkðAÞ during the epoch of
reheating, as we had outlined in Sec. III. The numerical
solutions are determined using the initial conditions (26)
and (27). With the solutions at hand, we arrive at the
spectrum of GWs at the current epoch for different sets of
reheating temperature and the EoS parameter wϕ describing
the inflaton. The results we have obtained are illustrated in
Figs. 3 and 4 for the cases of wϕ < 1=3 and wϕ > 1=3,
respectively. Let us now highlight a few points concerning
the results plotted in the two figures.
Let us first broadly understand the spectra in Fig. 3

wherein we have plotted the results for wϕ ¼ 0. In the
figure, we have illustrated the dimensionless energy density
of GWs today as a function of the frequency f. We have
considered the case wherein the inflationary potential is
described by the α-attractor model (13) and have plotted the
results for n ¼ 1 (which corresponds to wϕ ¼ 0) and a set
of values of Tre. We have also included the behavior of the
effective EoS parameter weff, which we have plotted as a

FIG. 3. The behavior of the dimensionless energy density of primordial GWs today, viz. ΩGWðfÞ, has been plotted over a small (in
black, on the left) as well as a wide range of frequencies (in red, green, brown, and black, on the right). We have considered the scenario
wherein the inflationary potential is described by the α-attractor model (13) with n ¼ 1, which corresponds to wϕ ¼ 0. We have plotted
the spectrum of GWs for the following values of the reheating temperature Tre: 1010 GeV (in red, on the right), 106 GeV (in black on the
left and green on the right), 2 TeV and 2 GeV (in brown and black on the right). Note that we have also illustrated the behavior of the
effective EoS parameter weff (in blue, in the figure on the left) as a function of the frequency f, which has been determined using
the relation f ¼ aH=ð2πÞ. In other words, weffðfÞ (marked on the y axis on the right-hand side of the figure on the left) represents the
effective EoS parameter at the instant when the mode with the frequency f reenters the Hubble radius. We have also indicated the
frequencies associated with the wave numbers kre and kf (as vertical red and green lines, on the left). Moreover, we have demarcated
the regime (in pink) wherein the transition from weff ¼ 0 to weff ¼ 1=3 occurs. We should point out that the spectrum of GWs exhibit
oscillations in the region of the transition. Further, we have included the sensitivity curves of different ongoing and forthcoming GW
observatories (in the figure on the right).
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function of frequency using the relation f ¼ aH=ð2πÞ. The
plot indicates the evolution of the parameter weff as the
modes with different frequencies f reenter the Hubble
radius (in this context, also see the earlier efforts [91,93]).
Note that larger wave numbers or, equivalently, larger
frequencies reenter the Hubble radius earlier than the
smaller ones. The plot clearly highlights the transition
from the inflaton dominated universe to the epoch of
radiation domination, achieved through the mechanism
of perturbative reheating. The transition is clearly reflected
in the behavior of the effective EoS parameter which
changes smoothly from weff ¼ 0 at early times (i.e., at
large frequencies) to weff ¼ 1=3 at late times (i.e., at small
frequencies). In the figure, we have indicated the frequen-
cies associated with the wave numbers kf and kre and
have also marked the domain of the transition to highlight
these points.
Let us now point out a few more aspects of the results

presented in Fig. 3. In the figure, we have also plotted the
spectrum of GWs for a few different values of the reheating
temperature. Further, we have included the sensitivity
curves of different current and forthcoming GW observa-
tories. Note that the plots suggest that the spectra of GWs
remain scale invariant over wave numbers k < kre which
reenter the Hubble radius during the radiation dominated
epoch. This result should not come as surprise. As we have
pointed our earlier, these modes are on super-Hubble scales
during the period of reheating and hence are unaffected by
the process. Therefore, they carry the scale invariant nature
of the spectrum of GWs generated during inflation.
However, modes with wave numbers kre < k < kf reenter
the Hubble radius during the epoch of reheating, and hence
they carry the signatures of the mechanism of reheating.
For the value of wϕ ¼ 0 we have worked with in Fig. 3, we

find that the spectrum exhibits a strong red tilt for k > kre.
In fact, we find that the red tilt occurs over this range of
wave numbers whenever wϕ < 1=3. Moreover, for lower
values of the reheating temperature, the red tilt begins to
occur at smaller wave numbers. Such a behavior can be
attributed to the fact that, when the reheating temperature is
lower, the epoch of reheating lasts longer. Since reheating is
delayed, the mode with wave number kre reenters the
Hubble radius at a later time or, equivalently, leaves the
Hubble radius during inflation at an earlier time thereby
suggesting that it will have a smaller wave number. We
should mention here that these features in the spectrum of
GWs are similar to the behavior in the simpler reheating
scenario we had discussed in the last section.
Interestingly, we find that the perturbative reheating

scenario leaves telltale imprints on the spectrum of GWs
which can possibly help us decipher finer details of the
mechanism of reheating. We find that the spectrum exhibits
a burst of oscillations near kre. It should be clear from Fig. 3
that the oscillations occur over modes which leave the
Hubble radius during the period of the transition when weff
changes from its initial value of wϕ to the final value of 1=3.
Recall that, in the perturbative reheating scenario, the
reheating temperature is identified as the temperature
associated with the energy density of radiation at the
instance when HðAreÞ ¼ Γϕ. Consequently, it is at this
point of time that the change in the effective EoS parameter
with respect to the scale factor is the maximum. This aspect
is reflected in the peak that arises in the spectrum of GWs
exactly at the wave number kre which reenters the Hubble
radius when HðAreÞ ¼ Γϕ. We should also mention that
these features in the spectrum of GWs spectrum are not
limited only to the case of wϕ ¼ 0 and Tre ¼ 106 GeV, but
also arise for all possible sets of values of ðwϕ < 1=3; TreÞ.

FIG. 4. The spectra of GWs today have been illustrated in the same manner as in the last figure. But, in contrast to the previous figure
wherein we had considered the case wϕ ¼ 0 [or, equivalently, n ¼ 1 in the potential (13)], we have set wϕ ¼ 0.5 (i.e., n ¼ 3) in arriving
at the plots above. Note that, as in the case of wϕ ¼ 0, the spectrum is scale invariant over frequencies corresponding to k < kre.
However, the spectrum has a strong blue tilt at higher frequencies. Importantly, for some values of the reheating temperature, the spectra
intersect the sensitivity curves of the various GWobservatories which immediately translate to constraints on the parameters wϕ and Tre

that characterize the epoch of reheating. In the figure, we have also included the BBN constraint (as the horizontal black line, on the
right), which corresponds to ΩGWh2 < 10−6.
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In order to highlight this point, in Fig. 3, we have illustrated
the spectrum ΩGWðfÞ for different values of reheating
temperature Tre. However, note that the frequency around
which the spectrum begins to exhibit a red tilt increases as
the reheating temperature increases. This is expected for the
reason we discussed above, viz. that the period of reheating
is shorter for a higher reheating temperature as a result of
which the wave number kre of the mode which reenters at
the end of reheating turns out to be larger. Last, we should
mention that, for wϕ < 1=3, the spectrum of GWs is indeed
compatible with the BBN constraints.
To illustrate the dependence of the spectrum of GWs on

wϕ, in Fig. 4 we have plotted the spectrum for wϕ ¼ 1=2
[i.e., for n ¼ 3 in the potential (13)] and a set of values of
the reheating temperature, just as in Fig. 3. Clearly, the
spectrum of GWs is scale invariant over frequencies
corresponding to k < kre. But, in contrast to the wϕ ¼ 0

case, the spectrum has a strong blue tilt at higher frequen-
cies. Also, as expected, the higher the reheating temper-
ature, the larger is kre, for reasons we have discussed earlier.
Moreover, we find that the spectrum exhibits a burst of
oscillation around kre, exactly as in the wϕ ¼ 0 case.
Further, the maximum of the oscillation occurs at the
instance when kre reenters the Hubble radius and the width
of the oscillation coincides with the period of transition
from weff ¼ wϕ ¼ 0.5 to weff ¼ 1=3. Finally, we should
mention that the spectra exhibit a blue tilt for k > kre
whenever wϕ > 1=3.
The above arguments clearly indicate that the details of

the epoch of reheating significantly affects the spectrum of
GWs. Therefore, the characteristic features of ΩGWðfÞ can
considerably aid us in garnering an adequate amount of
information regarding the reheating phase. Upon compar-
ing Figs. 2 and 3 (or 4), it is clear that the perturbative
reheating mechanism, wherein the transfer of energy from
the inflaton to radiation occurs smoothly, leads to oscil-
lations in the spectrum of GWs in contrast to the simpler
model wherein the transition to radiation domination
occurs instantaneously. We believe that such quantitative
differences can provide us with stronger constraints on the
mechanism of reheating. Specifically,

(i) The presence of the oscillating feature in the
spectrum of GWs, in particular, the width of the
oscillation can provide us information concerning
the timescale over which weff makes the transition
from wϕ to 1=3.

(ii) As we have discussed above, the peak of the
oscillation occurs at k ¼ kre. Thus, identifying the
location of the peak of the oscillation in the spectrum
can help us determine the Hubble scale at the end of
reheating or, equivalently, the decay rate Γϕ of
the inflaton to radiation. In other words, the obser-
vation of the peak can indicate the strength of the
coupling between the inflaton and radiation in a
given decay channel.

VII. SPECTRUM OF GWs NEAR THE END
OF INFLATION

Until now, while discussing the tensor power spectrum
generated during inflation, for simplicity, we had assumed
that inflation was of the de Sitter form. This had led to a
scale invariant power spectrum for scales such that k ≪ kf
[cf. Eq. (12)], where kf denotes the wave number that
leaves the Hubble radius at the end of inflation. However,
potentials such as the α-attractor model (13) of our interest
actually lead to slow roll inflation and, as we had
mentioned earlier, in such cases, there will arise a small
tensor spectral tilt. Moreover, even the slow roll approxi-
mation will cease to be valid towards the end of inflation.
Therefore, to understand the nature of the inflationary
tensor power spectrum close to the wave number kf, the
easiest method seems to evaluate the spectrum numerically.
There exists a standard procedure to evaluate the

spectrum of perturbations generated during inflation (in
this context, see, for instance, Ref. [124]). The modes are
typically evolved from the Bunch-Davies initial conditions
when they are well inside the Hubble radius and the spectra
are evaluated in the super-Hubble domain when the
amplitude of the perturbations have frozen. Such an
approach works well for the large scale modes. But, since
we are interested in the tensor power spectrum over small
scales, in particular, with wave numbers close to kf , these
modes would not be able to spend an adequate amount of
time in the super-Hubble regime. Hence, in these situations,
the best approach would be to evaluate the spectrum at the
end of inflation. In Fig. 5, we have plotted the inflationary
tensor power spectrum computed numerically in the
α-attractor model of our interest. Actually, in the figure,
we have also plotted the spectra of GWs today ΩGWðfÞ for
a few sets of values of the EoS parameter wϕ and a specific
value of the reheating temperature. Having computed the
inflationary spectra numerically, we have used the analyti-
cal forms for the tensor transfer function postinflation to
arrive at the ΩGWðfÞ. Note that the inflationary spectral
shape begins to change for wave numbers close to kf . In
fact, we find that the inflationary tensor power spectrum
PTðkÞ behaves as k2 for wave numbers close to and beyond
kf . This is not surprising and occurs due to the fact that
these modes either have hardly left or remain inside the
Hubble radius at the end of inflation. Therefore, the modes
are essentially of the Minkowskian form leading to the k2

behavior of the power spectrum. From the structure of
energy density of GWs [cf. Eq. (21)], it is easy to establish
that the corresponding ΩGWðkÞ would behave as k4 over
this domain of wave numbers. It is easy to see from Fig. 5
that ΩGWðfÞ indeed behaves as expected around and
beyond kf . Further, from the figure, we can see that kf
is crucially dependent on the structure of the inflationary
potential. For reheating dynamics described by an effective
EoS parameter wϕ, we can write kf in terms of the potential
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parameter n, the reheating parameters ðTre Nre), and the
inflationary parameter N� as follows:

kf ¼ afHf ¼ k�
Hf

HI
eN� ¼ k�

�
Vf

2H2
IM

2
Pl

�
1=2

eN�

¼ k�

�
π2gr;re
90

�
1=2 T2

re

HIMPl
eN�þ½3n=ðnþ1Þ�Nre ; ð64Þ

where we have been careful to distinguish between the
value of Hk� ≃HI and Hf , i.e., the Hubble parameters
evaluated at the moment when the pivot scale k� crosses the
Hubble radius and at the end of the inflation, respectively.

VIII. CMB, SPECTRUM OF GWs, AND THE
MICROSCOPIC REHEATING PARAMETERS

As is well known, the observations of the anisotropies in
the CMB by missions such as Planck can be explained in a
simple and successful manner by invoking an early phase
of inflation [5–14]). Nevertheless, the characterization of
the inflaton is far from complete because of the lack of
adequate observational constraints, particularly over scales
smaller than the CMB scales. The spectrum of GWs is
possibly the only probe which can provide us direct access
to the physics operating during the epochs of inflation and
reheating. In this section, we shall discuss the manner in
which we can extract the properties of the inflaton by
combining the observations of the CMB and GWs.
As we have already mentioned, the spectrum of GWs

carries signatures which reflect some details of the mecha-
nism of reheating. Recall that the primary aspect of the
reheating phase is the time evolution of the EoS parameter
from the initial value of wϕ associated with the inflaton to
the final value of 1=3 corresponding to radiation. The phase
can be generically divided into three stages based on the

underlying physical processes that operate. In what follows,
we shall discuss these stages and the corresponding
imprints on ΩGWðfÞ.
To facilitate the discussion, let us introduce the spectral

index nGW ¼ d lnΩGW=d ln k associated with the spectrum
of GWs. Interestingly, we find that all the three stages leave
distinct imprints on the spectral index nGW, and we have
illustrated the behavior of nGWðfÞ for the α-attractor
model (13) in Fig. 6. Note that the first and longest stage
is when H ≪ Γϕ, i.e., when the inflaton is decaying v
ery slowly and hence the background dynamics is domi-
nated by the EoS parameter wϕ governing the inflaton.
The spectral index nGW associated with modes which
reenter the Hubble radius during the stage is given by
nGW ¼ 2ð3wϕ − 1Þ=ð3wϕ þ 1Þ. In Fig. 6, we have indi-
cated the nGWðfÞ associated with wϕ ¼ 0 and 1=2. In the
subsequent stage, as the Hubble parameter approaches Γϕ,
the decay of the inflaton becomes increasingly efficient,
and the effective EoS parameter begins to change rapidly.
The corresponding effects are reflected in the variation of
nGW over modes which reenter the Hubble radius during
the transition, as highlighted in Fig. 6. However, this
intermediate stage is the shortest among the three stages,
and it ends when Hre ¼ Γϕ, i.e., when the rate of decay of
the inflaton to radiation is at its maximum. The most
important of the three stages is the final stage of thermal-
ization which is characterized by the timescaleΔtth. It is the
timescale over which the decay products of the inflaton
thermalize among themselves. In fact, it is this mechanism
that determines the actual initial temperature of the radi-
ation dominated phase contrary to the conventional defi-
nition of reheating temperature Tre defined when H ¼ Γϕ.
The thermalization process and the associated timescale
Δtth would crucially depend upon the nature of all the
decay products of the inflaton as well as the detailed

FIG. 5. The inflationary tensor power spectrum arising in the α-attractor model of interest (on the left) as well as the corresponding
spectrum of GWs today (on the right) have been plotted for frequencies close to the wave number kf. The inflationary spectra have been
computed numerically, and we have made use of the analytical solutions for the tensor transfer function χk during the postinflationary
epochs to arrive at the spectrum of GWs today. We have plotted the spectrum of GWs today, viz. ΩGWðfÞ, for a few different values of
the reheating EoS parameter wϕ and a specific reheating temperature. We find that, while the inflationary power spectrum begins to
behave as k2 near kf, the corresponding spectra of GWs today behave as k4.

DECODING THE PHASES OF EARLY AND LATE TIME … PHYS. REV. D 104, 063513 (2021)

063513-15



dynamics of the decay process. These details will deter-
mine the manner in which the EoS parameter changes
during this stage, and its variation will be imprinted in the
behavior of nGWðfÞ as we have illustrated in Fig. 6. Note
that there arises a frequency range, say, Δfth, associated
with the timescale Δtth, and the variation of the spectral
index nGW over this domain can provide us with clues to the
physics operating during the stage.
Therefore, from the CMB observations and the spectrum

of GWs, we can, in principle, extract the following essential
information regarding the nature of the inflaton and the
underlying physical process taking place during reheating.

(i) Effective inflaton EoS parameter wϕ: The nature of
inflaton potential near its minimum or, equivalently,
the effective EoS parameter wϕ associated with the
decay of the inflaton can be determined from the
spectral index of GWs through the relation

wϕ ¼ 1

3

�
2þ nGW
2 − nGW

�
: ð65Þ

(ii) Inflaton decay width Γϕ: Once we have arrived at the
EoS parameter describing the inflaton, the effective
inflaton decay constant Γϕ can be determined from
the CMB and the spectrum of GWs in the following
fashion. As we have already mentioned, for modes
with wave numbers k < kre, the amplitude of the
tensor perturbations will remain approximately con-
stant from the time the modes leave the Hubble
radius during inflation till they reenter the Hubble

radius during the epoch of radiation domination.
Because of this reason, over these ranges of modes,
the spectrum of GWs at late times retains the same
shape as the spectrum of tensor perturbations gen-
erated during inflation. Therefore, using Eq. (56),
the scale invariant amplitude of the spectrum of
GWs can be utilized to estimate the approximate
energy scale near the end of inflation. In the limit of
high reheating temperature, we have

ΩGWh2 ≃ΩRh2
H2

I

6π2M2
Pl

ð66Þ

and, as a result,

HI ≃
�
6π2M2

PlΩGWh2

ΩRh2

�
1=2

; ð67Þ

which, in turn, allows us to express the energy
density at the end of inflation as follows:

ρf ≃
18π2M4

PlΩGWh2

ΩRh2
: ð68Þ

From the observed spectrum, we can, in principle,
determine wave numbers kre and kf , which are the
wave numbers that reenter at the end of the epoch of
reheating and leave the Hubble radius at the end of
inflation, respectively. In Fig. 6, we have illustrated
the dependence of kre on the scalar spectral nS for

FIG. 6. Left: The variation of the index nGW associated with the spectrum of primordial GWs observed today in the case of the
perturbative reheating scenario has been plotted as a function of frequency f for two different values of the inflaton EoS parameter
wϕ ¼ ð0; 1=2Þ (as solid and dashed lines) for the α-attractor potential (13). We have fixed the value of the reheating temperature to be
Tre ¼ 106 GeV in arriving at the plot. In the figure (on the left), we have also explicitly highlighted the behavior of nGW for modes that
reenter the Hubble radius during the following regimes: (i) reheating phase dominated by the inflaton (as solid and dashed lines, in
magenta), (ii) the period of rapid transition of the EoS parameter from wϕ to 1=3 (as solid and dashed lines in blue), and (iii) the radiation
dominated epoch (in green). We have also demarcated the domain in frequency associated with the thermalization timescales in the
figure (as shaded regions in dark and light blue). These quantities have been denoted as Δf1th and Δf3th for wϕ ¼ 0 and 1=2, respectively.
Right: We have illustrated the variation of the frequency fre ¼ kre=ð2πÞ as a function of the scalar spectral index nS for three different
values of n ¼ ð1; 3; 5Þ (in blue, black, and pink) for the α-attractor model. We have also indicated the 1-σ and 2-σ confidence regions (as
light and dark bands in red) associated with the constraint on scalar spectral index nS from Planck [59].
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different values of the parameter n of the α-attractor
model. In a manner similar to the existence of a
maximum possible reheating temperature, we notice
that there arises a maximum possible value for the
frequency associated with the wave number kre. We
find that, generically, fmax

re ≃ 107 Hz, irrespective of
the values of the other parameters involved. It would
be interesting to study further implications of this
point. Nonetheless, the aforementioned wave num-
bers satisfy the following relations:

kf ¼ afHf ≃afHI; kre ¼ areHre ¼AreafΓϕ: ð69Þ
Considering perturbative reheating, one can obtain
an approximate analytical expression for the nor-
malized scale factor Are at the end of the reheating to
be (in this context, see Ref. [93])

Are ¼
�

4ρfð1þwϕÞ2
G4βð5−3wϕÞ2

�
−1=ð1−3wϕÞ

; β¼ π2gr;re
30

;

G¼
�

43

11gre

�
1=3
�
a0HI
k�

�
T0e−N� : ð70Þ

The primary assumption in arriving at the above
expressions is that the energy scale does not change
significantly throughout the entire period of infla-
tion. With all the above expressions at hand, we find
that the inflaton decay constant Γϕ can be written in
terms of the observable quantities as

Γϕ ¼ kreHI

Arekf
¼ kre

kf

�
6π2M2

PlΩGWh2

ΩRh2

�
1=2

×

�
72π2M4

PlΩGWh2ð1þ wϕÞ2
ΩRh2G4βð5 − 3wϕÞ2

�
1=ð1−3ωϕÞ

:

ð71Þ
One can then immediately obtain the following
analytic expression for the reheating temperature:

Tre ¼
G
Are

¼
�

43

11gre

�
1=3 kfHI

k�H0

×

�
72π2M4

PlΩGWh2ð1þ wϕÞ2
ΩRh2G4βð5 − 3wϕÞ2

�
1=ð1−3wϕÞ

T0:

ð72Þ

So far, we have expressed the inflation decay
constant and the reheating temperature in terms of
the observables associated with the CMB and the
spectrum of GWs today. To understand the exact
nature of the coupling, the subsequent thermaliza-
tion processes right after reheating (i.e., when
Γϕ ¼ Hre) becomes important. Therefore, let us
now compute the thermalization timescale.

(iii) Thermalization timescale Δtth: Thermalization is an
important nonequilibrium phenomenon that is
ubiquitous in nature. At the end of the phase of
reheating, when the rate at which the inflaton decays
into radiation has attained a maximum, the sub-
sequent thermalization phase leads to the epoch of
radiation domination. In this process, thermalization
timescale Δtth is an important observable which
crucially depends on the nature of the initial state as
well as the interactions among the internal degrees
of freedom. Also, it is the initial state that encodes
the information about the coupling between the
inflaton and the other fields to which the energy
is being transferred. Hence, if we can arrive at Δtth
from the spectrum of GWs, valuable information
regarding the fundamental nature of the coupling
parameters between the inflation and other fields at
very high energies can, in principle, be extracted.
The thermalization timescale is defined as

Δtth ¼ tth − tre; ð73Þ

where tre is the time corresponding to the end of
reheating and tth denotes the time at the end of the
thermalization process, which leads to the beginning
of the actual radiation dominated epoch. In order to
obtain an approximate analytic expression, during
this regime, we shall assume that the scale factor
behaves as a ∝ t2=3ð1þwÞ. This can be justified since
we can express the effective EoS parameter during
the thermalization phase using the following pertur-
bative expansion:

w ¼ 1

tth − tre

Z
tth

tre

dt

�
wR þ ðwϕ − wRÞ

ρϕ
ρR

þ � � �
�

≃
1

3
þ
�
wϕ −

1

3

�
xþOðx2Þ;

x ¼ 1

tth − tre

Z
tth

tre

dt
ρϕ
ρR

; ð74Þ

where wR ¼ 1=3 is the EoS parameter describing
radiation. Note that during the thermalization phase
ρϕ ≪ ρR and, hence, x ≪ 1. This particular fact
enables us to obtain the leading order expression for
the thermalization timescale in terms of the observ-
able quantities that we discussed. On utilizing the
above form for the EoS parameter, we find that
the leading order behavior of the scale factor at
Γϕ ¼ Hre can be written as

are≃
�
tre
t1

�
2=½3ð1þωRÞ��

1−
2xðwϕ−wRÞ
3ð1þwRÞ2

ln

�
tre
t1

�
þ���

�
;

ð75Þ
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where t1 is a constant we have introduced for
purposes of normalization. Upon using the relations
kre ¼ areHre, kth ¼ athHth, and Hre ¼ Γϕ, we can
express the reheating time tre and the thermalization
time tth in terms of the wave numbers kre and kth as

tre ¼
�
kth
pR

�
1=ðpR−1Þ

tpR=ðpR−1Þ
1 þOðxÞ;

tth ¼
�
kre
pR

�
1=ðpR−1Þ

tpR=ðpR−1Þ
1 þOðxÞ: ð76Þ

We can also express Γϕ in terms of normalized time
t1 as

Γϕ ∼
�
pR

t1

�
pR=ðpR−1Þ

k−1=ðpR−1Þ
re þOðxÞ; ð77Þ

where we have introduced the quantity
pR ¼ 2=½3ð1þ ωRÞ�. Utilizing all the above equa-
tions, we finally obtain the final expression for
the thermalization timescale to the leading order
in x to be

Δtth ∼

8>>>>><
>>>>>:

��
kth
pR

�
1=ðpR−1Þ

−
�
kre
pR

�
1=ðpR−1Þ�

ppR=ðpR−1Þ
R

�
k−1=ðpR−1Þ
re

Γϕ

�
þOðxÞ; in terms of Γϕ;

��
kth
pR

�
1=ðpR−1Þ

−
�
kre
pR

�
1=ðpR−1Þ�

ppR=ðpR−1Þ
R

�
Gk−pR=ðpR−1Þ

re

HITre

�
þOðxÞ; in terms of Tre:

ð78Þ

In the above expressions, an important point one
should remember is that the values of the wave
numbers kre and kth are, in general, dependent on
the decay width of the inflaton. Therefore, the
overall thermalization timescale is a nontrivial
function of Γϕ.
The thermalization timescale crucially depends

on the initial number density of the decayed particles
compared with the thermalized ones. The initial
number density at the instant when Γϕ ¼ Hre can be
approximately estimated to be ni ≃M2

PlH
2
re=mϕ ¼

M2
PlΓ2

ϕ=mϕ, and, in arriving at this expression, it has
been assumed that the momentum of the decay
products is as large as the mass mϕ of the inflaton
[125,126]. If we consider the particles to have
thermalized at the reheating temperature Tre, then
the number density can again be approximately
determined to be nth ≃ T3

re ≃ Γ3=2
ϕ M3=2

Pl . Hence, the
ratio of the particle number densities nth and ni turns
out to be

nth
ni

≃
mϕffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓϕMPl

p ¼
�
m2

ϕArekf
MPlkreHI

�1=2

: ð79Þ

This is one of the crucial parameters in the
context of the thermalizing plasma that dictates
the kind of physical processes that occur during
thermalization [125–129]. At this stage, we are
unable to extract the inflaton mass mϕ from the
observations in a model independent manner.
However, given the mass of the inflaton, along

with the CMB observations, Eq. (79) will have two
generic possibilities, viz.
(i) ni < nth: The particle number density is

smaller than the thermalized ones, which
means that, at the end of reheating, the uni-
verse is underoccupied. For example, if
one considers marginal inflaton-scalar (ξ) cou-
pling such as βϕξ3, inflaton-Fermion (ψ)
Yukawa coupling βϕψ̄ψ , the inflaton decay
width behaves as Γϕ ∼ β2mϕ, which implies
that ni=nth ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ=MPl

p
< 1.

(ii) ni > nth: The particle number density is
larger than the thermalized ones; i.e., at
the end of reheating, the universe is over-
occupied. For example, if one considers any
Planck suppressed operator containing a
coupling between the inflaton and the reheat-
ing field, the decay width behaves as
Γϕ ∼m3

ϕ=M
2
Pl, which implies that ni=nth∼ffiffiffiffiffiffiffiffi

MPl
p

=mϕ > 1.
(iv) Determination of microscopic interactions: From

our discussion above for the two cases, it is clear
that if we can determine the value of nth=ni from the
combined observations of the CMB and GWs, the
fundamental nature of the inflaton-reheating field
coupling such as “β” can be extracted. Further-
more, interestingly, it has been pointed out that,
depending on the aforementioned two conditions
for the initial, nonthermal states generated by the
end of reheating, the behavior of the thermalization
timescale in terms of the microscopic variables will
be very different and will behave as (in this context,
see Ref. [125])
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Δtth ∼
�
α−2m1=2

ϕ T−3=2
th ; for underoccupied initial states such that ni < nth;

α−2T−1
th ; for the overoccupied initial state such that ni > nth;

ð80Þ

where α denotes the gauge interaction strength among the decayed particles, and T th is the final thermalization
temperature. Hence, it is extremely important to recognize that, once we know the inflaton mass mϕ and the final
thermalization temperature T th [the latter can be computed once the reheating dynamics is fixed, by using Eqs. (79)
and (80)], the gauge interaction strength can, in principle, be computed in terms of the observable quantities through
the relations

α ∼

8>>>>><
>>>>>:

T−1=2
th

��
kth
pR

�
1=ðpR−1Þ

−
�
kre
pR

�
1=ðpR−1Þ�−1=2

p−pR=½2ðpR−1Þ�
R

�
k−1=ðpR−1Þ
re

Γϕ

�−1=2

; for HI >
m2

ϕArekf
MPlkre

;

	mϕ

T3
th



1=2
��

kth
pR

�
1=ðpR−1Þ

−
�
kre
pR

�
1=ðpR−1Þ�−1=2

ppR=½−2ðpR−1Þ�
R

�
k−1=ðpR−1Þ
re

Γϕ

�−1=2

; for HI <
m2

ϕArekf
MPlkre

:

ð81Þ

We expect to carry out a detailed study on these
important issues in a future publication. Having
examined the effects of the epoch of reheating on the
spectrum of GWs today, let us now turn to discuss
the effects that arise due to a secondary phase of
reheating. As we shall see, such a phase can have an
important implication for the recent observational
results reported by NANOGrav [94,95].

IX. SPECTRUM OF GWs WITH LATE TIME
ENTROPY PRODUCTION AND IMPLICATIONS
FOR THE RECENT NANOGrav OBSERVATIONS

In Secs. Vand VI, while arriving at the spectrum of GWs
ΩGWðfÞ today, we had assumed that the perturbations were
generated during inflation and had evolved through the
epochs of reheating and radiation domination. In such a
scenario, the entropy of the universe is conserved from the
end of reheating until today. In fact, we had earlier utilized
the conservation of entropy to relate the temperature Tre at
the end of reheating to the temperature T0 today. Recall
that, for simplicity, we had assumed that the spectrum of
tensor perturbations generated during inflation was strictly
scale invariant [cf. Eq. (12)]. We had also found that, for
wave numbers k < kre, the evolution of the tensor pertur-
bations through the standard epochs of reheating and
radiation domination does not alter the shape of the
spectrum of GWs observed today, i.e., ΩGWðfÞ remains
scale invariant for f < fre ¼ kre=ð2πÞ.
Over the past decade or so, there has been an interest in

examining scenarios wherein there arises a short, secondary
phase of reheating some time after the original phase of
reheating, which immediately follows the inflationary
epoch (see, for example, Ref. [130]). It has been shown
that such a modified scenario can also be consistent with

the various observations [71,131,132]. A secondary phase
of entropy production can occur due to the decay of an
additional scalar field (which we shall denote as σ) that can
be present, such as the noncanonical scalar fields often
considered in high energy physics or the moduli fields
encountered in string theory.1 In this section, we shall
discuss the effects of such a secondary phase of reheating
(which occurs apart from the primary phase of reheating
considered earlier) on the spectrum of GWs observed
today. As we shall see, the secondary phase of entropy
production leads to unique imprints on the spectrum of
GWs which has interesting implications for the recent
observations by NANOGrav [94,95].
Let us first calculate the reheating temperature associated

with the secondary phase of reheating. We can expect the
entropy to be conserved during the radiation dominated
epoch sandwiched between the two phases of reheating. On
following the chronology of evolution mentioned above
and, upon demanding the conservation of entropy, we can
arrive at the relation between the temperature Tre at the end
of the first phase of reheating and the temperature at the
beginning of the second phase of reheating, say, TσR. We
find that they can be related as follows:

gs;rea3reT3
re ¼ gs;σRa3σRT

3
σR; ð82Þ

where ðgs;re; gs;σRÞ and ðare; aσRÞ denote the relativistic
degrees of contributing to the entropy and the scale factor at
the end of the primary reheating phase and at the start of the
second phase of reheating (or, equivalently, at the end of the

1It is for this reason that the secondary phase is sometimes
referred to as the moduli dominated epoch. The scalar field could
have emerged from an extradimensional modulus field or due to
some higher curvature effects [133,134].
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first epoch of radiation domination), respectively. Using the
above relation, we can express the original reheating
temperature Tre in terms of the temperature TσR at the
beginning of the secondary phase of reheating as

Tre ¼
�
gs;σR
gs;re

�
1=3

eN
RD
RDð1ÞTσR; ð83Þ

where Nð1Þ
RD ¼ lnðaσR=areÞ denotes the duration of first

epoch of radiation domination in terms of the number of
e-folds. Similarly, we can relate the temperature at the end
of the secondary phase of reheating, say, Tσ, to the
temperature T0 today by demanding the conservation of
entropy after the onset of the second epoch of radiation
domination. On doing so, we obtain that

Tσ ¼
�

43

11gs;σ

�
1=3
�
a0
aσ

�
T0; ð84Þ

where gs;σ and aσ represent the degrees of freedom
contributing to the entropy and the scale factor at the
end of the secondary phase of reheating. If aeq denotes the
scale factor at the epoch of matter-radiation equality, then
the above expression for Tσ can be written as

Tσ ¼
�

43

11gs;σ

�
1=3
�
a0
aeq

�
eN

ð2Þ
RDT0: ð85Þ

The factor a0=aeq can be expressed in terms of the quantity
a0=ak through the relation

a0
aeq

¼
�
a0
ak

�
e−½NkþNreþNð1Þ

RDþNsreþNð2Þ
RD�; ð86Þ

where ak denotes the scale factor when the mode with the
wave number k crosses the Hubble radius during inflation,
while Nk represents the number of e-folds from the time
corresponding to ak to the end of inflation. Moreover, recall
that Nre denotes the duration of the first phase of reheating.

It should be evident that the quantities Nsre and Nð2Þ
RD

represent the duration (in terms of e-folds) of the secondary
phase of (say, moduli dominated) reheating and the second
epoch of radiation domination, respectively. With k set to
be the pivot scale k�, on substituting the above expression
for a0=aeq in Eq. (85), we obtain that

Tσ ¼
�

43

11gs;σ

�
1=3
�
a0HI

k�

�
e−½N�þNreþNð1Þ

RDþNsre�T0; ð87Þ

which is the temperature at the end of the secondary phase
of reheating.
Note that the above expression for Tσ can be inverted to

write Nð1Þ
RD as

eN
ð1Þ
RD ¼

�
43

11gs;σ

�
1=3
�
a0HI

kast

�
e−½N�þNreþNsre�

�
T0

Tσ

�
: ð88Þ

This relation, along with Eq. (83), immediately leads to the
following expression for the original reheating temperature
Tre in terms of the parameters associated with the late time
entropy production:

Tre ¼
�

43

11gs;re

�
1=3
�
a0HI

k�

�
F−1=3e−ðN�þNreÞT0: ð89Þ

In this relation, the factor F represents the ratio of the
entropy at the end and at the beginning of the secondary
phase of reheating, and it is given by

F ¼ sðTσÞa3σ
sðTσRÞa3σR

; ð90Þ

where sðTÞ denotes the entropy at the temperature T. If we
now assume that the secondary phase of reheating is
described by the EoS parameter wσ, then we can arrive
at the following useful relations between the Hubble
parameter and the temperature at the end and at the
beginning of the secondary phase of reheating:

Hσ ¼
�

γ1Tσ

γ2F1=3TσR

�
3ð1þwσÞ=2

HσR;

Tσ ¼
�

γ1
γ2F1=3

�
3ð1þwσÞ=ð1−3wσÞ�gr;σR

gr;σ

�
1=ð1−3wσÞ

TσR; ð91Þ

where the quantities γ1 and γ2 are defined as

γ1 ¼
�
gr;re
gr;σR

�
1=4

; γ2 ¼
�
gs;re
gs;σ

�
1=3

: ð92Þ

Clearly, the factor F controls the extent of entropy
produced at late times. And, in the absence of such entropy
production, the factor F reduces to unity. Also, in such a
case, the expression (89) for the reheating temperature Tre
reduces to the earlier expression (33b), as required.
Let us now turn to discuss the spectrum of GWs that

arises in such a modified scenario. As we mentioned above,
for simplicity, we shall assume that the secondary phase of
reheating is described by the EoS parameter wσ. In order to
arrive at ΩGWðkÞ in the new scenario, we shall follow the
calculations described in Sec. V wherein we have evaluated
the spectrum analytically. To highlight all the relevant
scales involved and also to aid our discussion below, in
Fig. 7, we have illustrated the evolution of the comoving
Hubble radius in the modified scenario. Specifically, in the
figure, we have indicated the new scales kσR and kσ which
are the wave numbers that reenter the Hubble radius at the
start and at the end of the secondary phase of reheating.
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Before we go on to illustrate the results, let us try to
understand the shape of ΩGWðkÞ that we can expect in the
modified scenario involving late time production of
entropy.

(i) For wave numbers k < kσ: As we mentioned above,
kσ represents the wave number of the mode that
reenters the Hubble radius at the onset of the second
epoch of radiation domination or, equivalently, at the
end of the secondary phase of reheating. Therefore,
the range of wave numbers k < kσ (but with wave
numbers larger than those corresponding to the
CMB scales) reenter the Hubble radius during the
second epoch of radiation domination. Since they
are on super-Hubble scales prior to their reentry,
they are not influenced by the background dynamics
during the earlier epochs. Hence, the spectrum of
GWs for this range of modes can be expected to be
scale invariant, which implies that the corresponding
spectral index nGW vanishes identically.

(ii) For wave numbers kσ < k < kσR: Recall that, kσR
denotes the wave number that reenters the Hubble
radius at the beginning of the secondary phase of
reheating. As in the case of modes that reenter the
primary phase of reheating, we can expect the
spectrum of GWs over this range of wave numbers
to exhibit a spectral tilt which depends on the EoS
parameter wσ. We find that, over this range of wave
numbers, ΩGWðkÞ behaves as

ΩGWðkÞ ∼ k2ð3wσ−1Þ=ð3wσþ1Þ: ð93Þ

Consequently, the spectral index of the primordial
GWs over this range of wave numbers turns out to be
nGW ¼ 2ð3wσ − 1Þ=ð3wσ þ 1Þ. In others words,
over the domain kσ < k < kσR, the spectrum has a
blue tilt for wσ > 1=3 and a red tilt for wσ < 1=3.

(iii) For wave numbers kσR < k < kre: These ranges of
wave numbers reenter the Hubble radius during the
first epoch of radiation domination. Hence, we can
expect the spectrum of GWs to be scale invariant
over this range. It is important to recognize that the
amplitude of the spectrum ΩGWðkÞ over this range
will be greater or lesser than the amplitude over k <
kσ (i.e., over wave numbers that reenter the Hubble
radius during the second epoch of radiation domi-
nation) depending on whether the EoS parameter wσ

(characterizing the second phase of reheating) is
greater than or less than 1=3.

(iv) For wave numbers kre < k < kf : These correspond
to wave numbers that reenter the Hubble radius
during the first phase of reheating and, as we have
discussed before, the spectrum of GWs over this
range of wave numbers is expected to behave as

ΩGWðkÞ ∼ k2ð3wϕ−1Þ=ð3wϕþ1Þ: ð94Þ

FIG. 7. A schematic diagram illustrating the evolution of the comoving Hubble radius ðaHÞ−1 plotted (in green) against the number of
e-folds N ¼ ln a. In the diagram, we have also delineated the various epochs that are relevant for our discussion. In the above plot, we
have assumed that the EoS parameter wϕ describing the primary reheating phase is less than 1=3. However, we have assumed that the
EoS parameter, say, wσ , associated with a string modulus or a noncanonical scalar field driving the secondary phase of reheating is
greater than 1=3. In the figure, apart from the wave numbers k�, kre, and kf we had encountered earlier (indicated as red, brown, and
yellow, dashed lines), we have indicated the scales kσR and kσ (as dashed lines in purple and black) which correspond to wave numbers
that reenter the Hubble radius at the beginning and at the end of the second phase of reheating, respectively.
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In other words, the corresponding spectral index is
given by nGW ¼ 2ð3wϕ − 1Þ=ð3wϕ þ 1Þ, which has
a blue or red tilt depending on whether wϕ is greater
than or less than 1=3.

The behavior we have highlighted above can be clearly
seen in Fig. 8 wherein we have plotted the quantityΩGWðfÞ
in scenarios involving the second phase of reheating. In
arriving at the plots in the figure, we have set the inflaton
EoS parameter to be wϕ ¼ 0 and have assumed that
TσR ¼ 1 GeV. Note that, for a given inflaton EoS param-
eter wϕ, we have two parameters, viz. nS and F, which
control the global shape of the spectrum of GWs. We have
plotted the spectrum for different values of F with a fixed
value of nS as well as for different values of nS with a fixed
F. In order to highlight the effects due to the additional
generation of entropy, we have plotted the results for the
limiting values of zero and unity for the EoS parameter wσ

governing the second phase of reheating. We should point
out that, if a canonical scalar field also dominates the
secondary phase of reheating, then for VðσÞ ∝ σ2n we have
wσ ¼ ðn − 1Þ=ðnþ 1Þ so that the above mentioned limiting
values can be achieved for n ¼ 1 and n → ∞, respectively.
One can also consider a more exotic, noncanonical,
scalar field with a Lagrangian density of the form
L ∼ ð∂σÞμ − σ2n, where μ is a rational number, to drive
the second phase of reheating. In such a case, it can be
shown that the EoS parameter is given by (in this context,
see, for example, Ref. [135])

wσ ¼
n − μ

nð2μ − 1Þ þ μ
; ð95Þ

with the expression reducing to the canonical result
for μ ¼ 1, as required. Such a model can lead to the
extreme values of wσ ¼ 0 (for n ¼ μ) and wσ ≃ 1 for

[n ≃ μ=ð1 − μÞ] that we have considered, without unnatu-
rally large values for a dimensionless number, as it occurs
in the canonical case. It seems worthwhile to explore
such models in some detail as they could have interesting
phenomenological implications.
We find that the effects on ΩGWðfÞ over the range f <

fre due to the late time creation of entropy have important
implications for the recent observations by the NANOGrav
mission. Recall that recent observations by the NANOGrav
mission suggest a stochastic GW background with
an amplitude of ΩGWh2 ≃ 10−11 around the frequency of
10−8 Hz [94,95]. Clearly, the frequency lies in the domain
f < fre. In the absence of a second phase of reheating,
evidently, the amplitude of ΩGW in the nano-Hertz range of
frequencies is rather small, much below the sensitivity of
the NANOGrav mission, as we had seen in Secs. Vand VI.
However, as we have discussed, the late time decay of an
additional scalar field such as the moduli field leads to a
spectrum with a blue tilt for wσ > 1=3 over the frequency
range fσ < f < fσR, where fσ and fσR are the frequencies
associated with the wave numbers kσ and kσR. Therefore, in
such a modified scenario, it is possible to construct
situations that result in ΩGW of the strength indicated by
NANOGrav, albeit with rather large values for ωσ and
relatively low values of the reheating temperature of
10 < Tre < 103 GeV, as illustrated in Fig. 8. To motivate
high values for the EoS parameter, as we mentioned, it
seems interesting to consider a noncanonical model of a
scalar field that leads to an EoS parameter as in Eq. (95).
We should clarify that, to avoid pathological behavior, in
the model, we can consider parameters lying within the
domains n > 0 and μ > 0. In such a case, one can obtain
that wσ ∼ 1 for μ in the range 0 < μ < 1. Moreover, note
that, in the modified scenario with late time entropy
production, to be compatible with the NANOGrav results,

FIG. 8. The spectrum of GWs observed today ΩGWðfÞ has been plotted in the modified scenario with late time production of entropy.
We have illustrated the results for the cases wherein nS is fixed and the quantity F is varied (on the left) as well as for the cases wherein F
is fixed and nS is varied (on the right). We have set wϕ ¼ 0 and TσR ¼ 1 GeV in arriving at the above plots. Also, we have considered the
extreme values for wσ to demonstrate the maximum levels of impact that the generation of entropy at late times can have on the spectrum
of GWs. Interestingly, we find that for a set of values of the parameters associated with the secondary phase of reheating, the spectrum
ΩGW can have amplitudes as suggested by the recent observations by NANOGrav [94,95].
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the reheating temperature Tre has to be less than 103 GeV,
which implies a low decay width for the inflaton. Further,
from Fig. 8, it can easily be seen that the modified scenario
can be strongly constrained by many of the forthcoming
GW observatories such as SKA, BBO, LISA, and
DECIGO.
In the pulsar-timing data considered by NANOGrav, the

spectrum of the characteristic strain hcðfÞ induced by the
GWs is assumed to be a power law of the form [94,95]

hcðfÞ ¼ ACP

�
f
fyr

�ð3−γCPÞ=2
; ð96Þ

where ACP refers to the amplitude at the reference
frequency fyr ¼ 1 yr−1 ¼ 3.17 × 10−8 Hz, and γCP is the
timing-residual cross-power spectral density. The dimen-
sionless energy density of GWs today ΩGWðfÞ is related to
characteristic strain hcðfÞ induced by the GWs through the
relation (in this context, see the recent review [136])

ΩGWðfÞ ¼
2π2f2

3H2
0

h2cðfÞ: ð97Þ

Upon utilizing the form (96) for the characteristic strain, the
energy density of GWs today can be expressed in terms of
the amplitude ACP and the index γCP as follows:

ΩGWðfÞ ¼
2π2f2yr
3H2

0

A2
CP

�
f
fyr

�
5−γCP

: ð98Þ

As we have discussed above, in the scenario with late time
entropy production, it is the power associated with the
modes that reenter the Hubble radius during the secondary
phase of reheating that are consistent with the NANOGrav

results (cf. Fig. 8). Over this domain of wave numbers,
since the index of the spectrum of GWs is given by
nGW ¼ 2ð3wσ − 1Þ=ð3wσ þ 1Þ, where wσ is the EoS
parameter describing the secondary phase of reheating,
clearly, we can set γCP ¼ 5 − nGW. We can utilize the
constraints from the NANOGRav results on the parameters
ACP and γCP to arrive at the corresponding constraints on,
say, the EoS parameter wσ and the reheating temperature
Tre associated with the primary phase. We have illustrated
these constraints in Fig. 9. We have illustrated the con-
straints for the two possibilities, viz. with the reheating
temperature Tre associated with the primary phase fixed
and the EoS parameter wσ describing the secondary phase
of reheating varied as well as with wσ fixed and Tre varied.
These constraints suggest that only low reheating temper-
atures (say, Tre < 10 GeV) and very high values of the EoS
parameter wσ (with wσ ≃ 1) are compatible with the
NANOGrav data.

X. CONCLUSIONS

In this work, we have attempted to understand the effects
of reheating on the spectrum of primordial GWs observed
today. As a specific example, we had considered the so-
called α-attractor model of inflation and had evolved the
tensor perturbations from the end of inflation through the
epochs of reheating and radiation domination to eventually
arrive at the spectrum of GWs today. Moreover, we had
considered two different scenarios to achieve reheating. In
the first scenario, the epoch is described by a constant EoS
parameter wϕ and the transition to radiation domination is
expected to occur instantaneously [87]. Such a simpler
modeling of the reheating mechanism had allowed us to
study the evolution of the GWs analytically. In the second
and more realistic scenario of perturbative reheating

FIG. 9. The constraints from NANOGrav on the parameters ACP and γCP have been utilized to illustrate the corresponding constraints
on the EoS parameter wσ describing the secondary phase of reheating and the reheating temperature Tre associated with the primary
phase. In the figures, we have included the 1-σ and 2-σ contours (in black) arrived at by the NANOGrav analysis based on the five-
frequency power-law fit [94]. We have projected the results into the γCP − ACP plane for the following two possibilities: (i) a scenario
wherein Tre is fixed and the parameter wσ is varied (on the left), and (ii) a scenario wherein wσ is fixed and Tre is varied (on the right).
Note that we have assumed that wϕ ¼ 0 and TσR ¼ 0.1 GeV in arriving at the above plots.
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wherein the evolution of the energy densities are governed
by the Boltzmann equations, the inflaton decays gradually
and the transition to the epoch of radiation domination
occurs smoothly. The effective EoS parameter in such a
scenario changes continuously from its initial value of
weff ¼ wϕ to the final value of weff ¼ 1=3. As it proves to
be difficult to obtain analytical solutions in the perturbative
reheating scenario, we had examined the problems at hand
numerically.
Note that we are interested in the spectrum of GWs today

over scales that are considerably smaller than the CMB
scales. These scales reenter the Hubble radius either during
the phase of reheating or during the epoch of radiation
domination. In both the models of reheating we have
considered, the spectrum of GWs today ΩGWðfÞ is scale
invariant over wave numbers that reenter the Hubble radius
during the epoch of radiation domination (i.e., for k < kre).
The scale invariant amplitude over this domain can help
us extract the inflationary energy scale in terms of the
present radiation abundance since H2

I =M
2
Pl ∼ 6π2ΩGW=ΩR

[cf. Eq. (66)]. The spectrum of GWs today has a tilt over
wave numbers kre < k < kf which reenter the Hubble
radius during the phase of reheating. The spectral tilt
nGW ¼ 2ð3wϕ − 1Þ=ð3wϕ þ 1Þ is red or blue depending
on whether wϕ < 1=3 or wϕ > 1=3. Clearly, the observa-
tion of the tilt will allow us to determine the reheating
parameters such as the EoS parameter wϕ and the reheating
temperature Tre. These will allow us to determine the
behavior of the inflaton near the minimum of the potential.
Moreover, the constraint on the reheating parameters, in
turn, can help us constrain the inflationary parameters such
as the scalar spectral index nS. Further, in the realistic
perturbative reheating scenario, there arises an important
feature in the spectrum of GWs around wave numbers that
reenter the Hubble radius toward the end of the phase of
reheating. The spectrum exhibits distinct oscillations near
the frequency fre, and we find that the width of the
oscillation reflects the time scale over which the EoS
parameter changes from the inflaton dominated value of
wϕ to that of 1=3 in the radiation dominated epoch
(cf. Figs. 3 and 4). In fact, the peak of the oscillation
occurs at fre, which can be associated with the end of
perturbative reheating (i.e., when H ¼ Γϕ). We find that, at
this instant, the rate of change of the effective EoS
parameter exhibits a maximum. This can help us further
in determining the inflaton decay rate Γϕ in terms of the
observed quantities, as expressed in Eq. (71). The end of
reheating is to be followed by the most important stage of
thermalization. From the width of the oscillation in the
spectrum, one can extract information about thermalization
timescale Δtth [cf. Eq. (78)] as well as the nature of the
thermalization process depending upon an overoccupied or
underoccupied initial state set by the end of reheating

[cf. Eq. (80)]. It turns out that the ratio of the thermalized
particle density to the initial decaying particle density
(i.e., nth=ni) depends on the inflaton mass, the inflationary
energy scale, and the wave numbers kre and kf . Therefore,
given the inflaton mass, the spectrum of primordial GWs at
the present epoch can be utilized to determine the ratio
nth=ni, which is one of the important parameters describing
the thermalizing plasma. Once the value of nth=ni is
extracted, the strength of the gauge interaction, say, α,
among the reheating decay products can be obtained
[cf. Eq. (81)]. We should mention that the oscillatory
feature in the spectrum of GWs is encountered for all
possible values of wϕ and Tre. We find that the range of
frequencies around which the oscillations arise shifts
toward higher frequencies as the reheating temperature
increases. This can be attributed to the fact that, for a higher
value of Tre, the duration of reheating proves to be shorter
and, as a result, the wave number kre that reenters at the end
of reheating becomes larger.
Apart from the effects due to the standard phase of

reheating, we had also considered the signatures on the
spectrum of GWs due to a secondary phase of reheating.
Such a secondary phase can arise due to the decay of
additional scalar fields such as the moduli fields, which can
lead to the production of entropy at late times. The moduli
dominated phase, which can be described by a constant
EoS parameter wσ (as the primary phase of reheating), leads
to a tilt in the spectrum over the range of wave numbers that
reenter the Hubble radius during the epoch. Remarkably,
we have shown that, for wσ > 1=3 and certain values of the
reheating temperature, the production of entropy at late
times can lead to ΩGWðkÞ that correspond to the strengths
of the stochastic GW background suggested by the recent
NANOGrav observations [94,95]. We should clarify that
such a possibility cannot arise in the conventional reheating
scenario wherein the entropy remains conserved from
the end of reheating until the present epoch. In fact, the
assumption of the secondary phase of reheating and the
NANOGrav observations indicate a low reheating temper-
ature of Tre ≲ 103 GeV. We are currently examining differ-
ent models to understand the wider implications of such
interesting possibilities.

ACKNOWLEDGMENTS

M. R. H. thanks the Ministry of Human Resource
Development, Government of India (GoI), for financial
assistance. D. M. and L. S. acknowledge support from the
Science and Engineering Research Board (SERB),
Department of Science and Technology (DST), GoI,
through the Core Research Grant No. CRG/2020/003664.
L. S. also acknowledges support from SERB, DST, GoI,
through the Core Research Grant No. CRG/2018/002200.

HAQUE, MAITY, PAUL, and SRIRAMKUMAR PHYS. REV. D 104, 063513 (2021)

063513-24



[1] S. Hawking, Phys. Lett. 115B, 295 (1982).
[2] A. H. Guth and S. Pi, Phys. Rev. Lett. 49, 1110 (1982).
[3] A. A. Starobinsky, Phys. Lett. 117B, 175 (1982).
[4] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys.

Rev. D 28, 679 (1983).
[5] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,

Phys. Rep. 215, 203 (1992).
[6] J. Martin, Braz. J. Phys. 34, 1307 (2004).
[7] J. Martin, Lect. Notes Phys. 669, 199 (2005).
[8] B. A. Bassett, S. Tsujikawa, and D. Wands, Rev. Mod.

Phys. 78, 537 (2006).
[9] L. Sriramkumar, arXiv:0904.4584.

[10] D. Baumann and H. V. Peiris, Adv. Sci. Lett. 2, 105 (2009).
[11] D. Baumann, in arXiv:0907.5424.
[12] L. Sriramkumar, On the generation and evolution of

perturbations during inflation and reheating, in Vignettes
in Gravitation and Cosmology, edited by L. Sriramkumar
and T. R. Seshadri (World Scientific, Singapore, 2012).

[13] A. Linde, in arXiv:1402.0526.
[14] J. Martin, Astrophys. Space Sci. Proc. 45, 41 (2016).
[15] L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974).
[16] A. A. Starobinsky, JETP Lett. 30, 682 (1979).
[17] M. C. Guzzetti, N. Bartolo, M. Liguori, and S. Matarrese,

Riv. Nuovo Cimento 39, 399 (2016).
[18] C. Caprini and D. G. Figueroa, Classical Quantum Gravity

35, 163001 (2018).
[19] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. Lett. 116, 131103 (2016).
[20] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. D 93, 122003 (2016).
[21] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. Lett. 116, 241102 (2016).
[22] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. Lett. 116, 061102 (2016).
[23] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Phys. Rev. Lett. 116, 241103 (2016).
[24] B. P. Abbott et al. (LIGO Scientific, VIRGO Collabora-

tions), Phys. Rev. Lett. 118, 221101 (2017); 121, 129901(E)
(2018).

[25] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Astrophys. J. Lett. 851, L35 (2017).

[26] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 119, 141101 (2017).

[27] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 119, 161101 (2017).

[28] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. D 102, 043015 (2020).

[29] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Astrophys. J. Lett. 892, L3 (2020).

[30] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Astrophys. J. 896, L44 (2020).

[31] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 118, 121101 (2017); 119, 029901(E)
(2017).

[32] M. Punturo et al., Classical Quantum Gravity 27, 194002
(2010).

[33] B. Sathyaprakash et al., Classical Quantum Gravity 29,
124013 (2012); 30, 079501(E) (2013).

[34] J. Crowder and N. J. Cornish, Phys. Rev. D 72, 083005
(2005).

[35] V. Corbin and N. J. Cornish, Classical Quantum Gravity
23, 2435 (2006).

[36] J. Baker et al., arXiv:1907.11305.
[37] N. Seto, S. Kawamura, and T. Nakamura, Phys. Rev. Lett.

87, 221103 (2001).
[38] S. Kawamura et al., Classical Quantum Gravity 28,

094011 (2011).
[39] S. Sato et al., J. Phys. Conf. Ser. 840, 012010 (2017).
[40] S. Kawamura (DECIGO working group), Proc. Sci.,

KMI2019 (2019) 019.
[41] P. Amaro-Seoane et al., GW Notes 6, 4 (2013),

[arXiv:1201.3621].
[42] P. Amaro-Seoane et al. (LISA Collaboration), arXiv:

1702.00786.
[43] E. Barausse et al., Gen. Relativ. Gravit. 52, 81 (2020).
[44] G. Janssen et al., Proc. Sci., AASKA14 (2015) 037

[arXiv:1501.00127].
[45] R. Easther and E. A. Lim, J. Cosmol. Astropart. Phys. 04

(2006) 010.
[46] K. N. Ananda, C. Clarkson, and D. Wands, Phys. Rev. D

75, 123518 (2007).
[47] D. Baumann, P. J. Steinhardt, K. Takahashi, and K. Ichiki,

Phys. Rev. D 76, 084019 (2007).
[48] R. Saito and J. Yokoyama, Phys. Rev. Lett. 102, 161101

(2009); 107, 069901(E) (2011).
[49] R. Saito and J. Yokoyama, Prog. Theor. Phys. 123, 867

(2010); 126, 351(E) (2011).
[50] S. Kuroyanagi, T. Chiba, and T. Takahashi, J. Cosmol.

Astropart. Phys. 11 (2018) 038.
[51] J. R. Espinosa, D. Racco, and A. Riotto, J. Cosmol.

Astropart. Phys. 09 (2018) 012.
[52] K. Kohri and T. Terada, Phys. Rev. D 97, 123532 (2018).
[53] K. Inomata, K. Kohri, T. Nakama, and T. Terada, J. Cosmol.

Astropart. Phys. 10 (2019) 071.
[54] K. Inomata, K. Kohri, T. Nakama, and T. Terada, Phys.

Rev. D 100, 043532 (2019).
[55] M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L.

Sriramkumar, and A. A. Starobinsky, J. Cosmol. Astropart.
Phys. 08 (2020) 001.

[56] H. V. Ragavendra, P. Saha, L. Sriramkumar, and J. Silk,
Phys. Rev. D 103, 083510 (2021).

[57] H. V. Ragavendra, L. Sriramkumar, and J. Silk, J. Cosmol.
Astropart. Phys. 05 (2021) 010.

[58] S. Bhattacharya, S. Mohanty, and P. Parashari, Phys.
Rev. D 103, 063532 (2021).

[59] Y. Akrami et al. (Planck Collaboration), Astron. Astrophys.
641, A10 (2020).

[60] E. Aubourg et al., Phys. Rev. D 92, 123516 (2015).
[61] J. A. Vázquez, L. E. Padilla, and T. Matos, Rev. Mex. Fis.

E, https://doi.org/10.31349/RevMexFisE.17.73 (2020).
[62] M. S. Turner, M. J. White, and J. E. Lidsey, Phys. Rev. D

48, 4613 (1993).
[63] L. A. Boyle and P. J. Steinhardt, Phys. Rev. D 77, 063504

(2008).
[64] P. M. Sa and A. B. Henriques, Phys. Rev. D 77, 064002

(2008).
[65] K. Nakayama, S. Saito, Y. Suwa, and J. Yokoyama,

J. Cosmol. Astropart. Phys. 06 (2008) 020.
[66] K. Nakayama, S. Saito, Y. Suwa, and J. Yokoyama, Phys.

Rev. D 77, 124001 (2008).

DECODING THE PHASES OF EARLY AND LATE TIME … PHYS. REV. D 104, 063513 (2021)

063513-25

https://doi.org/10.1016/0370-2693(82)90373-2
https://doi.org/10.1103/PhysRevLett.49.1110
https://doi.org/10.1016/0370-2693(82)90541-X
https://doi.org/10.1103/PhysRevD.28.679
https://doi.org/10.1103/PhysRevD.28.679
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1590/S0103-97332004000700005
https://doi.org/10.1007/b105189
https://doi.org/10.1103/RevModPhys.78.537
https://doi.org/10.1103/RevModPhys.78.537
https://arXiv.org/abs/0904.4584
https://doi.org/10.1166/asl.2009.1019
https://arXiv.org/abs/0907.5424
https://arXiv.org/abs/1402.0526
https://doi.org/10.1007/978-3-319-44769-8_2
https://doi.org/10.1393/ncr/i2016-10127-1
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1103/PhysRevLett.116.131103
https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevLett.118.121101
https://doi.org/10.1103/PhysRevLett.119.029901
https://doi.org/10.1103/PhysRevLett.119.029901
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/29/12/124013
https://doi.org/10.1088/0264-9381/29/12/124013
https://doi.org/10.1088/0264-9381/30/7/079501
https://doi.org/10.1103/PhysRevD.72.083005
https://doi.org/10.1103/PhysRevD.72.083005
https://doi.org/10.1088/0264-9381/23/7/014
https://doi.org/10.1088/0264-9381/23/7/014
https://arXiv.org/abs/1907.11305
https://doi.org/10.1103/PhysRevLett.87.221103
https://doi.org/10.1103/PhysRevLett.87.221103
https://doi.org/10.1088/0264-9381/28/9/094011
https://doi.org/10.1088/0264-9381/28/9/094011
https://doi.org/10.1088/1742-6596/840/1/012010
https://arXiv.org/abs/1201.3621
https://arXiv.org/abs/1702.00786
https://arXiv.org/abs/1702.00786
https://doi.org/10.1007/s10714-020-02691-1
https://arXiv.org/abs/1501.00127
https://doi.org/10.1088/1475-7516/2006/04/010
https://doi.org/10.1088/1475-7516/2006/04/010
https://doi.org/10.1103/PhysRevD.75.123518
https://doi.org/10.1103/PhysRevD.75.123518
https://doi.org/10.1103/PhysRevD.76.084019
https://doi.org/10.1103/PhysRevLett.102.161101
https://doi.org/10.1103/PhysRevLett.102.161101
https://doi.org/10.1103/PhysRevLett.107.069901
https://doi.org/10.1143/PTP.123.867
https://doi.org/10.1143/PTP.123.867
https://doi.org/10.1143/PTP.126.351
https://doi.org/10.1088/1475-7516/2018/11/038
https://doi.org/10.1088/1475-7516/2018/11/038
https://doi.org/10.1088/1475-7516/2018/09/012
https://doi.org/10.1088/1475-7516/2018/09/012
https://doi.org/10.1103/PhysRevD.97.123532
https://doi.org/10.1088/1475-7516/2019/10/071
https://doi.org/10.1088/1475-7516/2019/10/071
https://doi.org/10.1103/PhysRevD.100.043532
https://doi.org/10.1103/PhysRevD.100.043532
https://doi.org/10.1088/1475-7516/2020/08/001
https://doi.org/10.1088/1475-7516/2020/08/001
https://doi.org/10.1103/PhysRevD.103.083510
https://doi.org/10.1088/1475-7516/2021/05/010
https://doi.org/10.1088/1475-7516/2021/05/010
https://doi.org/10.1103/PhysRevD.103.063532
https://doi.org/10.1103/PhysRevD.103.063532
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1103/PhysRevD.92.123516
https://doi.org/10.31349/RevMexFisE.17.73
https://doi.org/10.1103/PhysRevD.48.4613
https://doi.org/10.1103/PhysRevD.48.4613
https://doi.org/10.1103/PhysRevD.77.063504
https://doi.org/10.1103/PhysRevD.77.063504
https://doi.org/10.1103/PhysRevD.77.064002
https://doi.org/10.1103/PhysRevD.77.064002
https://doi.org/10.1088/1475-7516/2008/06/020
https://doi.org/10.1103/PhysRevD.77.124001
https://doi.org/10.1103/PhysRevD.77.124001


[67] P. M. Sa and A. B. Henriques, Phys. Rev. D 81, 124043
(2010).

[68] S. Kuroyanagi, K. Nakayama, and S. Saito, Phys. Rev. D
84, 123513 (2011).

[69] S. Kuroyanagi, T. Takahashi, and S. Yokoyama, J. Cosmol.
Astropart. Phys. 02 (2015) 003.

[70] H. Assadullahi and D. Wands, Phys. Rev. D 79, 083511
(2009).

[71] K. Nakayama and J. Yokoyama, J. Cosmol. Astropart.
Phys. 01 (2010) 010.

[72] R. Durrer and J. Hasenkamp, Phys. Rev. D 84, 064027
(2011).

[73] L. Alabidi, K. Kohri, M. Sasaki, and Y. Sendouda,
J. Cosmol. Astropart. Phys. 05 (2013) 033.

[74] F. D’Eramo and K. Schmitz, Phys. Rev. Research 1,
013010 (2019).

[75] A. Ricciardone and G. Tasinato, Phys. Rev. D 96, 023508
(2017).

[76] S. Koh, B.-H. Lee, and G. Tumurtushaa, Phys. Rev. D 98,
103511 (2018).

[77] T. Fujita, S. Kuroyanagi, S. Mizuno, and S. Mukohyama,
Phys. Lett. B 789, 215 (2019).

[78] N. Bernal and F. Hajkarim, Phys. Rev. D 100, 063502
(2019).

[79] N. Bernal, A. Ghoshal, F. Hajkarim, and G. Lambiase,
J. Cosmol. Astropart. Phys. 11 (2020) 051.

[80] S. S. Mishra, V. Sahni, and A. A. Starobinsky, J. Cosmol.
Astropart. Phys. 05 (2021) 075.

[81] S. Weinberg, Phys. Rev. D 69, 023503 (2004).
[82] A. Mangilli, N. Bartolo, S. Matarrese, and A. Riotto, Phys.

Rev. D 78, 083517 (2008).
[83] Y. Watanabe and E. Komatsu, Phys. Rev. D 73, 123515

(2006).
[84] S. Kuroyanagi, T. Chiba, and N. Sugiyama, Phys. Rev. D

79, 103501 (2009).
[85] R. R. Caldwell, T. L. Smith, and D. G. E. Walker, Phys.

Rev. D 100, 043513 (2019).
[86] J. Martin and C. Ringeval, Phys. Rev. D 82, 023511

(2010).
[87] L. Dai, M. Kamionkowski, and J. Wang, Phys. Rev. Lett.

113, 041302 (2014).
[88] J. L. Cook, E. Dimastrogiovanni, D. A. Easson, and L. M.

Krauss, J. Cosmol. Astropart. Phys. 04 (2015) 047.
[89] D. J. H. Chung, E. W. Kolb, and A. Riotto, Phys. Rev. D

60, 063504 (1999).
[90] G. F. Giudice, E. W. Kolb, and A. Riotto, Phys. Rev. D 64,

023508 (2001).
[91] D. Maity and P. Saha, Phys. Rev. D 98, 103525 (2018).
[92] M. R. Haque and D. Maity, Phys. Rev. D 99, 103534

(2019).
[93] M. R. Haque, D. Maity, and P. Saha, Phys. Rev. D 102,

083534 (2020).
[94] Z. Arzoumanian et al. (NANOGrav Collaboration),

Astrophys. J. Lett. 905, L34 (2020).
[95] N. S. Pol et al. (NANOGrav Collaboration), Astrophys. J.

Lett. 911, L34 (2021).
[96] S. Kuroyanagi, T. Takahashi, and S. Yokoyama, J. Cosmol.

Astropart. Phys. 01 (2021) 071.
[97] K. Inomata, M. Kawasaki, K. Mukaida, and T. T.

Yanagida, Phys. Rev. Lett. 126, 131301 (2021).

[98] H. W. H. Tahara and T. Kobayashi, Phys. Rev. D 102,
123533 (2020).

[99] N. Kitajima, J. Soda, and Y. Urakawa, Phys. Rev. Lett. 126,
121301 (2021).

[100] G. Domènech and S. Pi, arXiv:2010.03976.
[101] H.-H. Li, G. Ye, and Y.-S. Piao, Phys. Lett. B 816, 136211

(2021).
[102] L. Bian, R.-G. Cai, J. Liu, X.-Y. Yang, and R. Zhou, Phys.

Rev. D 103, L081301 (2021).
[103] S. Blasi, V. Brdar, and K. Schmitz, Phys. Rev. Lett. 126,

041305 (2021).
[104] V. De Luca, G. Franciolini, and A. Riotto, Phys. Rev. Lett.

126, 041303 (2021).
[105] V. Vaskonen and H. Veermäe, Phys. Rev. Lett. 126, 051303

(2021).
[106] J. Ellis and M. Lewicki, Phys. Rev. Lett. 126, 041304

(2021).
[107] W. Buchmuller, V. Domcke, and K. Schmitz, Phys. Lett. B

811, 135914 (2020).
[108] K. Kohri and T. Terada, Phys. Lett. B 813, 136040 (2021).
[109] S. Vagnozzi, Mon. Not. R. Astron. Soc. 502, L11 (2021).
[110] M. Maggiore, Phys. Rep. 331, 283 (2000).
[111] R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 07

(2013) 002.
[112] R. Kallosh, A. Linde, and D. Roest, J. High Energy Phys.

11 (2013) 198.
[113] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
[114] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659,

703 (2008).
[115] M. Drewes, J. U. Kang, and U. R. Mun, J. High Energy

Phys. 11 (2017) 072.
[116] D. I. Podolsky, G. N. Felder, L. Kofman, and M. Peloso,

Phys. Rev. D 73, 023501 (2006).
[117] D. G. Figueroa and F. Torrenti, J. Cosmol. Astropart. Phys.

02 (2017) 001.
[118] D. Maity and P. Saha, J. Cosmol. Astropart. Phys. 07

(2019) 018.
[119] V. Mukhanov, Physical Foundations of Cosmology

(Cambridge University Press, Oxford, 2005).
[120] R. Haque, D. Maity, and S. Pal, Phys. Rev. D 103, 103540

(2021).
[121] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals,

series, and products, 7th ed. (Elsevier/Academic Press,
Amsterdam, 2007), pp. xlviii+1171; translated from the
Russian, Translation edited and with a preface by
Alan Jeffrey and Daniel Zwillinger, With one CD-ROM
(Windows, Macintosh and UNIX).

[122] C. Moore, R. Cole, and C. Berry, Classical Quantum
Gravity 32, 015014 (2015).

[123] L. Pagano, L. Salvati, and A. Melchiorri, Phys. Lett. B 760,
823 (2016).

[124] D. K. Hazra, L. Sriramkumar, and J. Martin, J. Cosmol.
Astropart. Phys. 05 (2013) 026.

[125] A. Kurkela and G. D. Moore, J. High Energy Phys. 12
(2011) 044.

[126] K. Harigaya and K. Mukaida, J. High Energy Phys. 05
(2014) 006.

[127] J. R. Ellis, K. Enqvist, D. V. Nanopoulos, and K. A. Olive,
Phys. Lett. B 191, 343 (1987).

[128] J. McDonald, Phys. Rev. D 61, 083513 (2000).

HAQUE, MAITY, PAUL, and SRIRAMKUMAR PHYS. REV. D 104, 063513 (2021)

063513-26

https://doi.org/10.1103/PhysRevD.81.124043
https://doi.org/10.1103/PhysRevD.81.124043
https://doi.org/10.1103/PhysRevD.84.123513
https://doi.org/10.1103/PhysRevD.84.123513
https://doi.org/10.1088/1475-7516/2015/02/003
https://doi.org/10.1088/1475-7516/2015/02/003
https://doi.org/10.1103/PhysRevD.79.083511
https://doi.org/10.1103/PhysRevD.79.083511
https://doi.org/10.1088/1475-7516/2010/01/010
https://doi.org/10.1088/1475-7516/2010/01/010
https://doi.org/10.1103/PhysRevD.84.064027
https://doi.org/10.1103/PhysRevD.84.064027
https://doi.org/10.1088/1475-7516/2013/05/033
https://doi.org/10.1103/PhysRevResearch.1.013010
https://doi.org/10.1103/PhysRevResearch.1.013010
https://doi.org/10.1103/PhysRevD.96.023508
https://doi.org/10.1103/PhysRevD.96.023508
https://doi.org/10.1103/PhysRevD.98.103511
https://doi.org/10.1103/PhysRevD.98.103511
https://doi.org/10.1016/j.physletb.2018.12.025
https://doi.org/10.1103/PhysRevD.100.063502
https://doi.org/10.1103/PhysRevD.100.063502
https://doi.org/10.1088/1475-7516/2020/11/051
https://doi.org/10.1088/1475-7516/2021/05/075
https://doi.org/10.1088/1475-7516/2021/05/075
https://doi.org/10.1103/PhysRevD.69.023503
https://doi.org/10.1103/PhysRevD.78.083517
https://doi.org/10.1103/PhysRevD.78.083517
https://doi.org/10.1103/PhysRevD.73.123515
https://doi.org/10.1103/PhysRevD.73.123515
https://doi.org/10.1103/PhysRevD.79.103501
https://doi.org/10.1103/PhysRevD.79.103501
https://doi.org/10.1103/PhysRevD.100.043513
https://doi.org/10.1103/PhysRevD.100.043513
https://doi.org/10.1103/PhysRevD.82.023511
https://doi.org/10.1103/PhysRevD.82.023511
https://doi.org/10.1103/PhysRevLett.113.041302
https://doi.org/10.1103/PhysRevLett.113.041302
https://doi.org/10.1088/1475-7516/2015/04/047
https://doi.org/10.1103/PhysRevD.60.063504
https://doi.org/10.1103/PhysRevD.60.063504
https://doi.org/10.1103/PhysRevD.64.023508
https://doi.org/10.1103/PhysRevD.64.023508
https://doi.org/10.1103/PhysRevD.98.103525
https://doi.org/10.1103/PhysRevD.99.103534
https://doi.org/10.1103/PhysRevD.99.103534
https://doi.org/10.1103/PhysRevD.102.083534
https://doi.org/10.1103/PhysRevD.102.083534
https://doi.org/10.3847/2041-8213/abd401
https://doi.org/10.3847/2041-8213/abf2c9
https://doi.org/10.3847/2041-8213/abf2c9
https://doi.org/10.1088/1475-7516/2021/01/071
https://doi.org/10.1088/1475-7516/2021/01/071
https://doi.org/10.1103/PhysRevLett.126.131301
https://doi.org/10.1103/PhysRevD.102.123533
https://doi.org/10.1103/PhysRevD.102.123533
https://doi.org/10.1103/PhysRevLett.126.121301
https://doi.org/10.1103/PhysRevLett.126.121301
https://arXiv.org/abs/2010.03976
https://doi.org/10.1016/j.physletb.2021.136211
https://doi.org/10.1016/j.physletb.2021.136211
https://doi.org/10.1103/PhysRevD.103.L081301
https://doi.org/10.1103/PhysRevD.103.L081301
https://doi.org/10.1103/PhysRevLett.126.041305
https://doi.org/10.1103/PhysRevLett.126.041305
https://doi.org/10.1103/PhysRevLett.126.041303
https://doi.org/10.1103/PhysRevLett.126.041303
https://doi.org/10.1103/PhysRevLett.126.051303
https://doi.org/10.1103/PhysRevLett.126.051303
https://doi.org/10.1103/PhysRevLett.126.041304
https://doi.org/10.1103/PhysRevLett.126.041304
https://doi.org/10.1016/j.physletb.2020.135914
https://doi.org/10.1016/j.physletb.2020.135914
https://doi.org/10.1016/j.physletb.2020.136040
https://doi.org/10.1093/mnrasl/slaa203
https://doi.org/10.1016/S0370-1573(99)00102-7
https://doi.org/10.1088/1475-7516/2013/07/002
https://doi.org/10.1088/1475-7516/2013/07/002
https://doi.org/10.1007/JHEP11(2013)198
https://doi.org/10.1007/JHEP11(2013)198
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1007/JHEP11(2017)072
https://doi.org/10.1007/JHEP11(2017)072
https://doi.org/10.1103/PhysRevD.73.023501
https://doi.org/10.1088/1475-7516/2017/02/001
https://doi.org/10.1088/1475-7516/2017/02/001
https://doi.org/10.1088/1475-7516/2019/07/018
https://doi.org/10.1088/1475-7516/2019/07/018
https://doi.org/10.1103/PhysRevD.103.103540
https://doi.org/10.1103/PhysRevD.103.103540
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1016/j.physletb.2016.07.078
https://doi.org/10.1016/j.physletb.2016.07.078
https://doi.org/10.1088/1475-7516/2013/05/026
https://doi.org/10.1088/1475-7516/2013/05/026
https://doi.org/10.1007/JHEP12(2011)044
https://doi.org/10.1007/JHEP12(2011)044
https://doi.org/10.1007/JHEP05(2014)006
https://doi.org/10.1007/JHEP05(2014)006
https://doi.org/10.1016/0370-2693(87)90620-4
https://doi.org/10.1103/PhysRevD.61.083513


[129] R. Allahverdi, Phys. Rev. D 62, 063509 (2000).
[130] M. Kawasaki and F. Takahashi, Phys. Lett. B 618, 1

(2005).
[131] S. Kuroyanagi, C. Ringeval, and T. Takahashi, Phys.

Rev. D 87, 083502 (2013).
[132] H. Hattori, T. Kobayashi, N. Omoto, and O. Seto, Phys.

Rev. D 92, 103518 (2015).

[133] N. Banerjee and T. Paul, Eur. Phys. J. C 77, 672
(2017).

[134] E. Elizalde, S. D. Odintsov, T. Paul, and D. S.-C. Gómez,
Phys. Rev. D 99, 063506 (2019).

[135] S. Unnikrishnan, V. Sahni, and A. Toporensky, J. Cosmol.
Astropart. Phys. 08 (2012) 018.

[136] J. Yokoyama, arXiv:2105.07629.

DECODING THE PHASES OF EARLY AND LATE TIME … PHYS. REV. D 104, 063513 (2021)

063513-27

https://doi.org/10.1103/PhysRevD.62.063509
https://doi.org/10.1016/j.physletb.2005.05.022
https://doi.org/10.1016/j.physletb.2005.05.022
https://doi.org/10.1103/PhysRevD.87.083502
https://doi.org/10.1103/PhysRevD.87.083502
https://doi.org/10.1103/PhysRevD.92.103518
https://doi.org/10.1103/PhysRevD.92.103518
https://doi.org/10.1140/epjc/s10052-017-5256-0
https://doi.org/10.1140/epjc/s10052-017-5256-0
https://doi.org/10.1103/PhysRevD.99.063506
https://doi.org/10.1088/1475-7516/2012/08/018
https://doi.org/10.1088/1475-7516/2012/08/018
https://arXiv.org/abs/2105.07629

