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Calculations of the evolution of cosmological perturbations generally involve solution of a large number
of coupled differential equations to describe the evolution of the multipole moments of the distribution of
photon intensities and polarization. However, this “Boltzmann hierarchy” communicates with the rest of
the system of equations for the other perturbation variables only through the photon-intensity quadrupole
moment. Here I develop an alternative formulation wherein this photon-intensity quadrupole is obtained
via solution of two coupled integral equations—one for the intensity quadrupole and another for the linear-
polarization quadrupole—rather than the full Boltzmann hierarchy. This alternative method of calculation
provides some physical insight and a cross-check for the traditional approach. I describe a simple and
efficient iterative numerical solution that converges fairly quickly. I surmise that this may allow current
state-of-the-art cosmological-perturbation codes to be accelerated.
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I. INTRODUCTION

Linear-theory calculations of the evolution of primordial
density perturbations provide the foundation for the inter-
pretation of cosmic microwave background and large-
scale-structure measurements. They are thus an essential
tool in the construction of our current cosmological model
and in the continuing quest for new cosmological physics.
The calculations, which trace back over 50 years [1],

involve time evolution of a set of coupled differential
equations [2] for the metric perturbations and for the
dark-matter, baryon, neutrino, and photon density and
velocity perturbations. There is also a (nominally infinite)
“Boltzmann hierarchy” of differential equations for the
higher moments (quadrupole, octupole, etc.) of the photon-
intensity and photon-polarization and neutrino-momentum
distributions. The photon hierarchies can be truncated at
some maximum multipole moment lmax ≃ 30 to provide
sufficient precision for the monopole, dipole, and octupole
from which the higher-order moments (which provide the
CMB temperature/polarization power spectra) can be
obtained through a line-of-sight integral [3]. Higher-order
extensions to the tight-coupling approximation (TCA)
[4,5], improved numerical integrators, and novel approx-
imations to free-streaming relativistic particles [5]) have
provided incredible code acceleration to what is still a fairly
complicated numerical calculation. At present, virtually all
work in cosmology now relies on two publicly available
codes, CAMB [6] and CLASS [5], which combine speed and
precision with model flexibility.
These codes are now extremely efficient and reliable.

However, modern cosmological analyses, which employ
Markov chain Monte Carlos to map the likelihood in a

multidimensional parameter space, require these codes to
be run repeatedly, thus employing significant computa-
tional resources. It is thus worthwhile to explore new
numerical approaches. New approaches can also often
provide new insights into the physics and may perhaps
provide tools that can be applied to other problems.
It was realized that for primordial tensor perturba-

tions (i.e., gravitational waves), the Boltzmann hierarchy
can be replaced by a small set of integral equations (IEs)
[7,8], an approach used in Refs. [9,10]. A similar approach
was discussed for scalar perturbations (primordial
density perturbations) in Ref. [11], but not implemented
numerically.
Here, I revisit this integral-equation approach for pri-

mordial density perturbations. I discuss simplifications to
the equations in Ref. [11] and describe a specific imple-
mentation where the Boltzmann hierarchy for all photon
intensity/polarization multipole moments from the quadru-
pole (l ¼ 2) and higher are replaced by two IEs, one for the
photon quadrupole, and another for the polarization quad-
rupole. I discuss the numerical solution of these integral
equations and how the initial conditions for the IEs are set
from an early-time solution obtained with the TCA. I
describe an iterative algorithm to solve these integral
equations simultaneously with the differential equations
for the other perturbation variables. I show results from two
simple numerical codes that are identical except for the
replacement of the photon Boltzmann hierarchy in the first
with the two integral equations in the second. Numerical
experiments with these codes suggest that this iterative IE
algorithm may, with further work, allow current state-of-
the-art codes to be accelerated.
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This paper is organized as follows. Section II presents and
discusses the integral equations. Section III provides the
differential equations for the other perturbation variables
(i.e., for neutrinos, dark matter, baryons, and the metric) and
describe how the two integral equations are combined with
these other equations. Section IV describes a simple algo-
rithm to solve the integral equations numerically and how
the initial conditions for the IE solver are obtained from the
tight-coupling approximation at early times. This section
also describes an iterative algorithm to solve them in tandem
with the differential equations. Section VI describes the two
rudimentary codes to evolve the Boltzmann hierarchy and
the IE equations. I then present and discuss results of the
calculation. Section VII concludes with a discussion of
possible concerns and ideas for further steps. Appendix A
provides the photon Boltzmann equations in the notation
used here, and Appendix B provides details of the algorithm
to solve the integral equation. The codes are provided at [12]
for readers interested in following up on calculational details
that cannot be inferred from the presentation here.

II. FORMALISM

If we have a spectrum of initial curvature fluctuations
with power spectrum PRðkÞ ¼ hjRk⃗j2i, then the CMB
temperature/polarization power spectra are

CXX0
l ¼ ð2π2Þ−1

Z
k2dkPRðkÞΔX

klðτ0ÞΔX0
kl ðτ0Þ; ð1Þ

for X;X’ ¼ T;E with “T” the temperature and “E” the E-
mode of the polarization. The transfer functions ΔX

klðτÞ are
obtained through solution of differential equations for the
time evolution of the relativistic gravitational potentials, the
baryon, dark-matter, photon, and neutrino densities and
bulk velocities, and the higher moments of the photon and
neutrino momentum distributions. The moments of the
intensity distribution of photon momenta are the transfer
functions ΔT

klðτÞ and the moments of the distribution of
photon polarizations are ΔE

klðτÞ.
The temperature transfer functions can be written as1
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where x ¼ kðτ − τ0Þ; a dot denotes a partial derivative with
respect to τ; and gðτ; τ0Þ ¼ ðd=dτ0Þe−κðτ;τ0Þ ¼ _κðτ0Þe−κðτ;τ0Þ
is the visibility function. The initial conformal time τi must
be taken to be deep in the tight-coupling regime and will be
discussed more below. Here, _κðτÞ ¼ dκ=dτ is the opacity,
the derivative of the Thomson-scattering optical depth with
respect to conformal time, and

κðτ; τ0Þ ¼
Z

τ

τ0
dτ1 _κðτ1Þ: ð3Þ

Also, RLL
l ðxÞ ¼ − 1

2
½jlðxÞ þ 3j00l ðxÞ� [13,14] in terms of

spherical Bessel functions jlðxÞ, and θbkðτÞ is the baryon
velocity. It is related to the photon velocity (suppressing
hereafter the subscript k for notational economy) θγðτÞ ¼
3kΔT

k1ðτÞ through

_θb ¼ −Hθb þ c2sk2δb þ
_κ

R
ðθγ − θbÞ; ð4Þ

whereHðτÞ≡ _a=a and RðτÞ≡ ð3=4ÞρbðτÞ=ργðτÞ, the scale
factor in units of 3=4 of that at matter-baryon equality
[ρbðτÞ and ργðτÞ are mean baryon and photon energy
densities, respectively]. The baryon sound speed cs is
increasingly important on small scales but has little effect
on the larger distance/angular scales relevant for CMB
fluctuations. Here, hðτÞ is the standard synchronous-gauge
perturbation variable, and αðτÞ ¼ hðτÞ þ 6ηðτÞ in terms of
the commonly used synchronous-gauge variable ηðτÞ.
The function ΠðτÞ is a linear combination of the photon-

intensity and polarization quadrupoles; for simplicity,
I refer to it here as the polarization quadrupole. It can
also be written as an IE,

ΠðτÞ ¼ ΔT
2 ðτÞ þ 9E2ðτÞ; ð5Þ

with

ElðτÞ ¼
Z

τ

τi

dτ0gðτ; τ0Þ jlðkðτ − τ0ÞÞ
ðkðτ − τ0ÞÞ2 Πðτ0Þ: ð6Þ

The CMB E-mode transfer function is then ΔE
l ðτÞ ¼

ð3=4Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þ!=ðl − 2Þ!p
ElðτÞ.

A derivation of Eqs. (2) and (5) will be provided in
Ref. [15] using the total-angular-momentum formalism
[14], but it is easily verified that they agree with
Eq. (18) in Ref. [16], Eqs. (74) and (77) in Ref. [13],
and with the IEs in Ref. [7]. It can also be verified, using the
relation, ð2lþ 1Þj0lðxÞ ¼ ljl−1ðxÞ − ðlþ 1Þjlþ1ðxÞ [which
RLL
l ðxÞ and j0lðxÞ also satisfy], that differentiation of these

two IEs recovers the usual Boltzmann hierarchy as given,
for example, in Eqs. (2.4) of Ref. [5] or Eq. (63) of
Ref. [17]. Thus, these two IEs are formally equivalent to the
Boltzmann hierarchy. For completeness, the Boltzmann

1The notation here resembles largely that in Ref. [5]. The
differences are that (i) the photon ΔT

kl here is one quarter of theirs;
(ii) the R here is the inverse of their R; (iii) the _κ here is their τ−1C ;
(iv) the α here is their hþ 6η. The Π here is the same as that in
Ref. [3] and is Π ¼ ðFγ2 þ Gγ0 þ Gγ2Þ=4 in terms of the
variables in Ref. [5].
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hierarchy is provided in the notation/conventions used here
in Appendix A.

III. IMPLEMENTATION

The left flowchart in Fig. 1 shows the interdependency
between the different perturbation variables in the differ-
ential equations for their evolution. In the middle are the
metric-perturbation variables h and α. These are sourced
by the baryon, dark-matter, neutrino, and photon den-
sities and bulk velocities. Apart from the baryon-photon
coupling that connects θγ and θb, the only communication
between the different matter components is through the
metric perturbations. The neutrino velocity is connected
to the neutrino quadrupole Δν

2 which is then connected to
an infinite tower of Boltzmann equations for the higher-
order neutrino moments Δν

l for l ≥ 3. The same can be
said for the photon velocity, except that there are two
infinite Boltzmann hierarchies for the higher photon-
intensity and photon-polarization moments. When con-
sidered in tandem, the photon monopole and dipole
equations combine into a second-order differential equa-
tion that resembles that for a driven simple harmonic
oscillator (discussed below); this describes oscillations of
the amplitude of the photon-baryon fluid driven by
changes in the metric perturbations and in the photon
quadrupole.
In the line-of-sight approach [3], the Boltzmann hier-

archy is solved up to a maximum multipole lmax ∼ 30 to
obtain the photon monopole, dipole, and quadrupole, andΠ
to reasonable accuracy. The Cl are then obtained by
evaluating the integrals in Eqs. (2) and (5).

As Fig. 1 illustrates, the two (nominally) infinite towers
of photon differential equations—one for the temperature
moments (ΔT

l for l ≥ 3) and polarization moments (El for
l ≥ 2)—communicate with the rest of the system of
equations only through the photon-intensity quadrupole
ΔT

2 . Thus, one can replace the two photon Boltzmann
hierarchies with a pair of integral equations, one for ΔT

2 and
another for Π. The rest of the system of equations is then
exactly the same as in the Boltzmann approach.
In this approach we retain the two lowest-order equa-

tions, for the photon monopole (l ¼ 0) and dipole (l ¼ 1).
These equations are

_ΔT
0 ¼ −

1

3
θγ −

1

6
_h; _θγ ¼ k2ðΔT

0 − 2ΔT
2Þ − _κΘγb; ð7Þ

with ΘγbðτÞ≡ θγðτÞ − θbðτÞ. These equations are supple-
mented by those,

_δb ¼ −θb −
1

2
_h; _θb ¼ −Hθb þ c2sk2δb þ

_κ

R
Θγb; ð8Þ

for the baryon density and velocity, respectively. There is
also an equation, _δc ¼ − 1

2
_h, for the CDM-density pertur-

bation (the CDM peculiar velocity vanishes in synchronous
gauge).
The photon quadrupole ΔT

2 ðτÞ in Eq. (7) is obtained at
early times by the TCA (up to second order in _κ−1, as
described in Refs. [4,5] for improved speed/precision). The
two equations for the early-time evolution of θγ and θb can

also be replaced by their TCA, with the slip _Θγb evaluated
(again, up to second order _κ−1) [4,5].

(a) (b)

FIG. 1. Flowcharts for the perturbation calculation with (a) the Boltzmann hierarchy and (b) the integral-equation approach. An arrow
points from an element that appears in the differential equation for the element it points to. Ingredients that appear in the integral
equation for a given quantity are indicated in (b) with an integral sign. As both figures indicate, the higher moments (l ≥ 3 forΔT

l andΔν
l

and ≥ 2 for El) communicate to the rest of the system of equations only through the quadrupole (l ¼ 2). The diagrams also indicate that
in both cases, the photon-intensity quadrupole ΔT

2 feeds into the rest of the system of equations only through the photon velocity θγ, and
similarly for the neutrino quadrupole.
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At later times, the quadrupole is obtained from Eq. (2)
with l ¼ 2, along with Eq. (5) for the time evolution of
ΠðτÞ. With this approach, the equations in Eq. (7) combine
to describe a driven oscillator damped by the photon
quadrupole [18]. The photon quadrupole is provided at
early times by the TCA and at later times from the integral
equation.
For completeness, the Einstein equations are

ḧþ _a
a
_h ¼ −8πGa2½δρtot þ 3δptot�; ð9Þ

k2

3
ð _h − _αÞ ¼ 8πGa2

�
4

3
ρ̄γθγ þ

4

3
ρ̄νθν þ ρ̄bθb

�
; ð10Þ

Note that the Einstein equations are written here in terms of
the energy and momentum densities, but not the anisotropic
stress. In this way, the photon-intensity quadrupole ΔT

2 ðτÞ
communicates with the rest of the set of perturbation
equations only through Eq. (7). The IEs for massless
neutrinos are obtained from those for photons, but
setting Π ¼ _κ ¼ 0. These IEs have come into play in
the development of an effective ultrarelativistic-fluid
approximation [5].

IV. NUMERICAL SOLUTION OF THE
INTEGRAL EQUATIONS

The IEs here are Volterra equations of the second kind,
which are typically solved as follows [19,20]. A pair of
such equations has the form

fαðtÞ ¼
Z

t

a
Kαβðt; sÞfβðsÞdsþ gαðtÞ; ð11Þ

with α, β ¼ 1, 2 (and implied sum over repeated α, β not
ij). They are solved on a mesh of N uniformly spaced time
steps ti ¼ aþ ih with i ¼ 1; 2;…; N, with h ¼ ðt − aÞ=N.
The integrals are then evaluated with the trapezoidal rule.
The solution to the IEs is then fα;0 ¼ gα;0 and

�
δαβ −

1

2
hKαβ

ii

�
fβi ¼ h

�
1

2
Kαβ

i0 f
β
0 þ

Xi−1
j¼1

Kαβ
ij f

β
j

�
þ gβi :

ð12Þ

For the pair of Volterra equations we deal with here, the
2 × 2 matrix on the left-hand side must be inverted at each
time step [20]. The ordinary differential equations, which
must be solved simultaneously, are simply stepped forward
in time (i.e., Euler integration).
This algorithm works well if the kernels Kαβðt; sÞ are

smooth and slowly varying. The visibility function in
our integrands are smoothly varying after decoupling
begins to occur, at redshifts z≲ 1400 (τ ≳ 230 Mpc).
The perturbation variables that multiply it, as well as the

radial eigenfunctions, are also relatively smooth. The
trapezoidal-rule integration therefore works reasonably
well. However, for early conformal times (τ ≲ 230 Mpc)
during tight coupling, when _κ ≫ H, the visibility function
is very sharply peaked at τ0 → τ. The trapezoidal rule will
therefore be inaccurate (unless we take a huge number of
time steps).
To remedy this, and to improve the transition from tight

coupling, we replace the trapezoidal rule in Δτ0 with one in
de−κðτ;τ0Þ. More precisely, we write the integrand in terms of
the visibility function, ðd=dτ0Þe−κðτ;τ0Þ, times the more
slowly varying perturbation variables. The integrals can
then be written

IðτÞ ¼
Z

τ
dτ0fðτ0Þ d

dτ0
½e−κðτ;τ0Þ�fðτÞ

≃
X
n¼1

Z
κn−1

κn

dðe−κðτ;τ0ÞÞ
�
fn−1þ

�
df
dκ0

�
n−1

ðκ − κ0Þ
�
;

ð13Þ

where κn ¼ κðτ − nhÞ, and h is the small conformal-time
step. The remaining κ0 integrals can then be done analyti-
cally and the derivative df=dκ0 approximated by differ-
encing. Details are provided in Appendix B.
By expanding the integrand fðτÞ to linear order, as in

Eq. (13), we obtain a result that is exact for variations of
fðτÞ that are up to linear in κ. At early times, this then
reproduces the first-order TCA (to order _κ−1), even for one
step that is not necessarily small compared with _κ−1. The
second-order TCA is then recovered by evaluating the IE
with two time steps. This allows a smooth transition from
the TCA approximation to the IE algorithm in Appendix B
as long as the TCAvalues for the perturbation variables are
stored for at least two time steps. At late times, the visibility
function in Eq. (13) can be Taylor expanded to linear order
in Δκ. Doing so then recovers the trapezoidal scheme
in Eq. (12).
The formula in Eq. (12) requires for each time step i a

sum over all earlier time steps j < i. However, given the
e−κðτ;τ0Þ factor in the visibility function in the integrand, the
sum can for all practical purposes be started, for any given
τi at some j such that κðτi; τjÞ ≤ Δτmax ≃ 10–20. If the
other factors in the integrand are slowly varying, this yields
a precision degradation of ≲e−Δτmax .
When the IE solver first begins, the photon-baryon fluid

is still tightly coupled, and so the visibility function has
support only over values of τ0 fairly close to τ; i.e.,
ðτ − τ0Þ≲ N _κ−1. The argument x ¼ kðτ − τ0Þ of the radial
eigenfunctions in Eq. (2) is thus small, and so the radial
eigenfunctions can be approximated as j2ðxÞ ≃ x2=15,
RLL
2 ðxÞ ≃ −1=5, j02ðxÞ ≃ ð2=15Þx. The integrand cannot,

however, be approximated simply by the RLLðxÞ term,
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because Π is Oð_κ−1Þ times θb. The third (i.e., the θb) term
contributes, at lowest order in the TCA.

V. ITERATIVE SOLUTION OF INTEGRAL AND
DIFFERENTIAL EQUATIONS

The next step is to consider how to solve the differential
equations for the rest of the system simultaneously with the
integral equations for the photon quadrupoles. These
differential equations include those for the metric-pertur-
bation variables, and the baryon and dark-matter densities
and velocities. They also include differential equations for
the neutrino perturbation variables. As the focus here is on
the photon hierarchy, I will assume here that the neutrino
perturbation variables can be obtained with a generalized-
dark-matter [21] approximation; comments on the iterative-IE
solution of the neutrino hierarchy are then presented below.
In trying to solve these differential equations in tandem

with the integral equations for the photon quadrupoles, we
encounter a chicken-and-egg problem: The differential
equations for the rest of the system require knowledge
of ΔT

2 ðτÞ, but the IEs for ΔT
2ðτÞ cannot be obtained without

the solution to the DEs.
It turns out, though, that this problem can be solved with

a simple iterative algorithm. Here, we start with some initial
ansatz forΔT

2 ðτÞ andΠðτÞ and then solve the DEs for all the
other perturbation variables with this ansatz. We then
integrate the IEs using the solutions to those DEs to obtain
new values of ΔT

2 ðτÞ and ΠðτÞ. We then iterate. Of course,
there is no guarantee a priori that this iterative procedure
will converge to the correct answer, but some simple
numerical experiments show that this procedure converges,
and does so fairly quickly, even for a lousy [e.g.,
ΔT

2 ðτÞ ¼ Π ¼ 0] initial ansatz for the IE solutions.

VI. NUMERICAL RESULTS

I have written a rudimentary C code to calculate the
transfer functions for the perturbation variables with the
iterative numerical implementation described here. To
simplify, I approximate neutrinos (taken to be massless)
as a generalized-dark-matter component with w ¼ c2s ¼
c2vis ¼ 1=3 [21]. I stop the code at redshift z ≃ 560, after
recombination but before reionization, and use an analytic
approximation (which takes into account only radiation and
nonrelativistic matter at these times) for the expansion
history. I use an ionization history from HyRec-2 [22]. To
compare this IE approach with the standard Boltzmann
hierarchy, I also wrote a second code that is identical in
every way except that it swaps out the integral equations for
ΔT

2 ðτÞ and ΠðτÞ for the complete photon Boltzmann
hierarchy. The code uses an off-the-shelf differential-
equation solver [23] with adaptive step size, although
not necessarily optimized for stiff equations.
In the IE code, the handoff from the TCA to the IE solver

takes place at τ ¼ 160 Mpc. The Boltzmann code uses the

same TCA at early times and then starts the full Boltzmann
hierarchy at τ ¼ 160 Mpc. The Boltzmann code follows
the Boltzmann hierarchy up to lmax ¼ 50 (which I found
was required to keep the perturbation variables stable over
the τ range considered here). The results are similar, and the
code a bit quicker, for smaller lmax. The differential-
equation solver in the Boltzmann code runs with a relative
error requirement of 10−5 and absolute error of 10−4.
The integral equations are evolved on a time grid that
has spacing Δτ ¼ 1.0 from 160 Mpc ≤ τ ≤ 240 Mpc
and 350 Mpc ≤ τ ≤ 450 Mpc, and Δτ ¼ 0.5 Mpc for
240 Mpc ≤ τ ≤ 350 Mpc, for a total of 401 grid points.
The time required for the IE part of the calculation scales as
the square of the number of grid points.
Figure 2 shows the visibility function, which indicates

the conformal-time regime, 250 Mpc≲ τ ≲ 400 Mpc, over
which the source functions for the CMB power spectra are
evaluated.
Figure 3 illustrates the results of the numerical experi-

ment. Shown there are results for the photon-intensity
quadrupole ΔT

2 ðτÞ of the Boltzmann code and the iterative
integral-equation results, starting from a naive initial ansatz
ΔT

2 ðτÞ ¼ ΠðτÞ ¼ 0. Results are shown for k ¼ 0.2 Mpc,
which corresponds roughly to CMB multipole moments
l ∼ 3000, near the upper limit of current measurements. The
frequency of oscillations in the transfer function is reduced
at smaller k, and so the numerical algorithm should, if
anything, work even better at lower k.
The results are shown for one iteration (yellow), three

iterations (red) and (five iterations) blue. The iterative
solutions converge first at early times and then require
more iterations to converge at later times. The overlap
between the black and blue (five iterations) curves indicates
that the agreement is at the Oð0.1%Þ level over the
conformal-time range that contributes to the observed

FIG. 2. The CMB visibility function _κðτ0; τÞ as a function of
conformal time. It is shown to indicate the range of conformal
times, peaked at τ ≃ 280 Mpc, that which contribute to the
observed CMB power spectra from recombination.
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CMB power spectra. This IE code takes ∼0.15 times as
long to run as the Boltzmann code, implying that each
iteration can be completed in ∼1=30 the time required for
the Boltzmann code. Both codes are fairly rudimentary, and
so these time comparisons should be taken with a grain of
salt. Still, these results suggest that this may provide a route
to speeding up the standard Boltzmann codes.
There may be room for even further improvement. The

results shown in Fig. 3 are obtained using the most naive
possible initial ansatz for ΔT

2ðτÞ and ΠðτÞ. The number of
iterations required for convergence to the required precision
can be reduced if one starts with a better initial guess for
these quantities. It should be possible to derive a simple
semianalytic ansatz that interpolates between the well-
understood early-time TCA behavior and the late-time
behavior, which comes from the Sachs-Wolfe effect.
One should, however, be able to do even better. These

calculations are not performed in isolation. In cosmological
Markov chain Monte Carlo analyses, the Boltzmann codes
are run repeatedly to map the likelihood functions in a
multidimensional cosmological-parameter space. Thus,
each time the calculation is done, it has presumably already
been done for a nearby point in that cosmological param-
eter space. Thus, it should be possible to start the iterative
algorithm by using the results for ΔT

2ðτÞ and ΠðτÞ from a

previous run. To test this, I ran the code using as the initial
ansatz the results for ΔT

2 ðτÞ and ΠðτÞ from a prior run with
Ωb reduced by 2%. This code converges to Oð0.1%Þ after
just one iteration.

VII. CONCLUSIONS AND IDEAS
FOR FUTURE WORK

I have presented an alternative formulation of the
equations for the evolution of cosmological perturbations
in which the infinite Boltzmann hierarchy for the photon
distribution function is replaced by a pair of integral
equations. There is no new physics here—it is simply a
recasting of the equations in a way that may lead to physical
insight and alternative schemes for numerical solution. As
was known from the line-of-sight approach [3], CMB
fluctuations are determined only by the photon monopole
(energy density), dipole (peculiar velocity), and quadrupole
(more specifically, Π). In the Boltzmann hierarchy, these
are the result of some complicated transfer of power
between these lower moments of the photon distribution
function and an infinite tower of higher moments. The IE
formalism shows, however, that the lower moments, and in
particular the quadrupole moment, at the surface of last
scatter (i.e., those that enter into the line-of-sight integra-
tion) are simply described by the exact same equations that
describe the lower moments that we see.
I have shown that simple iterative solution of the

combined system of integral and differential equations
does a pretty good job at reproducing the results of the
Boltzmann calculation in a fraction of the time. This
exercise also shows that the IE formalism can be imple-
mented numerically without (apparently) any significant
numerical instabilities—this was not a foregone conclu-
sion, given the occurrence of instabilities in some IE solvers
[19], as well as those that may arise from finite lmax in the
Boltzmann hierarchy.
There is, however, far more work that needs to be done

before we know whether this approach can be implemented
to speed up a code like CLASS or CAMB. These codes benefit
from a number of insights and clever algorithms, whereas
what I have presented here is fairly naive. Those codes also
have controlled errors, whereas the grid spacing in my
calculation was guessed to provide an Oð0.1%Þ precision
in ΔT

2 ðτÞ.
The spacing of the conformal-time grid points in the

integral-equation solver is an obvious thing to explore. In
this calculation I simply estimated the number of grid
points that would be required for Oð0.1%Þ precision.
However, the distribution of grid points can certainly be
optimized to provide the desired observables (e.g., CMB
and matter power spectra) to the required precision. Good
results can probably also be obtained for smaller k with
fewer grid points, given the smoother integrands at lower k.
The current code also sums over all prior grid points.
However, given the high opacity at early times, the sum can

FIG. 3. The transfer function ΔT
2 ðτÞ for the CMB photon-

intensity quadrupole as a function of conformal time τ for a
Fourier mode of wave number k ¼ 0.2 Mpc (which corresponds
roughly to a CMB multipole moment l ∼ 3000). The black curve
shows the results of the full Boltzmann hierarchy as a function of
conformal time. The other curves show results of the iterative
integral-equation solution, taking ΔT

2 ðτÞ ¼ 0 ¼ ΠðτÞ as an initial
ansatz. The yellowish curve shows the result for ΔT

2 ðτÞ after the
first iteration—i.e., after integrating the differential equations for
all perturbation variables except ΔT

2 ðτÞ and ΠðτÞ and then
integrating the integral equations for ΔT

2 ðτÞ and ΠðτÞ using the
results of the differential equations. The red curve shows results
after three iterations, and the blue curve after five iterations. The
thickness of the curves is such that if two are indistinguishable,
the agreement between the two is Oð0.1%).
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be restricted only to grid points that are at an optical depth
Δκ ≲ 5 earlier. There are also algorithms, more sophisti-
cated than the trapezoidal-rule algorithm used here, on a
numerical solution to Volterra equations (e.g., Ref. [24]) in
the literature that may be worth exploring. There may be
alternative implementations of the integral/differential
equations that may be better suited for numerics. For
example, it should be possible to eliminate the differential
equations for the photon monopole and dipole and replace
the integral equation for the quadrupole ΔT

2 ðτÞ with that for
the monopole ΔT

0ðτÞ. Or perhaps the differential equation
for ΔT

2 ðτÞ can be included and the integral equation
replaced by one for ΔT

3 ðτÞ. Finally, it may be worthwhile
to explore whether the convergence of the iterative algo-
rithm can be optimized with an appropriate initial ansatz for
ΔT

2 ðτÞ and ΠðτÞ.
While the photon hierarchies still account for a significant

fraction of the computational time of modern Boltzmann
codes, they are, given the powerful ordinary differential
equation solvers employed now by CLASS, no longer
necessarily the rate-limiting step in these codes. Thus, the
order-of-magnitude speedup observed in the numerical
experiments presented here will not necessarily translate
to a similar speedup in those codes for basic cosmological
models. Still, the codes can become far slower when the
effects of massive neutrinos are included, especially for
nondegenerate neutrino masses. If neutrinos are massive,
their phase-space distribution depends on the magnitude of
the neutrinomomentum, as well as its angle. There is thus in
principle an infinitude (approximated as some finite num-
ber) of neutrino Boltzmann hierarchies, one for each
neutrino-momentum magnitude. An iterative IE equation
approach for neutrinos, analogous to that explored here for
photons, may thus prove to be quite profitable.
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APPENDIX A: BOLTZMANN HIERARCHY

For completeness and comparison with prior work, I
provide the Boltzmann equations for the photonmoments in
the notation used here. These equations are derived by
differentiating Eqs. (2) and (5) with respect to τ. The
independent variable τ appears in the limit of integration,
the visibility function, and in the radial eigenfunctions, and
all of the radial eigenfunctions satisfy the spherical-Bessel-
function relation, ð2lþ1Þj0lðxÞ¼ljl−1ðxÞ−ðlþ1Þjlþ1ðxÞ.
The monopole and dipole equations are already provided
in Eq. (7). The equations for l ≥ 2 are

_ΔT
l ¼ −_κΔT

l þ
kl

2lþ 1
ΔT

l−1 −
kðlþ 1Þ
2lþ 1

ΔT
lþ1

þ 1

5

�
_α

3
þ _κΠ

2

�
δl2;

_El ¼ −_κEl þ
kðl − 2Þ
2lþ 1

El−1 −
kðlþ 3Þ
2lþ 1

Elþ1 þ
1

15
_κΠδl2;

ðA1Þ

with Π ¼ ΔT
l þ 9El.

APPENDIX B: DETAILS OF THE IE SOLVER

We first define functions ITðτ; τ0Þ and IΠðτ; τ0Þ by writing

ΔT
2 ðτÞ ¼

Z
τ
dτ0gðτ; τ0ÞITðτ; τ0Þ;

ΠðτÞ ¼
Z

τ
dτ0gðτ; τ0ÞIΠðτ; τ0Þ: ðB1Þ

The integrals are then discretized, taking into account the
fact that ΠðτÞ appears in ITðτ; τ0Þ and IΠðτ; τ0Þ, in the
following way. We define two sums,

Δ0
2;iþ1 ¼

X
j≤i

ðITjþ1W
þ
j þ ITj WjÞ −

1

10
Πjþ1W

þ
i

Π0
iþ1 ¼

X
j≤i

ðIΠjþ1W
þ
j þ IΠj WjÞ −

3

5
Πiþ1W

þ
j ;

where Πi ¼ΠðτiÞ, ITj ¼ ITðτiþ1; τjÞ, and IΠj ¼ IΠðτiþ1; τjÞ.
Here the weight functions are

Wþ
j ¼ e−κðτiþ1;τjþ1Þ

�
1 − e−Δκj −

1 − ð1þ ΔκjÞe−Δκj
Δκj

�
;

Wj ¼
e−κðτiþ1;τjþ1Þ

Δκj
½1 − ð1þ ΔκjÞe−Δκj �; ðB2Þ

where Δκj ¼ κðτjþ1Þ − κðτjÞ. These weight functions
approachWþ

j → Δκj=2 andWj → Δκj=2 at late times, thus
recovering Eq. (12) (written as an integral over κ, rather than
τ). At early times, Wþ

j → 1 − ðΔκÞ−1 and Wj → ðΔκÞ−1;
this then recovers the first-order tight-coupling approxima-
tion, Δ2 ¼ ð2=5ÞΠ ¼ ð4=45Þð _αþ 2θbÞ=_κ, even from one
time step in the evaluation of the integral—the second-order
TCA is reproduced by two time steps.
The discretized quadrupoles are then

Πiþ1 ¼
Π0

iþ1 þ Δ0
2;iþ1

1 − 7
10
Wþ

i
;

ΔT
2;iþ1 ¼ Δ0

2;iþ1 þ
1

10
Π0

iþ1W
þ
i : ðB3Þ
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