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The canonical velocity-dependent one-scale (VOS) model for cosmic string evolution must be calibrated
using high resolution numerical simulations, We exploit our state of the art graphics processing unit
accelerated implementation of the evolution of local Abelian-Higgs string networks to provide a detailed
and statistically robust calibration of the VOS model. We rely on the largest set of high resolution
simulations carried out to date, with a wide range of cosmological expansion rates, and explore the impact
of key numerical parameters, including the dynamic range (comparing box sizes from 10243 to 40963), the
lattice spacing, and the choice of numerical estimators for the string velocity. We explore the sensitivity of
the VOSmodel parameters to these numerical parameters, with a particular emphasis on the observationally
crucial loop chopping efficiency, and also identify key differences between the equation of state and
conjugate momentum estimators for the string velocities, showing that the latter one is more reliable for fast
expansion rates (while in Minkowski space the opposite has been previously shown). Finally, we briefly
illustrate how our results impact observational constraints on cosmic strings.
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I. INTRODUCTION

Topological defects are possible fossil relics of the early
Universe, encoding information on the physical conditions
therein. They form as a consequence of symmetry breaking
phase transitions, via the Kibble mechanism [1], and if
stable they will persist until the present day. Depending on
the details of the symmetry broken (specifically, on the
homotopy group of the vacuum manifold), different types
of defects can form, with different dimensionalities. One
type of defect which is generic enough to form in many
candidate theories of physics beyond the standard model
[2,3] are the benign one-dimensional line-like cosmic
strings—benign in the sense that they cannot overclose
the Universe, at least in the simplest models. Given how
generic these fossil relics are, they are a primary target
for constraints from current observational facilities [4,5].
For these observational studies, detection of strings would
signal new theories of physics beyond the Standard Model,
while a nondetection would enable constraints on the mass-
scale of strings, which is directly related to the symmetry
breaking scale. However, many approximations are done
in the current analyses, meaning that the current constraints
are not fully reliable, and sometimes small changes in the

assumptions underlying the analysis lead to derived con-
straints differ by several orders of magnitude. In other
words, the systematic uncertainties are far larger than the
statistical ones.
The evolution of cosmic string networks is highly

nonlinear, and must be studied by a combination of analytic
modeling and numerical simulations [6]. That said, there is
at least one clear feature of the simplest models of cosmic
string networks that is revealed by both analytical and
numerical studies: in cosmological epochs where the scale
factor is proportional to some power of the physical time,
the attractor (i.e., asymptotic) behavior is known as the
scaling (or scale invariant) regime, where the network’s rate
of separation of strings and the velocity are asymptotically
constant. This assumption is computationally useful: even
if simulations cannot cover all of the observationally
relevant cosmological evolution, their behavior can be
extrapolated to all cosmological epochs and transitions
therein by means of a simulation with a limited dynamic
range together with a properly calibrated model.
The canonical analytic evolution model for cosmic

strings and other topological defects is the velocity depen-
dent one-scale (henceforth VOS) model, originally devel-
oped for cosmic strings [7,8] and subsequently extended
to other defects—see [6] for a recent review. On the other
hand, there are two main types of simulations of strings—
Nambu-Goto [9–11] and field theory [12,13]—which
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confirm the presence of the scale invariant solution but
significantly disagree on the details. This is relevant
because the observational consequences of string networks
directly depend on these details, including on the means by
which this scaling solution is dynamically reached and
sustained, and more specifically on the energy loss mech-
anisms responsible for doing so.
Recently we have started a systematic program aiming

to obtain a full and statistically robust calibration of an
extension of the VOS model. This extended model
incorporates new parameters to explicitly account for
the correct velocity dependencies of both a generalized
curvature term and an explicit term for modeling radiative
losses, including contributions from loop production and
from scalar and gauge radiation. This relies on a new
generation graphics processing unit (GPU) accelerated
evolution code for Abelian-Higgs cosmic strings [14,15]
which has been recently shown to be more than 30 times
faster than the best previously available code and enables
the collection of statistically significant data sets using
manageable amounts of computing resources and wall
clock time.
In [16], henceforth Paper 1, we have presented the

extended version of the VOS model and provided a
preliminary calibration thereof, relying on more than one
thousand 5123 simulations for a wide range of different
cosmological expansion rates. In [17], henceforth Paper 2,
we studied the sensitivity of the model calibration to the
presence (or absence) of thermal oscillations due to high
gradients in the initial conditions (showing that a small
amount of cooling has no statistically significant impact on
the VOS model calibration, while a longer dissipation
period does have a noticeable effect) and also introduced an
improved Markov Chain Monte Carlo (MCMC) based
pipeline for calibrating the VOSmodel. The present work is
the continuation of this program. We rely on the largest
set of high resolution simulations gathered to date, with
box sizes from 10243 to 40963 and with a wide range of
cosmological expansion rates, to provide a more precise
calibration of the VOS model. In doing so, we also explore
the impact of key numerical parameters: in addition to the
dynamic range (which is primarily related to the box size),
we also investigate the effects of lattice spacing and the
choice of numerical estimators of the string mean velocity.
This rest of the work is organized as follows. We start in

Sec. II by briefly describing the VOS model, its parameters
and main features, as well as the field theory simulations
that we use and the simulation diagnostics that are used to
calibrate the VOS model. We then proceed to describe our
detailed calibration and its sensitivity to the relevant
numerical parameters in Secs. III and IV, finding that the
VOS model parameter that is more sensitive to these
choices is the loop chopping efficiency, and also character-
izing key differences between two alternative estimators for
the string velocities. Finally, in Sec. V we briefly illustrate

how our results impact observational constraints on cosmic
strings, and present some conclusions in Sec. VI.

II. PRELUDE

We start by presenting brief overviews of the extended
VOS model and of our Abelian-Higgs field theory numeri-
cal simulation code, including our estimators for the string
characteristic length scale and velocity. Our goal here is not
to be exhaustive but rather to present a concise introduction
of the concepts that will be relevant for the results discussed
in the rest of the work. We refer the reader to the cited
references for more detailed discussions.

A. Extended semianalytical modeling

The VOS model [7,8] comprises two coupled differ-
ential equations, describing how two network averaged
quantities—the mean correlation length or characteristic
length scale and the root mean squared velocity—evolve
over cosmic time. It can thus be thought of as a
thermodynamic model. In physical coordinates the model
can be written as,

2
dL
dt

¼ 2HLð1þ v2Þ þ FðvÞ ð1Þ

dv
dt

¼ ð1 − v2Þ
�
kðvÞ
L

− 2Hv

�
ð2Þ

where L is the mean string correlation length, v the
velocity, and H the Hubble parameter.
There are also two functions which depend explicitly

on the velocity: the momentum parameter kðvÞ, and the
energy loss function FðvÞ. In the standard VOS model, the
phenomenological parameter kðvÞ has a form derived from
considering the helicoidal string solution and by compari-
son with Nambu-Goto simulations in nonrelativistic and
relativistic regimes [7,8]. Later, work based on field theory
simulations of domain walls and leading to an accurate
VOS walls model [18] led to a more general form of this
function, where certain parameters would be fixed by direct
calibration from simulations. This has been adapted to the
case of cosmic strings in Paper 1, and has the form

kðvÞ ¼ k0
1 − ðqv2Þβ
1þ ðqv2Þβ ; ð3Þ

where of the three free parameters (k0, β and q) two have a
clear physical meaning: k0 is the maximal value of the
momentum parameter (i.e., its low-velocity limit) and 1=q
can at most be equal to the maximum string velocity
squared; on the other hand β is a more phenomenological
parameter allowing for a generic power law dependence.
The second velocity-dependent function FðvÞ is physi-

cally an energy loss function. In the original VOS model, it
merely encapsulated how the string network would lose
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energy over time via loop production, i.e., the Kibble’s loop
chopping efficiency. In the extended VOS, FðvÞ is modi-
fied to include an additional radiative term, as follows

FðvÞ ¼ cvþ d½k0 − k�r: ð4Þ

Here we have three additional free parameters: c and d are
the normalization factors for the contributions from loop
chopping efficiency and from scalar and gauge radiation
components (massive and massless), and r quantifies a
power law of the curvature parameter—see [18] for a
detailed justification of this assumption.
Apart from having been used in the domain walls case

[18], a preliminary calibration on the six model parameters
can be found in Paper 1 and Paper 2. An important
difference between the two cases, highlighted in these
previous works, is that for domain walls the radiation losses
term always dominates over loop production, but this is not
the case for cosmic strings. We will return to this point in
what follows.
The main goal of the present work is to improve the

earlier calibration of the extended VOS model, while
quantifying possible sources of systematic errors and
biases. For the comparison of the model to simulations
it is convenient to replace the physical time t, physical
correlation length L and Hubble parameter H by their
comoving counterparts, respectively η, ξ, and H. This is
done because the simulations are evolved in comoving
coordinates. This leads to

dξ
dη

¼ mξ

ð1 −mÞη v
2 þ FðvÞ ð5Þ

dv
dη

¼ ð1 − v2Þ
�
kðvÞ
ξ

−
2mv

ð1 −mÞη
�
: ð6Þ

Note that since in what follows we will simulate
expanding universes where the scale factor obeys the
power law a ∝ tm ∝ ηm=ð1−mÞ, we already substituted the
appropriate expression for H in terms of m.
In this form the model is ready for calibration.

Underlying the calibration procedure is the assumption
that the model contains a fixed point solution for any power
law universe being simulated—the aforementioned scale
invariant solution. Such a behavior is described by the
following relations

ξ ∝ η ∝ dH v ¼ const: ð7Þ

where dH is the horizon size. The attractor nature of this
solution is analytically well known [6]. The statistical
comparison between simulations of string in such
Universes and the VOS model will be done using the same
MCMC based pipeline as described in Paper 2, which

includes automatic uncertainty propagation andminimization
coupled with Bayesian inference to explore the model’s
parameter space.
In addition, we will also invert the VOS equations to

obtain numerically measured values of the momentum
parameter and the energy loss function in the scaling
regime,

FðvÞ ¼ 2ϵ½1 −mð1þ v20Þ� ð8Þ

kðvÞ ¼ 2mϵv0 ð9Þ

where ϵ is given by ξ=ðηð1 −mÞÞ at scaling, and v0 is the
velocity in the same regime. Note that in practice, and due
to the choices of initial conditions, ϵ will instead be
numerically given by ξ=ððη − η0Þð1 −mÞÞ where η0 is a
numerical offset of no physical significance. Readers
interested in this technical (numerical) point can find a
discussion in Paper 2.
We note that even though the fixed point nature of all

possible scaling solutions in the extended model has not yet
been thoroughly studied via a rigorous dynamical systems
analysis, one can show that this is indeed the case for the
model parameters of interest. Specifically, this can be seen
in Fig. 1, where a set of 600 trajectories of the VOS model,
each with different initial conditions and using the cali-
bration from 40963 simulations (to be discussed in what
follows) is used, shows the fixed point clearly. We leave a
more detailed exploration of this phase space to a follow-up
publication.

FIG. 1. 600 trajectories of the extended VOS model in phase
space. Each trajectory is obtained by evolving some random initial
condition for the velocity (v) and the correlation length divided by
conformal time (ξ=η) with the extended model calibrated with
40963 radiation era boxes, lattice spacing Δx ¼ 0.5, equation of
state velocity estimator, through the conformal time range [1.0,
512.0] (see the main text for details on these parameters). We also
mark the last time of the integration for every solution with a
magenta dot, to indicate the position of the fixed point.
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B. Simulation setup

There are two methods for simulating cosmic string
networks. The first evolves string segments in the infinitely
thin string limit, also known as the Nambu-Goto approxi-
mation [9–11,19,20]. The second one evolves fields on a
comoving lattice, and the field configuration arises natu-
rally from topological considerations and Hubble damping
[12,13,21]. Our GPU-accelerated simulations [14,15] are
of the latter type. We will use throughout this work a
maximum of 4096 graphical accelerators of Piz Daint
supercomputer, the 12th most powerful supercomputer at
the time of writing [22].
In order to describe a field theory string simulation,

consider a Lagrangian density of the following form

L ¼ jDμϕj2 −
λ

4
ðjϕj2 − 1Þ2 − 1

4e2
FμνFμν; ð10Þ

where ϕ and A are the scalar and gauge fields of the theory,
λ and e are their corresponding coupling constants, Fμν is
the gauge field strength andDμ indicates gauge derivatives.
An Abelian-Higgs string simulation typically starts with
some random initial conditions (mimicking the fields after
the symmetry breaking in a computationally cheap way)
and evolves this field configuration forward, comoving
timestep by timestep, stopping when the horizon reaches
the box size (at which point the periodic boundary con-
ditions in the simulation box are no longer representative of
an expanding universe). In our case, the initial conditions
correspond to random phases of the complex scalar field,
with all other fields set to zero. Note that we could attempt
to apply an initial period of cooling, however our goal in
this manuscript is not to understand how cooling can affect
model calibration—this has already been done in Paper 2.
The evolution of the fields is described by a discrete form

of the following equations of motion

ϕ̈þ 2
_a
a
_ϕ ¼ DjDjϕ −

a2λ
2

ðjϕj2 − 1Þ ð11Þ

_F0j ¼ ∂jFij − 2a2e2Im½ϕ�Djϕ�; ð12Þ

where the couplings λ and e are related to their physical
counterparts by a factor of að1−κÞ, and the choice κ ¼ 0
forces the string to have a constant comoving width, also
known as the Press-Ryden-Spergel approximation [23]. On
the other hand the choice κ ¼ 1 allows the strings to shrink
in comoving coordinates. While the latter option is the
expected physical behavior, in what follows we set κ ¼ 0 in
order to avoid tuning a core growth phase (setting a
negative κ) every time the simulation is run with a different
expansion rate. Note that core growth—as done in [12]—
followed by physical behavior would have significant
disadvantages, which have been discussed in Paper 1.

For our calibration of the VOS model, we need to output
two mean quantities: the mean string separation (inter-
changeably the mean correlation length), and the mean
velocity squared. In our simulation the two naturally
available correlation length estimators were shown to
produce comparable results, differing at most by a few
percent at very high expansion rates as discussed in Paper 1.
In what follows we use the Winding length estimator, which
can be shown to yield the mean string length ξW through the

ξW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VP
ij;xWij;x

s
; ð13Þ

where V is the box volume and the total length of string in
the box corresponds to a summation of the nonzerowindings
found piercing the cell faces throughout the lattice. The
gauge-invariant winding Wi;j at lattice site x is defined, as
shown by [24], as

Wij ¼
1

2π
ðYi;x þ Yj;xþi − Yi;xþj − Yj;xÞ; ð14Þ

where Yi is given by

Yi ¼ ½ðϕxÞarg − ðϕxþkiÞarg þ Ai;x�π − Ai;x: ð15Þ

and whenWij is nonzero at a particular plaquette it indicates
the presence of a straight string segment of length Δx.
Similarly, two possible velocity estimator are available

in our simulation, one based on Lorentz boosting a static
straight string, and another one based on the equation of
state. Both are derived and described in detail in [13], and
as such we will merely state their definitions here. The first
estimator is given by

hv2iϕ ¼ 2R
1þ R

; ð16Þ

where R is given by

R ¼
P

xjΠj2WP
x;ijDþ

x;iϕj2W
ð17Þ

and Π is the conjugate momentum of the scalar field. Here
W is a weight function meant to localize the estimators
around the strings, which in what follows will be given by
the Lagrangian density. The second velocity estimator
option is given by

hv2iω ¼ 1

2

�
1þ 3

P
xpxWxP
xρxWx

�
; ð18Þ

where the equation of state parameter ω is computed by
the box average density and pressure (both of them
being appropriately weighted by the Lagrangian density).
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While in the case of the string length scale estimators the
choice between the two available options has very little
impact in the calibration, we will see that the choice of
velocity estimator does heavily impact the calibrated
parameters, with the difference being ascribed to the
different behaviors of the two estimators at high expansion
rate and, having identified the issue, we also explore how to
address this systematic error.

III. IMPROVING THE CALIBRATION:
DYNAMIC RANGE AND LATTICE SIZE

In order to calibrate the VOS for different simulation
sets, we will use the same Markov Chain Monte Carlo
(MCMC) procedure used in [17] (based on the emcee
PYTHON package [25]). This will allow us to sample from
the 6 dimensional parameter space to find posterior dis-
tributions for each parameter, and thus understand possible
correlations, predict expected uncertainties and retrieve
likelihood maxima. The logarithm of the likelihood is
obtained via the χ2 statistic. We assume uniform distribu-
tions for all priors. In all cases we use 32 walkers and a
minimum of 10000 steps. The ranges of the parameters

intervals in the uniform distributions and the number of
steps are different in the various cases, as is the time needed
for convergence.
We now set out to understand how the dynamic range

and lattice size of the simulations can affect the model
calibration. We will first explore lattice sizes of 10243,
20483, and 40963, with a common lattice spacing of
Δx ¼ 0.5, in 25 different expansion rates from m ¼ 0.45
tom ¼ 0.95) and using 10 runs per each expansion rate. We
start by using the equation of state estimator for the
velocities. It has been reported in the literature that there
is a slow drift in the values of ξ=η [13,15]. This is often
partially ascribed (when going from 5123 to 10243) to the
different cooled versus noncooled initial conditions. We
have previously quantified the possible impacts of cooling
on the VOSmodel calibration in Paper 2, and here we apply
no cooling. Therefore any remaining drift should be
uniquely determined by lattice size. Our results confirm
this small drift. This is clearly seen in the top-left panel of
Fig. 2, where we plot the calibrated VOS prediction for ξ=η
and the shaded regions correspond to the measured
simulation values (including their statistical uncertainties).

FIG. 2. Comparison of the mean rate of change of correlation length ξ=η (top left) and the mean velocity hvi (top right) with the solid
lines corresponding to the calibration and the shaded regions to the uncertainty of the measurements of each estimator for three different
box sizes. The bottom plots show how these differences impact the momentum parameter kðvÞ (bottom left) and in the energy loss
parameter FðvÞ (bottom right).
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Besides the drift in ξ=η, a reduction in the uncertainties is
also clearly visible, which is fully expected since the larger
dynamic range lessens the impact of any systematics due to
the initial conditions, including in particular any effect of
the numerical offset η0. It is interesting to note that, as has
been previously found for domain walls [18,26], there is a
lattice resolution beyond which the values seem to stabilize:
qualitatively there is a discernible change when going from
10243 to 20483, but there seems to be little change when
going from 20483 to 40963. In particular, no change is
observed for the mean string velocities, as seen in the top
right panel of 2.
Naturally, these differences impact the two velocity-

dependent functions, as can be seen in the two bottom
panels of Fig. 2. In particular the energy loss function
FðvÞ is affected by the drift of ξ=η by being shifted
downwards, which seems to suggest a change in the value
of the loop chopping parameter c and/or in the normali-
zation of the radiation term d. The impact on the
momentum parameter kðvÞ is much smaller, and is limited
to its maximum value being slightly reduced. We can

confirm these and explore how the VOS model param-
eters are affected by looking at the corner plots of 1σ and
2σ contours of the model calibration, depicted in Fig. 3,
and the corresponding parameter values in the top half of
Table I. Visually this confirms the reduction of the values
of k0 and c. Notice the significant reduction in the area
of the 2D confidence regions, which follows from the
smaller uncertainties. Doubling the box size leads to the
gain of a factor of 16 in statistical constraining power: a
factor of eight in volume and a factor of two in dynamic
range. The fact that almost all parameters seem to not
change by increasing the resolution from 20483 to 40963

is also manifest. The only parameters which change
slightly from 20483 to 40963 boxes are c and (to a lesser
extent) d. Both are related to the energy loss function,
which explains why they are anticorrelated: as c
decreases, d increases. This seems to suggest that as
the lattice resolution increases, energy loss through loop
production is gradually replaced by radiative losses,
eventually becoming negligible at 40963 for this choice
of velocity estimator.

FIG. 3. Corner plots for the MCMC calibration of the VOS model, obtained with the velocity estimator hvωi, for three different box
sizes. The 2D panels the depict the 1σ and 2σ confidence regions.
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As a cross-check one can repeat the analysis replacing
the equation of state estimator for the velocities by the
conjugate momentum based velocity estimator. The analo-
gous corner plots can be found in Fig. 4 and the calibrated
model parameters are in the bottom half of Table I. Clearly
this leads to a very different calibration, and various model
parameters take different values in both cases. The most

notable difference is in the value of c: while it is still the
case that increasing the lattice size reduces the value c, it
now converges to a value that is very clearly (in a statistical
sense) nonzero and comparable to that of d. On the other
hand, in this case there is no statistically significantly drift
in the value of d which, somewhat remarkably, is the least
affected of the six parameters.

TABLE I. Calibrated VOS model parameters for our three different lattice sizes, 10243, 20483, and 40963, all with the same lattice
spacing Δx ¼ 0.5, and two different choices of velocity estimators, hv2ωi and hv2ϕi (in the top and bottom parts of the table, respectively),
further described in the main text. Displayed values correspond to 16th, 50th, 84th percentiles of the posterior distributions.

Lattice size Δx Velocity estimator d r β k0 q c

10243 0.32þ0.04
−0.04 1.51þ0.48

−0.37 1.82þ0.34
−0.30 1.27þ0.08

−0.06 2.41þ0.13
−0.13 0.15þ0.05

−0.07
20483 0.5 hv2ωi 0.37þ0.02

−0.02 1.27þ0.17
−0.15 2.33þ0.21

−0.20 1.21þ0.03
−0.03 2.57þ0.06

−0.06 0.03þ0.02
−0.03

40963 0.39þ0.02
−0.02 1.36þ0.15

−0.13 2.32þ0.20
−0.18 1.18þ0.03

−0.03 2.59þ0.05
−0.05 0.00þ0.01

−0.01

10243 0.35þ0.23
−0.10 2.39þ1.58

−0.94 2.79þ0.73
−0.56 1.06þ0.05

−0.05 2.95þ0.18
−0.19 0.44þ0.04

−0.05
20483 0.5 hv2ϕi 0.33þ0.05

−0.04 1.86þ0.39
−0.32 2.65þ0.28

−0.26 1.05þ0.03
−0.03 2.84þ0.08

−0.08 0.31þ0.02
−0.02

40963 0.36þ0.03
−0.03 1.72þ0.26

−0.23 2.50þ0.21
−0.20 1.06þ0.02

−0.02 2.83þ0.06
−0.06 0.23þ0.01

−0.01

FIG. 4. Corner plots for the MCMC calibration of the VOS model, obtained with the velocity estimator hvϕi, for three different box
sizes. The 2D panels the depict the 1σ and 2σ confidence regions.
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This raises the question of the reliability and possible
biases of the two velocity estimators. We note that visual
inspection of the evolution of the network unambiguously
reveals the formation of loops with a range of sizes (large
and small), which subsequently decay. Two examples, from
a 40963 simulation in the radiation era, with the evolution
displayed for conformal times η ∈ ½741; 1024�, can be
found in [27,28]. The fact that c → 0 if one uses the
equation of state estimator for the velocities can be
reconciled with this observation if this velocity estimator
is not sufficiently accurate: as the statistical uncertainties in
the simulation are reduced (by simulating larger boxes),
this systematic uncertainty ends up dominating the analy-
sis. We explore this issue, together with the related one of
lattice spacing, in the following section.

IV. LATTICE SPACING AND VELOCITY
ESTIMATORS

Although the extended VOS model generically has the
six parameters introduced in Sec. II A, in the limit of low
velocities the model reduces, to first order, to the following

dξ
dη

¼ mξ

ð1 −mÞη v
2 þ cv ð19Þ

dv
dη

¼ ð1 − v2Þ
�
k0
ξ
−

2mv
ð1 −mÞη

�
; ð20Þ

which depends only on c and k0. Numerically, the low
velocity limit corresponds to vary fast expansion rates, i.e.,
large values of m. The fact that these parameters are
affected by the choice of velocity estimator is therefore
not surprising, since our previous work in Paper 1 shows
that the two velocity estimators themselves differ max-
imally in this limit. Specifically, the relative difference
between the velocities obtained from the two estimators
ranged between 6% at moderate expansion rates (including
the radiation era, m ¼ 1=2, and the matter era, m ¼ 2=3)
and 12% at m ¼ 0.95, which is the fastest expansion rate
simulated in Paper 1.
Determining these two parameters accurately can there-

fore depend on how well the numerical simulation algorithm
(including the estimators used for the model calibration)

FIG. 5. The effect of lattice spacing on the velocity estimators, for high expansion rate simulations. The top panels show the separate
values of the velocities (with the corresponding statistical uncertainties) obtained with the two velocity estimators defined in the text,
while the bottom panels show the relative difference between the two. Left and right side panels depict the results for standard spacing
and half-lattice spacing.
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behaves at large expansion rates. Given the importance of k0
and c for understanding the amount of small-scale structure
on the strings, as well as the importance of loop formation to
the overall energy losses, we now turn our attention to
studying the high-expansion rate limit.
We note that there are potential sources of systematics

which are specific to such low velocities and can plausibly
impact the VOS model calibration. For example, at
highly nonrelativistic velocities (v < 0.2) it is possible
that strings cannot overcome the small potential barrier
present between lattice sites, known as the Peierls-Nabarro
barrier [29–31]. In such a case the strings become pinned at
lattice sites, and do not move according to what would be
physically predicted. One might then expect that this will
manifest itself on the measured values of FðvÞ and kðvÞ as a
lattice spacing dependency.
The question, then, is which estimator should be trusted

to yield the correct velocities, and therefore the most
accurate calibration of the VOS model? In [13] it was
shown that the disagreement between velocity estimators
decreases for an oscillating string in Minkoswski space as

one reduces the lattice spacing. While the same reference
argued that the equation of state estimator should be more
reliable in Minkoswski space, this does not imply that the
same applies to expanding universes, and this caveat is
particularly applicable to the high expansion rates—which
are of interest for the present study and are, effectively, the
opposite limit to that of Minkowski space.
To better understand these systematics we begin by

characterizing the differences between the two velocity
estimators for large expansion rates, specifically from
m ¼ 0.93 to m ¼ 0.997. The latter choice of m is as deep
into the nonrelativistic limit as our numerical simulation
algorithm allows. Moreover, we will do this for two different
sets of simulations with different lattice spacings: the
standard Δx ¼ 0.5 and what we will call the half-lattice
spacing of Δx ¼ 0.25. As in the previous section, statistical
uncertainties are obtained for the averages over the 10
different simulations done for each choice of expansion rate.
The velocities obtained from both estimators are shown

in Fig. 5. Manifestly the difference between the two
estimators increases with the expansion rate, but equally

FIG. 6. The effect of lattice spacing on the velocity estimators, as manifest in the velocity-dependent functions of the VOS model, for
high expansion rate simulations. The top panels show the momentum parameter kðvÞ while the bottom panels show the energy loss
parameter FðvÞ, all with the corresponding statistical uncertainties, obtained with the two velocity estimators defined in the text. Left and
right side panels depict the results for standard and half-lattice spacing.
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clearly it decreases with the lattice spacing. Thus we
confirm that a small lattice spacing is crucial for an accurate
calibration. As before, these differences are reflected in the
inferred values of FðvÞ and kðvÞ which can be seen in
Fig. 6. It is worthy of note that in standard lattice spacing
the equation of state estimator mostly fails to give a
physically reasonable (positive) value for almost all the
large expansion rates considered, casting doubt into how
reliable it can be, even beyond these expansion rates. When
the lattice size is decreased, the disagreement decreases as
well, but the equation of state estimator can still lead to
negative values for the energy loss parameter. At the
highest expansion rates that we have simulated, even our
half-lattice spacing cannot completely remove the disagree-
ment between the tow estimators. Overall, it can also be
seen that the estimator that changes the most with a
reduction of the lattice spacing is the equation of state
one, which further supports the interpretation that it is the
least trustworthy of the two, at least in the high expansion

rate limit. Note that this does not contradict the claim,
in [13], that it is the more accurate one in the opposite limit
of Minkowski space. As has already been pointed out
above, the fast expansion andMinkowski are effectively the
two opposite ends of the spectrum, but there are several
other examples in the dynamics of cosmic string networks
which show that Minkowski space may not be represen-
tative of the evolution in expanding universes [19].
Returning to our calibration in the relativistic range of

velocities, the three expansion rates m ¼ 0.93, 0.94, 0.95
give reasonably similar predictions for the energy loss slope
and momentum parameter. Having then established which
estimator is more reliable at high expansion rates, we
should understand the impact of the estimator choice in
the opposite limit of (comparatively) low expansion rates
and high velocities. Toward this goal we can perform an
additional check, namely to compare the calibration at
40963 resolution and half-lattice spacing with the one in the
previous section at 20483 with standard spacing. Note that

FIG. 7. Corner plots for the MCMC calibration of the VOS model, obtained with the velocity estimator hvωi and two different lattice
spacings Δx ¼ 0.5 and Δx ¼ 0.25. The 2D panels the depict the 1σ and 2σ confidence regions.
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these two correlated choices of lattice size and lattice
spacing ensures a fair comparison, since the two sets of
simulations will have the same dynamic range.
The resulting calibration can be seen in Figs. 7 and 8,

as well as in Table II. Here we see something interesting.
For the equation of state estimator the calibration changes
drastically, with 4 of the 6 VOS model parameters
(including the loop chopping efficiency c) being changed

by several standard deviations; the only parameters that
are unchanged (within their statistical uncertainties) are d
and β. For the conjugate momentum estimator the result is
almost the opposite: the calibration is far more stable and
only the VOS model parameter q is significantly affected
by the choice of lattice spacing.
Therefore, and despite the existence of degeneracies

between the VOS model parameters (clearly visible in our

FIG. 8. Corner plots for the MCMC calibration of the VOS model, obtained with the velocity estimator hvϕi and two different lattice
spacings Δx ¼ 0.5 and Δx ¼ 0.25. The 2D panels the depict the 1σ and 2σ confidence regions.

TABLE II. Calibrated VOS model parameters for our two choices of lattice spacing Δx and corresponding lattice sizes, for the two
different choices of velocity estimators, hv2ωi and hv2ϕi, further described in the main text. Displayed values correspond to 16th, 50th,
84th percentiles of the posterior distributions.

Lattice size Δx Velocity estimator d r β k0 q c

20483 0.5 hv2ωi 0.37þ0.02
−0.02 1.27þ0.17

−0.15 2.33þ0.21
−0.20 1.21þ0.03

−0.03 2.57þ0.06
−0.06 0.03þ0.02

−0.03
40963 0.25 0.34þ0.07

−0.05 2.32þ0.52
−0.40 2.62þ0.29

−0.26 1.06þ0.03
−0.02 2.37þ0.06

−0.07 0.25þ0.02
−0.02

20483 0.5 hv2ϕi 0.33þ0.05
−0.04 1.86þ0.39

−0.32 2.65þ0.28
−0.26 1.05þ0.03

−0.03 2.84þ0.08
−0.08 0.31þ0.02

−0.02
40963 0.25 0.36þ0.09

−0.06 2.56þ0.64
−0.50 2.69þ0.30

−0.27 1.04þ0.03
−0.02 2.47þ0.07

−0.07 0.30þ0.02
−0.02
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the four sets of corner plots), our analysis strongly suggests
that the conjugate momentum estimator for velocities is
physically more reliable for expanding universes (or, at the
very least, for relatively fast expansion rates), notwith-
standing the fact that in Minkowski space the opposite
result may hold [13].

V. CODA: OBSERVATIONAL IMPACT OF
DIFFERENT CALIBRATIONS

In the previous sections we have provided a new
calibration for the VOS model parameters, which is
qualitatively similar to, but quantitatively different from,
those of Paper 1 and Paper 2. Additionally, it also differs
from the calibration of the previous version of the VOS
model [6]. The question therefore arises as to the impact of
these different calibrations on observational constraints on
cosmic strings. While a detailed study of this issue is
beyond the scope of the present work, in this section we
will nevertheless provide a brief illustration of this impact.

Towards this end, we will compute the expected anisot-
ropies in the cosmic microwave background due to cosmic
string networks, under different VOS model calibrations,
using the publicly available code CMBACT4 [32]. This code
is based on the so-called unconnected segments model
[33,34], which is based on several simplistic assumptions
and is understood to be no better than order of magnitude
accurate. More robust methods for calculating these anisot-
ropies, directly from simulations, are known both for field
theory simulations [5,12] and for Nambu-Goto simulations
[5,35,36]. Still, our goal here is merely to illustrate the
relative differences which stem from the different calibra-
tions, leaving a detailed comparison with observations for
future work.
Specifically, we will consider four different calibrations.

The first two rely on the standard VOS calibration, without
explicit radiative energy loss terms, and a kðvÞ function
inferred from Nambu-Goto simulations as described in [8].
These includes separate calibrations for Abelian-Higgs and
Nambu-Goto simulations, as used in for the Planck 2013

FIG. 9. Power spectrum of cosmic microwave background anisotropies, obtained with the CMBACT4 code, for the standard Nambu-
Goto calibration, the standard Abelian-Higgs calibration and two extended VOS calibrations in the present work. The panels depict the
TT (top left), EE (top right), TE (bottom left) and BB (bottom right) spectra. In each case the spectrum is obtained by averaging over 200
realizations.
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constraints [5]; here the loop chopping parameter is set to
either c ¼ 0.57 or c ¼ 0.23� 0.04 respectively. The other
two calibrations are for the extended VOS model, as
discussed in the previous sections, for 10243 boxes with
Δx ¼ 0.5 lattice spacing and the equation of state velocity
estimator, and for 40963 boxes with Δx ¼ 0.25 lattice
spacing and the conjugate momentum velocity estimator.
In each of the four cases we use 200 realizations of the

CMBACT4 code, which has been previously shown to
produce spectra that are as accurate as the approximations
of the method allow [37]. There is an additional toy model
parameter, also discussed in [37], which can have an
impact. This parameter is the so called string decay
constant, 0 ≤ Lf ≤ 1, which controls if, past some specific
lifetime, a given string segment will cease to contribute to
the overall power spectrum; in practical terms, the danger is
Lf < 1 implies that strings can start to decay earlier than
their respective epoch, thus lowering the number density.
Given the illustrative nature of our comparison, we keep to
the standard value of Lf ¼ 0.5 used by the code for all
computations.
The obtained TT, EE, TE, and BE spectra for the four

calibrations can be seen in figure 9. We have conservatively
normalized all four cases to a string tension Gμ of
1.0 × 10−7, even though the constraints on Nambu-Goto
strings are stronger than those on Abelian-Higgs strings—
the reason for this being clear from the figure itself. The fact
that the obtained spectra for the three Abelian-Higgs cases
are in better agreement with each other than with the
Nambu-Goto case, is therefore to be expected. The key
underlying reason for this difference can be ascribed to the
different average values of the string velocities, which are
larger in the Nambu-Goto case.
That being said, there are some significant differences

between the three Abelian-Higgs calibrations. Comparing
our most accurate calibration, at 40963, with the standard
VOS one, it should be noted that these differences are scale-
dependent. They are larger at low-l for TT, and at high-l for
EE, BB and BE. Specifically, at the multipole l ¼ 10, the
relative difference in the TT power spectra is around 16%,
30% and 11% for the scalar, vector and tensor Cl, respec-
tively. It is also worthy of note that among the three Abelian-
Higgs calibrations the most discrepant is the 10243 one
relying on the equation of state velocity estimator.
Admittedly, the extent to which these differences are entirely
due to the different calibrations, rather than features due to
the limitations of the unconnected segments model (which
could plausibly introduce scale-dependent effects) is unclear.
Nevertheless, this comparison highlights the need for accu-
rate calibrations of the VOS model parameters.

VI. CONCLUSION

In this work we have relied on our recently developed
GPU-accelerated Abelian-Higgs cosmic string evolution

code [14,15] to provide a more detailed and statistically
robust calibration of the canonical velocity-dependent
one-scale model, which updates and extends our previous
analyses [16,17]. Our data set of hundreds of high
resolution simulations, comprising box sizes from 10243

to 40063 and exploring various choices of expansion rates,
lattice spacing and velocity estimator, is by far the largest
one carried out to date, and enables both a calibration of the
model with small statistical uncertainties but also an
assessment of the systematic uncertainties due to various
numerical choices.
We have identified key differences between the equation

of state and conjugate momentum estimators for the string
velocities, depending on the resolution of the simulations,
and have shown that the former one leads to unphysical
results for fast expansion rates while the latter one is more
reliable. It is interesting that this result is the opposite to the
behavior previously inferred in Minkowski space [13]. We
emphasize that the two results are not mutually incompat-
ible, since they pertain to opposite physical limits (fast
expansion versus no expansion), and there is in any case no
reason why a single numerical estimator algorithm should
outperform all others in all physical settings.
Although the extended VOS model has 6 different model

parameters (as opposed to only two parameters in the
simpler version of the model) and there are some degen-
eracies among these parameters, which are clearly visible in
our sets of corner plots, our analysis confirms that it is
possible to accurately calibrate this extended model, with
significant gains of physical insight into the dynamics of
cosmic string networks. This is particularly the case when it
comes to the energy loss mechanisms, and the relative roles
of loop production and of scalar and gauge radiation.
Unlike the case of domain walls where radiation losses
always dominate [18,26], in this work we have confirmed
that loop production and radiation losses both contribute,
and indeed the production of large loops is clearly seen
when one visualizes the evolution of large simulation boxes
[27,28]. Our work has shown that high resolution simu-
lations, based on reliable estimators, are necessary for an
accurate calibration. These effects in particular, and the
detailed modelling provided by the extended VOS model in
general, are important for credible forecasts of the con-
straints on cosmic strings to be expected from future
experiments such as LISA and CORE [38,39].
Finally, we note that although in this work we restricted

ourselves to box sizes up to 40963, it is very possible to go
further. Our highly efficient GPU accelerated string net-
work evolution code, which has been shown to have almost
perfect weak scaling [15] enables 81923 production runs on
4096 PizDaint GPUs to be executed in 33.2 minutes of wall
clock time. Moreover, in situ visualization advances have
enabled us to reduce data outputs by about four orders
of magnitude. Several opportunities therefore stem from
here. On the one hand, an analogous program of 81923
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simulations is viable, including a detailed set of small-scale
network diagnostics which, in particular, enable a robust
comparison between Nambu-Goto and Abelian-Higgs
(field theory) codes. On the other hand, our code can be
extended to characterize the evolution of more realistic
defects, specifically those with additional degrees of
freedom on the string world sheet, such as wiggly strings
and superconducting strings. Both of these directions are
currently being explored.
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