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Cosmological and astrophysical observations indicate the presence of a magnetic field over all scales.
In order to explain these magnetic fields, it is assumed that there exists a seed magnetic field which gets
amplified by dynamos. These seed fields may have been produced during inflation, at phase transitions, or
during some turbulent phase of the early Universe. One well-known mechanism to get the seed field is the
Biermann battery, which was originally discussed in the context of generation in an astrophysical object.
Requirements for this mechanism to work are (i) a nonzero gradient of the electron number density and
pressure, and (ii) they are nonparallel to each other. In the present article we propose a similar mechanism to
generate the seed field but in an inhomogeneous chiral plasma. Our mechanism works, in the presence of
chiral anomaly, by the virtue of inhomogeneity in the chiral chemical potential and temperature. We discuss
various scenarios where inhomogeneities in the chemical potential and temperature can arise. We find that,
depending on the epoch of generation, the strength of the seed magnetic fields varies from a few nanogauss
(nG) to a few hundred nG.
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I. INTRODUCTION

Magnetic fields are ubiquitous in our observable
Universe and are observed at all length scales, starting
from our Solar System to the Milky Way to galaxy clusters
and superclusters and even in voids of the large-scale
structure. The pervading magnetic fields are expected to
produce important effects on various processes including
baryogenesis [1], primordial nucleosynthesis [2], and on
the physics of the cosmic microwave background [3,4] (for
a review, see Ref. [5]). Even after having so many important
effects, the origin of the seed magnetic field remains an
open-ended problem in modern cosmology. It is well
known that the observed magnetic fields in astrophysical
structures of different sizes are produced by amplification
of seed magnetic fields [6,7]. The weakest “seed” magnetic
fields amplified by the first dynamos in the early Universe
could have worked at a cosmological phase transition,
including the electroweak (EW) and quark confinement
(QCD) phase transitions, during inflation or some turbulent
phase in the primordial plasma due to some asymmetry
[8–11]. Recently, the asymmetric models of the chiral
plasma, where there is a finite difference in the number
densities of the left-handed and right-handed massless
electrons, have attracted a lot of quite interesting attention
[12–15] (for more references see Ref. [16] and references

therein). In the present work, we have considered a
mechanism to generate the seed magnetic field in the early
Universe due to inhomogeneities, in the chiral chemical
potential and temperature, present in the chiral plasma.
The dynamics of relativistic chiral matter has been a

subject of interest from both theoretical and experimental
points of view [17,18]. The chiral matter is realized in
various systems including the electroweak plasma in the
early Universe [19], quark-gluon plasma in heavy ion
collisions [20], Weyl semimetals [21], electron plasma in
neutron stars [22,23], and the interior neutrino medium of
the core-collapse supernova explosion [24] (see Ref. [25]
and references therein). Chiral plasma exhibits interesting
transport properties which are not seen in normal plasma.
For instance, the triangle anomaly [26], which arises in
the context of quantum field theory, leads to the chiral
magnetic effect [27] and the chiral vortical effect [28],
to mention a few. Processes related to the chiral plasma
dynamics are affected by the Abelian anomaly [29,30] of
the minimal standard model (MSM) and it is given by the

anomaly equation [31] ∂μj
μ
R ¼ − g02y2R

64π2
F μνF̄ μν. F and F̄

are the UYð1Þ hypercharge field strength and their duals
respectively, jμR is the current for the right-handed particles,
g0 is the associated coupling constants, and yR is the
hypercharge of the right electron. The helicity of the gauge
fields are shown to be related to the Chern-Simons (CS)

number NCS ¼ − g02
32π2

R
d3xϵijkF ijAk of the hypercharge

field potential. The asymmetry in the number density of
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right-handed electrons changes with the CS number as
ΔnR ¼ 1

2
y2RΔNCS [31,32]. Origin of the asymmetry in the

number density of right electrons δR ¼ ΔnR=s, where
s ¼ 2

45
π2T3Neff is the entropy density and Neff is the

effective degree of freedom of the MSM, is usually
attributed to the out of equilibrium processes at the grand
unified theory scale [33] (for a review, see [34]). Similar
expressions can also be written for the number asymmetry
of the left-handed particles and their antiparticles. The total
number asymmetry of the chiral particles is a summation
of the left- and right-handed particle number asymmetries
and is known as chiral asymmetry. Chiral asymmetry is
commonly parametrized by the chiral chemical potential
μ5 ¼ μR − μL, where R is for the right-handed particles and
L is for the left-handed particles. The anomalous coupling
of the chirality and hypermagnetic helicity leads to an
exponential growth of thermal fluctuations of these fields
up to a value where it is in equipartition with the chirality.
This phase of exponential growth is known as “chiral
plasma instability.” The evolution of the effective magnetic
helicity of the hypermagnetic fields is given by the kinetic
equation [12] ∂

∂t ðμ5 þ α
πHBÞ ¼ −Γfμ5. In this equation, Γf

represents the chiral flipping rate and HB is the magnetic
helicity of the (hypercharge) magnetic fields. It is to be
noted here that the mentioned magnetic fields are not
standard-model electromagnetic fields, but instead hyper-
charge magnetic fields. In subsequent parts of the paper,
unless we refer to this as a standard-model magnetic field,
the magnetic fields noted are hypercharge magnetic fields.
In the absence of the reactions that flip the chirality of the
interacting particles, the chiral number densities are con-
served. Flipping starts at temperature Tf, when the chiral
flipping rates Γf becomes equivalent to the expansion
rate of the Universe. For instance, for the processes at the
EW phase transition Tf ∼ TeV and for the QCD scale
Tf ∼ fewGeV. At temperatures T > Tf, the asymmetry in
the number densities of the massless electrons remains in
the thermal equilibrium via its coupling with the hyper-
charge gauge bosons. Therefore, it is expected that in this
regime, helical magnetic fields are generated and they grow
at the cost of chiral asymmetry in the plasma. These helical
magnetic fields and the chiral symmetry of the leptons
support each other in the process of “inverse cascading,”
transferring magnetic energy from a small length scale to a
large length scale. In Ref. [12], it is shown that chiral
asymmetry could survive till T ∼ 10 MeV.
So far, the generation of magnetic fields has been

discussed mostly in a homogeneous chiral plasma
[11,35]. In the present work, we exploit chiral magneto-
hydrodynamics (MHD) equations used to describe the
dynamics of the inhomogeneous chiral plasma to generate
the seed magnetic field. We show that inhomogeneities in
the chiral chemical potential and temperature of the fluid
lead to a sufficiently large seed field through a Biermann

batterylike mechanism [36]. These seeds can be further
amplified, by dynamos as well as instabilities in the chiral
plasma, to currently the observed strength of magnetic
fields in voids. We call this a chiral Biermann battery
mechanism. In the present work, we have considered the
flat Friedmann-Lemaître-Robertson-Walker metric ημν with
signature (−;þ;þ;þ) and used our units in such a way that
ℏ ¼ c ¼ kB ¼ 1. This manuscript is structured as follows:
Sec. II provides an overview of chiral dynamics and also
discusses the generation of magnetic fields by the
Biermann battery like mechanism. Section III discusses
the scenario in which inhomogeneities in chiral chemical
potential and temperature can arise. This also discusses the
condition for the Biermann battery to be operative.
A summary and future prospects of the work are given
in Sec. IV.

II. CHIRAL BIERMANN BATTERY MECHANISM

Generation of seed magnetic fields by a cosmic battery
is commonly based on the fact that in a charge neutral
universe, the positive and negative charge particles have
different behaviors due their mass difference. For a given
pressure gradient in the gas, electrons would be accelerated
much more than the ions due to their small mass compared
to ions. This leads to a current and hence an electric field

E⃗ ¼ −∇⃗pe=ðeneÞ. If the curl of the thermally generated
electric field has a nonzero value, then from Faraday’s law
of induction, the magnetic field can grow. The resulting
battery is termed a Biermann battery mechanism [36].
This mechanism is mostly explored in the context of stellar
objects and early Universe processes at the time of
recombination. However, before the recombination epoch,
a similar mechanism can be operative in chiral plasma
provided there is an inhomogeneity in chiral chemical
potential and temperature. Before proceeding further, we
provide a brief overview of relativistic MHD equations
required to describe the dynamic of chiral fluids. Later, we
use them to derive an equation which looks similar to the
Biermann battery.

A. Overview of chiral fluid

To provide an overall description of chiral plasma, we
assume that an external magnetic field is present in the
beginning. Later on, we will come to the case where the
initial magnetic field is absent and the seed field is
generated. In the presence of an external magnetic field
the hydrodynamic equations that govern the time evolution
of the anomalous chiral fluid are given by the following set
of equations [37]:

∇μTμν ¼ Fνλjλ; ð1Þ

∇μjμ ¼ 0; ð2Þ
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∇μj
μ
5 ¼ CEμBμ; ð3Þ

where Tμν is the energy-momentum tensor of an ideal
fluid and Fνλ is the electromagnetic field strength tensor.
The electric and magnetic field four-vectors are represented
by Eμ and Bμ respectively. The vector current is given by
jμ ¼ jμR þ jμL and the chiral current is represented by
jμ5 ¼ jμR − jμL. The chiral anomaly coefficient is denoted
by C.
In the state of local equilibrium, the energy-momentum

tensor Tμν, the vector current jμ, and the chiral current jμ5
can be expressed in terms of the four velocity of the
fluid uμ, energy density ρ, vector charge density nv, and
axial charge density n5. In the absence of electromagnetic
fields, the local equilibrium reached at a length scale of

spatial variation of chemical potential μ, i.e., lLTE ≪ lμ ∼
μðx⃗Þ=j∇⃗μðx⃗Þj (here lμ is the scale over which chemical
potential varies significantly). Thus, the local distribution
function of the fermions is given by the local expression

feqi ðt; x⃗; p⃗Þ ¼ ½Expðϵp−μiðt;x⃗ÞTðt;x⃗Þ Þ þ 1�−1, where ϵp ¼ cjp⃗j (here
i ¼ right-=left- handed particles). Spatial variation of
electromagnetic fields and matters occurs at much larger
scale than lLTE. Since the chiral anomaly relation is local,
the electric and chiral chemical potentials should be space-
time dependent. The relation between axial charge density
ρ5 and the zeroth component of axial current jμ5 is given by
ρ5ðt; x⃗Þ ¼ hj05ðt; x⃗ÞiT;μ5 , which is valid for μ5 ≪ T [38]. For
a small deviation from local equilibrium, vector current and
chiral current respectively take the form [39,40]

jμ¼nvuμ−
σ

2
TΔμν∂ν

�
μv
T

�
þσEμþξvω

μþξðBÞv Bμ; ð4Þ

jμ5 ¼ n5uμ −
σ

2
TΔμν∂ν

�
μ5
T

�
þ ξ5ω

μ þ ξðBÞ5 Bμ; ð5Þ

where Δμν ¼ ðημν þ uμuνÞ is the projection operator,

nv;5 ¼ nR � nL, μv;5 ¼ μR � μL, ξv;5 ¼ ξR � ξL, ξðBÞv;5 ¼
ξðBÞR � ξðBÞL , and σ is the conductivity. The vorticity four-
vector is represented by ωμ. The mathematical expression

of the transport coefficients ξv;5 and ξðBÞv;5 in Eqs. (4) and (5)
have been calculated by many authors and it has been shown
that these terms are not only allowed but also required for
anomalies [10,30,39]. The second term in Eqs. (4) and (5)
arise only when there is inhomogeneity in chemical potential
or temperature or both. For the present study, inhomogeneity
in both chemical potential and temperature are important.
The total current (jμtot ¼ jμ þ jμ5) from the right-handed
chiral particles is given by

jμtot ¼ 2nRuμ þ σEμ þ 2ξRω
μ þ 2ξðBÞR Bμ − σTΔμν∂ν

�
μR
T

�
:

ð6Þ

The coefficients ξR and ξðBÞR are given as [39,41]

ξR ¼ Cμ2R

�
1 −

2nRμR
3ðρþ pÞ

�
þDT2

2

�
1 −

2nRμR
ðρþ pÞ

�
; ð7Þ

ξðBÞR ¼ CμR

�
1 −

nRμR
2ðρþ pÞ

�
−
D
2

�
nRT2

ðρþ pÞ
�
: ð8Þ

The second terms in these equations are uniquely fixed by
the requirement on the entropy current sμ to satisfy ∂μsμ ≥ 0

[39]. The coefficient D in the above equations cannot be
derived solely from hydrodynamics [41], which is a mani-
festation of additional microscopic properties of the chiral
degrees of freedom. Values of the coefficientD is derived by
considering gauge-gravitational duality by many authors
[30]. In the simplest case of noninteracting chiral fermions,
values of the coefficients C and D are given by C ¼ 1=4π2

and D ¼ 1=12.

B. Seed magnetic field generation

Using the expression for j⃗tot, given in Eq. (6) and the

Maxwell’s equation ∇⃗ × B⃗ ¼ j⃗tot, we get

∇⃗ × B⃗ ¼ 2nRv⃗ − σT½∇⃗ðμR=TÞ þ v⃗∂tðμR=TÞ
þ v⃗ðv⃗ · ∇⃗ÞðμR=TÞ�
þ σðE⃗þ v⃗ × B⃗Þ þ 2ξRω⃗þ 2ξðBÞR B⃗: ð9Þ

To obtain the evolution equation for the magnetic fields, we
first eliminate E⃗ from the above equation as

E⃗ ¼ −v⃗ × B⃗þ ∇⃗ × B⃗
σ

−
2nR
σ

v⃗ −
2ξR
σ

ω⃗ −
2ξðBÞR

σ
B⃗

þ T½∇⃗ðμR=TÞ þ v⃗∂tðμR=TÞ þ v⃗ðv⃗ · ∇⃗ÞðμR=TÞ�: ð10Þ

Now taking the curl of the above equation and using

∇⃗ × E⃗ ¼ − ∂B⃗
∂t , the evolution equation for B⃗ field is given as

GENERATING A SEED MAGNETIC FIELD à la THE CHIRAL … PHYS. REV. D 104, 063508 (2021)

063508-3



∂B⃗
∂t ¼

1

σ
∇2B⃗|fflffl{zfflffl}
I

þ ∇⃗× ðv⃗× B⃗Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
II

þ 2

σ
½nRω⃗þ ∇⃗nR × v⃗�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

þ 2

σ
½∇⃗ξR × ω⃗þ ξR∇⃗× ω⃗�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IV

þ 2

σ
½∇⃗ξðBÞR × B⃗þ ξðBÞR ð∇⃗× B⃗Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V

þ ∇⃗σ

σ2
× ð∇⃗× B⃗Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

VI

−
2nR
σ2

ð∇⃗σ× v⃗Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
VII

−
2ξR
σ2

ð∇⃗σ× ω⃗Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
VIII

−
2ξðBÞR

σ2
ð∇⃗σ× B⃗Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
IX

−
1

T
½∇⃗T × ∇⃗μR�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

X

− ∇⃗× ½Tfv⃗∂tðμR=TÞþ v⃗ðv⃗ · ∇⃗ÞðμR=TÞg�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
XI

: ð11Þ

It is important to note here that this equation is valid for
the case when chiral plasma is inhomogeneous. In the case

of homogeneous chiral plasma, all terms with ∇⃗σ, ∇⃗nR,
∇⃗ξR, ∇⃗ξðBÞR , ∇⃗T, and ∇⃗μR will vanish. Before proceeding
further, we estimate the order of magnitude of each term in
the right-hand side of the above equation. In order to do so
we take σ ∼ T=4πα [42], nR ∼ μT2=6, ξR ∼ ðμ2=πÞ ffiffiffiffiffiffiffiffiffiffiffi

α=4π
p

,

and ξðBÞR ∼ 2αμ=π. If L is the length scale of interest, the
term by term order in Eq. (11) is I ∼ 4παð BT2Þð TL2Þ ¼ VI,

II ∼ Bv
L ¼ ð BT2ÞðT2

L Þv, III ∼ 2nRv
σL ∼ 4π

3
αðμTÞðT

2

L Þv ¼ VII, IV∼
2ξRv
σL2 ∼ 4

πα
3=2ðμTÞ2ð TL2Þv¼VIII, V∼ 2ξðBÞR B

σL ∼16α2ðμTÞðBT2ÞðT2

L Þ¼
IX, X ∼ ðμTÞð TL2Þ ¼ VIII, XI ∼ ðμTÞð TL2Þv2. Since α ∼ 10−2,
μ
T ∼ ð10−4–10−6Þ, v ≪ 1 we can ignore all other terms
compared to I, II, and X. Further at temperature scale of
our interest, the variation in conductivity is also small and
the VI, VII, VIII, and IX terms can be dropped. Hence,
Eq. (11) will reduce to the following form with the above
approximation

∂B⃗
∂t ¼ 1

σ
∇2B⃗þ ∇⃗ × ðv⃗ × B⃗Þ − 1

T
½∇⃗T × ∇⃗μR�: ð12Þ

The above equation represents the magnetic induction equa-
tion for the magnetic fields in the case of inhomogeneous
chiral plasma. The first two terms on the right-hand side
represent diffusion and convection respectively. The first term
signifies the transport of the magnetic field via diffusion.
However, the second term describes how the magnetic field
in a conducting fluid changeswith time under the influence of
a velocity field v. In the absence of initial electromagnetic
fields i.e., E⃗ ¼ 0 ¼ B⃗, Eq. (12) reduces to

∂B⃗
∂t ¼ −

1

T
½∇⃗T × ∇⃗μR�: ð13Þ

It is important to note here that seed magnetic fields are
produced via this mechanism only in the case of inhomo-
geneous chiral plasma. Along with this, the following

conditions should also be satisfied: ∇⃗T × ∇⃗μR ≠ 0 or the

nonparallel components of ∇⃗T and ∇⃗μR. This equation looks
exactly like the Biermannmechanism. Therefore, we call this
mechanism a chiral Biermann battery mechanism.

III. CONDITIONS FOR THE CHIRAL BATTERY

For the chiral Biermann mechanism to work, the follow-

ing conditions must be satisfied (i) ∇⃗μ5 ≠ 0, ∇⃗T ≠ 0 and

(ii) ∇⃗T ∦ ∇⃗μR. Here we have discussed three important
scenarios where all three conditions are satisfied.
a. One of the most promising scenarios to achieve all

three conditions is the first order phase transition
or during any turbulent phase of the early Universe
[43]. Our Universe has gone through several phase
transitions (PTs) including electroweak, at around
TEW ∼ 100 GeV, and at the QCD phase transition
occurring around the critical temperature TQCD ¼
150 MeV. Although the opinion is divided, various
arguments raise the possibility that these transitions
might be first order. In this work, we will assume that
the QCD phase transition is first order. If the QCD
transition is first order then the Universe has to cool
somewhat below the critical temperature TQCD before
any regions of hadron matter appear. The Universe
supercools a finite amount before the appearance of
small nucleation sites. These are bubbles of hadronic
phase which consist mostly of pions. It is important to
highlight the fact that there are two different timescales
involved, namely (i) the QCD timescale, which is of
the order of τQCD ∼ 1=TQCD, and the Hubble time-
scale, which is τH ∼ 1019=Tc ≫ τQCD. Thus, nuclea-
tion is a local phenomena. After nucleation, the bubble
grows explosively like a deflagration bubble. For
small supercoolings (of the order 2% i.e., Ts∼
0.98 TQCD) the deflagration front travels slowly i.e.,
vfront ≪ cs ¼ 1=

ffiffiffi
3

p
[19]. However, the front is pre-

ceded by a supersonic shock which moves with a
velocity vsh > cs. The propagation of shock leads to
heating and compression in the quark matter. With
increasing time more and more bubbles are nucleated,
they grow, and the shock fronts preceding the bubbles
begin to collide. At this stage, the Universe enters into
a turbulent phase. If the supercooling is small, then the
turbulence dies out, the Universe outside the hadron
bubbles is reheated to TQCD, and the explosive bubble
growth is halted. At this time hadronic bubbles are
roughly 1=10 of the average distance between nucle-
ation sites. In the case of small supercooling, collisions
between two shock fronts and between a shock and a
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deflagration front may lead to inhomogeneity in the
temperature as well as the chemical potential. These
inhomogeneities exist over a scale of coexisting
phases. Moreover, it was assumed that the hardonic
phase includes spheres of the same size. This is only
an approximation. In fact, there is a complex distri-
bution of sizes due to the fact that the nucleation sites
do not appear at exactly the same time. Also, their
shapes are not exactly spherical and may include
ripples when the surface tension becomes unimpor-
tant. Thus, when the shock fronts collide, a turbulent
phase begins and vorticity is generated [44]. During
this phase, all three conditions required for the gen-
eration of the seed field are met. An estimate of the
generated seed field can be given as follows: The
duration of the QCD phase transition tPT ∼ 0.22τH ≃
43 μs, the temperature will be inhomogeneous over
the scale of the coexisting phase, and so is the
chemical potential. ΔT=TQCD ∼ ðl=τHÞ2, where l is
the scale over which the temperature and chemical
potential will be inhomegeneous [19]. This scale is
typically the size of different coexisting phases.
Using these number, we can estimate the strength
of the seed field generated at the source as follows:
BQCD ∼ tpt × ð ΔT

TQCD
Þð Δμ5

TQCD
ÞðTQCD

l2 Þ ∼ 0.26 nG.

b. Another interesting scenario which can generate in-
homogeneity in the temperature and chemical poten-
tial is that of the inhomogeneous QCD phase transition
proposed in Ref. [45]. This is possible when the
temperature is inhomogeneous. The inhomogeneous
temperature depends on two parameters, (i) density

perturbation ΔðrmsÞ
T and (ii) the temperature interval

of nucleation Δnuc. It has been proposed that, when
Δrms

T > Δnuc, the nucleation of the bubbles at a given
time will be inhomogeneous [45]. Since the inflation
produced density perturbation which leads to temper-

ature fluctuation of the order of ΔðrmsÞ
T ∼ 10−5 and

results of the lattice simulation with quenched
QCD (no dynamical quarks) give the value of the
(dimensionless) temperature interval of nucleation
Δnuc ∼ 10−6, the nucleation is thus inhomogeneous.
Initially, cold spheres of the diameter lsmooth ∼ 10−4dH
(where dH ¼ c=H ∼ 10 km is the Hubble distance
at the QCD transition [46]) with equal and uniform
temperature are distributed randomly, which is

ΔðrmsÞ
T × TQCD less than the rest of the uniform Uni-

verse. When the temperature of the cold spot decreases
to the value of the actual nucleation temperature Tn,
homogeneous nucleation takes place within it.
However, the Hubble expansion would result in the

cooling of the Universe and would take Δtcool ¼
ðΔðrmsÞ

T =3c2sÞτH time to cool down to Tn. Inside each
cold spot, there will be large number of tiny hadron

bubbles. These bubbles merge within Δtcool if
Δnuc < ðvdef=vheatÞΔrms

T , where vdef is the speed of
the deflagration front and vheat is the effective speed by
which released latent heat propagates to stop nucle-
ation. The length scale of temperature propagation is
determined by the latent heat released in the cold spot,
which propagates in all directions and is given as
lheat ¼ 2vheatΔtcool (which is of the order of a few
meters [47]). Thus, in this scenario we can have a
temperature gradient of the order of ΔTQCD=lheat∼
10−1–10−4 MeV=km (when lheat=lsmooth¼1, 2, 5, 10).
In this scenario, obtained values of the magnetic fields
strength are again in the range of ∼nG.

c. There is one more viable scenario, around electroweak
scale, where all three conditions can be satisfied, and it
is when a few hypermagnetic modes grow exponen-
tially in a chiral plasma. It has been shown that in
chiral plasma, due to finite chiral asymmetry, the
quantum effects lead to the production of hypercharge
magnetic fields. Few modes of these fields show
exponential growth due to the parity odd interaction
of the fermions with the Abelian fields. The expo-
nential growth of those modes with wave number k
during a chiral plasma instability occurs at a timescale
of t ∼ σ=kð4μ − kÞ, where the mode with wave num-
ber kmax ¼ 2μ has the maximum growth rate [48].
During this phase, chiral plasma goes through a
turbulent evolution. The timescale of the maximum
growth rate corresponding to the chemical potential
μmax ¼ 100T=4μ2. The requirement that the
growth timescale should be smaller than the Hubble
time τH gives the constraint on μ=T ¼ δ as
δ ¼ 2 × 10−6ðT=TfÞ1=2. If the temperature at which
left-right asymmetry is generated at a temperature
T < Tf, the time available for the generation of the
magnetic fields is Γ−1

f , rather than the Hubble time.
This means we can consider asymmetry δ ≥ 2 × 10−6

[31,49]. In this case, for the typical values of
T ∼ 100 GeV, lμ ∼ lheat ∼ GeV−1, tEW ∼ GeV−1,
and δEW ∼ 10−6, strength can be calculated by us-
ing BðtEWÞ ∼ δEW × ðT=lheatÞðt=lμÞ ∼ 10−3 nG.

IV. SUMMARY AND FUTURE PROSPECTS
OF THE WORK

In this work, we have used the Biermann battery like
mechanism to explore the possibility of the generation of a
seed magnetic field in the early Universe. Our mechanism
works when the chiral chemical potential and the temper-
ature have spatial dependence. Magnetic field generation
via this mechanism may work at phase transitions or during
the turbulent phase of exponential growth of the chiral
modes (this is known as chiral plasma instability) in
the presence of a finite amount of chiral asymmetry.
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The strength of the generated magnetic fields via this
mechanism are of the order of ∼nG. The helical magnetic
fields produced by this mechanism subsequently evolve
through various turbulent phases, which preserves the
helicity and ultimately produces the primordial standard-
model magnetic fields surviving till the present epoch.
Once the primordial helical magnetic fields are generated
by the chiral Biermann battery mechanism at a length scale
larger than the “frozen-in” scale Lf ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
t=4πσ

p
(here t is the

cosmic time), the first and second terms in Eq. (12)
dominate. At high temperature the conductivity of the
chiral plasma, σ ∼ T=α lnð1=αÞ (see Ref. [42]), is very large
and hence dissipation by the first term in Eq. (12) can be
ignored. The dynamics of the fields are solely governed by
the convection term. At length scales l > Lf, magnetic
fields are coherent and are said to be frozen in. This means
that the helicity of the magnetic fields is conserved both
locally and globally. When the fluid velocity is small, it is
also possible for the first term in Eq. (12) to dominate over
the second term. In this case the magnetic fields dies out
exponentially and helicity is no longer conserved. If the
fluid velocity is not small, the evolution of the fields is
governed by both terms. In this situation, it has been argued
that the local helicity of the magnetic fields changes due to
the reconnection of the field lines, and therefore they are
not conserved. However, the global helicity, a summation
of random local changes, remains conserved [50]. The
Reynolds number RM ¼ 4πσlv ≫ 1 determines the

conservation of global helicity at a characteristic length
scale l ∼ 1=e2T (which characterizes gauge field configu-
rations such as sphalerons). Whether this criteria is satisfied
depends on the dynamics of the fluid during baryogenesis
and requires significant departure from the thermal equi-
librium. Under these circumstances, magnetic fields evolve,
conserving the global magnetic helicity even though the
field is not frozen in.
So far in this work, we have focused our attention on the

production of the seed field in an inhomogeneous chiral
plasma. To glean a complete picture of the generated
magnetic field and processes involved in it, we need to
study the evolution of generated magnetic field to today’s
epoch and the power spectrum of the magnetic field. These
will be topics of future studies.
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