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We study an expanding two-fluid model of nonrelativistic dark matter and radiation, which are allowed to
interact during a certain time span and to establish an approximate thermal equilibrium. Such an interaction,
which generates an effective bulk viscous pressure at background level, is expected to be relevant for times
around the transition from radiation to matter dominance. We quantify the magnitude of this pressure for
dark-matter particle masses within the range 1 eV≲mχ ≲ 10 eV around the matter-radiation equality epoch
(i.e., redshift zeq ∼ 3400) and demonstrate that the existence of a transient bulk viscosity has consequences
which may be relevant for addressing current tensions of the standard cosmological model: (i) the additional
(negative) pressure contribution modifies the expansion rate around zeq, yielding a larger H0 value, and
(ii) large-scale structure formation is impacted by suppressing the amplitude of matter overdensity growth via
a new viscous friction-term contribution to the Mészáros effect. As a result, the H0 and S8 tensions of the
current standard cosmological model are both significantly alleviated.
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I. INTRODUCTION

The cosmological large-scale structure (LSS) seen today
is the final outcome of a process that started during the
primordial inflationary Universe which sets the initial con-
ditions for the density field, followed by the posterior
standard-model evolution. At the early stages of structure
formation, the radiation-dominated background impedes the
efficient growth of subhorizon density fluctuations by
speeding up the background evolution. When matter
becomes the protagonist as the background expansion driver,
the expansion slows down and clustering is favored.
According to the standard cosmological model this happens
around a redshift zeq ∼ 3400, a moment known as the matter-
radiation equality epoch, i.e., when both radiation and matter
energy densities are the same: ρr ¼ ρm. The change in the
background expansion is the physical mechanism behind the
so-called Mészáros effect [1].
The background expansion transition also leaves

imprints on superhorizon modes. A widely known result
is related to the fact that the gravitational potential
amplitude for scales larger than the horizon is reduced
by 10% across the transition from radiation- to matter-
dominated epochs. This has important consequences later

on for the cosmic microwave background (CMB) temper-
ature distribution [2,3].
Internally, the radiation fluid is a baryon-photon plasma

in which photons can efficiently transfer energy from
different regions of the fluid via, e.g., a diffusion mecha-
nism. Also, at perturbative level shear viscosity and heat
conduction may play a role, leading to the Silk damping
effect [4].
Apart from a few attempts in Refs. [5,6], the possibility

that radiation and dark-matter components can interact at
times before recombination has been poorly explored
thus far.
The attempt in Ref. [7] is based on a Friedmann-

Lemaître-Robertson-Walker (FLRW) cosmological evolu-
tion of two adiabatic fluids that are allowed to establish
thermal equilibrium (defined by an equilibrium temperature
T of the system as a whole). Fluid particles are interacting
so weakly that the energy of their interaction may be
neglected, and one can assume that the total energy density
of the composite gas is the sum of the energy densities of
the components. On the other hand, this interaction is
strong enough to maintain an approximate equilibrium with
only a small nonequilibrium contribution.
It was demonstrated in [7] that such small nonequili-

brium contributions can be mapped onto an effective bulk
viscosity of the system as a whole.
This result exemplifies the widely known fact that

multifluid systems are intrinsically nonadiabatic. While
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dissipative physics is a customary feature in modeling the
dynamics of real fluids, such aspects are not present in the
standard cosmological model. However, the phenomenol-
ogy associated with cosmological bulk viscous models is
quite abundant in the literature [8–14].
In Sec. II we review the main results of Ref. [7] and

apply them to a two-fluid system of matter and radiation.
The emerging transient bulk viscous pressure acts as an
extra (and new) background effect during the radiation-
matter transition epoch, disappearing in both the early and
the future time limits. We quantify the magnitude of such
new background bulk viscous pressure and compute in
detail its consequences for the LSS evolution, namely, the
impact on the Mészáros effect and on the evolution of the
superhorizon gravitational potential around zeq.

II. EFFECTIVE (ONE-FLUID) VISCOUS
DYNAMICS FROM TWO COUPLED PERFECT

FLUIDS

Let us start by considering that the total energy-momen
tum tensor of the cosmic medium can be written as the sum
of two components as

Tμν ¼ Tμν
1 þ Tμν

2 : ð1Þ

Individually, each component A ¼ 1, 2 has the perfect-
fluid structure Tμν

A ¼ ðρA þ pAÞuμuν þ pAgμν and obeys
the energy density and particle-number density conserva-
tion laws, respectively,

Tμν
A;ν ¼ _ρA þ ΘðρA þ pAÞ ¼ 0;

Nν
A;ν ¼ _nA þ ΘnA ¼ 0; ð2Þ

where Θ ¼ uμ;μ is the expansion scalar, Nν
A ¼ nAuν is the

particle-number flow vector of component A, and nA is the
corresponding particle-number density. In a FLRW uni-
verse Θ ¼ 3H. By allowing for a thermal interaction
between the two components, one can implement an
effective one-fluid description of this system by defining
global quantities like the total particle-number density
n ¼ n1 þ n2, the overall pressure pðn; TÞ, and the total
energy density ρðn; TÞ. Following Ref. [15], the equilib-
rium temperature T is defined by the relation

ρ1ðn1; T1Þ þ ρ2ðn2; T2Þ ¼ ρðn; TÞ: ð3Þ

Particle-number densities and temperatures have been
taken here as the basic thermodynamical variables. As
shown in [7], the above condition implies that
p1ðn1; T1Þ þ p2ðn2; T2Þ ≠ pðn; TÞ. This difference is asso-
ciated with the emergence of a bulk viscous pressure Π that
is defined accordingly as follows:

Π ¼ p1ðn1; T1Þ þ p2ðn2; T2Þ − pðn; TÞ: ð4Þ

If the system is assumed to be at equilibrium at a certain
time η0, then Tðη0Þ ¼ T1ðη0Þ ¼ T2ðη0Þ, pðη0Þ ¼ p1ðη0Þ
þp2ðη0Þ. During a subsequent time interval τ, each
component follows its own internal perfect-fluid dynam-
ics such that, at a time η0 þ τ up to first order,

ρAðη0 þ τÞ ¼ ρAðηÞ þ τ _ρA þ…;

ρðη0 þ τÞ ¼ ρðηÞ þ τ _ρþ… ð5Þ

is valid.
For different equations of state the equilibrium temper-

atures of the (perfect) fluids evolve differently,

_TAðη0Þ ¼ −3HTA
∂pA=∂TA

∂ρA=∂TA
: ð6Þ

Here, the partial derivatives with respect to the temperatures
have to be taken at fixed particle-number densities. For the
overall equilibrium temperature one has, at η0,

_Tðη0Þ ¼ −3HT
∂p=∂T
∂ρ=∂T : ð7Þ

It follows that at a time η0 þ τ first-order temperature
differences appear:

T1 − T2 ¼ −3HτT

�∂p1=∂T
∂ρ1=∂T −

∂p2=∂T
∂ρ2=∂T

�
; ð8Þ

T1 − T ¼ −3HτT

�∂p1=∂T
∂ρ1=∂T −

∂p=∂T
∂ρ=∂T

�
; ð9Þ

T2 − T ¼ −3HτaT

�∂p2=∂T
∂ρ2=∂T −

∂p=∂T
∂ρ=∂T

�
: ð10Þ

These differences are the result of the differing cooling
rates of the individual components during the time inter-
val τ.
At the instant η0 þ τ one has Tðη0 þ τÞ ≠ T1ðη0 þ τÞ ≠

T2ðη0 þ τÞ and the sum of the partial pressures reads

p1ðn1; T1Þ þ p2ðn2; T2Þ ¼ p1ðn1; TÞ þ p2ðn2; TÞ

þ ðT1 − TÞ ∂p1

∂T
þ ðT2 − TÞ ∂p2

∂T : ð11Þ

The temperature difference terms give rise to a bulk viscous
pressure Π, i.e.,

p1ðn1; T1Þ þ p2ðn2; T2Þ ¼ pðn; TÞ þ Π: ð12Þ

According to the Eckart theory [16] for dissipative fluids,
i.e., Π ¼ −3Hξ, the bulk viscous coefficient ξ is given by
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ξ ¼ −τT
∂ρ
∂T

�∂p1

∂ρ1 −
∂p
∂ρ

��∂p2

∂ρ2 −
∂p
∂ρ

�
: ð13Þ

Here,

∂pA

∂ρA ≡ ∂pA=∂TA

∂ρA=∂TA
;

∂p
∂ρ ≡ ∂p=∂T

∂ρ=∂T : ð14Þ

That is, in all partial derivatives the number densities have
to be kept fixed. Formula (13) for the bulk viscous
coefficient ξ is the main result of Ref. [7].
Let us now apply Eq. (13) to systems with radiation and

dark matter. Let us identify fluid 1 with radiation, i.e.,
p1 ¼ pr, and fluid 2 with a scalar dark-matter particle χ,
p2 ¼ pχ . Our aim is to find an expression for the effective
bulk viscosity of the mixture of radiation and matter which
could have been relevant at the radiation-matter transi-
tion epoch.
Since we are formulating the dynamical description of

cosmic fluids using the particle-number density n and the
temperature T as basic thermodynamical variables, the
relevant equations of state read

pr ¼ nrkBTr; ρr ¼ 3nrkBTr; ð15Þ

pχ ¼ nχkBTχ ; ρχ ¼ nχmχc2 þ
3

2
nχkBTχ ; ð16Þ

where kB is the Boltzmann constant and mχ is the mass of
the dark-matter particle. Using these equations of state one
finds [cf. Eq. (53) in [7] ]

ξ ¼ τ
nrkBT

3

nχ
2nr þ nχ

¼ ρr
9
η̃τ; ð17Þ

where we have introduced the parameter

η̃≡ ηχr
2þ ηχr

; ηχr ≡ nχ
nr

: ð18Þ

While the dark-matter particle-number density remains
unknown, one can relate it to the well-known quantity
nB=nr ≃ 6.1 × 10−10, the baryon-to-photon ratio. The dark-
matter-to-photon ratio reads

ηχr ¼
nχ
nr

¼ nB
nr

nχ
nB

≈
nB
nr

ρχ=mχ

ρB=mB

≈ 5
nB
nr

mB

mχ
≈
2.9
mχ

½eV=c2�: ð19Þ

In the above estimation we have assumed that the typical
baryon mass is that of a proton and that both dark matter
and baryons are treated as fully nonrelativistic components,
i.e., kBT=mc2 ≪ 1. Also, according to the standard cos-
mological model, the ratio between dark-matter and baryon

energy densities remains constant along the entire cosmo-
logical evolution as ρχ=ρB ≈ 5; i.e., there is no particle
creation process or energy density interaction between
these components.
The factor η̃ in the expression (17) for the bulk-viscosity

coefficient depends only on the mass mχ of the dark-matter
particle via Eqs. (18) and (19). In the large-mass limitmχ →
∞ both the factor ηχr and the factor η̃ vanish and,
consequently, ξ → 0. On the other hand, for light dark-
matter candidates with masses mχ ≪ 2.9 eV=c2 the ratio
ηχr may become very large and, consequently, the factor η̃
approaches its maximum value, i.e., η̃ → 1.
Figure 1 shows quantitatively the dependence of the factor

η̃ on the dark-matter particle mass in eV units. While this
effect definitely does not occur for very massive candidates
like, e.g., weakly interacting massive particles with masses
of GeVorder, at first glance particles like axions with masses
in the range 10−5 eV < maxion < 10−3 eV (or even lighter
candidates) seem to have a potentially interesting magnitude
of ξ. However, in order to guarantee the use of Eq. (19), the
nonrelativistic approximation in Eq. (16) for the matter fluid
should be valid around the equality epoch; i.e., the dark-
matter particle should be heavier than the typical energy
scale around zeq. This sets a lower bound mχ ≳ 1 eV.
Therefore, a preliminary order of magnitude estimation
for the desired mass range for the applicability of our
approach is 1 eV≲mχ ≲ 10 eV (shown as a gray band
in Fig. 1), which fits, e.g., within the generic class of
axionlike particles (ALPs) [17]. The ALP interpretation
about the nature of our hypothetical dark-matter particle
guarantees that there would be no damage to LSS formation,
i.e., no severe cutoff on the matter power spectrum due to
free streaming since such an axionic mass scale corresponds
effectively to a cold dark matter (CDM) particle [18].
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FIG. 1. Dependence of the factor η̃ with the dark-matter particle
mass mχ . Colored regions show the accepted mass range for
axionlike particles (ALPs) in purple and the QCD axion in
orange. The relevant mass range for this work 1–10 eV (see
discussion in the text) is shown as a gray band.
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The bulk viscosity ξ depends directly on the thus far
unspecified timescale τ. As a macroscopic scale, τ is
expected to be at least slightly larger than the mean free
time of the underlying microscopic dynamics. Generally, a
fluid description of the cosmic medium is valid as long as
this mean free time is much smaller than the Hubble time
H−1. For the scale τ we require τ ≪ H−1 as well. A perfect-
fluid description, equivalent to local equilibrium, is valid if
this scale is negligible relative to H−1. A dissipative effect
comes into play if first-order deviations from local equi-
librium have to be taken into account. Our model explores
the idea that a slight deviation from local equilibrium might
be relevant around the epoch of matter-radiation equality.
Both well before and well after the equality epoch, perfect-
fluid descriptions are assumed to be valid.
In order to describe the cosmic evolution around the

equality time it is convenient to define the variable
y ¼ a=aeq ¼ ρm=ρr, where the subindex m refers to the
sum of baryons and dark matter. Hence, given the desired
behavior, i.e., the short nonequilibrium period discussed
above, a convenient parametrization for the timescale τ in
Eq. (17) is

τðyÞ ¼ τeq
Heq

H

�
2y2

1þ y4

�
: ð20Þ

The subindex “eq” refers to the value that quantities have
at the equality time, e.g., τeq ¼ τðy ¼ 1Þ. With this
definition the time dependence of τ is modeled by only
one new phenomenological parameter, τeq, which also
represents the maximal value that τ can take.
The transient coupling between dark matter and radiation

employed here does not rely on a specific microscopic
interaction model. This would require the specification of
extra physical parameters beyond the dark-matter particle
mass. In fact, the interaction becomes effective only when
both fluids have similar contributions to the total energy
density. This is a consequence of the thermodynamical
description employed previously. Both earlier and later on,
when one of the components fully dominates, the inter-
action vanishes. The parametrization proposed in Eq. (20)
captures this phenomenology.
The fluid description employed here is valid as long as

τ ≪ H−1, which is guaranteed for τeqHeq ≪ 1.
In order to estimate the magnitude of the bulk viscous

coefficient ξ, we adopt Planck 2018 cosmological param-
eters in which Ωm0 ¼ 8πGρm0=3H2

0 ¼ 0.315 and the red-
shift of equality is zeq ¼ 3402 [19]. As we shall show
below, the effective quantity entering both the background
dynamics and the equation for the growth of linear scalar
perturbations, is the dimensionless combination

3Π
ρ

¼ −24πGH−1ξ≡ −ξ̃
H0

H
: ð21Þ

With this definition Eq. (17) is written as

ξ̃
H0

H
¼ τðyÞH

2
0

H
Ωrη̃; ð22Þ

where Ωr ¼ ρr=ρ0 ¼ 8πGρr=3H2
0. Hence, in Fig. 2 we

show the evolution of this quantity as a function of the y
variable for different values of the τeq parameter. Here and
henceforth in this work we adopt mχ ¼ 1 eV, which
corresponds to η̃ ≃ 0.59.
As expected, the bulk viscosity vanishes both deep in the

radiation epoch (y ≪ 1) and later on during pure matter
domination (y ≫ 1). However, it has a nonvanishing
contribution to the total pressure around matter-radiation
equality.
Notice that since Heq is of the order of 107 s−1, the case

τeq ¼ 10−7 s marks the applicability limit of our approach.

III. BACKGROUND EXPANSION AND THE H0
TENSION

In this section we explore the impact of a nonvanishing
bulk viscosity of the described type on the background
expansion. While close to equilibrium the number and
energy densities coincide with the local equilibrium
values, the pressure does not. Equation (22) measures
the deviation from the equilibrium pressure. It gives rise to
a modification of the effective equation of state of the
cosmic substratum during the period in which ξ̃ ≠ 0. For
earlier and later times the standard expansion behavior is
recovered.
We assume that before and after the period with ξ̃ ≠ 0 the

Universe evolves according to the standard flat-ΛCDM
model with (ξ̃ ¼ 0)
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FIG. 2. Effective bulk viscosity as a function of the variable
y ¼ a=aeq for various values of τeq (in seconds). Matter-radiation
equality occurs at y ¼ 1 (first vertical solid line) corresponding to
the redshift zeq ¼ a−1eq − 1 ¼ 3402. The second vertical solid
black line indicates today’s scale factor, a ¼ 1.
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H2
ΛðaÞ
H2

0

¼ ΩmðaÞ þ ΩrðaÞ þΩΛ; ð23Þ

where Ωm ¼ ρm=ρ0 and ΩΛ ¼ 1 −Ωm0 −Ωr0.
Equation (23) will be used to set the initial conditions for
the evolution of the Hubble rate.
Now let us find how the expansion rate changes when

there is an extra bulk viscous pressure contribution
[Eq. (21)]. We start by considering the conservation
balance for total energy density ρ ¼ ρm þ ρr þ ρΛ
equipped with a total pressure p ¼ pr þ pΛ þ Π. This
reads

_ρþ 3Hðρþ pr þ pΛ þ ΠÞ ¼ 0: ð24Þ

With the help of the Friedmann equation for the total
energy density ρ ¼ 3H2=8πG and by defining the dimen-
sionless expansion parameter E ¼ H=H0, we can rewrite
Eq. (24) as

2Ea
dE
da

þ 3E2

�
1 −

ξ̃

3E

�
þ Ωr0

a4
− 3ð1 − Ωr0 −Ωm0Þ ¼ 0:

ð25Þ

For ξ̃ ¼ 0 the standard ΛCDM cosmology (23) is
recovered.
In order to assess the impact of the bulk viscous

contribution to the background expansion, one has to solve
Eq. (25) with values ξ̃ > 0. The expansion rate (23) is used
to set the initial expansion deep in the radiation-dominated
epoch at an initial scale factor ai, e.g., ai ¼ aeq=10000. By
evolving Eq. (25) numerically with the initial condition

EðaiÞ ¼
HΛðaiÞ
Hcmb

0

; ð26Þ

where we adopt Hcmb
0 ¼ 67.4 km s−1 Mpc−1 [19], until

the present time with scale factor a0 ¼ 1, we obtain the
corresponding current Hubble rate, which is influenced by
the bulk viscous contribution around the matter-radiation
equality epoch. In the absence of a bulk viscous pressure,
i.e., for ξ̃ ¼ 0, the ratioE is normalized toEcmbða0 ¼ 1Þ ¼ 1

with H0 ¼ Hcmb
0 . If there is a period during which the bulk

viscous pressure becomes dynamically relevant, Eq. (25),
with the same initial condition, will result in Eða0 ¼ 1Þ ≠ 1,
which corresponds to a value H0 ¼ Eða0 ¼ 1ÞHcmb

0 .
We show in Fig. 3 the H0 dependence on the τeq

parameter value. In the vanishing viscosity limit τeq → 0

the black line tends to H0 ¼ 67.4 km s−1Mpc−1,
as expected. The gray horizontal stripe covers the
available range of distance ladder measurements for
H0 including uncertainties. For τeq values in the range
1.06 × 10−8 ≲ τeq ≲ 6.4 × 10−8, today’s expansion rate

fits within the measured range of H0 values from distance
ladder probes.

IV. PERTURBATIONS

Now we explore the consequences of the dynamics
outlined in the previous section for large-scale structure
formation.

A. The Mészáros effect

We start by reviewing the Mészáros equation which
describes the evolution of fractional nonrelativistic matter
perturbations δm ≡ δρm

ρm
in a radiation background. The

standard equation for δm,

δ̈m þ 2H_δm − 4πGρmδm ¼ 0; ð27Þ
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FIG. 3. The black curve shows the dependence of H0 on the τeq
value. Some relevant constraints of the Hubble constant H0

through direct measurement methods are shown. Among them,
the measurements based on the Tully-Fisher method as in
Kourkchi et al. [20] and Schombert et al. [21] provide the largest
H0 values (including uncertainties). We include the latest SH0ES
result, based on direct Cepheid-SNIa relations (R20) [22]. By
changing the marginalization process over free parameters,
Camarena and Marra obtained a higher H0 value from the
available Cepheid-SNIa data [23]. We also include the MIRAS
result [24], which provides one of the lowestH0 values (including
uncertainties) among the direct distance ladder measurements of
H0. The range between the highest and lowest H0 values from
direct methods determines the gray region, which is used to set
the range of acceptable τeq values that alleviate the H0 tension.
Vertical dashed lines set the boundaries 1.06 × 10−8 ≲ τeq≲
6.4 × 10−8.
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is obtained by combining first-order versions of the con-
tinuity, Euler, and Poisson equations.
The Hubble expansion is influenced by the effective

equation of state w of the cosmic medium via

_H ¼ −4πGρð1þ wÞ: ð28Þ

Equation (27) can be rewritten in terms of the y variable
such that the evolution of matter overdensity becomes the
following Mészáros equation [1]:

d2δm
dy2

þ
�
1

H
dH
dy

þ 3

y

�
dδm
dy

−
3

2yð1þ yÞ δm ¼ 0: ð29Þ

The effect of the background expansion is encoded in the
function

1

H
dH
dy

¼ −
3

2

ð1þ wÞ
y

: ð30Þ

Specifying to the standard equations of state for a
mixture of nonrelativistic matter and radiation, Eq. (27),
in terms of the y variable, becomes

d2δm
dy2

þ ð2þ 3yÞ
2yð1þ yÞ

dδm
dy

−
3

2yð1þ yÞ δm ¼ 0: ð31Þ

The above equation has an analytical growing mode
solution of the type δm ∼ yþ 2=3. Deep in the radiation
epoch (y ≪ 1) the quantity δ remains constant, while it
grows linearly with the scale factor in the matter-dominated
period (y ≫ 1).
We now explore how the emergence of a transient

effective bulk viscosity at background cosmological level
impacts the evolution of dark-matter perturbations through
matter-radiation equality. Strictly speaking, the bulk vis-
cous pressure itself can be split into background and first-
order parts, with the latter accompanied by a scale
dependence proportional to k2, where k is the perturbation
wave number [25–32]. Here, we focus on the background
contribution.
Taking into account a bulk viscous pressure contribution

(21), Eq. (31) is modified to yield

d2δm
dy2

þ
� ð2þ 3yÞ
2yð1þ yÞ þ

ξ̃

2y
H0

H

�
dδm
dy

−
3

2yð1þ yÞ δm ¼ 0:

ð32Þ

Since the bulk viscous coefficient should obey ξ > 0, the
total Hubble friction is enhanced, leading to a growth
suppression. The magnitude of the viscous quantity ξ̃H=H0

in the Hubble friction term is shown in Fig. 2 for different
τeq values.

The matter power spectrum PðkÞ ¼ jδkj2 is defined as the
mean square amplitude of the Fourier components of
the perturbed density field. The primordial spectrum set at
the end of inflation with a power law shape Pi ¼ Akn, where
A is the initial amplitude, has its spectral index n constrained
by observations to n ¼ 0.96. Today’s observed power
spectrum evolves from Pi by taking into account the
evolution of linear matter perturbations. This effect is
encoded in the scale-independent growth function
Dþ ¼ δðtÞ=δðt ¼ t0Þ. Also, the growth suppression experi-
enced by k modes that enter the horizon at the radiation-
dominated epoch leads to the typical curved shape seen in
the power spectrum. The smaller the scale, the larger the
growth suppression. The scale dependence due to this
process is captured by the transfer function TðkÞ. In order
to describe the additional suppression due to viscous back-
ground effects around zeq, we define a τeq-dependent transfer
function YðτeqÞ with Y2ðτeq ¼ 0Þ ¼ 1, such that today’s
observed matter power spectrum PðkÞ, calculated from
Eq. (32), is written as

PðkÞ ¼ Y2ðτeqÞD2þT2ðkÞAkn: ð33Þ

In the absence of viscous effects, Y2 ¼ 1 is valid and the
spectrum coincides with the corresponding quantity calcu-
lated from Eq. (31) with the same initial conditions. The total
growth suppression encoded in Y2ðτeqÞ is plotted in the
upper panel of Fig. 4. For τeq values of the order of 10−8, a
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FIG. 4. New transfer function Y2 of the matter power spectrum
(top panel) and the S8 quantity as a function of the interaction
timescale τeq (lower panel). Vertical dashed lines set the boun-
daries 1.06 × 10−8 ≲ τeq ≲ 6.4 × 10−8, as obtained from Fig. 3.
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10% effect on PðkÞ is seen, which is compatible with the
uncertainty level present in current PðkÞ measurements [33].
There is also a relevant ∼2σ tension between the

predicted amplitude of matter clustering parameter

S8 ¼ σ8

�
Ωm0

0.3

�
1=2

ð34Þ

based on the Planck parameter cosmology and its meas-
urement in the local Universe. While Planck has obtained
S8 ¼ 0.830� 0.013, local measurements have found
slightly smaller S8 values: S8 ¼ 0.766þ0.020

−0.014 (KiDS-1000)
[34], S8 ¼ 0.783þ0.021

−0.025 (DES) [35,36], and S8 ¼ 0.728�
0.026 (BOSSþ KV450) [37].
As seen in the lower panel of Fig. 4, τeq ≈ 10−8 values

are not yet able to fully address the S8 tension. While τeq ≈
7 × 10−8 agrees with KiDS and DES data, it is outside the
range of BOSSþ KV450 data.

B. Scales larger than the horizon

Superhorizon scales can be assessed via relativistic
cosmological perturbation theory. If one uses the
Newtonian gauge, the perturbed metric for scalar pertur-
bations reads

ds2 ¼ a2½−ð1þ 2ΦÞdη2 þ ð1þ 2ΨÞδijdxidxj�: ð35Þ

In the absence of anisotropic stresses Φ ¼ Ψ is valid. With
this condition the 0–0 and i ¼ j components of the Einstein
equations read, respectively,

3HðΦ0 þHΦÞ −∇2Φ ¼ −4πGa2δρ ð36Þ

and

Φ00 þ 3HΦ0 þ ð2H0 þH2ÞΦ ¼ 4πGa2δP; ð37Þ

where a prime indicates the derivative with respect to the
conformal time. Scale dependence (in the Fourier space)
enters into the above equations via ∇2 → −k2.
In the standard cosmology the pressure perturbation δP

is identified with the total density perturbation via the
effective speed of sound c2eff ¼ δP=δρ. Here, the bulk
viscous pressure perturbation is added to the radiation
pressure perturbation, i.e.,

δP ¼ δpr þ δΠ: ð38Þ

Writing the above quantities in a covariant way, as expected
within the relativistic formalism, the expansion scalar Θ up
to first order in cosmological perturbations reads

Θ ¼ 3H
a

−
3HΦ
a

−
3Ψ0

a
þ δui;i; ð39Þ

with δui;i ≡ −kv=a, where v is the four-velocity potential.
But this term will not be relevant since for superhorizon
scales k ≪ H the scale-dependent terms are neglected.
Again, in terms of the y variable Eq. (37) becomes

d2Φ
dy2

þ
�
21y2 þ 54yþ 32

2yð1þ yÞð3yþ 4Þ
�
dΦ
dy

þ Φ
yð1þ yÞð3yþ 4Þ

¼ ξ̃

2y2
H0

H
Φþ ξ̃

2y
H0

H
dΦ
dy

: ð40Þ

In the radiation-dominated era the solution of this
equation reduces to a constant initial amplitude Φi.
Once the Universe becomes matter dominated the gravi-
tational potential solution gives Φ → ð9=10ÞΦi for y ≫ 1.
Then perturbations that enter the horizon after the epoch
of matter-radiation equality have their amplitudes reduced
by a factor of 1=10 through the radiation-matter equality
epoch. Figure 5 shows the dependence of Φi on y for
various values of τeq. For τeq ∼ 10−8 we expect a mild
∼2% impact on the large-scale potential at late times,
while the impact on the CMB epoch should be even
smaller. On the other hand, we can surely rule out values
τeq ∼ 10−7 since for them the gravitational potential is
amplified along the transition.

V. CONCLUSIONS

A perfect-fluid description of cosmic fluids is one of the
theoretical pillars of the standard cosmological model. In a

0.001 0.100 10 1000
0.900

0.925

0.950

0.975

1.000

y a eq

C
M

B

T
o

d
ay

a
1

eq 10 7

eq 10 8

eq 5.10 8

FIG. 5. Evolution of the large-scale gravitational potential Φ as
a function of the y variable. Vertical solid lines denote the CMB
epoch (zcmb ≈ 1100) and today (a0 ¼ 1). The solid curve shows
the standard flat ΛCDM behavior in which the potential decays to
9=10 of its initial value. The green, red, and blue dashed curves
show how the potential evolves for τeq ¼ 10−7 5 × 10−8, and
10−8, respectively.
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two-fluid model of the Universe an interaction between
both components may result in a transient close-to-equi
librium state. As a result, the cosmic substratum as a whole
acquires an effective bulk viscous pressure. We have
explored the consequences of such a phenomenon for a
mixture of radiation and matter around the epoch of
radiation-matter equality at a redshift of the order of
z ≈ 3400. For the specific value of the bulk viscosity we
have used a simple gas model which allows for an analytic
calculation based on Eckart’s theory. We expect, however,
the general aspects of our approach to be valid for bulk
viscous pressures of different origin as well.
The relevance of this effect in our context depends on the

mass of the dark-matter particle. The fluid description
employed here imposes 1 eV≲mχ ≲ 10 eV as the optimal
range for the appearance of a transient bulk viscous
pressure at the background level. By fixing mχ ¼ 1 eV,
this mechanism can provide a hint for solving the current
cosmic tensions associated with the H0 measurements and
the matter clustering features for a characteristic relaxation
time interval τeq ∼ 7 × 10−8 at the matter-radiation epoch.
This value is consistent with the validity of the fluid
formalism of our approach.

We provide therefore a possible hint for solving the
current cosmic tensions by adding a new ingredient to the
cosmological description at early times. Indeed, it has
been recently argued that changes to late time physics
cannot be seen as an appropriate way to solve the H0

tension [38].
The phenomenology explored in this work should be

further studied with a detailed quantitative statistical
analysis mainly using CMB data. From the results
presented here we expect an extra imprint on the early
integrated Sachs-Wolfe effect, which measures the time
variation of the gravitational potential just after the CMB
photon decoupling. This will be the subject of a
future work.
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