
Laguerre reconstruction of the BAO feature in halo-based
mock galaxy catalogues

Farnik Nikakhtar *

Department of Physics and Astronomy, University of Pennsylvania,
Philadelphia, Pennsylvania 19104, USA

Ravi K. Sheth
Center for Particle Cosmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

and The Abdus Salam International Center for Theoretical Physics,
Strada Costiera 11, Trieste 34151, Italy

Idit Zehavi
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079, USA

(Received 28 May 2021; accepted 26 July 2021; published 2 September 2021)

Fitting half-integer generalized Laguerre functions to the evolved, real-space dark matter and halo
correlation functions provides a simple way to reconstruct their initial shapes. We show that this
methodology also works well in a wide variety of realistic, assembly biased, velocity biased and redshift-
space distorted mock galaxy catalogs. We use the linear point feature in the monopole of the redshift-space
distorted correlation function to quantify the accuracy of our approach. We find that the linear point
estimated from the mock galaxy catalogs is insensitive to the details of the biasing scheme at the subpercent
level. However, the linear point scale in the nonlinear, biased, and redshift-space distorted field is
systematically offset from its scale in the unbiased linear density fluctuation field by more than 1%. In the
Laguerre reconstructed correlation function, this is reduced to sub-percent values, so it provides
comparable accuracy and precision to methods that reconstruct the full density field before estimating
the distance scale. The linear point in the reconstructed density fields provided by these other methods is
likewise precise, accurate, and insensitive to galaxy bias. All reconstructions depend on some input
parameters, and marginalizing over uncertainties in the input parameters required for reconstruction can
degrade both accuracy and precision. The linear point simplifies the marginalization process, enabling
more realistic estimates of the precision of the distance scale estimate for negligible additional computa-
tional cost. We show this explicitly for Laguerre reconstruction.

DOI: 10.1103/PhysRevD.104.063504

I. INTRODUCTION

The baryon acoustic oscillation feature in the galaxy
distribution can be used as a standard cosmological ruler
[1–4]. In practice, there are several details associated with
defining this ruler, some of which make more explicit use
of the expected shape of the feature than others.
Gravitational evolution modifies the shape of the feature,
potentially biasing and degrading the cosmological con-
straints which current and future datasets can provide. This
has driven the development of many algorithms which seek
to restore the feature to its original shape [5–12].
Recently, we proposed a simple reconstruction algorithm

[13] which makes minimal use of the expected shape of the
feature, but instead exploits the fact that, to leading order,

the evolved feature is related to the original one by a
convolution [14,15]. The convolution is approximately an
isotropic Gaussian, so this motivated the fitting of a set of
(integer or half-integer) generalized Laguerre functions to
the measured two-point correlation function of galaxies.
We used the linear point feature in this clustering signal
[16–20] to quantify the gains in accuracy and precision
which result from Laguerre reconstruction of the correla-
tion functions of dark matter, low and high mass halos,
finding that they are comparable to those returned by more
traditional and sophisticated algorithms which seek to
reconstruct the density field rather than just its two-point
statistics.
While promising, there were two respects in which our

previous tests were incomplete. The first is that they were
performed using measurements in real space. Observations
are made in redshift space, and the associated distortions
with respect to real space [21,22] can be thought of as*farnik@sas.upenn.edu
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arising from additional convolutions [23,24]. This
extra smearing may impact the quality of the Laguerre
reconstruction. In addition, there is not a one-to-one
relationship between galaxies and dark matter halos: rather,
galaxies are complex tracers of the dark matter distribution.
At subpercent precision, this galaxy bias has the potential
to also bias cosmological constraints, especially if this bias
couples to galaxy velocities and hence to redshift space
distortions.
The physics which determines galaxy bias are not known

a priori, so this has driven the development of mock
catalogs which allow one to rapidly explore a range of
galaxy bias prescriptions and their impact on the BAO
signal [25]. The main goal of the present paper is to study if
Laguerre reconstruction, which is relatively agnostic about
the background cosmological model, can be similarly
agnostic about galaxy bias, even when starting from the
redshift-space distorted signal.
We will continue to use the linear point (LP) feature to

quantify the fidelity of our reconstructions. The LP is
defined as the midpoint between the peak and dip values in
the two-point correlation function:

rLP ≡ rpeak þ rdip
2

: ð1Þ

Reference [16] provided an analytic argument for why, to
approximately percent-level precision, the LP should be the
same in real and redshift space, for all biased tracers and all
times. (The argument is easier to see for the inflection point
which lies in between rpeak and rdip, so we also show results
for rinfl in what follows. In practice, rLP turns out to be
slightly more stable.) However, at subpercent precision,
there are hints that the estimated LP scale may depend
slightly but systematically on halo mass. Therefore, a
second but distinct goal of our work is to use a variety
of realistic, redshift-space distorted mock galaxy catalogs
to test the robustness of the LP-based approach itself. There
are two distinct parts to this goal: one is to check if the
estimated distance scale is unbiased, and the second is to
quantify the associated uncertainties on the estimated scale.
As we noted in Ref. [13], the input parameters required for
reconstruction are not known perfectly, and accounting for
this will degrade the precision of the estimated scale; the LP
feature simplifies the process of determining more realistic
error bars.
Section II motivates why Laguerre reconstruction

of the monopole of the redshift space correlation function
can be performed similarly to real space and describes
the mock catalogs we use to illustrate our results.
Section III presents our measurements of the LP scale in
the measured and Laguerre-reconstructed correlation func-
tions and compares them with results frommore traditional,
density field reconstruction methods. It then illustrates the
degradation in precision which results from marginalizing
over the values of the parameters required as input for

reconstruction. A final section summarizes. Both
Laguerre reconstruction and the LP methodology are
agnostic about the (in principle unknown) shape of the
dark matter correlation function, whereas the expected
shape plays a key role in the method used by the
Baryon Oscillation Spectroscopic Survey (BOSS) collabo-
ration.1 An Appendix discusses and contrasts the precision
and accuracy of distance scale constraints which are
derived from the LP with those which come from fitting
the measured correlation function to a template shape.

II. MOTIVATION

This section uses measurements in simulations to moti-
vate the use of the Laguerre algorithm for reconstructing
the monopole of the redshift space correlation function.

A. Effective smearing scale

Following [15,16] we approximate the evolved redshift
space monopole on BAO scales as

ξNLðsÞ ¼
Z

1

−1

dμ
2

Z
dkk2

2π2
PLinðkÞj0ðksÞ½b10 þ fμ2�2

× e−k
2Σ2ð1−μ2Þe−k2Σ2ð1þfÞ2μ2 þMC terms; ð2Þ

with Σ2¼R
dkPLinðk;zÞ=3π2∝D2ðzÞ and f ≡ d lnD=d ln a

where DðzÞ is the linear theory growth factor. The real-
space expression which motivated the Laguerre method has
f ¼ 0, so the question is if the integral over μ is a serious
complication.
To see that it is not, note that the integral over μ equals
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ffiffiffi
π

p
erfðαÞ
2α

�
1þ β

α2
þ 3β2

4α4

�
− e−α

2

�
β

α2
þ 3β2

4α4
þ β2

2α2

�

→

�
1þ 2β

3
þ β2

5

�
−
α2

3

�
1þ 6β

5
þ 3β2

7

�
þ � � � ; ð3Þ

where α2 ≡ k2Σ2fð2þ fÞ and β≡ f=b10. This suggests
that

ξðsÞ ≈
Z

dkk2

2π2
b2effPLinðk; zÞe−k2Σ2

effðzÞj0ðksÞ; ð4Þ

plus the mode-coupling terms, where

b2eff ¼ b210
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þ β2

5

�
ð5Þ

1https://www.sdss3.org/surveys/boss.php.
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Σ2
eff ¼ Σ2

�
1þ fð2þ fÞ

3

1þ 6β=5þ 3β2=7
1þ 2β=3þ β2=5

�

≈ 1.9 Σ2 for ðf; b10Þ ¼ ð0.75; 1Þ: ð6Þ

Note that these rescalings depend on f and b10, but not on
the shape of PðkÞ. In addition, the factor 1.9 → 1.8 when
b10 ¼ 2.1, so the dependence on b10 is weak.
The analysis above shows that, with the replacements

b10 → beff andΣ → Σeff , Eq. (4) has the same form as its real
space counterpart. If we assume that the same is true of the
mode-coupling term, then one should be able to reconstruct
the redshift space monopole using the same Laguerre
algorithm aswas used for the real space correlation function.
However, because Σeff > Σ, we expect some degradation in
the constraining power of the reconstruction. We test this
expectation in the remainder of this paper.

B. Simulation set

Our analysis uses mock catalogues based on generalized
halo occupation distribution (HOD) populations of 20 peri-
odic boxes from the ABACUS COSMOS release, the same
ones that were studied by [[25], hereafter DE2019].
(Strictly speaking, DE2019 used an additional 16 boxes
from the matched “emulator” simulation set. We discuss
why we do not use these in the Appendix.) Each box is
1100h−1 Mpc (comoving) on a side, and the background
cosmology is a flat ΛCDM model with ðΩcdmh2; Ωbh2Þ¼
ð0.1199; 0.02222Þ, and ðh;ns;σ8Þ¼ ð0.6726;0.9652;0.83Þ.
The associated linear theory values of rLP and rinfl for the
dark matter are 93h−1 Mpc and 93.4h−1 Mpc, respectively.
For easy comparison with DE2019 and Ref. [13] we focus
on the z ¼ 0.5 outputs for which Σ (see text immediately
following equation (2) is 4.6h−1 Mpc.
The number density of galaxies in all the mock

catalogs is within 0.1 percent of 4 × 10−4h3 Mpc−3. The
(monopole of the) redshift-space distorted correlation
functions measured in these HOD mock catalogs were
kindly made available by DE2019. However, the measure-
ments were made in bins of width 5h−1 Mpc, which is
wider than the 3h−1 Mpc bins which are necessary for
Laguerre reconstruction [13]. Therefore, we made our own
measurements of the correlation functions in these mocks
and checked that they were consistent with those of
DE2019. Except for this difference in bin size, our analysis
is based on exactly the same HODs and (monopole)
measurements as theirs.
Figure 6 of DE2019 shows how the correlation functions

change as the galaxy assignment scheme (the HOD) is
varied. The different HODs produce large-scale bias factors
b10 (estimated from the ratio of the nonlinear real space
power spectra of the galaxies to that of the dark matter
on scales k ≤ 0.1h=Mpc), which can differ by of order
20% from a fiducial value of about 2.15. Inserting these
values in equation (6) yields the effective bias factor of each

redshift-space monopole, beff ≈ 2.43, and the effective
smearing scale, Σeff ≈ 6.2h−1 Mpc. Although we have
checked all the HOD models, we have chosen to only
present results from the two sets of paired HODs which
gave the most discrepant results in DE2019 (see their
Table 2 and Fig. 7).
For “Base 2” and “3”, the central galaxy in a halo is at

rest with respect to the halo center of mass, and the
models differ only in how the number of satellites scales
with halo mass: hNsatjMi∝ ½ðM−McutÞ=M1�α with Mcut ¼
1013.35h−1 M⊙ and ðα;M1Þ ¼ ð0.75; 1013.770h−1 M⊙Þ and
ð1.25; 1013.848h−1 M⊙Þ, respectively, where the value of
M1 is chosen to keep the total (centralþ satellite) number
density fixed at 4 × 10−4ðh−1 MpcÞ−3. For this pair, the
small scale clustering, fingers of god, and large scale bias
can be different. Both “Velocity (Cen 20%)” and “Velocity
(Cen 100%)” have ðα;M1Þ ¼ ð1; 1013.8h−1 M⊙Þ, but differ
in how each central galaxy moves with respect to its halo
center: the rms speed of the central is 20% (realistic) or 100%
(extreme) of that of the dark matter particles, respectively,
potentially affecting the redshift space clustering signal.
Beforewe consider the reconstruction of these correlation

functions, we must check if Eq. (2) provides a reasonable
description of the redshift-space monopole. For this, we
have used one of the HODs: the black and red symbols with
error bars in Fig. 1 show the measured real and redshift-
space correlation functions (averaged over the 20 simulation
boxes). The associated curves show Eq. (2) with ðΣ; b10Þ ¼
ð4.6h−1 Mpc; 2.17Þ and f ¼ 0 or 0.76 respectively.
Evidently, Eq. (2) is slightly worse for the redshift space
monopole. This is also true for the other DE2019 HODs.
Nevertheless, the level of agreement suggests that Laguerre
reconstruction of the monopole should still be useful.

III. METHODS AND RESULTS

Laguerre reconstruction, like density field reconstruction
methods, requires some prior information. For this reason,

FIG. 1. Real and redshift space (monopole) correlation func-
tions in the “Base 2” HOD model of the Abacus simulation set.
Solid curves show Eq. (2) with Σ ¼ 4.6h−1 Mpc, b10 ¼ 2.17, and
f ¼ 0 (real-space) or 0.76 (redshift space monopole) respectively.
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we present our analysis in two steps. The first assumes that
this information is known perfectly. In the second step, we
discuss how to proceed if one must marginalize over the
uncertainties in this required prior information.
In what follows, we use the mock catalogs in two

different ways. We either treat each realization individually,
or we average together all the correlation functions
for a given HOD in all the simulations and work with this
average. The former lets us quantify the effects of
cosmic variance, and explore the sensitivity of the
reconstruction to noisy data. The latter is like measuring
the correlation function in an effective comoving volume
of 20 × ð1.1h−1 GpcÞ3 ≈ 27h−3 Gpc3.

A. Idealized analysis: Perfect prior information

We present results for the larger effective volume first.
The symbols with error bars in Fig. 2 show the average
correlation functions for the four HODs. We follow [13]
and fit these (3h−1 Mpc binned) correlation functions over
the range 60–120h−1 Mpc to a set of half-integer Laguerre
functions, up to 9th order. The fitting makes use of the
covariance matrix of the binned counts. For the mock
galaxy samples, there are 12 realizations of each HOD in
each of the 20 simulation boxes, for a total of 240
correlation functions from which to estimate the (HOD-
dependent) covariance matrix. In practice, these covariance

matrices are well approximated by the analytic estimate
described in [13,19], provided we use the tracer number
density and bias factor that is appropriate for each HOD,
and we set the survey volume equal to 20 × ð1.1h−1 GpcÞ3.
Since the analytic covariance matrices are smoother, we use
them when fitting. The grey bands in Fig. 2 show the 68%
and 95% confidence regions around the best fitting curves.
We quantify the goodness-of-fit by computing χ2=dof.

Table I summarizes the results: it shows the effective bias
factors of each sample, and the χ2=dof values, which
indicate that quantities derived from these fits are likely
to be meaningful.
The Laguerre reconstructed shape ξLag results from

choosing a value for the bias of the tracers and an estimate
for the smearing scale and then using the fitted coefficients
to construct a 9th order simple polynomial. The red solid
curves (and surrounding pink bands) in Fig. 2 show this
ξLag if we use the correct values for these quantities. We
discuss how incorrect values impact the results shortly.
(The pink bands come from standard propagation of errors
on the fitted coefficients, and account for the fact that these
errors are correlated.) Dashed curves show the shape
returned by the standard reconstruction of DE2019 (error
bars are similar to those of the measurements, so we have
not shown them). Evidently, ξLag is substantially closer to
linear theory (solid black). While the peak and dip positions

FIG. 2. Comparison of the measured redshift-space monopole (symbols with error bars) in an effective volume of 20 × ð1.1h−1 GpcÞ3,
with the 9th order Laguerre fit to it (grey bands show 68% and 86% confidence regions); the associated Laguerre reconstruction (pink
bands); the linear theory correlation function (solid black); and the “standard” reconstruction from DE2019 (dashed).
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in ξLag have clearly been overcorrected, rLP is their average
[cf. Eq. (1)], so it may still be accurate [also see discussion
in [16]].
We check this explicitly by estimating rLP of Eq. (1)

where rpeak and rdip are the roots of ∂ξ=∂r ¼ 0—with the
derivative being computed analytically using the fitted
coefficients. Note that the same coefficients multiply
different functions for the ξLag, so rLP values pre- and
post-Laguerre reconstruction can be different. This is also
true for the inflection point, rinfl, which we estimate as the
scale where ∂2ξ=∂r2 ¼ 0. Table I shows that, prior to
reconstruction, rLP and rinf are offset from linear theory by
about 1.5%. This shift is larger than it was for the halos in
real space (shown in [13]), in part because of the extra
smearing that is due to redshift space distortions [Eq. (6)].
(Most previous LP analyses increase the measured LP by a
factor of 1.005 [e.g., [16–19]]. We do not; but if we had,
the result would still be offset from linear theory by about
1%.) Nevertheless, the Laguerre reconstructed values are
substantially closer to linear theory indicating that it works
well even in the presence of redshift-space distortions.
Moreover, the four HOD models agree to subpercent
precision, both pre- and post-reconstruction. Evidently,

the LP is indeed rather independent of the biasing scheme
(although it should be noted that the range of bias factors
probed by the DE2019 HODs is small, so this is by no
means an exhaustive test of the robustness of the LP).
To emphasize the similarity between the Laguerre

reconstructed correlation functions and linear theory,
Fig. 3 shows the ratio of the measured ξ (grey bands),
and the reconstructed ξLag (pink bands) both normalized by
b2ξLin. Vertical lines show the scales of rmin, rmax and rLP
for pre- and post-reconstruction correlation functions. This
makes clear that, except between rmin and rLP, the recon-
structed ξLag is within about 5% of ξLin. Moreover, the error
bands on the reconstruction show that ξLag potentially
provides better than 10% constraints on the amplitude
of ξLin ∝ ðbσ8Þ2.
We now present results from fitting to the simulations

individually. For a given HOD, the estimated rLP values can
differ from one another because of cosmic variance.
Figure 4 compares the resulting distribution of rLP values,

TABLE I. Linear point and inflection scales (in h−1 Mpc) in the pre- and post-reconstruction correlation functions measured in an
effective comoving volume of nearly 27h−3 Gpc3, estimated by fitting 9th order Laguerre-based functions to the z ¼ 0.5 two-point
correlation functions (bins of width 3h−1 Mpc over the range 60–120h−1 Mpc). First two columns show the effective large scale bias
and goodness of fit for each sample, and final two columns show the LP and peak scales in the standard reconstruction.

Tracer beff χ2dof rLP−pre rLP−rec rinfl−pre rinfl−rec rLP−stan rpeak−stan

Base 2 2.34 0.89 91.62� 0.41 92.98� 0.46 92.08� 0.43 93.38� 0.48 92.83� 0.42 100.56� 0.43
Base 3 2.52 1.10 91.33� 0.46 92.88� 0.51 91.81� 0.46 93.33� 0.52 92.88� 0.44 100.34� 0.47
Vel 20 2.41 0.69 91.56� 0.44 92.79� 0.42 91.99� 0.47 93.27� 0.46 92.79� 0.44 100.22� 0.47
Vel 100 2.43 0.78 91.45� 0.39 92.85� 0.41 91.92� 0.43 93.30� 0.45 92.85� 0.42 100.43� 0.48

FIG. 3. Ratio of the amplitudes of the measured ξ (grey bands)
and Laguerre reconstructed ξLag (pink bands) to linearly biased
ξLin for the HOD model shown in the top left panel of Fig. 2.
Results for the other HODs are similar. The amplitude of ξLag is
within 5% of linear theory, except between rmin and rLP. Vertical
lines respectively from left to right show the scales of rmin, rmax
and rLP for pre- and post-reconstruction correlation functions.

FIG. 4. Distribution of LP scales estimated from the redshift-
space monopole, pre- (dashed) and post- (solid) Laguerre
reconstruction, for four different HOD models, in a
ð1.1h−1 GpcÞ3 volume. The linear theory value is 93h−1 Mpc.
Short vertical dashed lines show the four mean values, and
horizontal bar shows the scale and its uncertainty reported in
Table I (i.e., determined from the correlation functions shown in
Figure 2, and corresponding to an effective volume that is 20×
larger than that of each simulation which contributes to this plot).
Grey bands show the region which encloses 68% of the values
around the median.
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pre- and post-reconstruction, in the 240 realizations for
each HOD. The four vertical bands bars at the bottom show
the means of each distribution. The horizontal vertical bars
above them show the value of rLP returned from fitting to
the average of the correlation functions (reported in
Table I). This error bar is about 4× smaller than the
68% range highlighted in the figure, consistent with the
fact that it was determined from an effective volume that
was 20× larger.
Figure 5 shows a similar comparison, but now for the

scale rpeak which is close to the quantity which more
traditional “density field reconstruction” algorithms—in
this case the standard reconstruction of DE2019—seek to
reconstruct. (The actual distance estimate is more sophis-
ticated; it is based on fitting a template shape to a range of
scales around rpeak, and is the subject of Appendix B.) The
solid curves show rpeak measured in the standard
reconstruction of ξ (i.e., we fit half-integer Laguerre
functions to the dashed curves in Fig. 2, and estimate
rpeak from the fit). This shows that rpeak is indeed accurately
reconstructed, with approximately the same precision that
Laguerre reconstruction achieves for rLP (the x-axis here
covers about 20h−1 Mpc, whereas the previous figure
covered about 10h−1 Mpc). Despite the fact that this
standard reconstruction (dot-dashed curves) does not
reconstruct the shape of ξ over a wide range of scales, it
does do a good job of reconstructing rLP—with a small bias
that is slightly smaller than the error bar—even though this
is not something it was calibrated to do.
These plots illustrate nicely the virtues of working with

the LP: prior to reconstruction, it is shifted from linear
theory by substantially less than rpeak (median rLP offset is
∼1.5h−1 Mpc vs 3h−1 Mpc) for rpeak, and the variations

between HODs are slightly smaller (median values of the
HODs are within 0.5h−1 Mpc of one another for LP, but the
scatter is twice as large for rpeak). However, the main point
of this comparison is to show that, despite its simplicity,
Laguerre reconstruction of the two-point correlation func-
tion enables distance scale estimates that are comparable in
precision and accuracy to density field reconstruction
methods, in the ideal case in which both methods assume
perfect prior information.

B. Impact of uncertain prior information

Laguerre reconstruction depends on an assumed bias
factor and smearing scale. We now explore how the
reconstructed rLP scale is affected if we use incorrect
values, as is likely to occur in real data. (Density field
reconstruction algorithms must make analogous choices.)
We do this in two steps because, in fact, the bias factor is
only necessary if one wishes to account for what is known
as mode-coupling [13]. Therefore, Fig. 6 studies the impact
of this term on the reconstruction. Filled symbols show the
dependence on the smearing scale when this term is
accounted for using the correct bias factor, and open
symbols show the result of neglecting this term completely.
There is a difference, but it is not large. This is encouraging
since it suggests that the cost to the method of being
completely agnostic about the value of b is not prohibitive.
Figure 7 shows how the estimated LP scale depends on

the assumed bias and smearing scale. The panels for each
HOD show 20% variations in each direction around the
correct value, both for b and for Σ; realistic uncertainties are
likely to be smaller. All panels show a degeneracy in the
sense that increasing the smearing scale and the bias leave
the inferred LP unchanged.
Figure 7 indicates that constraints on the distance scale

from a survey with comoving volume 27h−3 Gpc3 will not
be as tight as Table I suggests. Rather, realistic constraints
on the distance scale will require averaging over plots like

FIG. 5. Similar to previous figure, but now for standard, density
field reconstruction. Dotted curves show the rLP-pre values (same
as previous figure) and dot-dashed curves show the LP values
estimated from the correlation functions in the “standard,” density
field reconstructions, even though the LP was not used to
calibrate the reconstructions. Dashed and solid curves show
similar results for the peak scale (rpeak ¼ 100h−1 Mpc in linear
theory) pre- and post-reconstruction.

FIG. 6. Dependence of rLP in ξLag on assumed smearing scale.
Unfilled symbols do not account for mode-coupling, so require
no information about galaxy bias; filled symbols use the correct
value of galaxy bias when accounting for mode-coupling.
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these, weighting by priors on the values of b and Σ. Note
that these are unlikely to be circular averages in the b-Σ
plane because the priors are likely to be correlated. Rather,
realistic uncertainties on rLP are likely to be associated with
averaging along b ∝ Σ−1 [13]. The thick black curves in
Fig. 7 show this scaling, centered on the correct value of
beff and Σeff for each panel.
Figure 8 shows how rLP and rinfl vary as one averages

along the black curves shown in Fig. 7. The colored bands
show the error bars in Table I which assume beff (and Σeff )

are known perfectly. The fact that some symbols lie outside
these bands shows that accounting for uncertainties in these
parameters can broaden the errors on the inferred distance
scale if the allowed range in beff is sufficiently wide. This is
particularly true for the HOD shown in the bottom right
panel (but recall that this is a rather extreme case:
presumably, the larger smearing in this model requires
more reconstruction, making the choices of beff and Σeff
more critical). Allowing for the additional (survey-specific)
uncertainty in the overall normalization of the black curves
will further degrade the constraints. However, because lines
of fixed rLP run approximately perpendicular to the black
curves in each panel, the degradation in constraining power
may not be prohibitive.

C. Synergy between linear point and
density field reconstruction

The previous subsection made the point that
realistic errors on the distance scale require marginaliza-
tion over the parameters which are input to Laguerre
reconstruction. For similar reasons, constraints from den-
sity field reconstruction algorithms which assume a single
set of parameters (e.g., background cosmology, σ8, bias),
likely underestimate the true uncertainties, if they do not
include the effect of marginalizing over the uncertainties in
these input parameters [26]. Since none of the error bars
reported in Table I (nor their counterparts in DE2019)
include such marginalization, they likely underestimate the
true uncertainties on the distance scale.
The importance of this additional marginalization for

density field reconstruction has yet to be completely
quantified, in part because doing so is computationally
demanding [see [27], for important first steps toward this
goal]. This is because such methods have two steps:
reconstruction, followed by estimation of the distance scale
from the reconstructed field. Typically this second step uses
a template model which is fit to the two-point statistics of
the reconstructed field. In principle, as one marginalizes
over the parameters used to perform the reconstruction, one
must take care to self-consistently modify the template as
well. However, Fig. 5 shows that the linear point—which
can be estimated without this extra “self-consistent tem-
plate” step—provides a simpler route to the distance scale
in reconstructed fields. In particular, because the linear
point is rather insensitive to one of the dominant sources of
uncertainty—galaxy bias—our results suggest that the
linear point may be useful in determining more realistic
error estimates for density field reconstruction methods. In
this respect, the utility of the linear point transcends that of
Laguerre reconstruction.

IV. SUMMARY

We have shown that Laguerre reconstruction of the
monopole of the redshift-space distorted correlation

FIG. 7. Dependence of rLP measured in ξLag on assumed bias
factor and smearing scale. White pixels show the combinations
which return unbiased reconstructions of the linear theory value
(93h−1 Mpc). Black curves show b ∝ Σ−1, centered on the
correct values of beff and Σeff for each panel. In ΛCDM models,
this is the locus along which one should read off rLP values so as
to get more realistic uncertainties on rLP. If beff or Σeff are
unknown then this will shift the curves to the left or right,
potentially broadening the error estimate further.

FIG. 8. Inferred rLP and rinfl scales as one moves along the
black curves shown in the previous figure. Pink and grey bands
show the uncertainties quoted in Table I, which assume that beff
and Σeff are known perfectly: accounting for the fact that they are
not broadens the uncertainty on the distance scale.
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function substantially mitigates the effects of nonlinear
evolution for a variety of interesting halo-based biasing
schemes (Figures 2 and 3). The linear point (equation (1) in
the reconstructed correlation function provides comparable
accuracy and precision to the distance scale estimates
provided by standard density field reconstruction algorithms
(Figs. 4 and 10, and Table I).
Like all other reconstruction schemes, Laguerre

reconstruction depends on certain input parameters (a
smearing scale and a galaxy bias factor). If these are not
known precisely, then realistic constraints on the distance
scale will be broadened. For Laguerre reconstruction, this
degradation in constraining power is straightforward—both
conceptually and computationally—to estimate (Fig. 7 and
associated discussion). Performing the analogous margin-
alization over poorly constrained input parameters is more
computationally demanding for density field reconstruction
methods. For these reasons, we believe Laguerre
reconstruction in combination with the LP offers a simple
and practical complementary estimate of cosmological
distance scales. In addition, measuring the LP in density
field reconstructions simplifies the process of providing
realistic error estimates on the distance scale from these
methods (Sec. III C). Therefore, our results show that the
utility of the LP is not confined to Laguerre reconstruction.
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APPENDIX A: ABACUS AND EMULATOR
SIMULATION SETS

We did not use the additional 16 emulator boxes that
have the same background cosmology and are also part of
the ABACUS COSMOS release for reasons discussed in [13].
In particular, the two dashed curves in Fig. 9 compare the
real-space correlation functions of the massive halo sam-
ples used by [13] in the Abacus and Emulator simulation
sets (effective volumes of 27h−3 Gpc3 and 21h−3 Gpc3,
respectively). While the agreement is good around the
peak scale, the differences around the dip are larger, and
only marginally consistent with cosmic variance. These

differences are also present in the redshift-space distorted
HOD samples. To illustrate, the two solid curves show
the redshift space monopole of the same HOD population
in the two simulation sets (we have normalized each
halo sample to have the same amplitude as the associated
HODs at ∼70h−1 Mpc). Comparison of the HOD and
high mass samples (solid and dashed curves) also graphi-
cally illustrates the additional smearing of the BAO signal
that is associated with the redshift space distorted
signal, whose impact on Laguerre reconstruction we would
like to assess.

APPENDIX B: FULL-SHAPE CONSTRAINTS
WITH PERFECT PRIOR INFORMATION

The main text used the linear point to quantify the
precision and accuracy on the inferred distance scale in the
Laguerre-reconstructed correlation functions, and in those
measured in the full density-field reconstructions. The
virtue of the LP is that it returns a distance scale estimate
which does not require prior knowledge of the shape of
the correlation function. All other published BAO distance
scale estimates rely on fitting a model template to the
reconstructed correlation functions. This clearly requires
considerably more prior information, so it is natural to ask
if fitting to the full shape returns considerably greater
accuracy.
We address this in three steps: First, we compare

constraints from the LP with those from fitting to the full
shape of the Laguerre-reconstructed redshift space monop-
ole. Next, we compare the α0 values in ξLag with those in ξ0
of the standard reconstruction. Finally, we compare the
constraints from the monopole ξ0 with those from the full
shape of the redshift-space correlation function. This final
step is only possible for the standard reconstruction: if the

FIG. 9. Real space correlation functions of massive halos in the
Abacus and Emulator simulation sets (dashed curves) differ
slightly around the dip scale. The monopole of the redshift-space
correlation function in the ‘base 2’ HOD model shows similar
differences (solid curves, bands show the 1σ error bars). These
differences are similar for all the HOD models considered in the
main text.
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gains in precision and accuracy are considerable, then this
motivates extending both the Laguerre reconstruction and
the linear point methodology to account for anisotropic
redshift space distortions.
We begin by defining

αLP ≡ 93h−1 Mpc
rLP

ðB1Þ

and α0, which is the value for which

ξTðα0sÞ ¼ B2

Z
dk
k
k3PTðkÞ
2π2

j0ðksα0Þ þ � � � ðB2Þ

(where the “...” refer to nuisance parameters which scale as
s−1 or s−2; see DE2019 for details) best fits each of the
measured ξ0ðsÞ curves over the range 60–120h−1 Mpc.
Here PTðkÞ is the linear theory dark matter correlation from
CAMB for the ABACUS cosmology, and B is a free
parameter. Note that α > 1 means the estimated scale is
smaller than the true one.
For fitting to the full shape, our goal is to parallel the

analysis in DE2019 as closely as possible. Therefore, for
their standard density field reconstructions, we use the
same code and covariance matrices they used when fitting,
which they kindly provided to us. Their analysis first
averages all the HODs in a single box, and then performs a
jackknife resampling of the boxes to obtain smoother
covariance matrices, which they then rescale to represent
the volume of a single box. Therefore, for our Laguerre
analysis, we construct covariance matrices by first co-
adding all 12 reconstructed ξLag in a box, and we then
average together 19 randomly chosen boxes at a time,
repeating 50 times. The resulting covariance matrix is
smooth, and we rescale it, as they do, to the volume of a
single box, before using their fitting code to determine α0.
Note that for every bias model and every type of correlation
there is a different covariance matrix. However, we have
checked that the results which follow are not changed
substantially if we use the same covariance matrix for all
the HODs (essentially because the HODs are not very
different from one another).
We present our results in a format which is similar to

Fig. 4 in the main text. However, in contrast to the main
text, for which each HOD realization contributes separately
(for a total of 240 αLP values for each HOD), here all 12
realizations of each HOD in a box are first coadded, so
that we have only 20 values for each HOD (this is to
mimic Fig. 2 in DE2019, which shows 36 points per HOD,
from the 20 ABACUSþ 16 Emulator boxes—though we
have not done the additional jackknife resampling step
they did).
The thick solid and thin dashed curves in the top panel of

Fig. 10 show the cumulative distributions of αLP measured
in the Laguerre reconstructed ξLag and the standard density

field reconstructions of the four HODs that were studied in
the main text. This shows that although the standard
reconstructions are slightly but not significantly biased
(the median is not at αLP ¼ 1), the two reconstructions

FIG. 10. Top: cumulative distributions of αLP in the Laguerre
(thick solid) and standard (thin dashed) reconstructions are very
similar, indicating that the two reconstructions provide similar
constraints on the distance scale. Middle: cumulative distribu-
tions of αLP (thick solid, same as top panel) and α0 (thin solid)
measured from ξLag. The distribution of α0 is narrower, indicating
that fitting to the full shape of the redshift space monopole ξ0
yields greater precision than the LP scale itself. Bottom:
cumulative distributions of α0 from fitting to ξLag (thin solid,
same as middle panel) or to ξ0 in the standard reconstruction (dot-
dashed). Consistent with the top panel, the two reconstructions
provide similar constraints on the distance scale. Grey bands
show the region which encloses 68% of the values around the
median. Bars along the bottom of each panel show the uncertainty
associated with an effective volume which is 20× larger.
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provide similar constraints on the LP-derived distance
scale. This is consistent with Figs. 4 and 5 in the main text.
The thick and thin solid curves in the middle panel of

Fig. 10 show the cumulative distributions of αLP and α0 for
the Laguerre reconstructions ξLag of the four HODs. The
thin curves rise more steeply than the thick ones, indicating
that fitting the full shape constrains the distance scale better
than the LP does, by a factor of approximately 2. The cost,
of course, is the dependence on fiducial template, and the
potential biases which arise if the template is inaccurate.
The bottom panel of Fig. 10 addresses the question of

how well α0, estimated by fitting to ξLag (thin solid),
compares with that estimated from fitting to ξ0 of the
standard reconstruction (thin dot-dashed). The panel shows
that the distributions are rather similar, indicating that even
though ξLag does not reconstruct the peak and dip scales
very well (see Fig. 2), the fact that it is closer to linear
theory over a wider range of scales mean its α0 values
remain quite accurate.
The main text notes that Laguerre reconstruction returns

comparable precision and accuracy to standard density field
reconstruction (for a small fraction of the computational
cost). Together, the top and bottom panels show that this
statement holds for both αLP and α0.
We close with a direct comparison of how adding more

information when estimating the distance scale can
improve the constraints, provided that the template one
fits to the data is accurate. For this, we have chosen one of
the HODs; the others make the same point. The thin solid
curve shows the distribution of αLP in the standard (density
field) reconstruction, which makes no assumption about the
shape of the correlation function. The dashed curve shows
the result of fitting to the monopole, ξ0, of the redshift-
space distorted correlation function in the same standard
(density field) reconstruction, and the thick dot-dashed
curve shows the result of fitting to both the monopole ξ0ðsÞ
and the quadrupole ξ2ðsÞ. The distribution of α is slightly
narrower than that of α0, showing that there are additional
gains in accuracy if one fits to the full shape of ξðsjj; s⊥Þ.
This provides strong motivation for extending the Laguerre
methodology to the full redshift-space signal (rather than
just the monopole). Likewise, there is currently no analog
of the linear point in ξ2, nor, e.g., tests of its stability in
angular wedges (other than those for which μ ¼ 0, of
course), so the difference between the thin solid curve and
the other two motivates extending the linear point meth-
odology to redshift space.

It is important to emphasize that the curves in Figures 10
and 11 assume that the parameters needed for both
reconstructions (Laguerre and standard) are known cor-
rectly, and that the template models which are needed to
determine α0 or α are also known correctly. In this respect,
they are analogous to the optimistic ‘idealized’ results in
Sec. III A of the main text. However, this will not be the
case in observational datasets. The results in Sec. III B of
the main text illustrate how and why constraints from αLP
are degraded when one marginalizes over uncertainties in
the parameters needed for reconstruction. As the main text
discusses, obtaining more realistic error estimates for α0
and α is less straightforward. This is because, to do so, one
must also account for the fact that the template shape to
which one should fit is not known perfectly. Ref. [26]
argues that marginalizing over the full range of allowed
template shapes will degrade the constraints from α0 and α
significantly (a factor of two or more, given current
uncertainties on cosmological parameters). However, that
analysis is based on pre-reconstruction quantities. Ref. [27]
find that the impact of assuming an incorrect template (Ωm
wrong by 0.5 percent) when fitting to standard reconstruc-
tions impacts α at the level of 0.002, but a more exhaustive
analysis, which marginalizes over the full range of allowed
parameter space, and associated template shapes, has not
yet been done.

FIG. 11. Cumulative distributions of αLP (solid), α0 (dashed,
from fitting to ξ0) and α≡ ðα2⊥αjjÞ1=3 (dot-dashed, from fitting to
both ξ0 and ξ2) in the standard reconstructions of the Base 2
HOD. The steepening of the curves illustrates the gains in
precision as more assumptions about the expected shape of the
correlation function are included. Results for the other HODs we
have considered are similar.
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