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An observer in relative motion to the cosmic microwave background (CMB) rest frame is sensitive to
both aberration and Doppler effects. Both effects introduce similar but nonidentical off-diagonal couplings
in the spherical harmonic coefficients. The CMB temperature dipole may have additional contributions
from an intrinsic component, which in turn produces different aberration and Doppler couplings. Moreover,
the standard conversion from intensity measurements into temperature also introduces spurious Doppler-
like couplings. In order to learn about the intrinsic dipole it is therefore important to measure both
aberration and Doppler couplings in an independent manner while also removing the spurious
contributions from unit conversion, which are degenerate with the dipole. Here we present a pipeline
to measure independently the dipole, Doppler and aberration effects on the CMB considering realistic
beaming, noise and mask effects. Our pipeline results in independent and unbiased estimators which have
uncertainties only ≃20% larger than the simple theoretical expectations. We discuss the achievable
precision in each measurement for Planck 2018 and also forecast them for future ground-based experiments
with the Simons Observatory and CMB stage IV experiment (CMB-S4). An alternative pipeline is present
in order to cross-check results and improve robustness.
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I. INTRODUCTION

The first clear measurement of the cosmic microwave
background (CMB) temperature dipole dates back almost
50 years [1]. It has two main components: the orbital
dipole, due to the motion around the Sun, and the solar
dipole, due to the motion of the Solar System with respect
to the CMB rest frame. The former has a predictable yearly
modulation and therefore was used to calibrate both
WMAP and Planck maps [2,3]. The latter, measured after
removal of the orbital contribution, is the largest CMB
anisotropy, with an amplitude of 3.36208� 0.00099 mK
[3]. This is ∼100 larger than the anisotropies in the other
multipoles l until l ∼ 1000 (in higher l’s, the Silk
damping effect makes fluctuations increasingly smaller).
The high amplitude of the temperature dipole is the main

reason for it to be often fully credited to the proper motion
between the Solar System and the CMB rest frame. If one
assumes that the entire dipole has such an origin, the
inferred relative velocity is ð369.82� 0.11Þ km=s. This
velocity estimate is of importance beyond early Universe
physics and the CMB, and it is regularly used in astronomy

in order to convert observed redshifts into heliocentric
redshifts. There is, however, no reason to assume that there
cannot be an intrinsic component to the dipole. Concrete
alternatives to the kinematic scenario were discussed
already 3 decades ago by [4], which showed that a large
local void could also explain the dipole. This particular
scenario was further investigated by, e.g., [5,6]. A “tilted
universe scenario” composed of a superhorizon isocurva-
ture perturbation was proposed in [7]. An inflationary
model which produces similar results was proposed by [8].
The separation of primordial and kinematic effects in the

CMB is not straightforward as in the case of adiabatic
perturbations there is a degeneracy between the Doppler
effect and the primordial perturbations. As discussed in
detail in [9], however, this degeneracy can be broken by
measuring the Doppler- and aberrationlike couplings in the
CMB. In the case of a peculiar velocity these couplings
must be present and with well-determined coefficients, as
discussed in [10,11] (see also [12] for a review). In other
scenarios, one or both of these couplings can differ.
Therefore, if one measures the dipole, Doppler and aberra-
tion effects independently one can learn about the intrinsic
CMB dipole and test the hypothesis that the CMB dipole is
mostly due to a peculiar velocity. It also allows for a more*pferreira@astro.ufrj.br
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model-independent measurement of our peculiar velocity,
which has implications in inferring the cosmological red-
shift of all sources.
The aberration and Doppler couplings of the CMB were

shown to be detectable by Planck by [10,13], and sub-
sequently measured by [14] following an estimator pro-
posed in [15]. These couplings were also shown to affect
the measurements of some CMB anomalies such as the
dipolar modulation (and the connected hemispherical
asymmetry) [16] and the quadrupole anomalies [17]. On
the other hand, if the primordial map is Gaussian it was
shown not to affect fNL measurements [18]. Alternative
methods to measure these couplings were also recently
proposed in [19]. Finally, in [20] it was shown that similar
couplings arise, with higher significance than the temper-
ature couplings, as a leakage of temperature correlations
into thermal Sunyaev-Zeldovich (TSZ) maps, which can be
measured by cross-correlating TSZ and temperature (T)
maps. This cross-correlation was recently detected with
significance above 5σ by [21], but this effect is physically
completely degenerate with the basic dipole measurement
and serves only as a cross-check of the model and data.
Finally, exploiting the frequency-dependence of these
couplings in the low-multipoles of the CMB was proposed
as a way to separate the intrinsic and kinematic components
of the dipole [22].
The Planck measurements of aberration and Doppler in

[14] made use of only the 143 and 217 GHz channels and
measured v ¼ 384� 78ðstatisticalÞ � 115 km=s (system-
atic). As explained in that work this measurement, however,
did not distinguish from possible intrinsic contributions and
is at least partly degenerate with the standard dipole
measurements since the spurious Doppler couplings from
the conversion of intensity into temperature was not
removed. Similar measurements have been very recently
performed in Planck 2018 data, yielding a result of v =
(298.5 ± 65.6) km/s in a direction compatible with the
dipole [23]. In this work we propose several improvements
to the methodology of [14]. First of all we propose to
remove the couplings which bring no new information with
respect to the dipole. Second, we propose to remove biases
in the estimators of aberration and Doppler by simulating
the effects using many combinations of orientations in the
simulations. This ensures that no a priori information on
the direction of either effect is assumed. Third, for Planck
we propose using the final component separated maps of
SMICA and NILC instead on single-frequency maps.
Finally, we discuss also the benefits of adding E-mode
polarization maps (E) to both aberration and Doppler
measurements. We discuss the achievable precision in both
measurements for Planck 2018 using this pipeline and also
forecast the precision for future ground-based experiments
with the Simons Observatory [24] and CMB-S4 [25].
These proposed improvements result not only in much

smaller systematic errors but also in better precision.

Moreover they hinge on less assumptions. They were
also applied to real Planck 2018 data in our companion
article [26], where for the first time we are able to put
an upper bounds on the intrinsic CMB dipole and find that
its amplitude must be < 3.7 mK at 95% confidence level.
An estimate of our peculiar velocity with the CMB with-
out assuming a negligible intrinsic component was also
made, resulting in v ¼ ð300þ111

−93 Þ km/s with ðl; bÞ ¼
ð276� 32; 51� 19Þ° [SMICA], and v ¼ ð296þ111

−88 Þ km=s
with ðl; bÞ ¼ ð280� 33; 50� 20Þ° [NILC]

II. INDEPENDENT ESTIMATORS FOR
DOPPLER AND ABERRATION

As discussed in [10,27], the primordial temperature Tðn̂Þ
on the direction n̂ seen by an observer with a peculiar
velocity β turns into the boosted T 0ðn̂0Þ following the
equation

T 0ðn̂0Þ ¼ Tðn̂Þ
γDð1 − βD · n̂Þ ; ð1Þ

with the aberrated direction n̂0 given by

n̂0 ¼ n̂ · β̂A þ βA

1þ n̂ · βA
β̂A þ ½n̂ − ðn̂ · β̂AÞβ̂A�

γAð1þ βA · n̂Þ ; ð2Þ

where the index A stands for aberration and D for Doppler,
and γX ¼ ½1 − ðβXÞ2�−1=2. In the traditional case where
our peculiar velocity is the only source of aberration- and
Doppler-like signals one has βA ¼ βD ¼ β. In this work
instead we separate explicitly the sources of Doppler and
aberration in order to further test the peculiar velocity
assumption. We will therefore allow also for the case in
which βA ≠ βD. This allows in principle the measurement
of a nonadiabatic intrinsic dipole in the CMB, as discussed
in detail in [9]. Doppler and aberration due to a boost
likewise affect the polarization maps and, as shown in [11]
for Planck, there should be non-negligible information in
polarization, both for the two point estimators using
only E maps (EE) and cross-correlating with temperature
(TEþ ET).
The above can then be expanded on spherical harmonics.

For a given CMBmap the coefficients alm can be expanded
in a first-order approximation in β. For β ∼ 10−3 such an
expansion works surprisingly well all the way up to l ∼
3000 [11,28]. We therefore proceed this way, which means
that Doppler and aberration couple the l, lþ 1 compo-
nents but not other l, lþ n. We also separate the aberration
and Doppler contributions in the final alm’s

a0lm ¼ aPrimlm þ aAlm þ aDlm; ð3Þ

where aPrimlm are the primordial coefficients. It is convenient
to define the quantity
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sGlm ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

4l2 − 1

�

1 −
s2

l2

�s

; ð4Þ

where s ¼ 0 for temperature and s ¼ 2 for polarization. We
can then write, first considering β only in the z direction

aAlm ¼ cA;−lm aPriml−1m þ cA;þlþ1ma
Prim
lþ1m; ð5Þ

aDlm ¼ cDlma
Prim
l−1m þ cDlþ1ma

Prim
lþ1m; ð6Þ

with

cDlm ¼ −βDz sGlm and cA;�lm ¼ βAz ð1� lÞsGlm:

For the case of only a peculiar velocity (βA ¼ βD ≡ β),
following [10] one defines the quantity

flm ≡Re½a�lmalþ1m�; ð7Þ

the theoretical expectation of which is

hflmi ¼ ½cA;−lþ1m þ cDlþ1m�Cl þ ½cA;þlþ1m þ cDlþ1m�Clþ1: ð8Þ

It is then convenient to define f̂THlm ≡ hflmi=βz which is
independent of βz at first order and use the following
estimator:

β̂z ¼
�X

l;m

fobslmf̂
TH
lm

ClClþ1

��X

l;m

ðf̂THlmÞ2
ClClþ1

�−1
; ð9Þ

where Cl ≡ ðCl þ NlÞ is the sum of the signal and noise
spectra.
In the general case where β has all Cartesian compo-

nents, the above is generalized following Appendix B of
[10]. In particular it involves the two point functions
almalþ1m�1. One can also make use of the Wigner rotation
matrix to rotate (using the alm’s) a vector in the z-axis to
any other point in the sphere and vice versa.
The above estimator does not consider the important

effects of a sky mask. Moreover, it does not account for
anisotropic noise and other systematic effects. Applying the
mask W and adding noise we get

ãlm ¼
X

l0m0
al0m0Klml0m0 ½W� þ

X

l00m00
anoisel00m00Klml00m00 ½W�; ð10Þ

where Klml0m0 ½W� is the mask kernel and anoiselm are the
components of the noise map. Considering lmax ∼ 2000 it
is computationally unfeasible to obtain the inverse matrix
of Klml00m00 ½W� to remove the mask effect. Therefore, we
instead consider as a first step the effect of the mask only on
the angular power spectra in what we call our “baseline”
estimator. For the noise, we also consider initially only its
angular power spectrum, ignoring its anisotropies. We then

take into account the anisotropies of both mask and noise
by performing realistic simulations using HEALPix in which
the full mask is added and noise included using the set of
Planck dx12 noise simulations for the corresponding map-
making procedure. With these simulations we apply addi-
tive and multiplicative corrections to the baseline estimator.
This is described in more detail in Sec. V.
The isotropic effect of the mask is a change on the

angular power spectrum Cl,

C̃l1 ¼
X

l2

Ml1l2Cl2 and Ñl1 ¼
X

l2

Ml1l2Nl2 ; ð11Þ

where a tilde is used when including the mask. Ml1l2 is
called the MASTER correlation matrix and is discussed in
detail in [29,30]. The masked angular spectra including
noise are then represented by C̃l ≡ C̃l þ fNl, and this is the
quantity we employ on Eq. (9) for our baseline estimator
discussed above.
As discussed previously, here we are interested also in

the case βA ≠ βD. This encourages the definition of

βXz f̂
TH;X
lm ≡ cX;−lþ1mCl þ cX;þlþ1mClþ1; ð12Þ

for X ¼ Aor D and }D;þ} ¼ }D;−} ¼ D. However,
simply rewriting the estimator above for βA and βD

separately would not consider the correlations between
the aberration and Doppler signals. In fact, since both
effects introduce l;lþ 1 correlations, they cannot be
disentangled exactly. The most precise way to solve this
problem would be to minimize a χ2 numerically for
independent βD and βA for each vector component,

χ2ðβAi ; βDi Þ ¼ 2
X

l;m

½fobslm − βAi f̂
TH;A
lm − βDi f̂

TH;D
lm �2

ClClþ1

: ð13Þ

That is nevertheless computationally very demanding
considering the number of simulations we make use of
to correct the bias of masking and anisotropic noise (see
Sec. V). The Planck Collaboration separated both aberra-
tion and Doppler signals using orthogonalized weight
matrices [14]. A simpler solution is to just use independent
estimators for A and D following Eq. (9) and to remove the
correlation a posteriori on the data analysis. We adopt this
computationally simple, but very effective approach, con-
sidering the correlation as a linear effect which is described
in detail on Sec. VI and which allows an approximately
independent measurement of both aberration and Doppler.
We find that this approach is appropriate even for higher
precision levels than the ones achievable on present data.
We also consider the more traditional case in which one

assumes a priori that βA ≡ βD ≡ βB as in a standard boost
(B) transformation. This corresponds to a boost due to a
peculiar velocity in the standard slow-roll inflation

DISENTANGLING DOPPLER MODULATION, ABERRATION AND … PHYS. REV. D 104, 063503 (2021)

063503-3



scenario, which does not allow for any additional source of
Doppler- and aberrationlike couplings. This in general
leads to a higher significant detection of these couplings
if indeed there are no other sources of such couplings
besides a regular boost. On the other hand such a
measurement reduces to a simple cross-check, as assuming
no other sources of such couplings means that all physical
information is already encoded in the high-precision
observation of the temperature dipole. The estimated
uncertainties in βA, βD and βB of both ideal (without mask
and noise) and realistic simulated cases are shown in
Sec. VII.

III. THE DIPOLE DISTORTION EFFECT
ON THE ESTIMATORS

The Planck Collaboration does not provide the exact
temperature map from their measurements. Instead it
converts intensity maps on different frequencies ν into a
temperature map using a linearized relation between both
quantities. Defining the quantity δT=T0 as the first-order
dimensionless temperature anisotropies for l ≥ 2, this
procedure introduces distortions in the CMB maps of
the order ∼βδT=T0, which are not due to any primordial
process. This was originally pointed out by [31] in the
particular case of the quadrupole and developed in the
general case by [20] (see also [32]). We summarize the
main points below.
The bolometric specific intensity Iðν; n̂Þ on the CMB rest

frame is given by

Iðν; n̂Þ ¼ h
c2

2ν3

e
hν

kBTðn̂Þ − 1
: ð14Þ

We Taylor expand around T0 to first order, decomposing
Tðn̂Þ ¼ T0 þ ΔTðn̂Þ, and get

δIðν; n̂Þ ≈ h
c2

2ν4e
ν
ν0

T2
0ðe

ν
ν0 − 1Þ2

δTðn̂Þ≡ KðνÞΔTðn̂Þ
T0

; ð15Þ

where ν0 ≡ kBT0=h ¼ ð56.79� 0.01Þ GHz [33]. The
default approach since WMAP is to define temperature
fluctuations ΔT as a linear correction to the intensity
fluctuations δI: ΔT=T0ðn̂Þjlinear ≡ δIðν; n̂Þ=KðνÞ, which
following [17] we will refer to as the “linearized temper-
ature” Lðn̂Þ≡ δIðν; n̂Þ=KðνÞ. If we now extend the expan-
sion to second order we get1

Lðν; n̂Þ ¼ ΔTðn̂Þ
T0

þ
�
ΔTðn̂Þ
T0

�
2

½QðνÞ − 1�; ð16Þ

where

QðνÞ≡ ν

2ν0
coth

�
ν

2ν0

�

: ð17Þ

The second-order term shows that higher-order blackbody
distortions would appear.
Following Notari and Quartin [20] we expand the

linearized temperature L into terms which contain pertur-
bations Oð10−8Þ or higher. These include terms Oðβ2Þ and
OðβδT=T0Þ, but not Oðβ3Þ or Oð½δT=T0�2Þ. As discussed
in [9] and in our companion article [26], we can gain
information on the nature of the intrinsic CMB dipole by
confronting the aberration, Doppler and dipole measure-
ments. In particular, the Doppler couplings contain con-
tributions from this intrinsic component, but the amplitude
of these couplings are in general not the same as the
temperature dipole. So it is convenient to write for the
observed dipole Δ1 ≡ βþ Δ1;int, where β is our velocity
and Δ1;int is the intrinsic dipole, and for the Doppler
couplings coefficient βD ¼ βþ α, where α where α≡
ð1þ αNGÞΔ1;int are the intrinsic Doppler couplings [26],2

which depend on the primordial anisotropy scenario. The
complete temperature anisotropy ΔT is therefore written as
ΔTðn̂Þ ¼ Δ1T0 þ δTðn̂Þ þ ðα · n̂ÞδTðn̂Þ þOð10−9Þ.
Including the effect of aberration and Doppler on Iðν; n̂Þ,
one gets

I0ðν0; n̂0Þ ¼ h
c2

2ν03

e
hν

kBTðn̂Þ − 1
; ð18Þ

where ν ¼ γð1 − β · n̂Þν0. We thus arrive at

I0ðν0; n̂0Þ ¼ 2h
c2

ν03

e

ν0γð1−β·n̂Þ
ν0ð1þ

δTðn̂Þ
T0

þΔ1;int ·n̂þ
δTðn̂Þ
T0

α·n̂Þ − 1

: ð19Þ

Expanding to the order discussed above and dividing by
Kðν0Þ we arrive at

Lðν0; n̂0Þ ¼ −
1

2
β2 þ 1

3
Δ2

1Qðν0Þ þ Δ1 · n̂

þ Δ2
1Qðν0Þ

�

ðΔ̂1 · n̂Þ2 −
1

3

�

þ ðβ · n̂ÞðΔ1 · n̂Þ − ðΔ1 · n̂Þ2

þ δTðn̂Þ
T0

½βD · n̂þ 2Δ1 · n̂ðQðν0Þ − 1Þ�

þ δTðn̂Þ
T0

þ βA
δTabðn̂Þ

T0

þOð10−9Þ: ð20Þ

1This corrects a typo in [20] where the −1 was missing.

2Note that we are now adopting a slightly different notation
than in Eq. (1), but which is more in line with what was
demonstrated in [9], i.e., that α affects only the Doppler couplings
and not the full Lorentz boost.
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This is the most general way to decompose the terms so as
to isolate all effects that carry no new information apart
from the dipole and represents an extension over the results
in [20]. The first two terms are contributions to the
monopole, and in particular the second is sometimes called
the y-type monopole [34]. The third term is the standard
CMB dipole. The terms on the second and third lines are
the Doppler-quadrupole terms. They carry a frequency
dependence, originally discussed by Kamionkowski and
Knox [31]. Here we expanded the Doppler quadrupole into
three terms becausewe allow for an intrinsic dipole; when it
is assumed to be zero, only the first term remains. The next
terms are the ones we are interested in this paper: they are
the Doppler modulation due to βD (a combination of our
peculiar velocity and intrinsic contributions) and the dipole
distortions (DDs), which we discuss below. Finally the
aberration effect in the anisotropies are described by
βAδTab=T0, which includes our velocity and a possible
contribution to aberration from an intrinsic dipole [9,26],
but note that the total effect is expected to have an
amplitude similar to β. This is also what we find in the
real data in the companion article [26].
In what follows for simplicity of notation we will omit

the primes from ν and n̂ since we will always be referring to
quantities in the rest frame of the observer.
As discussed in detail by [20], the crucial point is that the

DDs do not add any new information not already contained
in the very precise measurements of Δ1. Nevertheless, they
leave an imprint in the data which is degenerate with the
Doppler modulations. Therefore, in order to make mea-
surements of Doppler and aberration which are indepen-
dent from the basic dipole measurements one needs to
remove this contribution in the analysis. This was first
realized by the Planck Collaboration in their measurement
of the Doppler modulations [14], but they did not attempt to
make this separation. Their Doppler modulation measure-
ments are thus driven in part by the dipole itself.
We so far discussed the DDs only in terms of the

temperature maps, but the same effect is also present in
the E and B polarization maps [32]. In the B maps much
higher precision is needed to get good measurements of this
effect than what is expected in the near future, so we will
ignore it. But this is not the case for the E maps. We
therefore also need to remove the DDs from the E map.
In order to remove the redundant DD contribution from

our Doppler measurements we need to estimate the
effective weight of the frequency-dependent contributions
arising from QðνÞ on a given map-making procedure. Here
we will therefore only consider the Planck map-making
methods that are mostly based on linear combinations of
single-frequency maps on harmonic space which make it
possible to calculate the effective DD(l) contribution in a
straightforward manner. In particular, from the four main
CMB maps we will restrict ourselves to only two: SMICA
and NILC. These pipelines rely on the sum of single-

frequency maps using weights that vary with l in a way that
optimizes the CMB signal extraction.
We can now define the DD factor DDM

l for each map-
making method as

DDM
l ≡X

ν

2XM
l;ν½QðνÞ − 1�; ð21Þ

where XM
l;ν is the weight of each multipole in the frequency

channel ν of map M. For each l, the sum of all single-
frequency components have to obey

X

ν

XM
l;ν ¼ 1: ð22Þ

The SMICA’s XSMICA
lν and NILC’s XNILC

lν weights are
defined in [35] for temperature as3

XSMICA;T
lν ¼ WFull;T

lν

blνcν
þ PðlÞ

�
WHigh;T

lν

blν
−
WFull;T

lν

blνcν

�

; ð23Þ

XNILC;T
lν ¼

P
bandW

NMW;T;band
ν hbandlP
band h

band
l

: ð24Þ

In the above, PðlÞ is a linear operator that applies a high-
pass filter with a multiplicative factor,4 WFull

lν andWHigh
lν are

the weights for each frequency considering all frequencies
(full) or only high frequencies (100, 143, 217, 353, 545 and
857 GHz), blν is the beam function and cν is a calibration
factor. WNMW;band are the mean weights for each single-
frequency component for each band, where the needlets
hbandl define the extension and weight of the bands. For
polarization E channel, only 30, 44, 70, 100, 143, 217, and
353 GHz frequencies are used and SMICA weights are
defined in [35] as

XSMICA;E
lν ¼ WFull;E

lν

blνcν
; ð25Þ

XNILC;E
lν ¼

P
bandW

NMW;E;band
ν hbandlP
bandh

band
l

: ð26Þ

The DD generates an effective Doppler-like modulation
with an effective velocity βDD;MðlÞ≡ DDM

l Δ1, this

3Considering debeaming, calibration and the mask, as per the
SMICA propagation code available at https://wiki.cosmos.esa.int/
planck-legacy-archive/index.php/SMICA_propagation_code.

4This factor is the sky fraction (fsky) of the transition mask
used to combine WFull and WHigh considering different weights
for regions near and far from the Galactic plane on SMICA 2018
pipeline. This is useful to compute the effective weight for a full
map and was used to compare our pipeline with Planck’s dx12
simulations. When using masked maps XSMICA

lν ≃WHigh
lν =blν for

l ≥ 150 (equal if the mask covers all the transition region).
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modulation is of the order of ∼300–600 km=s, pointing in
the dipole direction. Since it is degenerate with any
Doppler-like signal, results will be biased toward the dipole
direction if this is not removed. We therefore built a
pipeline which allows an accurate removal of the DDs.
Since this is an important issue, we built an alternative
pipeline to cross-check the DD removal. Both pipelines are
discussed in Sec. IV. The complete process of reproducing
the DD is summarized in Fig. 1.
The value of this spurious effective velocity as a function

of multipole is depicted in Fig. 2 using Eq. (21). For our
pipelines (discussed below) we need to work on pixel space
and thus need to make maps using bins of l. We therefore
divide the alm’s into bins, generate a map for each bin
separately and apply the modulation on pixel space. We
settled on 10 multipole bins of size Δl ¼ 200
(2 ≤ l < 2001) as a good compromise between computa-
tional cost and precision: the latter was estimated to be
∼1%. The DD effect is thus the weighted average

DDM
bin ≡

P
200binþ1
l¼200ðbin-1Þþ2

ð2lþ 1ÞDDMðlÞ
P

200binþ1
l¼200ðbin-1Þþ2

ð2lþ 1Þ : ð27Þ

The 2lþ 1weight is used as that is the number of modes in
each l. As discussed in more detail in the Appendix the
Doppler uncertainty in each multipole is, in the absence of
mask and noise, directly given by 1.225ð2lþ 1Þ−1=2.
Therefore, we are weighting by the inverse uncertainty
squared, so that in each bin the higher multipoles have a
larger weight in the overall DD factor.
We finally define βDD;Mbin ≡ DDM

binΔ1 and so the trans-
formation on Tðn̂Þ is for a given multipole bin is

Tðn̂ÞDD;Mbin ¼ Tðn̂ÞMbin
γð1 − βDD;Mbin · n̂Þ : ð28Þ

Summing the alm’s of all 10 binned maps we generate the
final map with the complete DD effect, completing the DD
pipeline (see Fig. 1) for both M ¼ SMICA; T and
M ¼ NILC; T. The procedure is equivalent for Eðn̂Þ.

IV. SIMULATIONS PIPELINES

In order to have an accurate estimate we make use of a
large number of realistic simulations to fit the effective bias
function depending on angular scale. Aiming at robustness,
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FIG. 2. Dipole distortion values for the T and E maps for both
SMICA and NILC. Solid lines are computed using Eq. (21);
dashed stepwise lines are their binned versions from Eq. (27). We
also show in each bin the average recovered values in our 1024
simulations and their 1σ uncertainty as a cross-check. Using
Planck’s dx12 simulations yields equivalent results.

FIG. 1. Dipole distortion pipeline. For each temperature and
polarization map an equivalent Doppler modulation map is
created for each multipole bin with the effective Doppler
modulation by applying the DD directly on pixel space (see
text). We use 10 bins of Δl ¼ 200. A and S indicate the use of
HEALPix routines anafast and synfast, respectively.
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we use two alternative pipelines in order to confirm our
results. The main pipeline (MP) is the one which we use to
quote our final results. The cross-check pipeline (CCP) is
an alternative way to remove the DDs and which we use to
validate our removal method. All steps done to reproduce
these simulations are summarized in Fig. 3.
To recreate the effects of aberration and Doppler on

CMB maps we used the HEALPix-Boost code [36,37],5 a
modified version of HEALPix [38]. HEALPix-Boost
applies both effects on the mapping between harmonic
and pixel space first on the ẑ direction and generalizes to an
arbitrary direction through a Wigner rotation matrix (see,
for instance, [10]) using a modified alteralm code.
The pipeline presented in Fig. 3 can be summarized as

follows. We start with a Cl based on latest Planck 2018
cosmology [39] including lensing. We then produce 3072
Gaussian maps with HEALPix. For each map three types of
signal are applied using HEALPix-Boost, generating three
new maps: a complete boost (aberrationþ Doppler), a
Doppler-only effect and an aberration-only effect. In the
most general case, Doppler and aberration may have
different orientations, so we simulate each of the three

effects in 48 different directions (based on the center of
HEALPix pixels of Nside ¼ 2). In each direction and
signal type we perform 64 simulations. In all cases we
assume jβj ¼ 0.001234 (i.e., v≡ βc ¼ 370 km=s). Note
that since all three Cartesian estimators are independent,
this procedure is equivalent to making boosts in each
component for different values in the range
½−0.001234; 0.001234�. We remark that this procedure
differs from what was carried out by [14], where all
boosted simulations were on the dipole direction with
the dipole amplitude. The motivation behind our procedure
is to guarantee that both aberration and Doppler estimators
are not biased toward the dipole direction.
After this step there is a divergence between the MP and

CCP. The main difference between the MP and CCP is that
on MP the DD effect is left to be removed later in the
analysis, while on the CCP the DD is removed directly on
the CMB maps. Since we compute mask and estimator
biases directly using simulations each pipeline led to
different biases to be removed in the analysis. The base
code to reproduce the MP and CCP, including examples, is
made available online.6

A. Main Pipeline

For the MP the DD effect is applied over the simulated
maps (already with aberration, Doppler or boost signals)
and we arrive at Tðn̂ÞDD;M in Eq. (28). The maps are then
summed with the Planck noise maps NMðn̂Þ for each
component separation method M and multiplied by the
mask Wðn̂Þ. We will henceforth use a tilde to denote
variables which include not only the masking effect but
also the anisotropic noise. The final, realistic, map
T̃ðn̂ÞDDþnoise;M is

T̃ðn̂ÞDDþnoise;M ¼ ½Tðn̂ÞDD;M þ NMðn̂Þ�Wðn̂Þ; ð29Þ

and equivalently for E maps. In order to avoid any dipolar
signature from the mask, which could be a source of bias,
we use a mask with antipodal symmetry, as proposed in
[16]. This type of mask has the special property

Wðl; bÞ ¼ Wðlþ π;−bÞ; ð30Þ

where ðl; bÞ are the Galactic coordinates. So for any
masked pixel we mask also the antipodal pixel, ensuring
by construction a dipolar symmetry. We generate our masks
based on the component separation common masks for
both temperature [also known as UT78(2018) mask] and
polarization [also known as UP78(2018) mask], apodized
with a 100 Gaussian beam. This process removes an extra
5% of the sky, which diminishes the precision of the
estimators by only ∼2%. Figure 4 depicts both the original

FIG. 3. Similar to Fig. 1 for the full simulation pipelines MP
and CCP. Red (blue) steps are exclusive to the MP (CCP). We
generate 64 boosted maps from Planck Cl’s for each 48 different
directions and apply one of the three types of signal: a complete
boost (aberrationþ Doppler), Doppler only, or aberration only. In
total we have 9216 simulations for each SMICA and NILC. The
pipelines then diverge. MP: The DD is applied in all maps, which
are then summed with Planck noise maps and masked. CCP: A
DD removal (dDD) is applied over the noise maps, which are then
summed with the signal (Aþ D, D or A) and masked.

5https://www.github.com/mquartin/healpix-boost. 6https://www.github.com/pdsferreira/cmb-aber-dopp.
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and the antipodally symmetric version of Planck UT78
(2018) mask, which we employ in this work for the T maps.
Finally we compute the alm’s of the final map. We use

these simulations on the statistical and bias analyses. All
the steps are carried out using Nside ¼ 2048 maps (i.e.,
∼50 megapixels), lmax ¼ 2001 and considering the real-
istic beam function given for each of Planck component
separation maps.

B. Cross-check Pipeline

In the CCP instead of adding the DD to the simulations,
we remove it from the final Planck maps by applying a
negative Doppler boost. This DD removal produces “de-
Dopplered” (dDD) CMB maps. To be consistent, we also
remove the DD from the noise maps, again with a negative
Doppler boost. The dDD noise maps are calculated in bins,
as done in Eq. (28),

Nðn̂ÞdDD;Mbin ¼ Nðn̂ÞdDD;Mbin

γð1þ 2DDM
binΔ1 · n̂Þ

: ð31Þ

The final noise summed maps are

Nðn̂ÞdDD;M ¼
X

bin¼1

10

Nðn̂ÞdDD;Mbin : ð32Þ

Nðn̂ÞdDD;M is then summed with the maps containing the
signal (aberration, Doppler or boost) and the result multi-
plied by the mask,

T̃ðn̂ÞdDD;M ¼ ½Tðn̂Þ þ Nðn̂ÞdDDnoise;M�Wðn̂Þ; ð33Þ
for T maps and similarly for E maps (using polarization
noise maps). From this we compute the alm’s, completing
the CCP for simulations.
This can be done equivalently on harmonic space by

subtracting the DD terms directly on the alm’s. From
Eq. (20), considering l > 2 terms and using the definition
of Eq. (21), the DD can be removed using

adDD;Mlm ¼ aMlm − ½Tðn̂0Þ × ðΔ1ðn̂0Þ · n̂0Þ�lmDDM
l ; ð34Þ

for both T and E. The term DDM
l assumes the same value

for all m modes of a given l. After that the mask should be
applied on the map generated by adDD;Mlm . As we are
applying on the last term an additional DD on the observed
maps (which already include a DD contribution), this
ignores quadratic effects. This process also removes the
DD from the noise; to be consistent one also has to remove
the DD from the noise maps when estimating the bias

adDD;noise;Mlm ¼ anoise;Mlm − ½Nðn̂0Þ × ðΔ1ðn̂0Þ · n̂0Þ�lmDDM
l :

ð35Þ
Both map- and harmonic-based dDD methods above
recover the same results for TT estimator and very similar
results on EE. In our companion article [26] we make use
of the map-based method in our final results with the CCP
on real data.
In both cases above of the CCP, besides the need to

adjust the noise maps, some of the statistical properties of
the maps may be affected. Indeed this was not considered in
Planck’s map-making procedures or noise simulations. In
particular single-frequency weights used in the component
separation may no longer be the optimal ones, due to the
DD removal. This is the reason we do not set this as the
main pipeline. We nevertheless find that both pipelines give
consistent results, which increases the robustness of our
findings.

V. BIAS REMOVAL THROUGH BRUTE-FORCE
MOCK SIMULATIONS

Besides the DD, other effects need to be accounted for in
order to produce unbiased estimations for βA and βD. In
particular we need to consider the anisotropy of the noise,
the effect of masking and the correlation between βA and
βD. On the MP we minimize the influence of DD, noise and
mask by applying a sum and multiplication bias correction
on the results of the estimator for each multipole bin of
Δl ¼ 10, for each case (aberration, Doppler or boost),
Cartesian component and map-making method.
This bias correction is estimated allowing for a signal on

any of 48 sky directions and any 482 combinations of βA

and βD. The bias is then fitted for each Cartesian compo-
nent estimator separately. As discussed in Sec. IV, this
means that for each component we allow a large range of
values of aberration and/or Doppler. The bias correction
should thus work for any combination of such components.
In practice, we find the sum and multiplication bias

correction factors by minimizing the following χ2:

χ2 ¼
X

n

�
β̃SIM;M
nXYi;bin − λMXi;binβ

FID
nXYi − μMXi;bin

σ̃SIM;M
XYi;bin

�2

; ð36Þ

where n is a label for each simulation that identifies the
original Gaussian simulation seed and the direction of the
(A, D or B) signal, X is the signal applied (A, D or B), Y is
the estimator used (A, D or B), i is the Cartesian component
and “bin” is one of 200l-bins between l ¼ 2 and

FIG. 4. Antipodally symmetric UT78(2018) mask. The gray
arrow connects the large Magellanic cloud original position and
its antipodal position. This removes an extra 5% of sky but helps
prevent contamination of the mask in the estimators.
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l ¼ 2001. SIM means the result of the estimator over a
simulation, FID is the fiducial value and M is the map-
making method (SMICA or NILC). λXi;bin is the multipli-
cative bias and μXi;bin is the sum bias. Our Cartesian
coordinate system is related to the Galactic coordinate
system as follows. x̂: ðl; bÞ → ð0; 0Þ°, ŷ: ðl; bÞ → ð90; 0Þ°,
ẑ: ðl; bÞ → ð0; 90Þ°.
The estimated bias must not depend on the signal applied

and only on the estimator used, as we do not know a priori
the signal. The bias coefficients λXi;bin and μXi;bin therefore
cannot depend on β. We use X ¼ Y to fit λXi;bin and μXi;bin
and X ≠ Y to fit the correlations factors Ri and Si (see
Sec. VI). After removing the correlation the results are
correct for any combinations of X, Y. The unbiased results
with X ¼ Y and X ≠ Y are used to calculate the statistical
and systematical errors, respectively. The final unbiased
results are given by

βSIM;M
nXYi;bin ¼

β̃SIM;M
nXYi;bin − μMXi;bin

λMXi;bin
: ð37Þ

The bins can be summed to find the vector result

βSIM;M
nXYi ¼

� Xmaxbin

bin¼1

βSIM;M
nXYi;bin

σSIM;M2
XYi;bin

�� Xmaxbin

bin¼1

1

σSIM;M2
XYi;bin

�−1
;

ð38Þ

so that βSIM;M
nXY ¼ fβSIM;M

nXYx ; βSIM;M
nXYy ; βSIM;M

nXYz g. The value of the
bias coefficients and maxbin depends on whether we are
using the TT or EE correlations. Based on the expected
uncertainties shown in Sec. VII, we note that there is little
information in TT (EE) for l > 1800 (l > 1150), so we
set these values as our maximum multipole in the estima-
tors. We also use lmin ¼ 200 in both cases as there is very
little information on the largest scales.
The estimated Cartesian components are the final results

of the pipeline. It is also useful to quote results in Galactic
spherical coordinates. This, however, introduces a third
bias, as the best fit estimators for each component of a
vector does not yield directly the best estimator of its
amplitude. In this case we also renormalize the amplitude

FIG. 5. Residual bias maps after bias removal for simulations with noise, mask and the DD effect, for the three estimators, component
separation method and for TT and EE correlations. White arrows start on the simulated β directions and end on the recovered ones.
Color indicates the jβj bias factor. Results in each of the 48 directions are the average over 64 simulations with lmax ¼ 1800 (1150) for
TT (EE).
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of the vectors dividing by a factor νMXi;bin, the “amplitude
renormalization.” This ensures that, after correlation
removal, hjβSIM;M

XY ji ¼ jβFIDXY j. This correction is a general
property of recovering the amplitude of vectors from their
components, and νMXi;bin is always larger than 1. Therefore,
the uncertainties in the amplitude are smaller than the
average error in the components.
In Fig. 5 the residual bias maps are shown. These maps

represent the difference between fiducial and recovered
results by all estimators, after bias and correlation removal,
on simulations for signals applied in different directions.
Each arrow starts in the expected direction of the simulated
signal and ends in the recovered direction of β, using the
average of unbiased results of 64 simulations. The color
indicates the jβj bias factor. This figure indicates that in
most cases the systematics are negligible when compared
with the statistical uncertainties. The only exceptions are
the Doppler EE measurement, which have significant
residual biases in amplitude (but not in direction) in both
SMICA and NILC. However, Doppler EE has low
expected S=N and this therefore does not affect signifi-
cantly the final Doppler TT þ EE results in our companion
article [26]. Table I reports the comparison of statistical and
systematic uncertainties in all cases for the absolute values
and directions.

VI. REMOVING THE LEAKAGE BETWEEN
ABERRATION AND DOPPLER

Since both aberration and Doppler introduce l;lþ 1
correlations in harmonic space, their estimators have an
inherent correlation. To remove this correlation we define
two coefficients of signal leakage, dubbed Ri (Doppler to
aberration) and Si (aberration to Doppler), for each
Cartesian component i. We start by assuming that the

correlated results β½c�X;i are related to the uncorrelated
estimators as

βA;i ≡ β½c�A;i − RiβD;i; ð39Þ

βD;i ≡ β½c�D;i − SiβA;i: ð40Þ

TABLE I. Statistical (Stat.) and systematic (Syst.) uncertainties
in Galactic coordinates for each component separation method
and each estimator for the main pipeline simulations. Since the
uncertainty on l depends on b we present their average values.

jβjðkm=sÞ lð°Þ bð°Þ
TT Estimator Stat. Syst. Stat. Syst. Stat. Syst.

SMICA
Aberration 130 13 36 1 21 1
Doppler 150 13 57 3 31 1
Boost 100 11 23 0.1 15 0.2

NILC
Aberration 130 13 35 2 22 0.3
Doppler 150 10 60 3 30 1
Boost 100 11 22 1 15 0.1

EE Estimator Stat. Syst. Stat. Syst. Stat. Syst.

SMICA
Aberration 160 17 66 0.1 28 1
Doppler 340 380 103 6 34 1
Boost 150 14 64 3 29 0.5

NILC
Aberration 150 15 65 0.3 29 1
Doppler 330 350 100 5 35 1
Boost 150 15 61 1 29 0.2

TT þ EE Estimator Stat. Syst. Stat. Syst. Stat. Syst.

SMICA
Aberration 99 13 32 0.1 19 0.7
Doppler 140 13 56 3 28 0.5
Boost 84 9 21 0.1 14 0.2

NILC
Aberration 100 10 32 0.3 20 0.3
Doppler 140 10 56 2 28 0.2
Boost 83 9 22 1 15 0.1

Doppler Aberration

Aberration Doppler

-60 -40 -20 0 20 40 60

FIG. 6. Average residual leakage between the TT þ EE estima-
tors for each Cartesian component. Doppler → aberration rep-
resents the aberration estimator results for a simulated Doppler
modulation of vD ¼ 370 km=s without any aberration and vice
versa. Dashed lines mark the ideal 1σ (standard error) statistical
intervals. We conclude that residual leakages are small and can be
neglected.
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To fit Si we minimize the following χ2:

χ2S ¼
X

n

�
β½c�nADi − βFIDnAAiSi

σDi

�2

þ
X

n

�
β½c�nBDi − βFIDnBBiðSi þ 1Þ

σDi

�2

; ð41Þ

where n is the simulation ID, the second and third
subindices are the simulation signal and estimator used
and σXi the standard deviation of the estimator. The first
sum makes use only of simulations where the expected
result is null if there is no correlation (Si ¼ 0). On the
second sum, which is for the boost case, the Doppler
estimation should recover the correct velocity, and hence
the factor ðSi þ 1Þ. Equivalently for Ri we have

χ2R ¼
X

n

�
β½c�nDAi − βFIDnDDiRi

σAi

�2

þ
X

n

�
β½c�nBAi − βFIDnBBiðRi þ 1Þ

σAi

�2

: ð42Þ

Using (39) and (40) we then get the approximation

βA;i ≃
β½c�A;i − Riβ

½c�
D;i

1 − RiSi
; βD;i ≃

β½c�D;i − Siβ
½c�
A;i

1 − SiRi
: ð43Þ

The effectiveness of this method can be seen comparing
the βA;i and βD;i obtained using this method with the ideal
(simulated) case, which we depict in Fig. 6. As can be seen
the residual leakages are small and can be neglected, and
our approach is sufficient for the precision we can achieve.
This is done separately for TT and EE measurements.

VII. FORECAST UNCERTAINTIESWITH PLANCK
AND FUTURE CMB EXPERIMENTS

We start by comparing the expected theoretical uncer-
tainties in each estimator with the simulated uncertainties
for the TT, TEþ ET and EE cases for the case of Planck.
These estimates follow the approach in [10], but are
generalized to separate the Doppler, aberration and boost
cases. In Fig. 7 we depict both the ideal errors without noise
and mask, and the Planck 2018 statistical errors using the
symmetric masks (fsky ¼ 0.73) for temperature and polari-
zation, Nl based on the dx12 SMICA Planck simulations
and the realistic effective beam. As the mask affects each
direction differently, we show the average of the Cartesian
components estimators as a function of lmax.
As can be seen, the EE correlations in Planck can

provide a measurement of aberration or boost at around

FIG. 7. Expected uncertainties in each estimator as a function of lmax for Planck (2018). Dashed lines represents the Planck 1σ errors,
solid lines the ideal theoretical calculations without noise and mask.
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1.5σ, while for Doppler the errors are much larger. This is
due to the low SNR in the aElm; with less noise the EE could
provide a similar precision to TT—see [11,40]. Note also
that for EE (and with less significance also for TE) a partial
cancellation between Doppler and aberration makes the
boost estimator less precise than the pure aberration one for
some ranges of lmax. This is explained in detail in the
Appendix where we explore the uncertainties in each
estimator as a function of l. The actual measured uncer-
tainties in the real data, which include systematic effects
and the leakage between the Doppler and aberration
signals, is similar (see below), and the results using
Planck 2018 data are discussed in detail in the companion
article [26].
As discussed in Sec. V, an unbiased estimate of the

vector amplitude jvj requires an amplitude normalization
factor νMX . For Planck, this factor ranges from around 1.0 to
around 1.8, depending on the estimator (βA, βD and βB),
lmax, component separation method (SMICA or NILC) and
whether we are using TT or EE correlations.
As can be seen from Fig. 7, for Planck adding EE may

improve slightly the TT precision. The TE and ET cross-
correlations could also be used to provide extra precision to
aberration. The analysis is, however, more involved for
them for three reasons: (i) the DD effect is not straightfor-
ward; (ii) our simple scheme to remove leakages between
signals cannot be used as is; and (iii) our estimators would

become correlated [see [10] ]. These difficulties are ignored
in Fig. 7. Since the expected improvement in precision
would be small, especially on Doppler which has the
largest uncertainty in [26] we used only TT þ EE in our
real data analysis.
We also provide forecasts for two upcoming ground-

based CMB experiments: the Simons Observatory and the
CMB-S4. For the Simons Observatory we use the speci-
fications of the optimistic case available in [24]. For the
CMB-S4 we use the precision goal of the experiment
discussed in [25], which assumes σT ¼ 1 μK arcmin and a
beam of 10 full width at half maximum. For both experi-
ments we consider fsky ¼ 0.4. For CMB-S4 we assume for
simplicity lmax ¼ 4000, which yields similar results to the
assumption in [25] that for T (E) foregrounds can be
suppressed until lmax ¼ 3000 (5000). These forecasts
assume that, similar to Planck, all biases from masking
and from the correlation between aberration and Doppler
signals can be suppressed to an amount negligible com-
pared to the statistical errors. They also treat the effects of
masking and beaming in a simpler way, to wit, following
Eqs. (21) and (22) of [11].
Figure 8 depicts these forecasts for TT, TEþ ET, EE,

and the combination of all signals as a function of lmax.
Table II contains the final numbers including all multipoles.
As can be seen, the precision in Doppler will remain much
smaller than the one in aberration, and the difference
between both will become even larger. Not even CMB-

FIG. 8. Same as Fig. 7 for the Simons Observatory and CMB-S4 forecasts. We assume fsky ¼ 0.4. Dotted lines represent the 1σ errors
for Simons Observatory, dot-dashed lines CMB-S4 and solid lines the ideal case without noise or mask.
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S4 should measure Doppler with a 4σ confidence level in
the standard scenario in which the intrinsic dipole is
negligible.

VIII. DISCUSSION

We propose here two pipelines to estimate Doppler and
aberration from CMB data. They make use of an idealist
estimator as a baseline and many simulations which include
realistic noise simulations and masks to remove the biases
they introduce. We have also shown how the dipole
distortions, which produce a spurious Doppler signal which
is degenerate with the dipole, can be removed by carefully
estimating the contribution of each frequency in the each of
the CMB maps. Both pipelines here were shown to be able
to provide measurements of Doppler and aberration which
are approximately independent among themselves and with
the temperature dipole. The main pipeline is able to
measure both signals in an unbiased way (i.e., with minimal
systematic effects) with a precision very similar to the
theoretical expectations: we find a 15%–25% larger uncer-
tainty depending on the estimator and signal type after bias
and signal leakage removal. The proposed cross-check
pipeline is able to produce very similar results and therefore
be used to provide more robustness to the measurements.
As discussed in Sec. IV, using the nonsymmetric mask

the uncertainties are expected to reduce by ∼2%, but the
behavior of the bias becomes much more dependent on the
direction of the aberration and Doppler signal. To solve
this, one should use more simulations including more
directions and possibly an iterative bias removal solution,
to obtain the same systematic errors, instead of fit a bias
independent of direction as done here. We estimate that to
get good results the computational cost will become at least
4 times higher. Since the symmetric mask removes by
construction any dipolar asymmetry on signal that could
possibly bias the results, it improves robustness. We thus

consider the symmetric mask the preferred solution for
Planck. But for future ground-based experiments which
cover less than half of the sky one cannot symmetrize the
mask, and our bias removal pipeline will require more
simulations. Apart from a higher computational cost, we
expect that our proposed pipeline should also work for
them with only minor modifications.
The independent measurements of aberration and

Doppler opens up a new window into the early
Universe. They are measured with a joint significance of
over 4σ in Planck 2018 and, when combined with the
dipole, provide the first constraints in the CMB intrinsic
dipole, as discussed in our companion article [26]. The
upcoming ground-based experiments will reach smaller
scales than Planck, and in particular CMB-S4 will probe
the CMB at l > 3000, improving the precision in both
estimators. But the Doppler couplings will remain harder to
measure than the aberration couplings. In fact, the improve-
ments in Doppler by going all the way to lmax ¼ 4000 will
be only roughly a factor of 2, whereas aberration, which is
already more precisely measured, should improve by a
factor of 3. Finally, since our estimators are based on the
first-order Taylor expansion of the Doppler and aberration
kernels, all information is assumed to be contained in the
l;lþ 1 correlations. For l < 3000 this assumption was
shown to be a good approximation in [11]. For smaller
scales this will need to be investigated in more detail.
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APPENDIX: EXPECTED UNCERTAINTIES
IN EACH MULTIPOLE FOR

ABERRATION AND DOPPLER

In order to better understand the uncertainties in both
Doppler and aberration estimators in each multipole we
follow a similar reasoning to the one included in [40]. The
idea is to compute the signal-to-noise ratio in each l by first
noting that, as shown in [10,11], the fractional uncertainty
in the estimator of haXlmaY�ðlþ1Þmi is given by

TABLE II. Forecast final statistical error for future experiments
in a given Cartesian component. Since the mask affects each
component differently, this is the expected average uncertainty in
all three components. These estimates do not include possible
residual signal leakage between Doppler and aberration. The
uncertainty in jvj will be smaller (see Sec. V). With our proposed
pipeline we find ≃20% larger uncertainties after bias and signal
leakage removal.

δβ (km/s) TT þ TEþ ET þ EE

Aberration Doppler Boost

Planck 2018 97 230 80
Simons Observatory 47 163 40
CMB-S4 29 111 25
Ideal ðlmax ¼ 2000Þ 33 124 30
Ideal ðlmax ¼ 3000Þ 22 83 19
Ideal ðlmax ¼ 4000Þ 16 63 13
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δβ

β

�
�
�
�
XY

≃
�X

l

Xl

m¼−l

haXlmaY�ðlþ1Þmi2
CXX

l CYY
lþ1

�−1=2
: ðA1Þ

The expected value above involves a sum over all l’s and
m’s. Since m enters only through the coefficients in Eq. (4)
we can make simplify things considerably by first perform-
ing an average on m on the coefficients

X

m

½Glm�2 ≃ 0.4082ð2lþ 1Þ: ðA2Þ

If we replace Clþ1 → Cl þ dCl=dl, and use Eqs. (5) and
(6), we get the following approximation for the aberration
and Doppler signal squared in each multipole l:

X

m

haXlmaY�ðlþ1Þmi2 ¼ 0.4082ð2lþ 1Þβ2
�

ð2a − 2dÞCXY
l þ ðalþ dÞ dC

XY
l

dl

�
2

; ðA3Þ

where a and d are Boolean variables such that a ¼ 1
(d ¼ 1) when including aberration (Doppler), and zero
otherwise. This can be simplified using the approximation
that dCl=dl ≪ Cl and by noting that

d lnDXY
l

d lnl
¼ d lnCXY

l

d lnl
þ 2lþ 1

lþ 1
≃
d lnCXY

l

d lnl
þ 2: ðA4Þ

In the last passage we just assumed l ≫ 1. We thus
arrive at

X

m

haXlmaY�ðlþ1Þmi2 ¼ 0.4082ð2lþ 1Þβ2

× ðCXY
l Þ2

�

−2dþ a
d lnDXY

l

d lnl

�
2

: ðA5Þ

This result means that the aberration signal is propor-
tional to the logarithm derivative of Dl, which means for
instance that at the extrema of Dl there is no aberration
signal. In the particular case in which X ¼ Y (i.e., for TT
and EE, but not for TE) and in the ideal case where CXX

l ¼
CXX
l the CXX

l term in front of the brackets cancels and we
arrive at the following uncertainties in βA;D in any given
multipole l:

δβAðlÞjXX ≃ 2.451½2lþ 1�−1=2
�
d lnDXX

l

d lnl

�−1
; ðA6Þ

δβDðlÞjXX ≃ 1.225½2lþ 1�−1=2: ðA7Þ

Interestingly, this means that for X ¼ Y the Doppler signal
is independent of the shape of the angular power spectrum.
Figure 9 illustrates that this simple behavior of both
uncertainties is indeed found in the full estimator (without
averaging over m) in the ideal, noiseless case.
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FIG. 9. Angular power spectra (top) and estimated uncertainties (bottom) for aberration and Doppler in the ideal case for
the TT, EE, and TE two-point correlations. Vertical dashed lines indicate the extrema of Dl, in which the aberration effect produces no
signal. The Doppler uncertainties are approximately independent of the shape of the spectrum for TT and EE and are pro-
portional to ð2lþ 1Þ−1=2.
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Another curious conclusion from Eq. (A5) is that for a
traditional Boost estimator, in which a ¼ d ¼ 1, there is a
partial cancellation of the total signal whenever
d lnDXY

l =d lnl is positive. This means that in some multi-
pole ranges the boost estimator is less precise than the

aberration estimator alone, even though aberration is just
part of the effect. In practice, this partial cancellation is
more important in the EE case, as depicted in Fig. 7, where
for lmax < 1000 the Boost estimator exhibits less precision
than the aberration one.
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