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The spectrum of energy density fluctuations, baryon asymmetry, and coherent large-scale magnetic
fields are the three observables that provide crucial information on physics at very high energies. Inflation
can only provide a mechanism to explain the density perturbations, and the origin of primordial magnetic
fields and baryon asymmetry require physics beyond the standard models of cosmology and particle
physics. In this work, we show that the mechanism that leads to primordial helical fields also leads to
baryogenesis at the beginning of the radiation-dominated epoch. The model we consider here consists of
mass dimension 6 operators that include Riemann coupling between gravity and electromagnetic field
without extending the Standard Model of particle physics. We explicitly show that the generation of
primordial helical magnetic fields leads to baryogenesis. We further show that the model predicts the
observed amount of baryon asymmetry of the Universe for a range of reheating temperatures consistent
with the observations.

DOI: 10.1103/PhysRevD.104.063502

I. INTRODUCTION

Understanding the physical processes in the very early
Universe is a crucial ingredient for deciphering the physics
at energies that we cannot currently probe in terrestrial
experiments. While most observables have been washed
away by the thermal bath of the prerecombination era and do
not have observational consequences, three observables
provide crucial information of the physics at high-energies.
These are the spectrum of energy density fluctuations [1–4],
excess of baryons over antibaryons (baryon asymmetry)
[5–11], and coherent large-scale magnetic fields [12–17].
The inflationary paradigm provides an attractive mecha-

nism to generate the primordial density perturbations that
lead to anisotropies in the cosmic microwave background
(CMB) and the formation of large-scale structures [1–4].
During inflation, the early Universe underwent an accel-
erated expansion, stretching quantum fluctuations to super-
horizon scale density perturbations. Besides providing a
causal mechanism to density perturbations, inflation also
solves the standard cosmological model’s long-standing
puzzles, such as the horizon, flatness, and monopole
problems.

The predictions of inflation are in good agreement with
the present-day observations of CMB anisotropies and
polarization [18]. However, within the standard electrody-
namics, inflation cannot provide a mechanism to generate
large-scale B fields. This is because in 4-dimensions
electromagnetic field is conformally invariant. Since FRW
models are conformally flat, the electromagnetic field
vacuum in FRW is the same as the Minkowski space-time.
Hence, the standard electromagnetic fields generate negli-
gible magnetic fields. More importantly, even if the baryon
asymmetry or cosmological magnetic fields existed before
the epoch of inflation, these would have been diluted by a
factor of e−3N , where N is the number of e-foldings of
inflation [19–21].
The present Universe is observed to contain essentially

only matter and no antimatter, except for the rare anti-
particles produced by cosmic rays. The asymmetry between
baryons and antibaryons, referred to as baryon asymmetry
of the universe (BAU), can be expressed as [18,22]

ηB ¼ nb − nb̄
nγ

¼
� ½5.8 − 6.6� × 10−10 ðfromBBNÞ
ð6.09� 0.06Þ × 10−10 ðfromCMBÞ

ð1Þ

where nb; nb̄; nγ refer to the density of baryons, antibaryons
and photons, respectively. Magnetic fields permeate the
Universe. Coherent magnetic fields in spiral galaxies and
clusters of galaxies have a magnitude of the order of μGauss
[12–15]. There is also indirect evidence of a lower limit of
order 10−16 G for the magnetic field contained in the voids
between galaxies and clusters of galaxies [23].
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The origin of primordial magnetic fields and baryon
asymmetry of the Universe are still unresolved issues and
require physics beyond the standard models of cosmology
and particle physics. This leads to the following questions:
As the Universe cooled, from the early Universe to today,
what were the processes responsible for generating baryon
asymmetry and large-scale magnetic fields? Are these
processes cosmological or particle physics or both?
Since both require physics beyond the standard model,
there is a tantalizing possibility that the same new physics
can solve both. In this work, we consider such a possibility
and show that the mechanism that leads to primordial
helical magnetic fields also leads to baryogenesis at the
beginning of the radiation-dominated epoch. Interestingly,
our mechanism also requires stretching of the primordial
helical magnetic fields to superhorizon scales during
inflation—the same mechanism that leads to primordial
density perturbations.
Before we discuss the model itself, it is necessary to

understand the key ingredients to generate baryon-asym-
metry and magnetic fields and why the same new physics
can potentially solve both these problems [24,25]. In 1967,
Sakharov listed three necessary conditions for creating the
BAU [5,24]: (1) baryon number violation, (2) charge ðCÞ
and charge parity ðCPÞ violation, and (3) departure from
thermal equilibrium. All three of the Sakharov conditions
are satisfied in the Standard Model; however, the electro-
weak phase transition is not sufficiently strong in the first
order [5–8]. The CP-violating effects are not sufficiently
pronounced to account for as large a BAU as we observe.
As a result, there must have been additional physics beyond
the standard model to produce it. This physics could have
been operating anywhere between the weak scale and the
GUT scale. Corresponding to out-of-equilibrium condi-
tions, the baryogenesis scenarios are divided into two
categories: (a) by the universe expansion itself or (b) by
fast phase transition and bubble nucleation. In particular,
the latter concerns the electroweak baryogenesis schemes,
while the former is typical for a GUT type baryogenesis or
leptogenesis [5–8].
More than two decades ago, Davidson pointed out an

interesting relation between the primordial magnetic field
and Sakharov’s conditions [25]. She argued that the presence
of background magnetic fields in the early Universe could
lead to the breaking of C;CP; SOð3Þ symmetries and
thermal equilibrium. Specifically, she argued that the pres-
ence of the magnetic fields leads to the following three
conditions: (1) There should be some moderately out-of-
thermal-equilibrium dynamics because in equilibrium, the
photon distribution is thermal, and there are no particle
currents to sustain a “long-range” field, (2) Since B is odd
under C and CP, the presence of magnetic field will lead to
CP violation, (3) Since the magnetic field is a vector
quantity, it chooses a particular direction hence breaks the
isotropy (rotational invariance). Thus, Davidson provided a

possible link between the presence of magnetic fields to the
conditions required for baryogenesis [25].
Davidson’s conditions are necessary but not sufficient.

One key missing ingredient, as we show, is the require-
ment of primordial helical magnetic fields (details in
Sec. II). Primordial helical magnetic fields are generated
by the terms that break conformal invariance and parity
symmetry [26–33]. If we could measure them, primordial
helical magnetic fields provide evidence of CP violation
in the early Universe. Interestingly, the presence of
primordial helical fields leads to nonzero Chern-Simons
number [19,34,35] and, eventually, the change in the
fermion number.
Recently, the current authors constructed a simple model

of inflationary magnetogenesis that couples the electro-
magnetic fields with the Riemann tensor [33]. We showed
that this model leads to a primordial helical magnetic field
where one helical mode is enhanced while the other mode
is suppressed. The model has two key advantages over
other models [28–32]: First, it does not require the coupling
of the electromagnetic field with any scalar field. Hence,
unlike Ratra model [36–38], there is no strong-coupling
problem caused by the extra degrees of freedom. Second,
the model is free from backreaction for generic slow-roll
inflation models [33]. In Ref. [29], authors have shown the
strong-coupling problem in Ratra model [36] can be
avoided by choosing a particular coupling function.
In that work, the current authors used the general

effective field theory of gravity coupled to the Standard
Model of particle physics framework to obtain leading
order gravity terms that couple to the standard model
bosons [39]. As we have done in the previous work, we
limit to mass dimension 6-operators coupling to the gauge
field Lagrangian, specifically, to the electromagnetic field.
In this work also, we limit to mass dimension 6-operators

coupling to the gauge field, specifically, to the electromag-
netic field. We show that the generation of primordial
helical magnetic fields from the above model leads to
baryogenesis. Since the model produces helical fields over
large length scales, we show that the Chern-Simons (CS)
number density is nonzero (details in Sec. II). Considering
that the model generates primordial helical modes at all
length scales, we focus on the last ten e-foldings of
inflation. This is because the modes that leave the
Hubble radius during the last 10e-foldings of inflation will
reenter the Universe after reheating; these primordial
helical modes will lead to baryogenesis just at the begin-
ning of the radiation-dominated epoch. Furthermore, we
show that the BAU is independent of inflation models and
depends only on the energy scale at the exit of inflation and
reheating temperature.
In Sec. II, we discuss the relation between primordial

helical magnetic fields and baryogenesis, in particular, the
chiral anomaly in the presence of the magnetic field,
and obtain the expression for Chern-Simon number density.
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In Sec. III, we discuss the generation of primordial helical
modes and show that primordial helical modes lead to a
nonzero CS number density. Then we evaluate the baryon
asymmetry parameter in Sec. IV. Section V contains the
implications of the results. Appendices contain the details
of the calculations.
In this work, we use ðþ;−;−;−Þ signature for the

4-D space-time metric. Greek alphabets denote the
4-dimensional space-time coordinates, and Latin alphabets
denote the 3-dimensional spatial coordinates. A prime
stands for a derivative with respect to conformal time
ðηÞ and subscript ; i denotes a derivative with respect to
spatial coordinates. We use the Heaviside-Lorentz units
such that c ¼ kB ¼ ϵ0 ¼ μ0 ¼ 1. The reduced Planck mass
is denoted by MP ¼ ð8πGÞ−1=2.

II. CONDITIONS ON BARYOGENESIS IN THE
PRESENCE OF PRIMORDIAL MAGNETIC FIELD

As we mentioned in the Introduction, Davidson’s con-
ditions are necessary but not sufficient. One key missing
ingredient is the requirement of primordial helical mag-
netic fields. In this section, we briefly discuss this.
In the very early Universe, just after the exit of inflation,

the energy scale of the Universe was close to 1014 GeV. All
particles, including fermions, are highly relativistic and can
be treated as massless. Although the massless Dirac
equation is invariant under chiral transformations in the
classical theory, the chiral symmetry is broken due to
quantum mechanical effects in the presence of the external
electromagnetic fields. This phenomenon, known as the
quantum axial anomaly, affects the transport properties of
the chiral medium, leading to experimentally accessible
signatures such as the chiral magnetic effect [40] and the
chiral separation effect [41].
In the early Universe, the generation of the nonzero

primordial helical magnetic fields leads to a chiral anomaly
resulting from the imbalance between left and right-handed
fermions. In the presence of an electromagnetic field in
curved space-time, the chiral anomaly is given by the
following equation [42,43]:

∇μJ
μ
A¼−

1

384π2
ϵμνρσRμναβRαβ

ρσþ
e2

16π2
ϵμναβFμνFαβ ð2Þ

where JμA is the chiral current, Rρσ
αβ is the Riemann tensor

and Aμ is the four-vector potential of the electromagnetic
field, Fμν ¼ ∇μAν −∇νAμ. ϵμνρσ ¼ 1ffiffiffiffi−gp ημνρσ is a fully

antisymmetric tensor, ημνρσ is Levi-Civita symbol whose
values are �1 and we set η0123 ¼ 1 ¼ −η0123. It is easy to
see from the above equation that the anomaly contribution
from the electromagnetic field and the gravity act inde-
pendently and, for most parts, can be treated independently.
In the case of flat FRW background in conformal

time ðηÞ:

ds2 ¼ a2ðηÞðdη2 − δijdxidxjÞ ð3Þ

the contribution of the first term in the right-hand side (rhs)
of Eq. (2) vanishes, i.e.,

ϵμνρσRμναβRαβ
ρσ ¼ 0: ð4Þ

It can be shown that even at the first-order, the gravitational
contribution vanishes, and the nonzero contribution arises
only at second order [44]. Due to the presence of the
antisymmetric tensor, the gravitational fluctuations lead to
gravitational birefringence and can lead to net chiral
current.
In the flat FRW background, the second term in the rhs of

Eq. (2) is given by:

e2

16π2
ϵμναβFμνFαβ ¼

e2

4a4
ϵijk∂jAk∂0Ai: ð5Þ

In the presence of the magnetic field, this term is nonzero
and hence leads to a net chiral current. Thus, if we consider
only up to the first-order in perturbations, only the second
term in the rhs of Eq. (2) contributes and the chiral anomaly
equation reduces to:

∂μð
ffiffiffiffiffiffi
−g

p
JμAÞ ¼

e2

16π2
ημναβFμνFαβ; ð6Þ

where we have used

∇μJ
μ
A ¼ 1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
JμAÞ; ϵμναβ ¼ 1ffiffiffiffiffiffi−gp ημναβ:

Note that during inflation, left-hand side (lhs) in Eq. (6)
is zero, and due to the exponential expansion, standard
model particles are diluted. However, if we can generate
nonzero primordial helical fields during inflation, then
these nonzero primordial helical fields can lead to chiral
current at the radiation-dominated epoch (or during reheat-
ing when the standard model particles are created).
To see this, we rewrite Eq. (6) using ημναβFμνFαβ ¼
4∂μðημναβAν∂αAβÞ, i.e.,

∂μð
ffiffiffiffiffiffi
−g

p
JμAÞ ¼

e2

4π2
∂μðημναβAν∂αAβÞ ¼

e2

4π2
∂μð

ffiffiffiffiffiffi
−g

p
KμÞ

ð7Þ

where

Kμ ¼ ημναβffiffiffiffiffiffi−gp Aν∂αAβ

is the topological current. For FRW background, the
components are given by
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K0 ¼ a−4ðηÞϵijkAi∂jAk and Ki ¼ a−4ðηÞϵijkAj∂0Ak:

ð8Þ
Solving Eq. (7), we get,

JμA ¼ e2

4π2
Kμ:

Thus, the net baryon number density, nB ¼ nb − nb̄ ¼
aðηÞh0jJ0Aj0i is related to Chern-Simon number density
nCS ¼ h0jK0j0i as [43],

nB ≡ e2

4π2
aðηÞnCS: ð9Þ

Note that nCS ¼ 0 at the start of inflation, and due to the
absence of standard model particles nB ¼ 0 during infla-
tion. Using the expression for K0, we can write the Chern-
Simon number density as

nCS ¼
1

a4
ϵijkh0jAi∂jAkj0i

¼ 1

a4

Z
Λ

μ

dk
k

k4

2π2
ðjAþj2 − jA−j2Þ; ð10Þ

where Λ, and μ set the possible energy range (or epoch)
during which baryon asymmetry is generated after infla-
tion, and A� refer to the positive and negative helicity
modes of the electromagnetic field. The above expression is
key in illuminating a useful relation between primordial
helical magnetic fields generated during inflation and
baryogenesis: First, we see that the contribution to nCS
is from all the modes that reenter the horizon at the
beginning of the radiation-dominated epoch. Thus,
the value of nCS depends on the upper cutoff Λ. Second,
the expression corresponds to the total Chern-Simons
number density generated from the modes in the energy
range ½μ;Λ�—when these helical modes reenter during the
radiation-dominated epoch. The helicity modes Aþ and A−
are generated during inflation, and a−4ðηÞ is the dilution
due to the expansion of the Universe during this epoch.
Finally, nCS vanishes if the primordial magnetic fields are
nonhelical, i.e., jAþj ¼ jA−j. Hence, as mentioned at the
beginning of this section, the generation of nonhelical
magnetic fields will not lead to baryogenesis. Thus, the key
missing ingredient of Davidson’s argument is the require-
ment of primordial helical magnetic fields.
In the following two sections, we explicitly evaluate the

Chern-Simons number for our model and show that it is not
sensitive to inflationary and reheating dynamics.

III. THE MODEL AND THE PRIMORDIAL
HELICAL FIELDS

We consider the following action [33]:

S ¼ SGrav þ Sϕ þ SEM þ SCB ð11Þ

where SGrav is the Einstein-Hilbert action

SGrav ¼ −
M2

P

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð12Þ

and Sϕ is the action for the minimally coupled, self-
interacting canonical scalar field:

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕ − VðϕÞ

�
: ð13Þ

SEM; SCB refer to the standard electromagnetic (EM) and
conformal breaking part of the electromagnetic terms,
respectively, which are given by:

SEM ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν; ð14Þ

SCB ¼ −
1

M2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rρσ

αβFαβF̃ρσ

¼ −
1

M2

Z
d4x

ffiffiffiffiffiffi
−g

p
R̃μναβFαβFμν; ð15Þ

where R̃μναβ ¼ 1
2
ϵμνρσRρσ

αβ is the dual of Riemann tensor
and F̃ρσ ¼ 1

2
ϵμνρσFμν is the dual of Fμν. The standard

electromagnetic action SEM is conformally invariant; how-
ever, the presence of Riemann curvature in SCB breaks the
conformal invariance.M is the energy scale, which sets the
scale for the breaking of conformal invariance. Note that
the signs of SEM and SCB are chosen with respect to the
positive electromagnetic energy density.
InRef. [39], the authors systematically showed that the first

gravity operators appear at mass dimension 6 in the series
expansion of the coupling between gravity and the standard
model of particle physics. These operators only couple to the
standard model Bosons. They also showed that (i) no new
gravity operators appear at mass dimension 7, (ii) in mass
dimension 8, the standard model Fermions appear, and
(iii) couplingbetween the scalar (Higgs) field and the standard
model gauge Bosons appear only at mass dimension 8. Since
mass dimension 8 operators are highly suppressed, like in
Ref. [33], we limit ourselves to mass dimension 6 operators.
Due to Riemann coupling, M appears as a time-dependent
coupling in the FRWbackground i.e., 1=Meff ∼H=M. At the
current epoch where H0 ≈ 10−42 GeV and assuming the
parameter M ≈ 1017 GeV, we obtain H0=M ∼ 10−59.
Therefore, the coupling (Riemann tensor) is tiny and the
nonminimal coupling term in the electromagnetic action will
have significant contribution only in the early universe. We
also would like to point that the coupling term ðSCBÞ is tiny
near the Schwarzschild radius of a solar mass black-hole (for
details, see Appendix D).
We assume that the scalar field ðϕÞ dominates the energy

density in the during inflation and leads to 60 − 70e-
foldings of inflation with HInf ∼ 1014 GeV. Specifically,

ASHU KUSHWAHA and S. SHANKARANARAYANAN PHYS. REV. D 104, 063502 (2021)

063502-4



we consider power-law inflation in which the scale factor
(in conformal time) is [45]:

aðηÞ ¼
�
−

η

η0

�ðβþ1Þ
ð16Þ

where, the constant η0 denotes the scale of inflation and
β ≤ −2. β ¼ −2 corresponds to exact de Sitter. During
inflation, η ∈ ð−∞; 0Þ. For slow-roll inflation β ≈ −2 − ϵ
and H≡ a0=a ≈ −ð1þ ϵÞ=η, where H is the Hubble
parameter in conformal time and ϵ is the slow roll
parameter. For our discussion below, we also assume that
10−3 ≤ ðHInf=MÞ ≤ 1 [46–49].
Equation of motion of the gauge field can be obtained by

varying the action (11) with respect to Aμ. In the Coulomb
gauge ðA0 ¼ 0; ∂iAi ¼ 0Þ, we have:

A00
i þ

4ϵijl
M2

�
a000

a3
− 3

a00a0

a4

�
∂jAl − ∂j∂jAi ¼ 0 ð17Þ

where ϵijl is the Levi-Civita symbol in the 3-D Euclidean
space. The above equation is different from other models in
the literature and leads to distinct evolution of the magnetic
field fluctuations in comparison to nonminimally coupled
scalar field models [33]. In the helicity basis, the above
equation reduces to (see Appendix A):

A00
h þ

�
k2 −

4kh
M2

�
a000

a3
− 3

a00a0

a4

��
Ah ¼ 0: ð18Þ

For the two helicity states ðh ¼ �Þ, the above expression
leads to two different evolution equations [cf. Eqs. (B6a),
(B6b)]. From Eq. (10) we see that to obtain appreciable
value of Chern-Simons number ðnCSÞ, the difference
between the two helicity states should be nonzero, and it
is maximum if one helicity mode is enhanced compared
to other.
In our previous work [33], we showed that for a range of

parameters of interest, negative helicity mode decays while
the positive helicity mode is enhanced. Hence, negative
helicity mode ðA−Þ will have negligible contribution and
can be set to zero, i.e., jA−j ¼ 0. Using the series expansion
of the Bessel functions, in the leading order, the positive
helicity mode takes the following form (B6a):

Aþðτ; kÞ ¼ Ck
1
4α − C2

F−1

π
Γ
�
1

2α

�
k−

1
4ατ−

1
α ð19Þ

where,

jCj ≈ ς−1jC2j ≈
M3=2η0ffiffiffi

4
p

ηend10
45 GeV3

;

F ≈ jςj−1 ≈
ffiffiffiffiffiffiffiffiffiffiffi
M2η0

q
; α ¼ −

1

2
− ϵ ð20Þ

For details, see Appendix B.
Our model generates primordial magnetic fields through

the nonminimal coupling of the electromagnetic field. The
model requires inflation. Inflation generates density per-
turbations at all scales and provides a causal mechanism to
generate the structure formation. Similarly, our model
generates magnetic fields at all length scales, including
the current Horizon radius [12–16]. This has to be con-
trasted from the models where the magnetic field is
generated during recombination. In these models, the
coherence scale of the generated fields cannot exceed
the size of the horizon radius at that time.
In Appendix B, we have plotted the power spectrum of

the present-day helical magnetic field ðB0Þ as a function of
k. Assuming M ¼ 1017 GeV, our model predicts the
primordial helical magnetic fields of strength 10−20 G on
Gpc scales at the current epoch. From Fig. 3 we can see that
our model predicts the present-day helical magnetic field of
strength 10−15 G on Mpc scales. The primordial fields
generated from our model are within the upper bounds on
the strength of the seed magnetic fields needed to explain
the current galactic magnetic fields [50]. These primordial
fields are amplified by the dynamo mechanism and can lead
to the observed magnetic fields; hence our model requires
the dynamo mechanism.

IV. BARYON ASYMMETRY OF THE UNIVERSE

In this section, we compute the baryon asymmetry
parameter due to the primordial helical magnetic fields.
Specifically, we compute it for the maximum helicity
modes—one mode is enhanced compared to the other.
Substituting Eq. (19) in Eq. (10), we obtain

nCS ¼
1

2π2a4ðηÞ
Z

Λ

μ
dk

�
jCj2k3þ 1

2α þ jC2

F−1

π
Γ
�
1

2α

�����2k3− 1
2ατ−

2
α

�
: ð21Þ

Integrating the above expression, we get

nCS¼
1

2π2a4ðηÞ�
jCj2 k

4þ 1
2α

4þ 1
2α

����Λ
μ

þ
����C2

F−1

π
Γ
�
1

2α

�����2 k4−
1
2α

4− 1
2α

τ−
2
α

����Λ
μ

�
: ð22Þ

Wewant to make the following remarks regarding the above
expression: First, the BAU is generated similarly to the
inflationary mechanism of the generation of density pertur-
bation. During inflation, the primordial helical magnetic
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field fluctuations are stretched exponentially and exit the
horizon. The modes that reenter during the radiation-
dominated epoch are responsible for the generation of
baryon asymmetry. Second, the generation of baryon
asymmetry does not strongly depend on the reheating
dynamics since only the modes that reenter the Hubble
radius during the radiation-dominated epoch are relevant.
Assuming a de Sitter (or approximately de Sitter)

Universe, from Eq. (20), we have τ−
2
α ¼ a−2ðηÞ.

Substituting this in the Eq. (22), we see that the second
term in the rhs decays faster compared to the first term by
a−2ðηÞ. Hence, we can neglect the second term. Substituting
the resulting form of nCS in Eq. (9) leads to:

nB ¼ e2

4π2
1

2π2a3ðηÞ jCj
2
k4þ 1

2α

4þ 1
2α

����Λ
μ

: ð23Þ

To obtain the ranges of Λ and μ, we need to know the modes
exited during inflation. For the density perturbations, the
largest scales observed in the CMB are produced around
40−60e-foldings before the end of inflation [51]. This is
because the adiabatic quantum fluctuations responsible for
the density perturbations reenter the Hubble radius around
z ∼ 1500. Hence, in Ref. [33], the current authors only
looked at primordial helical fields generated around
40−60e-foldings before the end of inflation. However, in
this case, we will concentrate on the primordial helical fields
that renter the horizon very early (at the beginning of the
radiation-dominated epoch) to generate the required BAU.
This means that the modes that left the horizon around the
last 5 to 10e-foldings of inflation are only relevant. Since
these modes have already left the Hubble radius during
inflation, the reheating dynamics do not alter these primor-
dial helical modes. Hence, the model is insensitive to the
reheating dynamics.
Our focus now shifts to explicitly evaluating BAU for

our model. First step is to evaluate the dilution factor a−3 in
Eq. (23). To do this, we define aΛ (and aμ) as the scale
factor at the time when the maximal helicity mode with
energy Λ (and μ) left the Hubble radius during inflation.
Assuming an instant reheating, and following the calcu-
lations given in Appendix C, we have aμ ¼ 106aΛ. Taking
into account that these modes exited the Hubble radius
during inflation in the last 5e-foldings, the dilution factor
[prefactor in Eq. (23)] becomes a−3 ∼ 10−24.
The second step is to obtain the constant C. As discussed

in previous section, for slow-roll inflation, jCj is given by
Eq. (20). Thus, Eq. (23) reduces to:

nB ≈
10−24 · jCj2 · e2

24π4
ðΛ3 − μ3Þ: ð24Þ

Third step is to compare the theoretically derived quantity
ðnBÞ with observations Eq. (1). However, nγ is not constant
in the early Universe (since the photon chemical potential is

zero) and is approximately constant only after the last
scattering surface. Since entropy density per comoving
volume is conserved, the quantity nB=s is better suited for
theoretical calculations [1]. Assuming that there was no
significant entropy production after reheating phase,
entropy density in the radiation-dominated epoch is:

s ≃
2π2

45
gT3

RH; ð25Þ

where TRH is the reheating temperature and the effective
relativistic degrees of freedom g ∼ 100 at reheating. From
Eqs. (24), (25), we can define the following dimensionless
BAU parameter:

ηB ¼ nB
s
≈ 10−24

jCj2 · e2
24π4

ðΛ3 − μ3Þ 45

2π2gT3
RH

≈ 10−29jCj2 Λ3

T3
RH

ð26Þ

where in the last expression we have neglected μ3 i.e.,
Λ3 − μ3 ≈ Λ3. Appendix C contains plots for different
values of Λ and μ. From these plots, we infer that the
results do not strongly depend on the exact value of μ.
Finally, substituting the value of jCj2 (from Eq. (20) and

using the values in Appendix B) in Eq. (26), we obtain:

ηB ≈
10−29 · η20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηend · 1045 GeV3
p M3Λ3

T3
RH

≈ 10−2
�
M
MP

�
3
�

Λ
TRH

�
3

ð27Þ

This is one of the crucial expressions in this work
regarding which we would like to stress the following:
First, the BAU parameter depends on three quantities—M
(the conformal invariance breaking scale), TRH (reheating
temperature scale) and Λ (the largest helical mode that
catalyses baryogenesis). Second, the BAU parameter is
inversely proportional to the reheating temperature. This
behavior is different from the results of Ref. [19,21,
43,44]. In some of these models, BAU is linearly depen-
dent on the reheating temperature. The difference in the
relationship is because the detailed reheating dynamics is
not required, only the information about the entropy
production is required in our model. In other models,
the exact detailed reheating dynamics is required, which is
avoided in our approach. Third, the BAU parameter is
linearly proportional to M and Λ. For smaller M, the
contribution of the conformal breaking term (15) will be
much larger, and hence, more primordial helical fields are
produced during inflation. However, for the same reheat-
ing temperature, Λ has to be larger to produce the same
amount of BAU. Fourth, to get a better understanding of
the dependence of BAU on various parameters, we use the
following parametrization:
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ηB ¼ n × 10−10; M ¼ m × 1014 GeV;

Λ ¼ δ × 1012 GeV; TRH ¼ γ × 1012 GeV ð28Þ

where n, m, δ, γ are dimensionless parameters. The
maximum reheating corresponds to the inflation scale
[51]. With supersymmetry, the requirement that not too
many gravitinos are produced after inflation provides a
stringent constraint on the reheating temperature, TRH ∼
1010–1011 GeV [52,53]. Hence, we consider the range of γ
to be f10−2; 1000g. Since the value of M should be
between the GUT and Planck scale, we consider the
range of m to be f1; 1000g. We assume that the modes
that reenter during radiation epoch is around 1012 GeV.
Hence, we consider the range of δ to be f1; 100g. Using
the above parametrization in Eq. (27), we get:

m3 × δ3

γ3
≈ n107: ð29Þ

Figures 1 and 2 contain the plots of γ versus m for
different values of n and fixed δ. In Appendix C we have
plotted the same for other values of δ. From these plots, we
deduce the following: First, for a range of values of γ, δ, and
m, BAU can have values between 10−10 to 10−9. Thus, the
model can lead to the observed amount of baryon

FIG. 1. Plot of the rescaled reheating temperature TRH with the
rescaled conformal symmetry breaking parameterM, for different
values of n. Here, we have set Λ ¼ 1014 GeV; μ ¼ 1010 GeV.

(a) (b)

(c) (d)

FIG. 2. Plots showing the behavior of reheating temperature TRH (vertical axis) with parameter M (horizontal axis), for lower energy
scales of Λ and μ.
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asymmetry of the Universe consistent with the Planck data
[18]. Second, the model does not depend on the nature of
the reheating dynamics. As can be seen from the plots, for a
range of values of m, δ, the model can lead to BAU for a
range of reheating temperatures. This has to be contrasted
with other models in the literature [19,21] which requires
detailed knowledge of the reheating phase of the Universe.
Third, the unknown parameter in the model is M. In
Ref. [33], we showed that for the model to be consistent
with the lower limit of 10−16 Gauss magnetic fields in the
voids [23], thenM ∼ 1017 GeV. The current analysis shows
that M ∼ 1017 GeV is consistent with baryogenesis. Thus,
the model is tantalizingly close to solving baryogenesis and
magnetogenesis using the same causal mechanism that
solves the origin of density perturbations.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we have proposed a viable baryogenesis
scenario in the early Universe that does not require any
extension to the Standard Model of particle physics. The
crucial ingredient is the generation of primordial helical
magnetic fields due to Riemann coupling. The advantage of
the primordial helical fields is that the nonzero helicity
suggests a nonzero contribution in the CP violation term.
An interesting feature of our model is the stretching of the
primordial helical magnetic fields to super-horizon scales
during inflation—the same mechanism that leads to pri-
mordial density perturbations. While the helical modes
generated around 40−60e-foldings before the end of
inflation lead to the observed large-scale magnetic fields,
the helical modes that renter the horizon very early (at the
beginning of the radiation-dominated epoch) lead to the
baryon asymmetry. Thus, our mechanism provides possible
testable evidence for the entire inflationary epoch.
More than two decades ago, Davidson pointed out an

interesting relation between the primordial magnetic field
and Sakharov’s conditions [25]. In this work, we have
explicitly shown that Davidson’s conditions are necessary
but not sufficient. The key missing ingredient is the
requirement of primordial helical magnetic fields. While
the helical and nonhelical fields break the isotropy and lead
to CP violation, only the modes with maximal helicity
contribute significantly to the Chern-Simon number den-
sity. We have shown that the BAU parameter predicted by
our model is independent of any specific inflation model
and reheating dynamics; however, it depends on the scale at
which inflation ends and reheating temperature.
The BAU parameter (27) obtained in our model is

inversely proportional to reheating temperature. Assuming
the exit of inflation at 1014 GeV, for the observed amount of
baryon asymmetry ηB ∼ 10−10, we obtained that the reheat-
ing temperature should be in the range 1012–1014 GeV,
which is consistent with the constraints on the reheating

temperature [51–53]. This means that our model does not
prefer a very low-energy reheating temperature [53].
In the literature, various mechanisms have been discussed

to solve the BAU problem using the primordial helical
magnetic fields [19–21,34,43]. In Ref. [19], the authors
obtained the required BAU by assuming the presence of
helical magnetic fields of present-day strength 10−14G <
B0 < 10−12G and coherence length 1 pc < λ < 1 Mpc, and
taking into account of the MHD effects. In Ref. [21], authors
studied the generation of a primordial magnetic field in
conjunction with the BAU generation through leptogenesis;
however, the predicted value of the present-day coherence
length of such magnetic fields is very small ∼10 pc.
In Refs. [20,34], the authors consider pseudoscalar

inflation (axion inflation) model with a dimension five
couplings. In these models, the authors assumed the scale
of the baryogenesis to be electroweak scale, and they
obtained the required BAU assuming the scale of inflation
to be 1010 GeV—1012 GeV [20,34]. In Ref. [43], the
authors considered the extension of the Standard Model
with anomalous gauge symmetry. They obtained the
required BAU for HInf ∼ 1014 GeV and reheating tem-
perate at 1016 GeV. In Ref. [54], the authors argued that to
generate the observed baryon asymmetry, some asymme-
try in the initial conditions of either B or scalar field ϕ is
required, which can be induced from temperature-
dependent potential or asymmetry in quantum fluctua-
tions. Our model is robust to inflationary/reheating
dynamics and uses the same success of inflationary
perturbations to generate BAU. Thus, our model is
tantalizingly close to solving baryogenesis and magneto-
genesis using the same causal mechanism that solves the
origin of density perturbations.
In this work, we did not consider the gravity contribution

to the chiral anomaly equation. In Ref. [44], the authors
considered the phenomenon of gravitational birefringence
to show that the gravitational fluctuations generated during
inflation can give the Universe’s observed amount of
baryon asymmetry. However, as we showed in. Sec. II,
RR̃ contributes only in the second-order, and hence we have
ignored it in this analysis. It may be interesting to look at
the second-order corrections and analyze the parameter
constraints.
In this work, we have used the general effective field

theory of gravity coupled to the Standard Model of particle
physics framework to obtain leading order gravity terms
that couple to the standard model bosons [39]. We have
considered only the mass dimension 6-operators coupling
to the gauge field Lagrangian, specifically, to the electro-
magnetic field. The coupling to the Fermions arises at the
mass dimension 8. Thus, coupling of Fermion-anti-
Fermion with Uð1Þ field will play a role only at this order.
While these are expected to be suppressed compared to
mass-dimension 6 operators, they are relevant at Planck
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scale. We plan to look at the effects of mass dimension 8
operators on the baryogenesis.
In this work, we focused on the electromagnetic fields

and the effects of the helical fields on baryogenesis. It will
be interesting to extend the analysis to gluons and study the
effects on the asymmetry generated in quarks and the
baryons. It is particularly important, and a study on this is
currently in progress to acquire more stringent constraints
on the parameters M and TRH [55].

Note added.—As we were finalizing this manuscript, the
article [56] appeared on the arXiv which also discusses
baryogenesis from magnetic fields. However, the approach
followed in the reference requires MHD amplification
while our approach requires helical fields generated during
inflation.
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APPENDIX A: QUANTIZATION IN THE
HELICITY BASIS

In this section, we briefly discuss the evolution of the
quantum fluctuations of the electromagnetic field in the
helicity basis [29]. Decomposition of the vector potential in
Fourier domain leads to:

Aiðx⃗; ηÞ ¼
Z

d3k
ð2πÞ3X

λ¼1;2

εiλ½Aλðk; ηÞbλðk⃗Þeik·x þ A�
λðk; ηÞb†λðk⃗Þe−ik·x�

ðA1Þ

where bðkÞ and b†ðkÞ are the annihilation and creation
operators respectively for a given comoving mode k, and εiλ
is the orthogonal basis vector which in right-handed
coordinate system [29] is given by

εμ ¼
�
1

a
; 0

�
; εμ ¼

�
0;
ε̂iλ
a

�
;

εμ3 ¼
�
0;
k̂
a

�
for λ ¼ 1; 2; ðA2Þ

3-vectors ε̂iλ are unit vectors orthogonal to k̂ and to each
other. Substituting Eq. (A2) in Eq. (A1) and defining the
new variable Āλ ¼ aðηÞAλðk; ηÞ, we have:

Aiðx; ηÞ ¼
Z

d3k
ð2πÞ3

X
λ¼1;2

ε̂iλ½ĀλbλðkÞeik·x þ Ā�
λb

†
λðk⃗Þe−ik·x�:

ðA3Þ

Substituting Eq. (A3) in Eq. (17), we get:

X
λ¼1;2

bλ

�
ε̂iλĀ00

λ þ
4i
M2

ϵijlkjε̂lλĀλ

�
a000

a3
− 3

a00a0

a4

�
þ k2ε̂iλĀλ

�
¼ 0 ðA4Þ

where we have used ∂j∂j ¼ −k2.
Since the action (11) contains parity breaking term

(helicity term), it is useful to work in the helicity basis.
The helicity basis vectors εþ and ε− corresponding to h ¼
þ1 and h ¼ −1 are defined as

ε� ¼ 1ffiffiffi
2

p ðε̂1 � iε̂2Þ: ðA5Þ

Assuming that the wave propagates in the z−direction, the
vector potential in the helicity basis is given by:

Ā ¼ Ā1ε̂1 þ Ā2ε̂2 ¼ Aþεþ þ A−ε− ðA6Þ

where AþðA−Þ refer to the vector potential with positive
(negative) helicity. The ground state in the helicity basis is
defined as

bhðkÞj0i ¼ 0 ðA7Þ

and satisfy the following commutation relations:

½bhðkÞ; b†h0 ðqÞ� ¼ ð2πÞ3δ3ðk − qÞδhh0 ðA8Þ

½bhðkÞ; bh0 ðqÞ� ¼ 0 ¼ ½b†hðkÞ; b†h0 ðqÞ�: ðA9Þ

Rewriting (A4) in the Helicity basis and replacing
ϵijl∂jAl → −k

P
h¼�1 hAhεh, we have:

A00
h þ

�
k2 −

4kh
M2

ΓðηÞ
�
Ah ¼ 0; ðA10Þ

where,

ΓðηÞ ¼ a000

a3
− 3

a00a0

a4
¼ 1

a2
ðH00 − 2H3Þ: ðA11Þ

APPENDIX B: GENERATION AND EVOLUTION
OF HELICAL MODES

Substituting the power-law inflation scale factor (16) in
Eq. (18), we have:
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A00
h þ

�
k2 −

8kh
M2

βðβ þ 1Þðβ þ 2Þ
η30

�
−η0
η

�ð2βþ5Þ�
Ah ¼ 0:

ðB1Þ

Helicity term vanishes for de-sitter case ðβ ¼ −2Þ, which is
consistent with the fact that the de Sitter symmetry will not
be preserved in the presence of helicity terms. However, it
will be nonzero for the approximately de Sitter universe
i.e., β ¼ −2 − ϵ. In subhorizon limit ðj − kηj ≫ 1Þ, Eq.
(B1) simplifies to:

A00
h þ k2Ah ≈ 0 ðB2Þ

and assuming that the quantum field is in the vacuum state
at asymptotic past (Bunch-Davies vacuum state), we have:

Ah ¼
1ffiffiffi
k

p e−ikη: ðB3Þ

On super-Horizon scales ðj − kηj ≪ 1Þ, Eq. (B1) becomes:

α2
d2Ah

dτ2
þ αðαþ 1Þ

τ

dAh

dτ
þ hkς2Ah ¼ 0 ðB4Þ

where

ς2 ≡ −
1

M2η0
ð2α − 3Þð2α − 1Þð2αþ 1Þ;

τ ¼
�
−
η0
η

�
α

; α ¼ β þ 3

2
ðB5Þ

Note that τ (dimensionless variable 0 < τ < ∞) and η
(negative during inflation) are linearly related. [At the start
of inflation, τ is large and vanishes at the end of inflation.]
Note that α ¼ − 1

2
corresponds to de-sitter and α ≤ − 1

2
. The

solutions for the above Eq. (B4) are

Aþðτ; kÞ ¼ τ−
1
2α J 1

2α

�
ς

ffiffiffi
k

p

α
τ

�
C1 þ τ−

1
2α Y 1

2α

�
ς

ffiffiffi
k

p

α
τ

�
C2

ðB6aÞ

A−ðτ; kÞ ¼ τ−
1
2α J 1

2α

�
−i

ς
ffiffiffi
k

p

α
τ

�
C3

þ τ−
1
2α Y 1

2α

�
−i

ς
ffiffiffi
k

p

α
τ

�
C4; ðB6bÞ

where C1, C2, C3, C4 are arbitrary constants of dimension
L1=2. For the two helicity modes, we fix the constants C1,
C2 ðC3; C4Þ by matching Ah and A0

h at the transition time of
subhorizon and superhorizon modes at k� ∼ η−1� where �
refers to the quantities evaluated at the horizon-exit.
Although the analysis can be done for any general value

of α, to keep the calculations tractable, we obtain the

constants for α ¼ −1. There are two reasons for this choice:
First, in this special case, τ ∝ η and the superhorizon modes
can be written in terms of η using the linear relation.
Second, the constants C1, C2, C3, C4 have a weak
dependence of α and, hence, finding the value for a given
value of α will be accurate within an order [33]. Thus,
matching the solutions and the derivatives at the horizon-
exit, we get:

C1 ¼ −ei
ffiffiffiffiffiffiffi
πη0
2

r �
1ffiffiffiffi
Θ

p sinΘþ i
ffiffiffiffi
Θ

p
cosΘ

�
;

C2 ¼ −iei
ffiffiffiffiffiffiffi
πη0
2

r �
1ffiffiffiffi
Θ

p cosΘ − i
ffiffiffiffi
Θ

p
sinΘ

�

C3 ¼ ei
ffiffiffiffiffiffiffi
πη0
2

r �
1ffiffiffiffiffiffi
iΘ

p sinhΘþ
ffiffiffiffiffiffi
iΘ

p
coshΘ

�
;

C4 ¼ −iei
ffiffiffiffiffiffiffi
πη0
2

r �
1ffiffiffiffiffiffi
iΘ

p coshΘþ
ffiffiffiffiffiffi
iΘ

p
sinhΘ

�
: ðB7Þ

where Θ ¼
ffiffiffiffiffiffiffiffi
15η�
M2η3

0

q
is the dimensionless constant.

In Ref. [33], the current authors derived the magnetic
field spectral energy density and is given by

dρB
d ln k

¼ jCðk�;αÞj2
�
k
k�

�
2−4α

k3þ4αþ 1
2α

þ jC2ðk�; αÞj2
�
k
k�

�
4−4α

k1þ4α− 1
2α ðB8Þ

where k� is the pivot scale, and Cðk�; αÞ and C2ðk�; αÞ are
constants that depend on the inflationary energy scale (See
Eq. (44) in Ref. [33]). For de Sitter inflation ðα ¼ −1=2Þ,
the present day magnetic field as a function of k is given by:

B0ðkÞ ∼ 10−20
�
k
k�

�
2

G ðB9Þ

where we have included only the leading order contribution
and have discarded the subleading contribution.
In Fig. 3 we have plotted the power spectrum of the

present day primordial helical magnetic field at different
length scales for two pivot scales k� ¼ 0.002 Mpc−1 [57]
and k� ¼ 0.05 Mpc−1 [18]. One can see from Fig. 3(a) that
for around Mpc scale, the value of present day magnetic
field is 10−15G. This is consistent with the current obser-
vations [14–17,50].
Using the fact that modes exit the horizon around

5e-foldings,

η� ¼ ηend · 102 ðB10Þ

and H ∼ η0
−1 ∼ 1014 GeV, for M ∼ 1014–1017 GeV

[33,45], we obtain
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Θ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηend · 1045 GeV3

M2

s
;

which is very small value. Note also that

ηend ¼ −
1

aðηendÞH
¼ −

e−NInf

HInf
≈ 10−41 GeV−1:

Using the fact that Θ is very small, we get

jC1j ≈ jC3j ≈
ffiffiffiffiffiffiffiffi
Θη0

p
; and jC2j ≈ jC4j ≈

ffiffiffiffiffi
η0
Θ

r
: ðB11Þ

Hence, we obtain the following relations among the
coefficients jC1j ≈ jC3j ≪ jC2j ≈ jC4j.

APPENDIX C: BAU PARAMETER FOR
ARBITRARY VALUES OF Λ AND μ

Following Ref. [15], we first evaluate the contribution of
dilution factor for arbitrary values of Λ and μ. Assuming
instantaneous reheating, the universe transited to radiation
domination after inflation. Using entropy conservation i.e.,
ga3T3 ¼ constant during its evolution, where g is effective
relativistic degrees of freedom, we have:

aμ
aΛ

¼
�
gΛ
gμ

�
1=3 TΛ

Tμ
ðC1Þ

where aΛ; aμ are the scale factors at which the helical
modes with energy Λ and μ reentered the radiation
dominated Universe, gΛ; gμ are the effective relativistic
degrees of freedom at which the helical modes with energy
Λ and μ reentered the radiation dominated Universe, and
TΛ; Tμ are the Universe temperatures at which the helical

modes with energy Λ and μ reentered the radiation
dominated Universe. The Friedmann equation is

H2 ¼ 1

3M2
P

�
gΛ

�
π2

30

�
T4
Λ

�
: ðC2Þ

The baryogenesis occurs as soon as the helical modes
reenter the Hubble radius during the radiation-dominated
epoch. For simplicity, we assume that baryogenesis occurs
at the start of radiation-dominated epoch, hence we take
energy scale of Λ to be of order H. Substituting TΛ from
Eq. (C2) in Eq. (C1), we get,

aμ
aΛ

¼ g1=12Λ

g1=3μ

�
90

π2

�
1=4M1=2

P Λ1=2

Tμ
≈
109

ffiffiffiffi
Λ

p

μ
; ðC3Þ

where gΛ ∼ 100 (during reheating) and gμ is of the order 10.
Physically, we see that the Universe has expanded by a

factor of 109
ffiffiffi
Λ

p
μ when the helical modes of energy Λ and μ

reenter the radiation dominated epoch and hence, in
Eq. (23), the inverse of this factor will act as the dilution
factor.
Setting Λ ¼ 1014 GeV, and μ ¼ 1010 GeV, in the above

expression, we have:

aμ
aΛ

¼ g1=12f

g1=31

�
90

π2

�
1=4 ðMPΛÞ1=2

μ
≈ 106:

For the modes that exit the horizon during inflation at
N ¼ 5, we have:

1

a3
∼ 10−33

μ3

Λ3=2 :

(a) (b)

FIG. 3. Plot showing the strength of the present day primordial helical magnetic field at different length scales (from Mpc to Gpc), for
two different pivot scales.
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Therefore, for generic scales of baryogenesis, the BAU
parameter (26) is given by

ηB ≈
10−38 · η20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηend · 1045GeV3
p M3ðΛ3μ3 − μ6Þ

Λ3=2T3
RH

≈ 10−11
�
M
MP

�
3 ðΛ3μ3 − μ6Þ

Λ3=2T3
RH

: ðC4Þ

Using the parametrization in Eq. (28), we have

m3ðδ3Δ31012 − Δ6Þ
δ3=2γ3

≈ n1022 ðC5Þ

where μ ¼ Δ108 GeV, Δ ∈ f1; 100g and
γ ∈ f10−2; 1000g. Fig. 4 shows the behavior of the
reheating temperature as a function of M, for different
ranges of Λ, μ. From the plots we infer that the results
obtained in Sec. IV by neglecting μ are consistent with the
results in this Appendix.

APPENDIX D: EFFECT OF THE RIEMANN
COUPLING NEAR SCHWARZSCHILD BLACK

HOLE

In this Appendix, we will show that SCB coupling is tiny
near the solar mass Schwarzschild black holes.
Specifically, we evaluate at the Schwarzschild radius of
a nonrotating spherically symmetric black hole of mass μ.
Since the calculation is order of magnitude, we calculate
the Kretschmann scalar K ¼ RμναβRμναβ for the Schwarzs
child black hole. For this case, the Kretschmann scalar K
at a radial distance r from the black-hole center is given
by:

K ¼ 48G2μ2

c4r6
ðD1Þ

which implies that the Riemann tensor ∼
ffiffiffiffi
K

p
. The coupling

term

ffiffiffiffi
K

p

M2
∼

ffiffiffiffiffi
48

p
Gμ

c2r3
1

M2
: ðD2Þ

For Schwarzschild radius rh ¼ 2Gμ=c2, the coupling term
becomes

(a) (b)

(c) (d)

FIG. 4. Plot showing the behavior of reheating temperature TRH (vertical axis) with parameterM (horizontal axis), for different ranges
of Λ, μ. In upper panel (and lower panel) Λ is fixed at 1014 GeV (and 1012 GeV) and lower energy scale is varied.
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ffiffiffiffi
K

p

M2
∼

ffiffiffi
3

4

r
c4

G2μ2M2
: ðD3Þ

We set μ ¼ 1 M⊙ where M⊙ ≈ 1030 Kg is the solar mass.
Since the result might be interesting to various astrophysical
and cosmological phenomenon, we will calculate the value
of the coupling

ffiffiffiffi
K

p
=M2 (D3) in units which are preferred in

early universe cosmology (natural units) and gravity (geom-
etrized units).
Natural units are preferred in the early Universe physics,

and all scales are rewritten in terms of GeV. For simplicity,
we write the following quantities in terms of mP as,

G ≈M−2
P ; c ¼ 1; M ≈ 10−2MP;

μ ¼ 1030 Kg ≈ 1038MP ðD4Þ

where we have used MP ≈ 1019 GeV ≈ 10−8 Kg and
M ¼ 1017 GeV ≈ 10−2MP. Using Eq. (D4) in Eq. (D3),
we get

ffiffiffiffi
K

p

M2
≈ 10−72: ðD5Þ

To understand the effect in astrophysical phenomenon, we
calculate the value of the coupling (D3) in geometrized
units ðc ¼ G ¼ 1Þ. Since our model parameter M ≈
1017 GeV has unit of energy, we need to substitute the
conversion M → MG

c4 in Eq. (D3), which gives

ffiffiffiffi
K

p

M2
≈

ffiffiffi
3

4

r
c12

G4μ2M2
: ðD6Þ

Using the following values,

c ¼ G ¼ 1; M ¼ 10−10 Kg; μ ≈ 1030 Kg ðD7Þ

we obtain

ffiffiffiffi
K

p

M2
≈ 10−40 Kg−4: ðD8Þ

Hence, from the above analysis, it is clear that the effect
near the solar mass size black-hole is negligible. Note that

since Riemann tensor is coupled with gauge kinetic terms
FμνFμν, the coupling term contains the frequency of the
electromagnetic waves, i.e., ω2, hence the coupling will
have effects at very high frequency. The coupling constant
(D3) is of the order of one or greater for black holes of mass
μ ∼ 100MP, i.e.,

ffiffiffiffi
K

p

M2
∼ 1; for μ ∼ 100MP: ðD9Þ

Such size primordial black-holes form in the very early
Universe. For such black holes, Hawking temperature is
[58]

TH ¼
�
ℏc3

GkB

�
1

8πμ
≈ 10−3MP: ðD10Þ

Since the Hawking radiation is thermal, we can obtain the
peak wavelength of the black-body spectrum from Wien’s
displacement law λmaxT ¼ constant. The wavelength λmax
corresponding to 100MP mass black holes is given by:

λmax ∼ T−1
H ≈ 103M−1

P ðD11Þ

Using the conversion 1 GeV ¼ 5.06 × 1015m−1 which
gives MP ≈ 1034m−1, we get

λmax ≈ 103M−1
P ≈ 10−31 m; ⇒ ν ¼ c

λmax
¼ 1039 s−1:

ðD12Þ

Assuming these PBHs are produced just after big bang, the
above frequency will be redshifted by a factor 1020. Thus,
the redshifted frequency is ∼1019Hz (Gamma-ray) and can
have potential signatures. However, it is important to note
that at that scale, we need to include higher-order correc-
tions. As mentioned earlier, in this analysis, we have
ignored the mass dimension 8 operators [39]. At the
Planck scale, we need to include dimension 8 and beyond.
Hence, to understand these effects of PBH of Planck mass
size, we need to include mass-dimension 8 operators and
beyond.
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