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In models of minicharged dark matter associated with a hidden Uð1Þ symmetry, astrophysical black
holes may acquire a “dark” charge, in such a way that the inspiral dynamics of binary black holes can be
formally described by an Einstein-Maxwell theory. Charges enter the gravitational wave signal
predominantly through a dipole term, but their effect is known to effectively first post-Newtonian order
in the phase, which enables measuring the size of the charge-to-mass ratios jqi=mij, i ¼ 1, 2, of the
individual black holes in a binary. We set up a Bayesian analysis to discover, or constrain, dark charges on
binary black holes. After testing our framework in simulations, we apply it to selected binary black hole
signals from the second gravitational wave transient catalog, namely, those with low masses so that most of
the signal-to-noise ratio is in the inspiral regime. We find no evidence for charges on the black holes and
place typical 1σ bounds on the charge-to-mass ratios of jqi=mij ≲ 0.2–0.3.
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I. INTRODUCTION

The Advanced LIGO [1] and Advanced Virgo [2]
gravitational wave (GW) detectors have so far found more
than 50 candidate signals [3], the majority being from
coalescing binary black holes [4–8], in addition to two
binary neutron star inspirals [9,10] and two neutron star–
black hole events [11]. In the analyses of the binary black
hole signals, the sources were assumed to be well modeled
as pure vacuum spacetime, although tests of general
relativity were performed which allowed for deviations
from the dynamics predicted by Einstein’s theory [12–16].
In this work, we will look into another possible source for
modifications in binary black hole dynamics, namely,
electric charge.
As is well known, astrophysical black holes are unlikely

to be able to accrue large amounts of electric charge, at least
in the context of the Standard Model of particle physics
(see, e.g., [17] for an overview). Kinematic buildup
of charge through infall of electrons is limited by the ratio
of electron mass me to charge e, to1 Q=M ≤ me=e≃
5 × 10−22, with Q and M, respectively, the charge
and mass of the black hole. Also, dynamical processes
such as charge accretion by a rotating black hole in a
magnetic field B can produce charge-to-mass ratios of only

Q=M ≲ 1.7 × 10−20ðM=M⊙ÞðB=GÞ [18]. Moreover, sur-
rounding plasma in the form of interstellar matter will
discharge even an extremal black hole with Q ¼ M on a
timescale of τ ∼ 10−6 s [19].
The situation is different if one considers so-called

minicharged dark matter models [20,21], which involve
new fermions that are charged under a hidden Uð1Þ
symmetry and whose “dark” charges are much smaller
than that of the electron. Such minicharged particles are
viable cold dark matter candidates and have been searched
for in a variety of observations and experiments [22–34].
For a dark fermion with mass m and charge q, it is possible
to have m=q > 1, in which case values of Q=M ≃ 1 can be
attained, and discharge timescales by the surrounding (dark
matter) plasma can be on the order of billions of years [17].
Assuming a single dark fermion and dark photon, the

interaction of the hidden sector with gravity can be
described by an Einstein-Maxwell action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

4
FμνFμν þ 4πAμjμ

�
; ð1Þ

with g the determinant of the metric gμν, Aμ the vector
potential of the hidden Uð1Þ interaction, Fμν ¼ ∇μAν −
∇νAμ the associated field tensor, and jμ the hidden current.
Here, we want to look at the inspiral of binary black holes
in the presence of a dark sector and search for, or put

1In this paper, we use units such that G ¼ c ¼ 4πϵ0 ¼ 1, with
ϵ0 the electric permittivity of the vacuum.
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bounds on, dark charges which may be carried by them,
using some of the GW signals that have been detected. The
leading post-Newtonian modification to the phase is at
−1PN in the usual notation, corresponding to dipole
radiation. This is mostly determined by the combination

ξ ¼
���� q1m1

−
q2
m2

����; ð2Þ

where ðq1; q2Þ and ðm1; m2Þ are, respectively, the charges
and masses of the individual black holes [17,35]. However,
Khalil et al. [36] also computed higher-order effects, at 0PN
and 1PN orders in phase, in the context of Einstein-
Maxwell-dilaton theory, which reduces to Einstein-
Maxwell theory when scalar charges are set to zero.
Since these beyond-leading-order contributions also depend
on different combinations of q1=m1 and q2=m2 from the one
in Eq. (2), including them will allow us to make statements
on these two quantities separately. Thus, our gravitational
waveform model will include these modifications to the
point particle inspiral phase, in addition to effects of
(precessing) spins, which start from 1.5PN order. Finally,
though leading-order modifications of the ringdown spec-
trum of the remnant black hole resulting from the merger
have been computed [37–41], herewewill focus only on the
post-Newtonian inspiral, since to our knowledge the behav-
ior at plunge andmerger, which connects the early inspiral to
the ringdown, has yet to be analytically investigated in the
presence of charge. We will be particularly interested in
relatively low-mass binary black hole signals, for which
inspiral dominates the signal-to-noise ratio.
This paper is structured as follows. In Sec. II, we explain

our waveform approximant and the data analysis setup. In
Sec. III, we describe simulations that were done to provide
a basic validation of the analysis framework. Section IV
applies our methodology to a selection of detected signals.
A summary and conclusions are provided in Sec. V.

II. WAVEFORM MODEL AND ANALYSIS
FRAMEWORK

Our baseline waveform model will be the
frequency domain inspiral-merger-ringdown approximant
IMRPhenomPv2 [42–44], which we modify to reflect the
presence of charges. This waveform stitches together in C1

fashion (a) an inspiral regime which mostly follows the
post-Newtonian description; (b) a phenomenological inter-
mediate regime describing the late inspiral and plunge; and
(c) a phenomenological merger-ringdown regime. Spin
precession is captured by “twisting up” an underlying
aligned-spin model [45,46]. Since with current detectors
most of our information tends to come from the phase
rather than the amplitude (though also see [47,48]), we will
focus on the former and, in particular, on the inspiral phase.
When electric charges are small and the inspiral is mainly
driven by the tensor quadrupole flux, a good approximation
to the inspiral phase is given by

ϕInsðvÞ ¼ 2πftc − φc − π=4

þ 1

v5

�
ρQD−2
v2

þ ρQD0 þ ρQD2 v2 þ ϕhigher-order
Ins ðvÞ

�
:

ð3Þ

Here, tc and φc are, respectively, a reference time and
reference phase. One has v ¼ ðπMfÞ1=3, with f the GW
frequency and where M is a “dressed” total mass; specifi-
cally,M ¼ G12M̄, with G12 ¼ 1 − q1q2=ðm1m2Þ, where M̄
is the observed total mass in the absence of charges. The
first three terms in the square brackets include the charge-
induced modifications to the phase computed by Khalil
et al. [36] up to 1PN order. The leading-order (−1PN)
contribution is set by

ρQD−2 ¼ −
5G12

3584ν

�
q1
m1

−
q2
m2

�
2

; ð4Þ

with ν ¼ m1m2=M2 the symmetric mass ratio. The expres-
sions for ρQD0 and ρQD2 will not be shown explicitly here,
since they are obtained straightforwardly from the ones in
Ref. [36] [see their Eqs. (3.34a)–(3.34c) and Appendix B]
by setting scalar charges to zero but retaining electric
charges. These coefficients further reduce to the usual 0PN
and 1PN coefficients for the vacuum case when electric
charges are also set to zero. Finally, ϕhigher-order

Ins collects all
higher-order contributions in v, including PN contributions
as well as phenomenological corrections to the late inspiral,
as detailed in Ref. [44].
In the IMRPhenomPv2 approximant, the inspiral regime

is stitched onto the intermediate regime at a frequencyf such
thatMf ¼ 0.018. Since we do not know how charges affect
the latter regime, one option would be to smoothly let the
waveformgo to zero around that frequency, e.g., by applying
a Planck tapering window [49]. However, especially when
performing parameter estimation on high-mass systems for
which themerger is well inside the detectors’ sensitive band,
we found a tendency for the tapered template waveform to
try and match part of the post-inspiral signal, leading to a
significant underestimation of the masses. As a pragmatic
solution, we opt to not taper the waveform; instead, we will
analyze only signals for which less than 5% of the matched-
filtering signal-to-noise ratio is contained in the regime
Mf > 0.018. Note that this transition always precedes the
nominal last stable orbit [given by MfLSO ¼ 1=ð63=2πÞ≃
0.022], so that in this way we select signals for which only
the inspiral has significant power in the band.
Next, we turn to our data analysis framework. Given a

detected binary black hole coalescence signal, a waveform
approximant h̃CðfÞ with modified phasing as in Eq. (3)
can be viewed as corresponding to a Bayesian hypothesis
HC, which states that one or both of the black holes carried
a Maxwell charge. If, on the other hand, charges are
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restricted to zero, the associated waveform model h̃NC
defines a hypothesis HNC, stating that no charges were
present. Given a hypothesis H, data d, and whatever
background information I we may possess, a Bayesian
evidence is obtained through [50]

pðdjH; IÞ ¼
Z

dθ̄pðdjH; θ̄; IÞpðθ̄jH; IÞ: ð5Þ

The integral is over the parameters θ̄ (masses, spins,
possibly electric charges, etc.) that enter the waveform
model h̃ðθ̄; fÞ associated with H. pðθ̄jH; IÞ is the prior
density, and the likelihood pðdjH; θ̄; IÞ is given by

pðdjH; θ̄; IÞ ∝ exp ½−hd − hðθ̄Þjd − hðθ̄Þi=2�: ð6Þ

The noise-weighted inner product h·j·i is defined as

hajbi ¼ 4Re
Z

fhigh

flow

df
ã�ðfÞb̃ðfÞ
SnðfÞ

; ð7Þ

where flow and fhigh are, respectively, the detector’s lower
cutoff frequency and the frequency at which a given signal
ends and Sn is the (one-sided) power spectral density of the
noise. In this paper, we will set flow ¼ 20 Hz, and fhigh is
determined by the parameters entering the IMRPhenomPv2
waveform. Given our hypothesesHC andHNC, the general
expression for the evidence (5) enables computation of a
Bayes factor which can be used to rank the hypotheses:

BC
NC ≡ pðdjHC; IÞ

pðdjHNC;IÞ
: ð8Þ

Apart from hypothesis ranking, the Bayesian framework
also allows us to perform parameter estimation; in particu-
lar, the posterior density function (PDF) for the parameters
θ̄ follows from Bayes’ theorem:

pðθ̄jH; d; IÞ ¼ pðdjH; θ̄;IÞpðθ̄jH; IÞ
pðdjH; IÞ : ð9Þ

The one-dimensional PDF pðλjH; d; IÞ for a particular
parameter λ is obtained from this by integrating out all other
parameters.
In our studies, the likelihood function of Eq. (6) is

sampled using the lalinference_nest algorithm in the
LALInference library [51], while the waveform model
described in the previous section was implemented as an
extension of the IMRPhenomPv2 approximant in the
LALSimulation library of LALSuite [52].
Together with spin-related parameters, the intrinsic

parameters being sampled over directly are the (dressed)
total mass M, the mass ratio q ¼ m2=m1 (with the
convention m2 ≤ m1), and the charge-to-mass ratios
σ1 ≡ q1=m1 and σ2 ≡ q2=m2. ForM and q, we use uniform

priors chosen wide enough so as to accommodate the
supports of the PDFs (with an upper bound of 1 for q).
Regarding the σi, for the examples in this paper, a uniform
prior spanning σi ∈ ½−2; 2� amply sufficed; here, the
sampling was done with the additional constraint
σ1σ2 < 1, corresponding to the requirement of inspiraling
orbits. Priors on the spin magnitudes a1 and a2 are taken to
be uniform in the range [0, 0.99], and priors on spin
directions are uniform on the sphere. Both for simulated
signals and for template waveforms we impose the Kerr-
Newman condition for the presence of black hole horizons,
i.e., a2i þ σ2i ≤ 1, i ¼ 1, 2 [53]. For the extrinsic parame-
ters, the priors on sky position and the orientation of the
orbital plane at some reference frequency are also uniform
on the sphere. We use a uniform-in-volume prior on
distance, up to a maximum distance needed to accommo-
date the PDF.

III. SIMULATIONS

We now turn to the simulations we performed to gain
insight into the measurability of black hole charges for
signals typical of the long-duration binary black hole
signals seen in the second gravitational wave transient
catalog (GWTC-2) [8]. Signals were injected into a net-
work consisting of the two Advanced LIGO interferometers
and Advanced Virgo, assuming stationary, Gaussian noise
following the projected design sensitivities of these
observatories [1,2]. As explained in Sec. II, we will focus
on signals that are relatively low mass, such that no more
than 5% of signal-to-noise ratio (SNR) is present beyond
Mf ¼ 0.018; we require this of our injections as well. Also,
we pick injected chirp masses M ¼ Mν3=5 in the range
½7; 9�M⊙ and mass ratios q ∈ ½0.4; 1�, choices that are
representative of those signals in GWTC-2 that satisfy

FIG. 1. Histograms for lnBC
NC for 67 choices of masses and

spins with ranges as detailed in the main text and the five different
choices of ðσ1; σ2Þ indicated in the legend.
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our post-inspiral SNR requirement. For the purpose of
studying the behavior of lnBC

NC, SNRs are chosen to be in
the range 10–15, again representative of the signals in
GWTC-2 that we will analyze later on. For ðσ1; σ2Þ, we
pick the following values:

(i) ðσ1; σ2Þ ¼ ð0; 0Þ,
(ii) ðσ1; σ2Þ ¼ ð0.05;−0.05Þ,
(iii) ðσ1; σ2Þ ¼ ð0.5; 0Þ,
(iv) ðσ1; σ2Þ ¼ ð0.5;−0.5Þ, and
(v) ðσ1; σ2Þ ¼ ð0.5; 0.5Þ,

where the larger numbers are inspired by Fisher matrix
estimates on the measurability with Advanced LIGO and
Virgo of the strength of a dipole contribution to the
phase [17,35].
First we look at lnBC

NC for 67 injections in stationary,
Gaussian noise for an Advanced LIGO-Virgo network,
with (dressed) masses and spins in the ranges specified
above, SNRs in the range 10–15, and our five different
choices for ðσ1; σ2Þ. Histograms for the log Bayes factor are
given in Fig. 1. The following trends are seen.

(i) For ðσ1; σ2Þ ¼ ð0; 0Þ, all of the lnBC
NC are negative

except for one at lnBC
NC ¼ 0.50, consistent with the

absence of charges in the injected signals.

(ii) Also, for ðσ1; σ2Þ ¼ ð0.05;−0.05Þ, the great major-
ity of lnBC

NC are negative, indicating that charge-to-
mass ratios of this size are not discernable at the
given SNRs.

(iii) For ðσ1; σ2Þ ¼ ð0.5; 0Þ, most signals show a pos-
itive lnBC

NC.
(iv) The choice ðσ1; σ2Þ ¼ ð0.5;−0.5Þ leads to the

highest log Bayes factors, consistent with the
fact that this yields the strongest leading-order
(−1PN) contribution to the phasing; see Eqs. (3)
and (4).

(v) However, for ðσ1; σ2Þ ¼ ð0.5; 0.5Þ, though the indi-
vidual charge-to-mass ratios are large, the −1PN
contribution vanishes identically, leading to small (in
fact, mostly negative) values of lnBC

NC.
Next, we turn to parameter estimation. As a represen-

tative example, we focus on an injected signal with
ðm1; m2Þ ¼ ð13.87; 6.36ÞM⊙ and an SNR of 12.52.
Bearing in mind the invariance of our waveform model
under ðσ1; σ2Þ → ð−σ1;−σ2Þ, we find it convenient to show
posteriors for jσ1j, jσ2j, and ξ ¼ jσ1 − σ2j. Log Bayes
factors for the different injected ðσ1; σ2Þ are shown in
Table I; they are consistent with the trends observed
in Fig. 1.
Figure 2 shows the results for the above mass pair and

ðσ1; σ2Þ ¼ ð0; 0Þ. We see that the posterior densities for
the jσij are consistent with zero charges. They do show a
peak away from zero; this is because random noise
fluctuations cause the peaks of the distributions for the
σi themselves (before taking the absolute value) to be
away from zero. Bounds of jσij≲ 0.26 are obtained at

TABLE I. Values of lnBC
NC for different injected values of

ðσ1; σ2Þ, in the case of an injection with ðm1; m2Þ ¼
ð13.87; 6.36ÞM⊙ and an SNR of 12.52, for which PDFs are
shown in Figs. 2–6.

ðσ1; σ2Þ (0, 0) ð0.05;−0.05Þ (0.5, 0) ð0.5;−0.5Þ (0.5, 0.5)

lnBC
NC −4.19 −3.11 10.25 43.82 −1.01

FIG. 2. Posterior distributions for an injection with ðm1; m2Þ ¼ ð13.87; 6.36ÞM⊙ at an SNR of 12.52 and ðσ1; σ2Þ ¼ ð0; 0Þ. The left
panel shows a corner plot for the posterior distributions of jσ1j and jσ2j (with the contours enclosing, respectively, 68%, 95%, and 99.7%
of probability), while the right one is the posterior for ξ ¼ jσ1 − σ2j. Here and in the analogous figures below, orange lines indicate the
injected parameters.
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68% confidence. A somewhat more stringent bound is
obtained for ξ, namely, ξ≲ 0.07 at the same confidence
level; this is again as expected, because it sets the leading-
order term in the phase.
Next, Fig. 3 shows results for the same mass pair, but

now ðσ1; σ2Þ ¼ ð0.05;−0.05Þ. As already indicated by the
log Bayes factor in Table I, such values of σi are not
detectable, and indeed the posteriors are consistent with
zero charges. However, we note that the posterior for ξ does
show a slight peak near jσ1 − σ2j ¼ 0.1.
In Fig. 4, we consider the case ðσ1; σ2Þ ¼ ð0.5; 0Þ,

for which the log Bayes factor clearly indicated the
presence of charge. Here, the posteriors show clear support
for both ðjσ1j; jσ2jÞ ¼ ð0.5; 0Þ and ðjσ1j; jσ2jÞ ¼ ð0; 0.5Þ,

consistent with another symmetry of the waveform,
namely, ðσ1; σ2Þ → ðσ2; σ1Þ. Meanwhile, the posterior for
ξ correctly has a strong peak near 0.5.
Figure 5 shows results for ðσ1; σ2Þ ¼ ð0.5;−0.5Þ.

Though the individual posteriors for the jσij are wide,
there is clear support for the values ðjσ1j; jσ2jÞ ¼ ð0.5; 0.5Þ.
The posterior for ξ is tightly peaked near ξ ¼ 1.
Finally, we consider the case ðσ1; σ2Þ ¼ ð0.5; 0.5Þ, in

Fig. 6. This is a case where the log Bayes factor was
negative (see again Table I) presumably because of the
absence of the dipole contribution together with the
moderate SNR. And, indeed, the posterior for ξ is not
very informative, although the ones for the jσij are con-
sistent with the injected values.

FIG. 3. The same as in Fig. 2 but for ðσ1; σ2Þ ¼ ð0.05;−0.05Þ.

FIG. 4. The same as in Fig. 2 but for ðσ1; σ2Þ ¼ ð0.5; 0Þ.
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IV. ANALYSIS OF SELECTED BINARY BLACK
HOLE SIGNALS

Let us now turn to actual signals from GWTC-2 [8] and,
in particular, those that satisfy our criterion that at most 5%
of the SNR resides in the post-inspiral phase, defined as
Mf > 0.018. To assess which signals are in accordance

with this benchmark, we take the median estimated
parameter values reported in Refs. [7,8] and substitute
them into an IMRPhenomPv2 waveform. The events we
end up with are listed in Table II, which also gives the
values for lnBC

NC. Since all log Bayes factors are negative,
we find no evidence for charges in any of these.

FIG. 5. The same as in Fig. 2 but for ðσ1; σ2Þ ¼ ð0.5;−0.5Þ.

FIG. 6. The same as in Fig. 2 but for ðσ1; σ2Þ ¼ ð0.5; 0.5Þ.

TABLE II. The GWTC-2 events analyzed, with their log Bayes factors for charges versus no charges.

Events GW151226 GW170608 GW190707 GW190720 GW190728 GW190924 GW190930

lnBC
NC −7.52 −7.63 −2.94 −3.71 −3.11 −3.67 −3.04
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For completeness, we also show posteriors for jσ1j and
jσ2j (Fig. 7) and ξ ¼ jσ1 − σ2j (Fig. 8). Here, too, all the
signals show consistency with ðσ1; σ2Þ ¼ ð0; 0Þ. Events

like GW190707, GW190728, and GW190924 have pos-
teriors for the individual jσ1j and jσ2j that seem to have a
peak away from zero, but, as in the case of our simulated

FIG. 7. Corner plots for the posteriors of jσ1j and jσ2j, for the events in Table II.
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signal with ðσ1; σ2Þ ¼ ð0; 0Þ (see Fig. 2), this can be
attributed to noise fluctuations causing the peaks of the
σi themselves (before taking the absolute value) to be away
from zero. However, these three events also have a peak in ξ
that is away from zero; in the case of GW190728, there is
even a relatively strong peak at ξ ∼ 0.3. That said, the log
Bayes factor for GW190728 (lnBC

NC ¼ −3.11) is below the
largest log Bayes factor for injections with ðσ1; σ2Þ ¼ ð0; 0Þ
shown in Fig. 1, which is lnBC

NC ¼ 0.50; the same is true of
all the other real events in Table II. Although the injection
set in Fig. 1 pertained to stationary, Gaussian noise, we
expect a more complete “background distribution” for
lnBC

NC in real noise to extend to even larger values.
Therefore, we are not induced to conclude that charges
were present on any of the binary black holes that generated
the real signals we analyzed.
For all our real events, the 1σ bounds on the jσij tend to

be at the level of 0.2–0.3, consistent with the zero-charge
injection which we studied PDFs for in the previous
section. Similarly, bounds on ξ tend to be somewhat more
stringent, varying from 0.08 (for GW170608) to 0.3 (for
GW190728).

V. SUMMARY AND CONCLUSIONS

We have set up a Bayesian analysis framework to search
for, or constrain, (dark) electric charges on binary black
holes using gravitational waves. In particular, the inspiral
part of the phasing of the precessing-spin IMRPhenomPv2

inspiral-merger-ringdown waveform was modified to
include the effect of such charges up to 1PN order. This
was then used for both injections and template waveforms,
focusing on signals with less than 5% of their SNR in the
post-inspiral regime, in view of the currently unknown
effect of charges during plunge and merger.
To test the analysis setup, we looked at the log Bayes

factor lnBC
NC, comparing the hypothesis that charges are

present with the one that assumes zero charges, for signals
with SNRs between 10 and 15. Choosing different injected
values for the charge-to-mass ratios ðσ1; σ2Þ, expected
trends were seen in the distributions of lnBC

NC: (a) When
the σi were zero or small, the great majority of our
simulated signals yielded lnBC

NC < 0, and (b) for larger
σi, the typical magnitude of lnBC

NC was set by the strength
of the leading-order contribution of charges to the phase,
which is determined by ξ ¼ jσ1 − σ2j.
As a case study for parameter estimation, we used an

injection with an SNR of 12.52. PDFs were indicative of
the injected ðσ1; σ2Þ, and, for ðσ1; σ2Þ ¼ ð0; 0Þ, 1σ upper
bounds came out to be jσij≲ 0.26 and ξ≲ 0.07.
Finally, we turned to real signals from GWTC-2, again

selected to have a long inspiral in band. All of the lnBC
NC

came out to be negative, consistent with the absence of
charges, and also the PDFs for the jσij and ξwere consistent
with zero charge. Typical bounds on charge-related param-
eters were jσij≲ 0.2–0.3 and ξ≲ 0.08–0.3.
In this work, we focused on the inspiral regime, but

charge-induced modifications of the ringdown spectrum
have also been computed [37–41]. It would be of interest to
search for the signature of charges in the ringdown signal of
high-mass events, whose ringdown modes are starting to
be probed even with Advanced LIGO and Virgo at O3
sensitivity [16]. Finally, should appropriate waveform
models become available in the future, it will be interesting
to see how charge measurements will sharpen when the
entire inspiral-merger-ringdown process can be used.
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FIG. 8. Posterior densities for ξ ¼ jσ1 − σ2j, for the events in
Table II. The solid lines indicate 68% confidence levels, and the
dashed lines 90% confidence levels.
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