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We delineate the quark-hadron continuity by constructing QCD equations of state for neutron star
dynamics, covering the wide range of charge chemical potential (μQ) and temperatures (T). Based on the
nuclear-2SC continuity scenario, we match equations of state for nuclear and two-flavor color-super-
conducting (2SC) quark matter, where the matching baryon density is nB ≃ 1.5n0 (n0 ≃ 0.16 fm−3: nuclear
saturation density). The effective vector and diquark couplings in a quark matter model evolve as functions
of nB or (nB; μQ; T), whose low density values are constrained by the nuclear matter properties and neutron
star radii, with the high density behavior by the two solar mass (2 M⊙) constraint. With couplings
dependent on nB, we examined how smooth the nuclear-2SC continuity can be and found problems in
matching nuclear and 2SC entropies at low temperatures; they differ unless the baryon Fermi velocity
significantly increases to match with the quark’s, or the 2SC matter allows low energy collective modes
whose velocities are as low as the baryon’s. This implies that the realization of the nuclear-2SC continuity,
if possible, demands additional ingredients to the conventional nuclear and 2SC descriptions. To proceed
with the continuity scenario, we enforce smooth matching by making the couplings (nB; μQ; T) dependent.
In effect, this adds phenomenological contributions which we call “X” to emphasize our ignorance on the
practical description. After the phenomenological matching, we take the rest as our predictions. The 2SC
and color-flavor-locked (CFL) phases computed with these evolving couplings are called 2SCX and CFLX.
The CFLX appears around nB ≃ 2–4n0 and, in contrast to the conventional CFL, has non-negligible
dependence on ðμQ; TÞ. To examine the astrophysical consequences of our modeling, we add charged
leptons and neutrinos, and study the composition of matter for lepton fractions relevant for protoneutron
stars and neutron star mergers. The abundance of neutrinos and thermal effects reduce the strangeness
fraction and stiffen equations of state. For a neutrino trapped neutron star at T ≃ 30 MeV with a lepton
fraction YL ≃ 0.05, the mass is larger than its cold static counterpart by ∼0.1 M⊙.

DOI: 10.1103/PhysRevD.104.063036

I. INTRODUCTION

Recent observations in neutron stars provide us with
hints to delineate the properties of dense matter in quantum
chromodynamics (QCD) [1,2]. The mass-radius (M-R)
relations of neutron stars are determined by the relation
between the pressure P and the energy density ε of matters
and have one-to-one correspondence with the QCD equa-
tion of state. Finding two solar mass (2 M⊙) neutron stars
[3–5] demands equations of state at high density to be stiff
(P is large at given ε), while the X-ray observations [6–8]
and the tidal deformability [9–11] suggest the low density
part to be relatively soft, leading to R1.4 ≃ 12–13 km (R1.4:
the radius of 1.4 M⊙ neutron stars). This soft-to-stiff
evolution of equations of state leads to a steep growth in
the speed of sound, cs ¼ ð∂P=∂εÞ1=2, but the growth must
be moderate enough not to violate the causality constraint,
cs ≤ 1 (natural unit) [12,13]. For the interplay between the

low and high density constraints, see Ref. [14] for recent
comprehensive studies.
Typical calculations suggest that a neutron star with its

mass larger than 2 M⊙ has the core density ≳5n0
(n0 ≃ 0.16 fm−3: nuclear saturation density), which is
presumably too high for purely hadronic descriptions.
Quark matter [15,16] is a natural alternative for the high
density part. In light of the soft-to-stiff evolution of
equations of state, there are at least three possible descrip-
tions for the soft-to-stiff evolution, as shown in Fig. 1 (for
more details, see Refs. [17,18]): (i) Matter quickly gets
stiffened beyond n0, and the equations of state around
∼1.5–2n0 are so stiff that they can remain stiff even after
the first order phase transition [19,20]. (ii) Just above ∼n0,
matter quickly evolves into a matter stiffer than nuclear
matter, with a radical change in c2s from ∼0.1 to ≃1=3 at
low density, ≃1.1–1.5n0 [21–23]. (iii) The nuclear matter
picture is valid to ∼2n0, and then, the nuclear matter begins
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to transform to quark matter continuously, leading to a peak
in c2s [24–26].
Based on case (iii), seminal works used the concept of

the quark-hadron continuity [27–30] as baselines to con-
struct unified equations of state [24,25,31–34]. Given that
relevant degrees of freedom are uncertain for ∼2–5n0, the
previous works have constructed equations of state for
static neutron stars by interpolating the nuclear equations of
state at nB ≃ 2n0 to those of quark matter at nB ¼ 4–7n0
[25]. The quark matter is in the color-flavor-locked (CFL)
phase with u, d, s quarks forming condensed diquark pairs
for a color superconductor (CSC) [35]. For the nuclear part,
we used the Akmal-Pandharipande-Ravenhall [36] for the
QHC18 (quark-hadron-crossover) equation of state [33]
and the Togashi [37] for QHC19 [34] and found that these
equations of state are consistent with available neutron star
constraints. (The tables and manuals can be found,
e.g., at [38].)
Meanwhile, the previous interpolation method did not

answer the composition of matter in the intermediate region
and did not describe how the degrees of freedom change
from hadronic to quark matter. In this respect, it is useful to
extend equations of state for static neutron stars to those
with general charge chemical potential μQ and temperature
T (see, e.g., a comprehensive review [39]); in fact, more
constraints can be found through this extension. Like
transport quantities [40], perturbing equations of state by
ðμQ; TÞ gives us insights on the degrees of freedom near the
Fermi surface. The matter composition affects observables
from neutron star dynamics [41–43] and neutron star
cooling [44,45]. (For hadronic equations of state, see,
e.g., Refs. [46–49].)
To compute equations of state, in practice, we are forced

to put some assumptions on the degrees of freedom.
Although current methodologies cannot pin down which
assumption is correct, it should be useful to make a catalog

of various scenarios and summarize the characteristic
features. Within the quark-hadron continuity scenario,
one can consider, e.g., nuclear-2SC-CFL or nuclear-hyper-
nuclear-CFL type continuity or else. As our first step for the
specific realization of the quark-hadron continuity, in this
work, we focus on the nuclear-2SC continuity [50,51],
where only u and d quarks are involved at the matching
region. In the 2SC quark matter, two colored quarks (say, R
and G) participate in the diquark pairing and acquire the
gaps, while uB and dB quarks remain gapless [35]. Using
the Togashi equation of state [37] for the nuclear part, we
consider the matching at relatively low density, nB ≃ 1.5n0.
Such a matching was attempted previously along the β
equilibrium line at T ¼ 0 [50], while this work extends the
matching to more general cases.
To describe the nuclear-2SC continuity, we let the

effective couplings of quark models, the vector coupling
gV , and diquark coupling H [25] evolve as functions of
ðnB; μQ; TÞ. Its high density (nB ≳ 5n0) behavior is con-
strained by the 2 M⊙ constraint.
In the first analysis, we allow only the nB dependence of

the couplings and examine how reasonable the nuclear-2SC
continuity can be. The most significant problem is found in
the entropy matching. Interestingly, nuclear and 2SC
matters have the same number of gapless fermionic modes
which, at first glance, look supportive of the continuity
scenario. However, actually smooth matching requires also
the matching of the Fermi velocities of baryons and quarks,
and this is not satisfied in conventional modeling.
Therefore the first conclusion of this paper is that the
nuclear-2SC continuity is not realized by direct matching of
conventional nuclear and 2SC calculations.
At this stage, there are several alternative scenarios to

take. The first is to give up the continuity scenario and
allow the first order phase transition between conventional
nuclear and 2SC phases. If we take the nuclear-2SC

FIG. 1. Schematic descriptions for the relation betweenM-R, P − ε, and c2s − nB for three types of equations of state compatible with
the current observations. See the main text.
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transition as real, we also take the 2SC-CFL phase
boundary as of the first order, and then, we would have
the first order phase transitions twice (at the nuclear-2SC
and 2SC-CFL boundaries). The resulting equations of state
would have trouble with the 2 M⊙ constraints, unless
extreme stiffening takes place between the phase bounda-
ries. Another scenario (which we adopt in this paper) is that
around the matching region both nuclear and 2SC matter
are modified from the conventional ones in such a way that
nuclear matter contains the 2SC pair correlation, and 2SC
matter includes baryonic three-particle correlations. This
sort of picture is what we had in mind in seminal works
[25,33,34] for the quark-hadron continuity. Unfortunately,
we are still unable to demonstrate such computations. We
are forced to use some phenomenological schemes; in this
paper, we let the couplings depend on (nB; μQ; T) so that
thermodynamic quantities in the matching region are
smooth in all directions of ðμB; μQ; TÞ.
The CSC phases computed in our evolving couplings

differ from the ordinary ones as they generate extra
contributions. We use conventional CSC phases as base-
lines, but there are phenomenological corrections from the
derivatives of evolving couplings. For this reason, we call
the CSC phases computed in this work “CSCX”, where X
emphasizes our ignorance. The X needed here should be
able to react to moderate changes in ðμQ; TÞ and hence is
likely to be gapless.
After imposing nuclear-2SC matching, the rest is taken

as our model predictions. An important issue is how the
strangeness appears. Within our modeling, the strangeness
begins to appear within the 2SC quark matter, and it drives
the first order transition from 2SC to CFL around
nB ≃ 2–4n0. So, it turns out that in this study we are
working for case (i) in Fig. 1. For the CFL equations of
state (after the first transition) to be consistent with the
2 M⊙ constraint, the 2SC equations of state must be stiff. In
particular, the speed of sound exceeds the conformal value,
ð1=3Þ1=2, already around nB ≃ 2n0. Since the location and
strength of the 2SC-CFL transition have large impacts on
neutron star structures, we perturb equations of state by
adding flavor-dependent density-density repulsions. These
short-range effects have been indicated by the lattice QCD
simulations for baryon-baryon interactions [52,53] and in
line with the predictions of constituent quark models
[54,55].
To test our descriptions, it is important to look for

possible astrophysical consequences. In this context, we
study equations of state for cold and dynamic neutron stars.
For the neutron star dynamics, we consider equations of
state in the neutrino trapping regime. The abundance of
neutrinos (anti-neutrinos) reduces (enhances) the strange-
ness fraction and stiffens (softens) equations of state at
nB ∼ 2–4n0. For a neutrino trapped neutron star at T ≃
30 MeVwith a lepton fraction YL ≃ 0.05, the mass is larger
than its cold static counterpart by ∼0.1 M⊙. In this paper,

we present the equations of state for particular sets of
temperatures and neutrino densities. More extensive results
and numerical tables are being prepared.
This paper is structured as follows. In Sec. II, we explain

the physics in our quark model and how to implement the
scheme of evolving effective couplings. In Sec. III, we
discuss the range of ðnB; μQ; TÞ of our interest and discuss
the low and high density constraints. In Sec. IV, we discuss
QCD equations of state with evolving couplings whose low
density values are fixed at μQ ¼ T ¼ 0 and do not depend
on ðμQ; TÞ. The purpose here is to examine the quality of
matching and identify what physics is relevant. In Sec. V,
we let the evolving couplings depend on ðμQ; TÞ and
construct the resulting equations of state, the “CSCX”.
In Sec. VI, we add leptons to construct equations of state
for neutrino trapped, hot neutron stars. Section VII is
devoted to the summary.

II. QUARK MODEL

A. General remarks

The composition of quark matter is sensitive to the
effective interactions at high density. We use the Nambu-
Jona-Lasinio (NJL) model [56] to express various inter-
actions at intermediate energy scale, 0.2–1 GeV, relevant
for chiral symmetry breaking and semishort-range gluon
exchange effects [57]. The obvious drawback in this model
is the lack of confining effects relevant at ≲0.2 GeV, so we
restrict the use of the model to high density. In the previous
studies, we use the NJL model only for nB ≳ 5n0. In this
work, we take a more aggressive standpoint. We note that
the meson (or quark) exchange interactions are important
already at nB ≳ 1–2n0, so there is a chance that both the
nuclear and quark descriptions have the validity and play
complementary roles. With this viewpoint, the nuclear and
quark equations of state are matched around nB ≃ 1.5–2n0
by introducing a scheme of evolving couplings in the NJL
model, as done in Ref. [50].
Motivated by the quark-hadron continuity picture [27–

30], our description for the interactions is inspired by quark
descriptions for the hadron spectroscopy [58] as well as
baryon-baryon interactions at short distance [54,55]. In the
context of quark matter in neutron stars, the roles of the
color-magnetic interactions deserve special attentions; it
has been known to play important roles for the level
splitting between hadrons, such as the N-Δ splitting of
≃200 MeV. Moreover, the lattice Monte Carlo simulations
show that the color-magnetic interactions, together with the
quark Pauli blocking, are essential to explain the channel
dependence of short-range correlations between baryons
[59]. In the nucleon-nucleon interactions, such correlations
result in the hard core repulsion [52]; meanwhile, for some
channels, e.g., N-Ω, involving the strangeness, the short-
range correlations turn into attraction [53]. Therefore the
short-range repulsion is not universal. Also the lattice
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simulations showed that the short-range correlations are
stronger for smaller current quark masses; this feature is
consistent with the magnetic interactions which become
more important in the relativistic regime.
We arrange our effective interactions in such a way that

the above-mentioned short-range effects can be mimicked
within the mean-field treatments. A simple and flexible
model for this purpose is a three-flavor model with flavor-
dependent vector repulsions and diquark attractions.
Compared to the preceding works [34], we update the
vector repulsion from the flavor universal one to the flavor-
dependent version; this update is to examine the channel
dependence of hard core repulsions among baryons,
especially nucleon-hyperon interactions. This modification
has large impacts on the onset of the strangeness, as we
examine later.

B. Lagrangian

We work with a Lagrangian,1

L ¼ LNJL þ Ld þ LV: ð1Þ

The first term in the rhs is the standard NJL Lagrangian
for the hadron physics [60]. For the parameters, we
use the Hatsuda-Kunihiro (HK) parameter set summarized
in Table I. Including finite chemical potentials, the
Lagrangian is

LNJL ¼ q̄ði∂ − m̂þ μ̂γ0Þq

þ Gs

X8
F¼0

½ðq̄τFqÞ2 þ ðq̄iγ5τFqÞ2�

− 8Kðdetfq̄RqL þ H:c:Þ; ð2Þ

where m̂ ¼ diagðmu;md;msÞ, and μ̂ is the chemical potential
matrix, which is diagonal in color and flavor quantum
numbers,

μ̂ ¼ μB=3þ μQQþ μc3λ3 þ μc8λ8: ð3Þ

The color chemical potentials are tuned to satisfy the color
neutrality conditions [61]. The second term in (1) is respon-
sible for diquark correlations,

Ld ¼ H
X

A;F¼2;5;7

½ðq̄iγ5λAτFqCÞðq̄Ciγ5λAτFqÞ

þ ðq̄λAτFqCÞðq̄CλAτFqÞ�: ð4Þ

The last term in (1) is responsible for repulsive density-
density interactions,2

LV ¼ −gVðq̄γμqÞ2 − 2Nf

X8
F¼1

gF

�
q̄γμ

τF
2
q

�
2

: ð6Þ

The first term is the repulsion universal for all flavors which
has been used in our previous works, while the second is the
newly added flavor-dependent repulsion with the factor 2Nf
introduced for convenience. Below, we write

gF ¼ cFgV; ð7Þ

and vary cF for the range [0.0, 1.0]. The UðNfÞ symmetric
limit corresponds to the case cF ¼ 1.
Special remarks should be given for the flavor-asym-

metric repulsion. In general, gF’s depend on the flavor
channels which reflect the flavor asymmetry associated
with the mass splitting and electric charges. Toward high
density, the flavor charges are reduced, and the model is
effectively reduced to the model used for QHC equations of
state [34]. Meanwhile, the flavor-asymmetric terms become
important at lower densities and larger charge chemical
potentials.

C. Mean fields

We apply the mean-field approximations by introducing
condensation fields η ¼ ðσf¼1;2;3; df¼1;2;3; Vq; V3; V8Þ by
dropping higher orders of fluctuation terms. Here, the
condensation fields are defined through

TABLE I. Three common parameter sets for the three-flavor
NJL model: the average up and down bare quark mass mu;d,
strange bare quark mass ms, coupling constants G and K, and
three-momentum cutoff Λ [60].

Λ (MeV) mu;d (MeV) ms (MeV) GΛ2 KΛ5

HK 631.4 5.5 135.7 1.835 9.29

1Notations: we use the Gell-Mann matrices λA¼1;…;8 and
τF¼1;…;8 for colors and for flavors, respectively. We also use
the identity elements λ0 ¼ τ0 ¼ 13×3

ffiffiffiffiffiffiffiffi
2=3

p
. The charge matrix is

diagð2=3;−1=3;−1=3Þ for u, d, s flavors. For quark fields qaf,
indices a and f refer to colors ðR;G; BÞ and flavors ðu; d; sÞ,
respectively. Tr½� � �� refers to the sum over momenta and all other
indices (spinors, colors, flavors).

2For numerical computations, it is convenient to further add the
color density repulsion,

Lcolor
V ¼

X
A

gA

�
q̄γμ

λA
2
q

�
2

; ð5Þ

and treat it in the same way as Vq and V3;8. These terms do not
affect the mean-field results when the color-neutrality conditions
are satisfied. But these terms accelerate numerical searches for
solutions satisfying the neutrality conditions, especially when the
effective potential becomes somewhat flat.
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ðq̄ΓηqÞ2 ¼ ðq̄Γηq − ηþ ηÞ2 → 2ηðq̄ΓηqÞ þ η2; ð8Þ

where Γσf ¼ ð1u; 1d; 1sÞ for scalar fields, Γdf ¼ iγ5ðR1;
R2; R3Þ for diquark fields with ðR1; R2; R3Þ ¼ ðτ7λ7;
τ5λ5; τ2λ2Þ for the ðds; su; udÞ-diquark pairings, and
ΓVq;V3;V8

¼ γ0ð13×3; τ3=2; τ8=2Þ for the vector fields. We
apply the same approximation for the determinant term and
drop off the cubic fluctuation terms. We note that con-
densation fields η do not necessarily coincide with the
mean-field contributions hq̄ΓηqiMF ≡ −Tr½SMFΓη� when
density-dependent couplings are included, and to empha-
size this point, we attach the index “MF” to the expect-
ation value.
With the condensation fields in the background, the

quarks acquire the effective mass and gap parameters,

Mf ¼ mf − 4Gσf − 2K
∂
∂σf ðσuσdσsÞ; ð9Þ

Δf ¼ −2Hdf; ð10Þ

and the effective chemical potential matrix,

μ̂eff ¼ μ̂ − 2gVVq − 12g3V3

τ3
2
− 12g8V8

τ8
2
: ð11Þ

The values of η’s are optimized by solving the gap
equations. Using the Nambu-Gor’kov spinors,

Ψ ¼ 1ffiffiffi
2

p ðq; qCÞT; ð12Þ

the quark bilinear terms have the components

L ¼ Ψ̄
�
i∂ − M̂ þ μ̂effγ0 γ5ΔfRf

−γ5ΔfRf i∂ − M̂ − μ̂effγ0

�
Ψ: ð13Þ

This expression is used to construct single particle propa-
gators having the poles q0 ¼ ϵi¼1;…;72ðq⃗Þ at a spatial
momentum q⃗. There are degeneracies in Nambu-Gor’kov
bases and spins, so only 18 components are independent.

D. Thermodynamic functionals

We write a pressure functional

Pðλ; η; gÞ ¼ Psp þ Pcond; ð14Þ

where (sp) refers to the single particle contribution (see
below), and λ ¼ ðμB; μQ; TÞ. The coupling g is assumed to
depend on the densities through the following form:

g½Vq; μQ; T�; g ¼ ðgV; g3; g8; HÞ; ð15Þ

where the ratio between gV and g3, g8 are fixed by constants
c3 and c8, respectively. The reason why we treat the μB and

ðμQ; TÞ directions in an asymmetric way and use Vq instead
of nB or μB is due to competing demands from technical
simplicity and physical clarity. It is more intuitive to use nB
than μB as we can estimate the distance between particles,
but such a choice makes the self-consistent calculations
computationally more demanding as we have to refer to the
neighboring tables in ðμB; μQ; TÞ. To save the intuitive
clarity, we use Vq, which has the same qualitative trends as
3nB,

3 while making the calculations much simpler. Then,
we constrain the form of g½Vq� along the μB direction for a
given ðμQ; TÞ and later combine those tables to calculate
the derivatives of the pressure functionals in the ðμQ; TÞ
directions.
The thermodynamic pressure (before the vacuum sub-

traction) is obtained by substituting the solutions of gap
equations, η�ðλÞ,

Pbare ¼ Pðλ; η�; g�Þ; g� ≡ g½V�
q; μQ; T�: ð16Þ

The number densities and entropy are derived from the
derivatives of PðλÞ with respect to λ’s. Later, we identify
extra terms which are absent in the mean-field expressions
without running couplings.
The expressions of the pressure functional remain the

same as those with fixed couplings; the difference, which
we discuss later, emerges only when we consider the
derivatives. The single particle contribution is

Psp ¼
X18
i¼1

Z
Λ

0

dq
2π2

q⃗2½jϵij þ 2T ln ð1þ e−jϵij=TÞ�; ð17Þ

where the integral is cutoff by Λ. The condensation
energy is

Pcond ¼ −2Gs

X3
f¼1

σ2f þ 4Kσuσdσs −H
X3
f¼1

jdfj2

þ gVV2
q þ 6g3V2

3 þ 6g8V2
8: ð18Þ

In the last step, we have to normalize the pressure by
subtracting the vacuum contributions,

PðλÞ ¼ PbareðλÞ − Pbareðλ ¼ 0Þ: ð19Þ

E. Derivatives of the pressure functional

1. The gap equations

The gap equations are derived by differentiating the
pressure functional with fixed λ’s,

3In some beyond-mean-field treatments, Vq can differ from
3nB substantially, see, e.g., Ref. [62]. This situation was not
found in this paper.
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∂P
∂η

����
λ

¼ ∂P
∂η

����
λ;g

þ δη;Vq

∂g
∂η

����
λ

∂P
∂g

����
λ;η

¼ 0; ð20Þ

where sums over g are implicit. For fields ðσf; df; V3; V8Þ,
the gap equations take the usual form,

hq̄fðΓσf;df;V3;V8
ÞqfiMF ¼ ðσf; df; V3; V8Þ: ð21Þ

For the field Vq, an extra term appears through the density-
dependent couplings,

Vq ¼ nsp −
1

2gV

∂g
∂Vq

����
λ

∂P
∂g

����
λ;η
; ð22Þ

with nsp ¼ hq̄γ0qiMF, and

∂P
∂gV

����
λ;η

¼ −Vqð2nsp − VqÞ; ð23Þ

∂P
∂g3;8

����
λ;η

¼ −6V2
3;8; ð24Þ

∂P
∂H

����
λ;η

¼
X3
f¼1

jdfj2: ð25Þ

(We have used the gap equation for diquark terms.) The
dependence of g on Vq is set up in Section III.

2. The number densities and entropy

The number density is computed as

nλ ¼
∂P
∂λ

����
g;η

þ dη�
dλ

∂P
∂η

����
λ;g

þ dg�
dλ

∂P
∂g

����
λ;η
: ð26Þ

With fixed couplings, we can drop off the terms with
derivatives of condensates with respect to λ by using the
gap equations. This is practically useful as the self-con-
sistent calculations to determine condensates can be closed
in a local form; i.e., we do not have to refer to the data in the
neighborhood in λ. This nice property does not readily
follow for running couplings as ∂P=∂Vq ≠ 0, but after
some extra cares, we can make self-consistent calculations
into the local form. Using the gap equations, the sum over η
in the second term is nonzero only for Vq,

dη�
dλ

∂P
∂η

����
λ;g

¼ −
dV�

q

dλ

� ∂g
∂Vq

����
λ

∂P
∂g

����
λ;η

�
η→η�

: ð27Þ

where η → η� emphasizes that we substitute η� only after
we take the derivative. Meanwhile, the third term in
Eq. (26) is

dg�
dλ

∂P
∂g

����
λ;η

¼
�
dV�

q

dλ
∂g�
∂V�

q

����
λ

þ ∂g�
∂λ

����
Vq

� ∂P
∂g

����
λ;η
: ð28Þ

Now we note that

∂g�
∂V�

q
¼

� ∂g
∂Vq

����
λ

�
η→η�

; ð29Þ

with which we can eliminate dV�
q=dμB from the expressions

for thermodynamic quantities as in usual fixed coupling
calculations. (Still dV�

q=dμQ and dV�
q=dT still appear from

∂g�=∂λ, but they do not show up in the self-consistent
calculations.) Now the baryon number, charge, and entropy
densities can be expressed as

nB ¼ nspB ; ð30Þ

nQ ¼ nspQ þ ∂g�
∂μQ

����
Vq

∂P
∂g

����
λ;η
; ð31Þ

s ¼ ssp þ ∂g�
∂T

����
Vq

∂P
∂g

����
λ;η
: ð32Þ

The baryon number density is saturated by the single
particle contribution, while the charge and entropy den-
sities are not. As we mentioned, we constrain the form of
g½Vq� for given ðμQ; TÞ along the μB axis and from which
we prepare data for ∂g�=∂μQ and ∂g�=∂T.

3. The susceptibilities

Finally, we briefly mention the susceptibilities. The
computations of the susceptibilities cannot be closed in a
local form. The baryon number susceptibility is

χB ¼ dnB
dμB

¼ χspB þ dη�
dμB

∂nspB
∂η

����
λ;g

þ dg�
dμB

∂nspB
∂g

����
λ;η
; ð33Þ

where χspB ¼ ∂nspB =∂μBjλ;η, and this single particle contri-
bution does not saturate the total susceptibility as
∂nspB =∂ηjλ;g is generally nonzero. If the couplings run,
there is an additional term proportional to dg�=dμB. For this
nonlocal property, it is difficult to construct a simple
scheme to achieve very precise matching of the suscep-
tibilities between hadronic and quark models. Nevertheless,
as we see that the susceptibilities can be matched in
reasonable accuracy.

F. The form of running couplings

We consider a model in which low density couplings are
tuned to reproduce the hadronic pressure and number
density, and they evolve into the high density values
required from the constraints on the maximal mass of
neutron stars.
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As the running of couplings generate extra pressure and
density, the forms involving very radical changes often
cause problems to maintain the thermodynamic stabilities;
the second derivatives of the physical pressure must be non-
negative in any directions of ðμB; μQ; TÞ. In addition, there
is the causality condition, c2s ¼ ∂P=∂εjs=n¼const ≤ 1. For
constant couplings, we have checked that all these con-
straints are satisfied. Thus, we start with modest departure
from the constant couplings.
With these remarks, we consider a model in which the

low density coupling glow relaxes to the high density values
ghigh monotonically. One particular realization is to let g ¼
ðgV; g3; g8; HÞ ¼ ðgV; c3gV; c8gV;HÞ depend on Vq as

gðVqÞ ¼ glowe−Vq=V
g
trans þ ghighð1 − e−Vq=V

g
transÞ; ð34Þ

where Vg
trans characterizes the transition density from the

low to high density couplings, and we vary VgV
trans∼

VH
trans ∼ 2–5n0. In the low density limit, the couplings

linearly depend on Vq,

gðVqÞ → glow þ ðghigh − glowÞVq=V
g
trans; ð35Þ

while in the high density limit g approaches ghigh exponen-
tially fast.
In principle, ghigh can be further arranged to reproduce

the perturbative QCD results which are supposed to be
valid for nB ≳ 40n0 [23], but we restrict our attention to
domains of nB ≲ 10n0 and have not attempted such
matching. This is partly because the cutoff effects inherent
to the NJL type models introduce more artifacts at higher
density (in fact, we cannot go beyond ≃20n0) and partly
because our parametrization will be more complicated.
For a given ðμQ; TÞ, the model contains eight parameters:

ðc3; c8Þ and ðglowV ;HlowÞ largely responsible for matching to
hadronic equations of state, ðghighV ;HhighÞ largely correlated
with the maximal mass of neutron stars, and ðVgV

trans; V
H
transÞ

to characterize the transition density. The transient regime
from hadronic to quark matter is constrained by the
causality and thermodynamic stability conditions.
Among our eight parameters, two of them are fine-tuned

to reproduce the pressure P and number density nB in
hadronic models, while for the rest of parameters we pick
up some samples to extract generic trends. In this work, we
fine-tune the values of ðglowV ;HlowÞ as they are strongly
correlated with the physics at low density and choose
samples for ðc3; c8; VgV

trans; V
H
trans; g

high
V ;HhighÞ.

This procedure is repeated for various ðμQ; TÞ. In our
choice of the tuning parameters, ðglowV ;HlowÞ are respon-
sible for the ðμQ; TÞ dependence of ðgV; g3; g8; HÞ, while
ðc3; c8; VgV

trans; VH
trans; g

high
V ;HhighÞ are kept fixed with respect

to changes in ðμQ; TÞ. As a result,

∂g�
∂μQ

����
Vq

¼ ∂glow�
∂μQ e−Vq=V

g
trans ;

∂g�
∂T

����
Vq

¼ ∂glow�
∂T e−Vq=V

g
trans : ð36Þ

These extra contributions which come from the phenom-
enological matching disappear at high density. These
derivatives are used in determination of the charge and
entropy densities.

III. LOW AND HIGH DENSITY CONSTRAINTS ON
QUARK MODELS

A. Domains of interest

We first mention the range relevant for dynamic neutron
star phenomena in terms of ðnB; μQ; TÞ. In nuclear equations
of state, the charge chemical potential is the difference
between the neutron and proton chemical potentials,
μQ ¼ μp − μn. For the baryon density, we limit our dis-
cussions tonB ≲ 10n0, which is sufficient unlesswe describe
the collapse of neutron stars to black holes (seeRefs. [63–65]
for such studies). In this section, we often quote the estimates
in literatures, which are frequently given in terms of charged
and neutral lepton fractions, Ye ¼ ne=nB, Yν ¼ nν=nB, the
sum YL ¼ Ye þ Yν, and entropy per baryon s=nB.
For static neutron stars, the core region typically has

Ye ∼ 0.1, Yν ≃ 0, and s=nB ≃ 0. The lepton fraction is
dominated by charged leptons as neutrinos have already
diffused out. The estimate ne ∼ 0.1–0.2n0 requires us to
cover the range of μQ from 0 to −140 MeV. If we consider
only nucleonic degrees of freedom for hadrons for nB ≳ 2n0,
μQ reaches even lower values, to≲ −200 MeV.Meanwhile,
the positive μQ does not show up.
In dynamical processes of neutron stars, the neutrinos are

produced and trapped during the time scale shorter than the
diffusion time which is sensitive to the matter properties. As
neutrinos are trapped, the lepton number changes adiabati-
cally, and the charged lepton and neutrino chemical poten-
tials are established as μe ¼ −μQ þ μL and μν ¼ μL. The μe
is tuned to satisfy the charge neutrality condition.
Considering the initial conditions, the net lepton number
should be overall positive (more leptons than antileptons);
μL > 0 appears preferentially and approaches zero as neu-
trinos leak out. Then, μQ tends to be larger than in static
neutron stars and can be even positive in some domains.
As the dynamical processes of neutron stars are fairly

complex, themost reliableway to estimate the relevant range
of ðYL; s=nBÞ is to refer to available simulation data, see, for
instance, Refs. [66,67] for protoneutron stars after super-
novae and Ref. [68] for neutron star mergers. In the former,
the simulations typically lead to ≃1.4 M⊙ protoneutron
stars with nB ∼ 2–3n0, Ye ∼ 0.3–0.4, Yν ∼ 0.05–0.1, and
s=nB ∼ 1–2. The conservative choice of the range is
−200 MeV≲ μQ ≲þ40 MeV and T ¼ 0–100 MeV,
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which are covered in the Togashi equation of state.
Meanwhile, in the denser regime, the range of ðYL; s=nBÞ
seems closer to that in static neutron stars.
Meanwhile, neutron star mergers accommodate matter at

higher density and lower temperature; the cores of merging
neutron stars remain cool as heats are mainly produced in
the outer core region and is not quickly delivered to the
core. The core heats up more for a binary with the larger
asymmetric mass ratio where the collision becomes more
head on, and the two neutron stars have more direct contact.
Recent simulations [68] for a 1.2 M⊙–1.44 M⊙ merger
suggest that the temperature is raised to∼30 MeV and Ye ∼
0.1 for nucleonic equations of state.
We note that the above estimates are based on nucleonic

equations of state. Below, we consider the cases with non-
nucleonic degrees of freedom for nB ≳ 2n0 whose details
affect the relevant domain substantially. One of important
effects beyond pure nucleonic descriptions is the appear-
ance of strangeness [66,69].
For gapless hadronic or quark matters, the strangeness

makes the relevant range of ðμQ; TÞ narrower. The particles
with strangeness are negatively charged and reduce the
abundance of charged leptons, so we need only μQ closer to
μQ ¼ 0 than prepared for a pure nucleonic regime. The
temperature range also needs no extension, because for a
given entropy the temperature reduces as more active
degrees of freedom become available. For a normal
three-flavor quark matter, the temperature is about a half
of hadronic matter for a given entropy density (see, for
instance, Ref. [70]).
The situation considerably differs for matter with the

pairing gaps, especially in the CFL phase. In the CFL
phase, the (u, d, s) quarks all participate in the pairing and
make the matter charge neutral. Due to the pairing gaps,
quarks in this phase hardly react to changes in ðμQ; TÞ until
they become large enough to break the pairs apart. When
some lepton number or entropy densities are given in the
CFL phase, they must be saturated by leptonic contribu-
tions. As the QCD matter is charge neutral by itself, there
should be no charged leptons, so the charged lepton
chemical potentials should be ≃0 or μQ ≃ μL, which leads
to a neutrino density (at low temperatures) of nν≃
Nνμ

3
Q=6π

2, with Nν being the number of the trapped
neutrino species. We set Nν ¼ 2 at high density to include
νe and νμ, while the chemical potential for ντ’s is set to zero
as they appear only through the pair production processes
and hence nντ ¼ nν̄τ . As the initial condition has more
leptons over antileptons, μQ is expected to be positive. For
example, for nν ¼ 0.05n0 (or Yν ¼ 0.01 for nB ¼ 5n0), we
need μQ ≃ 120 MeV for T ∼ 0 and smaller μQ at finite
temperature. As for the range of temperature, less degrees
of freedom than in nuclear matter contribute, and the
temperature can be about twice as large for a given entropy
density. The core temperature may become larger than

∼30 MeV for neutron star mergers with asymmetric
masses.
Taking these considerations into account, in this paper,

we mainly explore the range −180 MeV ≤ μQ ≤ 100 MeV
and 0 ≤ T ≲ 50 MeV within the mean-field approxima-
tion. No mesonic excitations are included in this paper,
although we are already aware that their contributions can
be important in the CFL phase; they will narrow the
relevant range of ðμQ; TÞ. More comments are given in
Sec. VII.

B. Low density constraints

For hadronic equations of state for nB ≲ 2n0, we use the
Togashi nuclear equations of state. By construction, this
equation of state is consistent with laboratory experiments at
nB ≃ n0. The physics of nB ≲ 2n0 is largely correlated with
neutron star radii with which one can infer equations of state
around 2n0. The Togashi predicts R1.4 ≃ 11.5 km. There are
two trends in the estimates of the radii based on astrophysical
observations (for the methodology and general overview,
see, e.g., Ref. [6]). The discovery of the neutronmerger event
GW170817 and calculations lead to the upper bound
R1.4 ≲ 13 km, and typical estimates of the radii are R1.4 ≃
12� 1 km [10,11].Meanwhile the x ray timingobservations
by the NICER lead to larger radii, R1.4 ≃ 13� 1 km, R ¼
13.02þ1.24

−1.02 km for M ¼ 1.44þ0.15
−0.14 M⊙ (68%) [7], and

12.71þ1.14
−1.19 km for 1.34þ0.15

−0.16 M⊙ [8]. Thus, the Togashi
equation of state belong to a soft class of low density
equations of state.
The physics at low density in β-equilibrated matter is

constrained in the above-mentioned way, but the domain
with a more general lepton fraction and finite temperature
has not been well constrained from observations. So our
discussions are based on theoretical predictions. The
Togashi covers sufficiently wide domains for nB and T,
while YQ is covered up to 0.65, which corresponds to μQ ∼
40 MeV for nB ∼ 2n0. As we use μQ to 100 MeV for the
quark model, our coupling interpolations need the nuclear
tables to μQ ¼ 100 MeV, and we have to extrapolate the
nuclear data.
Our extrapolation at a given T is guided by the isospin

symmetry, taking into account its breaking only up to the
neutron-proton mass difference mn −mp in the energy
density from the rest mass. The details are given in the
Appendix, and here, we just quote approximate relations,

εð1 − YpÞ ≃ εðYpÞ þ ðmp −mnÞð1 − 2YpÞnB;
sð1 − YpÞ ≃ sðYpÞ;
Pð1 − YpÞ ≃ PðYpÞ;
μQð1 − YpÞ ≃ −μQðYpÞ − 2ðmn −mpÞ;
μBð1 − YpÞ ≃ μBðYpÞ þ μQðYpÞ þmn −mp: ð37Þ
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We have checked that the relations hold in good accuracy
for 0.4≲ Yp ≲ 0.6 using the nuclear tables, and we assume
its validity for Yp ≳ 0.6. We use the original data if they are
available and if not use the data created from the approxi-
mate relations. Here is an example: to construct tables for
nB ¼ 2n0 and YQ ¼ 0.9, in the Togashi we use the data
YQ ¼ 0.1 which corresponds to μBð2n0; 0.1Þ ≃ 1020 MeV
and μQð2n0; 0.1Þ ≃ −120 MeV and produce the results
μBð2n0; 0.9Þ ≃ 900 MeV and μQð2n0; 0.9Þ ≃ 120 MeV.
After these preparations, now the tables are used to

constrain quark models. We choose the matching point to
nB ≃ 1.5n0.

4 We have also tried to match at higher densities
such as 2n0. But for the negative μQ ≲ −100 MeV domain,
the strangeness can appear below nB ¼ 2n0 for some
parameters in our quark model, and it often accompanies
the first order transition. This introduces additional tech-
nical complications, and we simply avoid them by choosing
lower values of nB for the matching procedure. Then, the
nuclear equations of state are matched with the 2SC phase
in quark models as in Ref. [50]. The other possible scheme
is to choose the matching point at a larger nB and use
hadronic equations of state with hyperons, see, for instance,
Refs. [71–75]. In this case, we may interpolate the CFL
equations of state to the hyperonic ones. We leave the
analyses of such schemes for future works.

C. High density constraints

The high density part of equations of state at nB ≳ 5n0
must be sufficiently stiff to pass the so-called two solar
mass (2 M⊙) constraint; the accurately measured masses
are M ¼ 1.908þ0.016

−0.016 M⊙ [3], M ¼ 2.01þ0.04
−0.04 M⊙ [4], and

2.14þ0.10
−0.09 M⊙ [5].

Although the maximum mass is strongly correlated with
the high density equations of state, low density equations of
state serve important constraints as the low and high density
domains must be connected in a causal and thermody-
namically stable way. In general, the connection becomes
more problematic for softer hadronic equations of state
because the growth of the stiffness, characterized by
c2s ¼ ∂P=∂ε, is bound by the light velocity. If we include
the first order phase transitions in modeling, the difficulty is
further enhanced as the region other than the first order
domain must have an even larger speed of sound.
The previous series of QHC equations of state for static

neutron stars smoothly interpolate a nucleonic pressure at
2n0 and a (CFL) quark matter one at 5n0 by polynomials of
μB. Within this interpolation scheme, the range of model
parameters ðgV;HÞ, used for nB ≥ 5n0, is constrained for
given nucleonic equations of state. The impacts of gV and
H are schematically illustrated in Fig. 2; a larger gV is

necessary to make equations of state stiff enough to pass the
2 M⊙ constraint, but too large gV makes thermodynamic
and causal interpolation to nuclear equations of state
impossible. This problem is relaxed by increasing H.
Clearly, the allowed values of gV and H are strongly
correlated. The difficulty of the interpolation depends on
nuclear equations of state and more difficulties for softer
nuclear equations of state. Most comprehensive studies
were done for the Togashi which is relatively soft [34]. The
absolute maximum allowed mass in the QHC19 [34] is
≃2.35 M⊙ at ðgV;HÞ=Gs ≃ ð1.30; 1.65Þ with the core
baryon density ≃6n0. Overall, the analyses suggest gV ≳
0.6Gs and H ≳ 1.4Gs. This estimate is consistent with the
analyses [76] based on nonperturbative gluon propagators
[77,78]. These analyses motivate us to pick up samples
from ghighV ≳ 0.6Gs and Hhigh ≳ 1.4Gs.
Actually, the constraints on ðgV;HÞ should be stronger

than the previously found one, because the previous
analyses treated only β-equilibrated matter and do not
guarantee that the interpolation can be done for general
ðμQ; TÞ. Indeed, we found that the constraints for ðgV;HÞ
become significantly tighter if we demand the interpolation
for a wide range of ðμQ; TÞ [79]. In short, this is due to the
disparity between the CFL quark matter and hadronic
matter in their response to changes of ðμQ; TÞ. Hadronic
equations of state change considerably while the CFL one

FIG. 2. Schematic figure to explain the impacts of ðgV;HÞ.
(Upper) A NJL quark matter equation of state with gV ¼ H ¼ 0 is
stiffened by increasing gV . But it enhances the danger to
introduce the unstable region (∂2P=∂μ2B < 0) between quark
and nuclear equations of state. (Lower) Increasing H overall
shifts the pressure curve to a lower μB domain, allowing us to
connect quark and nuclear equations of state without introducing
the unstable region.

4More precisely, to avoid additional interpolation between data
points, for all (μQ; TÞ we use tables given at nB closest to 1.5n0;
for the Togashi, it is nB ≃ 1.498n0.
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does not, so the acceptable domains of ðgV;HÞ change
considerably as we vary ðμQ; TÞ. We do not show the
systematic analyses here but just pick up a particular set of
ðgV;HÞhigh which passes the above mentioned constraint.
Finally, we mention how the evolution of effective

couplings affect the stiffness, or more precisely how
dg=dVq ∼ dg=dnB impacts the relation between P and ε.
We consider a simple parametrization of energy density for
a given number density as

εðnBÞ ¼ an4=3B þ bnαB; ða; b∶constantÞ; ð38Þ

where the first term comes from a relativistic kinetic energy
and the second from interactions. The chemical potential is

μðnBÞ ¼
4

3
an1=3B þ bαnα−1B : ð39Þ

Using the thermodynamic relation P ¼ μBnB − ε, and
eliminating a, we get [25]

P ¼ ε

3
þ b

�
α −

4

3

�
nαB: ð40Þ

The interaction modifies the P vs ε relation from the
conformal limit. Whether equations of state are stiffened or
softened depend on not only the sign of interactions but
also the powers in nB. To stiffen equations of state,
repulsive interactions (b > 0) must have α > 4=3; for
attractive interactions (b < 0), α < 4=3 is necessary.
For constant ðgV;HÞ, they add the energy density terms,

roughly ∼gVn2B and ∼ − Δ2ðnBÞ=H [see Eqs. (10) and (18),
here Δ2ðnBÞ grows more slowly than powers of 4=3], that
stiffen equations of state compared to the conformal limit.
This trend changes for evolving couplings that yield
additional powers in nB. For example, the vector repulsion
softens equations of state for gVðnBÞ ∼ n−βB with β > 2=3.
Such power is expected if we deduce gV from a one-gluon
exchange, which is expected to scale as ∼αðpFÞ=p2

F at
large density. ForH, details depend on how ΔðnBÞ depends
on nB. If we assume that the nB dependence is weak, the
reduction of H for larger nB softens the equation of state.

IV. MATCHING NUCLEAR TO 2SC

In this section, we analyze the continuity between the
nuclear and 2SC phases, assuming that descriptions based
on nuclear and quark pictures are reasonably valid around
nB ≃ 1.5–2n0. Specifically, we choose nB ¼ 1.5n0 at μQ ¼
T ¼ 0 as a matching point and then fix the quark model
couplings to reproduce the pressure and number density of
the nuclear equations of state. In this section, the evolving
coupling constants are functions of Vq only; they do not
depend on ðμQ; TÞ. The purpose in this section is to see to
what extent the matching works for general ðμQ; TÞ within

this simplest setup. The ðμQ; TÞ dependence is introduced
in the next section.
Unless otherwise stated, we choose the following set of

parameters:

ðghighV ;HhighÞ=Gs ¼ ð1.3; 1.7Þ;
VgV
trans ¼ VH

trans ¼ 2.5n0;

c3 ¼ c8 ¼ 0.5: ð41Þ

This choice of ðghighV ;HhighÞ is based on the guideline
presented in the previous section. The specific values of
Vg
trans are chosen after some trials and errors; with too small

values, we typically found instabilities in searching the
solutions of gap equations.Meanwhile,with too largevalues,
g is not dominated by ghigh, obscuring the meaning of our
framework. Finally, the values of ðc3; c8Þ are chosen as an
intermediate between the universal Uð1Þ repulsion ðc3 ¼
c8 ¼ 0Þ and UðNfÞ-symmetric repulsion ðc3 ¼ c8 ¼ 1Þ.
The difference strongly correlates with the strength of phase
transitions associated with production of the strangeness, as
is shown below.

A. Zero temperature

1. Onset of strangeness

First, we analyze the zero temperature results. We begin
with studies of the flavor-asymmetric repulsions for
c3 ¼ c8 ¼ 0.0, 0.5, 1.0 to check their impacts.
Shown in Fig. 3 are the number density nB for various

c3;8 parameters. We have checked that the impact of c3 is
negligible for the range of μQ we have explored.
Meanwhile, the value of c8 has a dramatic impact. As
we increase c8 from 0 to 1, the onset density of strangeness
is reduced from ≃4n0 to ≃2.5n0 or in μB from μB ≃
1550 MeV to ≃1200 MeV. To understand this tendency, it
is useful to note the structure of the repulsive terms in the
thermodynamic potential; in the mean field,

ΩμQ≃0
V ≃ gVðnu þ nd þ nsÞ2 þ

c8
2
gVðnu þ nd − 2nsÞ2

¼ gV

�
1þ c8

2

�
ðnu þ ndÞ2 þ gVð1þ 2c8Þn2s

þ 2gVð1 − c8Þðnu þ ndÞns: ð42Þ

For c8 ¼ 1, the mean-field repulsion between u, d quarks
and s quarks vanishes; as a consequence, the onset of the
strangeness is not disturbed by the effective repulsions from
the u, d-quark densities.
Another aspect of c8 is that it suppresses the suscep-

tibility at low density; the repulsive terms in the absence of
s quarks becomes
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ΩμQ≃0
V ⟶

ns→0
gV

�
1þ c8

2

�
ðnu þ ndÞ2; ð43Þ

so larger c8 tempers the growth of nB more strongly. Figure 3
shows that the choice c8 ¼ 1 suppresses the growth of nB a
bit too much; as a result, the matching to the Togashi is good
only at a single point, nB=n0 ≃ 1.5. For smaller c8, the
matching is better over the range nB ≃ 1.0 − 1.5n0. Below,
we use the intermediate values c3 ¼ c8 ¼ 0.5.
We also check the impact of variation of Vg

trans. Its impact
on equations of state on Vg

trans is not as large as c3;8 for the
range we are interested in, as can be seen from Fig. 3.

2. Evolving couplings gðVqÞ
Having learned the impact of parameters c3;8 and Vg

trans,
now we examine how the effective couplings evolve. We
pick up μQ ¼ −140, 0, 100 MeV as samples. The domain
around μQ ≃ −140 MeV is important for the neutron-rich
matter as in static cold neutron stars, while μQ ≃ 100 MeV
may be realized for matter with large neutrino density.
Shown in Fig. 4 are the evolving couplings g ¼ ðgV;HÞ

plotted as functions of nB=n0. The coupling gV at low
density is sensitive to the choice of c3;8 and Vg

trans. For our
baseline c3;8 ¼ 0.5 and Vg

trans ¼ 2.5n0, we found gV to be
an increasing function of nB. Meanwhile, the value of H is
remarkably insensitive to the choice of c3;8 and Vg

trans.
The interpretation of this qualitative tendency is not

straightforward and hence deserves special remarks. If we
had kept H constant everywhere and just extrapolated a
H ¼ Hhigh from the high density domain, the quark

equations of state did not match with the nuclear one, as
we have illustrated in the lower panel of Fig. 2. At a given
μB, there would be too much pressure and number densities
compared to the nucleonic case [25,80]. Without confining
effects in quark models, quarks are overpopulated by
attractive pairings, and we regard it as an artifact of using
our quark models in dilute regime. From this perspective,
one way to suppress overpopulated quarks is to take a very
large value for gV at low density, as done in Ref. [50] where
gV depends on μB. This descriptions, however, are found to
be problematic if we let gV depend on Vq ∼ nB. In this case,
gV needs to behave singular at low density; otherwise, the
terms ∼gVV2

q simply decouple from the analyses as Vq → 0

and cannot eliminate the artifacts. Then, we found that such
a singular function makes numerical solutions for self-
consistent equations typically unstable. It turns out that
letting H density dependent allows us more efficient
matchings. In fact, reducing H at low density eliminates
the overpopulated quarks; in physical terms, colored
diquarks are not allowed to be stable in the dilute regime,
as their isolated color charges should cost the energy. For
our current model, the confining effects are not explicitly
included, so we reduceH to allow less number of diquarks.
Meanwhile, in a denser regime, diquarks can find another
quark to get neutralized, and we expect thatH may have the
magnitude which is roughly those expected inside of a
baryon, H ≳ 1.4Gs [76].

3. Equations of state; nuclear-2SC-CFL

We have set up the parameters for evolving couplings at
μQ ¼ T ¼ 0. Next, we use them to construct equations of

FIG. 3. The number density nB (normalized by n0) at μQ ¼
T ¼ 0 for (top) c3 ¼ c8 ¼ 0.0, 0.5, 1.0 with VgV;H

trans ¼ 2.5n0 and
(bottom) VgV;H

trans =n0 ¼ 2.0, 2.5, 3.0 with c3 ¼ c8 ¼ 0.5.

FIG. 4. The evolving effective couplings gV and H as functions
of nB. The parameter set is the same as in Fig. 3.
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state. In Fig. 5, we show equations of state, P, nB=n0, and
nQ=n0, as functions of μB, and in Fig. 6, we also show the P
vs ε. We chose the cases with μQ ¼ −140, 0, 100 MeV as
samples. Some remarks are in order:

(i) First we note its overall structure of the pressure
curves. At low density the nucleonic equations of
state vary significantly as functions of μQ. For larger
μQ, the matter becomes more proton rich, the onset
chemical potential lower, and the baryon density
higher at given μB. As density increases, these
different sets of pressure curves approach a single
curve; the matter becomes the CFL phase, which is
insensitive to changes in μQ. Thus, there is strong
disparity in the μQ dependence of low and high
density equations of state.

(ii) This strong disparity is washed out through the
transition from the 2SC to the CFL phases. The 2SC
phase is sensitive to changes in μQ, and so is the
location of the phase transition. For larger μQ, the
2SC phase persists to higher density, and the CFL

phase radically sets in with a large jump in the
energy density. The strength of the transition be-
comes weaker for a negative μQ, as such a μQ assists
the population of s quarks, and then, the disparity
between u, d and s quarks becomes smaller.

(iii) Around nB ≃ 1–2n0, the baryon number and charge
densities at μQ ¼ −140, 100 MeV in nuclear and
2SC descriptions seem reasonably consistent even
before tuning of the evolving couplings. The dis-
crepancy is the order of 10%–20% of the total.
Nevertheless, it is surprisingly difficult to fill this
gap unless we introduce the physics beyond the
quasiparticle descriptions of the 2SC. We come back
to this point later. The quality of matching for the
nuclear and 2SC equations of state is not as good as
it may look.

B. Finite temperature; nuclear-2SC-CFL

We further examine the nuclear-2SC continuity includ-
ing thermal corrections. Theoretically, there are amusing
similarities in the nuclear and 2SC descriptions which are
encouraging to push the continuity idea, but there are also
notable differences associated with their kinematics. After
all, we need to consider supplemental correlation effects
that would complete the continuity scenario.
First, we mention the similarities. The first amusing fact

is that the nuclear and 2SC phases have the same number of
gapless fermions. A nuclear matter has four gapless modes,
protons and neutrons with 1=2. Meanwhile, in the 2SC
matter, uR, dG, uG, and dR quarks participate in the
diquark pairing and get gapped, while uB and dB are left
gapless; taking into account their spins, there are four
gapless modes in the 2SC phase as in the nuclear matter.
Second, the number density for protons plus neutrons and
for uB plus dB are equal; to see this, we note

nB ¼ np þ nn ¼
1

Nc

X
f¼u;d

ðnfR þ nfG þ nfBÞ; ð44Þ

FIG. 5. Zero temperature equations of state, P, nB=n0, nQ=n0 as
functions of μB for μQ ¼ −140, 0, 100 MeV. The extrapolation of
the Togashi is also shown with thin lines. The quark model
equations of state approach those in the CFL phase at high
density.

FIG. 6. The zero temperature pressure vs energy density for
μQ ¼ −140, 0, 100 MeV. (For the Togashi equations of state, the
μQ dependence is not visible.)
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where nfðRGBÞ are the quark density with flavor f and
colors ðRGBÞ. We further note that the color neutrality
condition sets

X
f¼u;d

nfR ¼
X
f¼u;d

nfG ¼
X
f¼u;d

nfB; ð45Þ

with which one can write

nB ¼ np þ nn ¼ nuB þ ndB: ð46Þ

In particular, the isospin symmetric matter has np ¼ nn ¼
nuB ¼ ndB with which the Fermi momenta for p; n; uB; dB
are all the same.
Now, we turn into the difference between the nuclear and

2SC descriptions. The difference comes from kinetic and
dynamical reasons; the densities of states near the Fermi
surface, or the Fermi velocities, turn out to be different for
these two descriptions. This can be seen by looking at the
entropies. Applying the Fermi liquid descriptions for
gapless fermions, we may write entropy at low temper-
atures as

s ≃ Ndof
p2
B

3vRF
T; ð47Þ

where Ndof is the number of the gapless fermion species.
Here, we slightly generalize the Fermi velocity in a non-
relativistic framework into vRF ¼ pF=EF, where EF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� þ p2

F

p
; in the nonrelativistic limit, it reduces to vRF →

vNRF ¼ pF=m� where m� is the effective mass, while in the
relativistic limit vRF → 1 recovering the result of a massless
fermi gas. For the nuclear and 2SC descriptions, theirNdof’s
are equal, but the vRF’s are likely different, as the masses of
gapless fermions are considerably different. Neglecting the
effects of interactions, the mass in the nuclear case should be
m� ∼mN , about three times larger than the 2SC case, and
which in turn suggests snuclear ∼ 3s2SC. Thus, in this simplest
consideration, the nuclear and 2SC entropies do not match.
Formore detailed inspections, onemust include the effects

of interactions. Figure 7 shows the temperature dependence
of the Togashi and 2SC equations of state, including
entropies, compositions, and dynamical masses and gaps
at μB ¼ μmatch

B (with which nB ∼ 1.5n0) where we match the
nuclear and 2SC equations of state. At nB ≃ 1.5n0, the Fermi
momentum is pF ≃ 300 MeV. Several remarks are in order:

(i) The Fermi velocity in the nuclear phase around nB ≃
1.5n0 is vRF ≃ 0.50, enhanced from the free gas limit
vfreeF ≃ 0.32. This means the interactions effectively
make nucleons more relativistic, and this tends to
close the gap between the nuclear and 2SC de-
scriptions.

(ii) The Fermi velocity in the 2SC phase around nB ¼
1.5n0 is vRF ≃ 0.87, close to the velocity of light.

Such a large velocity is first due to the effective
quark mass less than the nucleon mass and second
due to the chiral restoration effects. In our setup, the
effective quark mass around nB ≃ 1.5n0 is Mu;d ≃
170 MeV (in vacuum Mu;d ≃ 336 MeV).

(iii) It is interesting to see what value of the effective
quark mass can reproduce the nuclear result,
vRF ≃ 0.50. Setting 0.5 ¼ pF=EF, one obtains
Mu;d ¼

ffiffiffi
3

p
pF ≃ 510 MeV, which is too heavy to

be satisfied within the 2SC description. This sug-
gests that, if the nuclear-2SC continuity takes place
around nB ≃ 1.5n0, there must be substantial cor-
rections in both nuclear and 2SC results.

(iv) If the 2SC pairings are absent, Ndof in normal quark
matter is about three times greater than the 2SC case.
In this case, the quark entropy is too large compared
to the nuclear’s.

FIG. 7. The comparison of thermal quark equations of state
with the Togashi at μB ¼ μmatch

B and μQ ¼ 0: (top) the entropy
density s=n0 of the quark model and the Togashi with and without
a pion gas; (middle) the composition, nB=n0, nQ=n0, and YS. By
the definition of μB ¼ μmatch

B , the Togashi has nB=n0 ¼ 1.5,
YQ ¼ 0.5, and YS ¼ 0; (bottom) the effective masses and pairing
gaps. The ud-diquark gap (ΔudðT ¼ 0Þ ≃ 174 MeV) disappears
at T ≃ 81 MeV ≃ 0.47ΔudðT ¼ 0Þ.
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(v) To see how matching works at higher temperatures,
we must look at modifications of the condensation
effects. Up to T ≃ 30 MeV, we do not see sub-
stantial changes. The pairing gap for ud quarks is
about ΔudðT ¼ 0Þ ≃ 174 MeV at T ¼ 0, and it
decreases for larger T and vanishes at T≃
81 MeV ≃ 0.47ΔudðT ¼ 0Þ. After u, d quarks are
released from the diquark pairing, they in turn join
the chiral pairing to enhance the chiral effective
mass. This reduces the Fermi velocity, and the
resulting entropy becomes closer to the nuclear one.

(vi) Around T ≃ 30 MeV, thermally excited s quarks,
which are gapless, start to make significant contri-
butions. While the density of s quarks are not as
large as u, d quark’s, all colors can contribute,
making the roles of s quarks substantial.

(vii) Around T ≃ 50 MeV, the relation between the
nuclear and 2SC entropies is reversed; the 2SC
entropy becomes larger than the nuclear entropy and
grows faster. One possibility to reduce the gap is to

add contributions from thermally excited mesons,
such as pions, to the nuclear entropy. But it turned
out that such corrections are not large enough to
catch up the growth of the quark entropy. A
possible way to achieve the thermal nuclear-2SC
continuity is to suppress thermally overpopulated
quarks by introducing Polyakov loops in quark
models [81,82].

Having seen in detail the tendency at μQ ¼ 0, we further
extend our survey to a wider domain in μQ. Shown in Fig. 8
are P, nB=n0, nQ=n0, and s=n0 for μQ ¼ −140, 0, 100 MeV
and T ¼ 10, 30, 50, 70 MeV. The mismatch found in the
μQ ¼ 0 result persists for general μQ. The trend of entropies
is similar to the already discussed μQ ¼ 0 case. Another
trend is that nB and nQ in the 2SC react to changes in μQ
more strongly than in nuclear descriptions. In contrast, the
CFL domain hardly reacts to changes in μQ. The main
difference between the 2SC and CFL is the existence of
gapless quarks which can react to small perturbations.

FIG. 8. Thermal equations of state, P, nB=n0, nQ=n0, and s=n0 as functions of μB. The temperatures are T ¼ 10, 30, 50, and 70 MeV,
and the charge chemical potentials are μQ ¼ −140, 0, and 100MeV. The Togashi equation of state is used to tune the evolving couplings
at μQ ¼ T ¼ 0 MeV and nB ≃ 1.5n0 for the setup given in Eq. (41).
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Looking over the results for T ≲ 50 MeV, one might
think the nuclear and 2SC results are reasonably consistent.
For the pressure curves, the mismatch is not so apparent,
and the number densities in the 2SC descriptions deviate
from the nuclear’s by ∼30% or so. These would give
impressions that the mismatches can be readily eliminated.
We found this is not the case. For this reason, we are forced
to allow phenomenological corrections with which we
depart from the conventional quasiparticle descriptions
of CSCs. They are discussed in the next section.

V. PHENOMENOLOGICAL CORRECTIONS: CSCX

In this section, we construct unified equations of state
which cover from the nuclear to quark matter domains. As
we have seen, the matching between the nuclear and 2SC
equations of state needs some phenomenological correc-
tions. A possible conclusion is that the nuclear-2SC
continuity is simply impossible. Another possibility is that
our descriptions of nuclear and 2SC are insufficient. The
nuclear model does not describe the 2SC correlation, and
the 2SC calculation does not include three-particle corre-
lations for baryons. In this section, we explore the latter
possibility and examine how far we can go with this
assumption. We introduce the ðμQ; TÞ dependence in the
evolving couplings and allow the 2SC to react to changes in
ðμQ; TÞ the same as the nuclear matter. Although our quark
matter uses the ordinary 2SC as a baseline, it now has the
qualitative properties different from the ordinary 2SC. So
we call the 2SC with evolving couplings “CSCX”, with X
emphasizing our ignorance of the practical descriptions.
The X contributes to the baryon number, charge, and
entropy densities but does not contribute to the color
density, as our evolving couplings are taken independent
of color chemical potentials.
As before, we use evolving couplings for the 2SC

pressure and baryon density to match the nuclear ones at
nB ¼ 1.5n0, but now repeat the procedure for each ðμQ; TÞ.
After g is extended to ðμQ; TÞ-dependent parameters, they
add extra contributions to the charge and entropy densities,

ΔnQ ¼ ∂P
∂g

����
λ;η

∂glow�
∂μQ e−Vq=V

g
trans ;

Δs ¼ ∂P
∂g

����
λ;η

∂glow�
∂T e−Vq=V

g
trans ; ð48Þ

as we have discussed in Eqs. (26) and (36). These
contributions die out as ∼e−Vq=V

g
trans as baryon density

increases, but to some extent, they survive in the CFL
phase. In particular, charge density is nonzero in the CFLX,
in contrast to the usual CFL phase.
To begin with, we examine the (μQ, T) dependence of

glow� . In Fig. 9 we show the behaviors of ðglowV ;HlowÞ as
functions of μQ for T ¼ 1, 10, 30, 45 MeV. The other

parameters are the same as in the previous section,
see Eq. (41).
We first remark on the μQ dependence. The behavior of g is

approximately symmetric with respect to μQ ↔ −μQ, as our
quark model (nuclear models) has the (approximate) isospin
symmetry. Next, we notice thatH is insensitive to changes in
μQ, while gV considerably reduces as μQ deviates from
μQ ¼ 0. At this point, we recall that the number density in the
pure 2SC description was not sufficiently large at μQ ¼ 100

and−140 MeV (see Figs. 5 or 8). This over-reduced number
density is enhanced back by reduction of gV or byweakening
the repulsive density-density interactions.
Next, we discuss the T dependence. Both gV and H

depend on T in a nonlinear way. To T ∼ 30 MeV, both
couplings increase as T does. We recall that the pressure
and number density in the pure 2SC descriptions are lower
than the nuclear’s. These mismatches are cured by increas-
ingH that enhances the pressure and number density at low
density as well as the entropy. The increase of gV tends to
counteract such tendency, but at low density, the impact of
gV is not as important as H because the former appears as
∼gVn2q. Beyond T ∼ 30 MeV, the number density in the
pure 2SC is still underestimated, but the entropy starts to
increase faster than the nuclear’s. This introduces the
complex behaviors in gV and H. While H increases a
little, gV starts to decrease substantially. The impact is
greater when μQ deviates more from zero. In particular,
around T ≃ 50 MeV, glowV for μQ ≃ −140 MeV turns into a
negative, preventing us from the self-consistent solutions.
At higher temperature, the same happens for the other μQ
domain. This is in part because the entropy in the 2SC
description becomes too large, as seen in Fig. 5, and these
discrepancies can no longer be compensated by just
arranging the strengths of ðgV;HÞ. It seems that more
fundamental modifications must be introduced. For this
reason, we stop our illustration at T ¼ 45 MeV.

FIG. 9. The low density limit of evolving effective couplings
glowV and Hlow as functions of μQ and T. (At T ≃ 46 MeV, glowV at
μQ ≃ −140 MeV changes the sign, preventing us from getting
stable solutions for self-consistent equations.)
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Having seen these ðμQ; TÞ dependences of effective
couplings, we found that their behaviors are not quite
natural within the conventional 2SC picture; the effective
couplings describe nonperturbative dynamics whose typ-
ical scale is ∼ΛQCD and should not be substantially affected
by small changes in μQ and T of a few tens of MeV. With
this consideration, we reassure that the problems of
matching are not mere fine-tuning issues but are related
to problems in physical descriptions.
With this caution in mind, we now turn to the equations

of state of the CSCX. In Fig. 10, we show P, nB=n0, nQ=n0,
and s=n0 for μQ ¼ −140, 0, 100 MeV and T ¼ 1, 10, 30,
45MeV. By construction, the CSCX reproduces the nuclear
equations of state around nB ≃ 1.5n0. But it is worth
mentioning that the matching is good over a finite range

of 1 − 1.8n0, although we have demanded the matching
only at a single point, nB ¼ 1.5n0.
As we have mentioned, the CSCX has extra contributions

from the ðμQ; TÞ dependence of effective couplings. Most
notably, in the CFLX domain, the charge density is also
positive (negative) for a positive (negative) μQ. The CFLX is
charge neutral only at μQ ≃ 0. This can be understood by
recalling that dg=dμQ ¼ 0 at μQ ≃ 0 (Fig. 9), and the pure
CFL is charge neutral. The particle content is then nu ¼
nd ¼ ns at μQ ≃ 0. As the CFLX is perturbed by μQ, nd þ
ns < nu for positive μQ, whilend þ ns > nu for negative μQ.
In next section, we see the consequence of this relation by
coupling leptons.
Up toT ≃ 45 MeV, the entropy atnB ≳ 1.5n0 is smaller in

the CSCX than in the nuclear case. The CFLX has less

FIG. 10. Thermal equations of state, P, nB=n0, nQ=n0, and s=n0 as functions of μB. The temperatures are T ¼ 1, 10, 30, 45 MeV, and
the charge chemical potentials are μQ ¼ −140, 0, 100 MeV. The Togashi equation of state is used to tune the evolving couplings for all
ðμQ; TÞ and at nB ≃ 1.5n0 for the setup given in Eq. (41). At T ≳ 45 MeV, a matching between the nuclear and 2SC begins to be
impossible within the current framework, as we can expect from the entropy at low density for μQ ¼ −140 MeV. For this difficulty, the
results beyond T ¼ 45 MeV are not displayed.
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entropy than the 2SCX, as in the relation between the pure
CFL and 2SC.

VI. CSCX FOR NEUTRON STARS

Finally, we examine the astrophysical implications of the
equations of state of nuclear-“CSCX’,’ which were studied
in the previous section. Our main concern is the compo-
sition of matter at a given lepton and temperature which
change during the dynamics of neutron stars. The pressure
is given by (T is hidden here)

PðμB; μQ; μLÞ ¼ PQCDðμB; μQÞ þ PeðμQ; μLÞ þ PνðμLÞ;
ð49Þ

where the charged lepton has the chemical potential
μe ¼ μL − μQ.
We first examine the equation of state “CSCX+Togashi”

(with matching of the Togashi and CSCX) at T ¼ μL ¼ 0
for static neutron stars. The purpose is to check that the
high density value for evolving couplings ghigh are chosen
to be consistent with the available neutron star observa-
tions. Next, we consider the neutrino trapping regime at
finite temperature and lepton chemical potential.

A. Static neutron stars

For static neutron stars, we must tune μQ to satisfy the
neutrality of electric charges,5

∂P
∂μQ ¼ nQðμB; μ�QÞ ¼ 0; ð50Þ

which determines the μ�Q as a function of μB. We have set
the lepton chemical potential to zero so that neutrinos are
absent. Shown in Fig. 11 are μQ, nB=n0, and −YS, for the
CSCXþ Togashi and the Togashi. All these quantities
jump at a 2SCX-CFLX transition that takes place at
μB ≃ 1150 MeV; the baryon density jumps from ≃2.3n0
to ≃3.1n0, μQ from ≃ − 150 MeV to ≃ − 17 MeV, and
−YS from ≃0.03 to ≃0.94.
Shown in Figs. 12 and 13 are P − ε and c2s − nB=n0

relations for the CSCXþ Togashi and the Togashi. The
stiffness of the 2SCX phase grows faster than the Togashi,
and the c2s reaches beyond the conformal value 0.3 already
around nB ≃ 1.9n0. This stiffening effects are reflected in
Fig. 14 for theM-R relation. For lowmass neutron stars, the
Togashi and CSCX-Togashi coincides to points around

FIG. 11. Equations of state for static neutron stars, μQ, nB=n0,
nQ=n0, −YS, and YQ for the CSCXþ Togashi. The curves for the
Togashi are also shown (except YS).

FIG. 12. The P − ε relations for the CSCX-Togashi and
Togashi equations of state for static neutron stars.

5In contrast to the constant coupling cases, the determination
of μ�Q is more cumbersome as the evolving couplings contain the
μQ dependence. In particular, we need to compute the μQ
dependence of various quantities including condensates for
which we do not have analytic expressions. For this reason,
we first prepare tables for various sets of ðμB; μQÞ and calculate
the numerical derivatives.
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ðM;RÞ ≃ ð0.5 M⊙; 11.5 kmÞ; for a heavier star, the CSCX-
Togashi leads to a larger radius; e.g., for 1.4 M⊙ neutron
stars R1.4 ≃ 12.3 km. A kink in theM − R curve, withM ≃
1.53 M⊙ and R ≃ 12.4 km, reflects the 2SCX-CFLX tran-
sition. After having the transition, the resultant CFLXmatter
must be sufficiently stiff to pass the 2 M⊙ constraint. Our
choice of the high density couplings, ðgV;HÞhigh=Gs ¼
ð1.3; 1.7Þ, indeed satisfies the constraint. As the CSCXþ
Togashi and Togashi have similar P-ε relations at high
density, the maximum masses are similar. At the maximum
mass, the CSCXþ Togashi has the M-R relations and the
core density, ðM;R; ncoreB Þ ≃ ð2.22 M⊙; 10.7 km; 6.5n0Þ,
and for the Togashi, ≃ð2.23 M⊙; 10.2 km; 6.9n0Þ.6

B. Neutrino trapping regime

We next consider the neutrino trapping regime. This
regime is possible only when there are substantial amounts
of thermally excited states which interact with neutrinos. In
the protoneutron star context, the neutrino trapped matter is
expected to have s=nB ≃ 1–2. As we have seen in Fig. 8,
this condition is met at T ∼ 10 MeV for the Togashi-2SCX
region and at T ∼ 30 MeV for the CFLX region. Below, we
consider T ≳ 10 MeV and assume the neutrino trapping
regime for equations of state.
With neutrinos, we have a lepton chemical potential. We

determine the lepton chemical potential at a given
ðμB; μQ; TÞ through the charge neutrality constraint,

∂P
∂μQ ¼ nQðμB; μQ; μ�L; TÞ ¼ 0: ð51Þ

Thus, μ�L is a function of ðμB; μQ; TÞ. Assuming massless
neutrinos with a single helicity, a set of ðμL; TÞ is readily
converted into the neutrino equations of state,

Pν ¼ Nν

�
μ4L
24π2

þ μ2LT
2

12

�
þ N0

ν
7π2T4

360
; ð52Þ

where Nν species of neutrinos have the chemical potential
μL, andN0

ν species of neutrinos contribute thermal pressure.
We assume νe and νμ have nonzero chemical potentials, but
ντ does not, and set Nν ¼ 2 and N0

ν ¼ 3.
In general, there can be the first order transitions from the

2SCX to CFLX. The location is determined by the
condition

P2SCXðμB; μQ; μ2SCXL Þ ¼ PCFLXðμB; μQ; μCFLXL Þ; ð53Þ

where μ2SCXL and μCFLXL are fixed by the condition

n2SCXQ ¼ nCFLXQ ¼ 0: ð54Þ

At the first order transitions, extensive quantities generally
jump. The values of nν which we are investigating can be
often found within the first order transitions. To find the
corresponding equations of state, we consider a state at the
first order transitions (0 ≤ x ≤ 1),

jΨ1sti ¼
ffiffiffi
x

p jΨ2SCXi þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
jΨCFLXi; ð55Þ

where jΨ2SCXi and jΨCFLXi lead to the same pressure.
Local operators Ô are evaluated as

hΨ1stjÔjΨ1sti
≃xhΨ2SCXjÔjΨ2SCXiþð1−xÞhΨCFLXjÔjΨCFLXi; ð56Þ

where we neglected the off-diagonal components,
hΨ2SCXjÔjΨCFLXi, which should vanish in the infinite

FIG. 13. The speed of sound for the CSCX-Togashi and
Togashi equations of state for static neutron stars.

FIG. 14. TheM-R relations for the Togashi and CSCX-Togashi
equations of state for nν ¼ 0. The maximum masses are 2.23 M⊙
and 2.22 M⊙, and R1.4 are 11.5 and 12.3 km, respectively.

6Actually c2s in the Togashi begins to violate the causality at
nB ≃ 5.6n0; if we stop calculations at this point, then M ≃
2.18 M⊙ and R ≃ 10.7 km.
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volume limit [83]. Using this relation, we first fix x to
reproduce a given lepton fraction and then use its value to
compute the other quantities.
Shown in Fig. 15 are equations of state, μQ, −YS, nB=n0,

and s=n0 as functions of μB. For μQ and s=n0, we also plot
the Togashi results with thin lines as they are substantially
different from the CSCX results. The temperatures are
T ¼ 10, 30, 40 MeV which cover s=nB ∼ 1–3, and the
lepton fraction is YL ¼ 0.05, 0.1, 0.3, 0.4. The YL ¼ 0.05
and 0.1 are suitable for neutron star mergers as static
neutron stars before merging do not have many leptons,
while larger values of YL ≳ 0.3 are typical for protoneutron

stars as they are formed through contractions of stars with
many nuclei.
Below, we examine the quark composition and neutrino

fractions, stiffness and the structure of hot neutron stars.

1. Quark composition

First, we note changes in the phase structure with
increasing lepton fractions or μL. With a larger μL, the
system is electrically neutralized without invoking a large
negative value of μQ in the charged lepton chemical
potential μe ¼ μL − μQ; the value of μQ approaches a more

FIG. 15. Equations of state (CSCX þ Togashi) for charge neutral matter, μQ, Yν, −YS, nB=n0, and s=n0 as functions of μB. The
temperatures are T ¼ 10, 30, 40 MeV, and the lepton fraction is YL ¼ 0.05, 0.1, 0.3, 0.4. For μQ, Yν, and s=n0, we also plot the Togashi
results with thin lines. Increasing lepton numbers broaden the 2SCX domain by shifting the 2SCX-CFLX boundary to the higher
density.
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positive value. Accordingly, the chemical potential for
strange quarks is reduced, and the strangeness fraction is
suppressed. This broadens the 2SCX domain with overall
shifts of the 2SCX-CFLX boundary to the higher density.
For a fixed YL line, extensive quantities change smoothly
everywhere. After the line meets the 2SCX-CFLX phase
boundary, the line changes along the phase boundary line
for a while and then departs when the CFL phase alone can
satisfy the constraint of YL. On the phase boundary, the
extensive quantities follow Eq. (56).
When the temperature is turned on, the basic features of

the phase structure remain the same, except broadening of
the 2SCX domain to higher density. For the temperature
range in this work, the major impact of the temperature is
on the strangeness fraction.

2. Neutrino fraction

Next, we consider the neutrino fraction. We divide the
domain into five and examine the results shown in Fig. 15:

(i) In the dilute regime, Ye ∼ 0.4, so Yν ¼ YL − Ye ≲ 0
for our choices of YL, leading to more antineutrinos
than neutrinos.

(ii) Near the nuclear matter domain around nB ∼ n0, our
experience on static neutron stars with Yν ¼ 0
indicates that Ye ∼ 0.05 (see Fig. 11). Then, we
can infer that, for the YL ¼ 0.05 and 0.1 cases, these
conditions are satisfied with Yν ∼ 0 and μL ∼ 0, as
can be confirmed from Fig. 15. Then, for a larger YL,
the μL should increase and so does Yν.

(iii) Along the first order line at μQ < 0, Yν can take both
positive and negative values. To understand this, we
examine the charge density in the QCD sector for the
CFLX phase. For μQ < 0, the charge density is

negative, nQCDQ < 0, so we need charged antileptons,
ne < 0. This means μe ¼ μL − μQ < 0, leading to
μL < μQ < 0 and hence Yν < 0. Along the first
order line at μQ < 0, the neutrino vs antineutrino
fractions depend on the ratio between the nuclear-
2SC and CFL phases and the condition YL.

(iv) Along the first order line at μQ > 0, the Yν turns out
to be positive. In the CFLX phase at μQ > 0, the
charge density is positive, nQCDQ > 0, so we need
ne > 0. This means μe ¼ μL − μQ > 0, leading to
μL > μQ > 0 and hence Yν > 0. Since the 2SCX
phase also leads to Yν> 0, we have Yν> 0 at μQ > 0

from the 2SCX to CFLX domain.
(v) At very large density, the QCD sector neutralizes by

itself for a wide domain in μQ. Thus, μe ∼ 0, and the
lepton number is chiefly carried by neutrinos. As a
result, the neutrino abundance is greater than the
Togashi by several factors.

3. Stiffness and the core structure

Finally, we examine the structure of hot, neutrino-rich
neutron stars within the isothermal picture of the core. The
finite temperature effects significantly change the crust part
as it is loosely bound to the core; this dilute domain can be
widely spread to ∼100 km or even more. Clearly, this crust
part is dominated by the physics different from the core
part. For this reason, we take into account only the nB ≳
0.05n0 part of equations of state to integrate the Tolman-
Oppenheimer-Volkoff equation. We call the resulting mass
“core mass” Mcore in this paper.
Shown in the left panel of Fig. 16 are P vs ε for T ¼ 10,

30 MeV and YL ¼ 0.05, 0.1, 0.3, 0.4. The Togashi case at

FIG. 16. (Left) The CSCXþ Togashi pressure as a function of energy density for T ¼ 10, 30 MeVand YL ¼ 0.05, 0.1, 0.3, 0.4. The
Togashi case at YL ¼ 0.05 is also shown as a reference. (Right) The baryon density distributions in neutron stars for given core masses,
Mcore ¼ 1.4; 2.0 M⊙ andMmax

core. The conditions are T ¼ 10, 30 MeVand YL ¼ 0.05, 0.4. For the “core mass”Mcore, we integrated only
matter at nB ≳ 0.05n0 and omitted loosely bound matter which has a large volume at finite T. The thin lines correspond to the results for
the Togashi, and its maximal core mass is shown in the parenthesis.
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YL ¼ 0.05 is also shown as a reference at a given temper-
ature. As we can infer from the previous sections, the lepton
fraction YL controls the stiffness through the strangeness
fraction. A large YL leads to the stiffer equation of state.
Meanwhile, the temperature effects are overall small in
size, and its major impact seems to be in the shift of the
phase boundaries.
Shown in the right panel of Fig. 16 are the baryon density

distributions in neutron stars for given core masses,
Mcore ¼ 1.4 M⊙; 2.0 M⊙, and Mmax

core. The conditions are
T ¼ 10, 30 MeV and YL ¼ 0.05, 0.4. Several remarks are
in order:

(i) The increase in T from 10 to 30 MeV enhances the
maximal core mass, Mmax

core, by ∼0.05 M⊙. The
baryon number distribution at R≲ 10 km is not
affected much by thermal effects. The impacts of
thermal effects are more significant for a larger R
and a lighter star, due to its diluter structure which
can be easily deformed by the gravity. The same is
also applied to the Togashi.

(ii) The increase in YL substantially affectsMmax
core and the

density distribution. The change in YL from 0.05 to
0.4 results in the enhancement ofMmax

core by ≃0.2 M⊙
in both the T ¼ 10 and 30 MeV cases. For
YL ¼ 0.05 MeV,

Mmax
core=M⊙ ≃ 2.26; 2.32; ðfor T ¼ 10; 30 MeVÞ;

ð57Þ

and for YL ¼ 0.4,

Mmax
core=M⊙ ≃ 2.32; 2.53: ðfor T ¼ 10; 30 MeVÞ:

ð58Þ

This enhancement is due to stiffening at nB ≃ 1.5 −
4n0 which tempers the growth in baryon density.
Accordingly, the core density for the Mmax

core star is
lower for the YL ¼ 0.4 case, ncoreB ≃ 5n0, than the
YL ¼ 0.05 case, ncoreB ≃ 6n0. In contrast, in the
Togashi case, changes in YL do not lead to sub-
stantial increase in Mmax

core but a slight reduction by
∼0.07 M⊙; this is due to the fact that a larger YL
makes pure nuclear matter more symmetric in
isospin and reduces its stiffness.

VII. SUMMARY

We have performed comprehensive analyses for equa-
tions of state based on the nuclear-2SC continuity picture.
We elaborated a scheme of evolving couplings which are
tuned to reproduce nuclear pressure and number density at
nB ¼ 1.5n0 and μQ ¼ T ¼ 0, and they approach the high
density values to reproduce the 2 M⊙ constraint.
Our analyses indicate that the nuclear and 2SC equations

of state do not match well over phenomenologically

relevant domains of μQ and T. This is most clearly seen
in entropies whose low temperature behaviors are charac-
terized by the number of gapless fermions and the Fermi
velocities. The nuclear and 2SC phases have the same
number of gapless fermions, but the Fermi velocities are
different, as the effective masses for nucleons and gapless
quarks differ by a factor ∼Nc if we neglect interaction
effects in nuclear calculations and a factor ∼2 if interactions
are taken into account. If we used the unpaired quark matter
for the matching, the number of gapless fermions is
different, and the discrepancy in entropies becomes even
larger.
These observations suggest that, to achieve the nuclear-

2SC continuity in entropies, it is necessary to consider
corrections to both the nuclear and 2SC equations of state.
Inclusion of more relativistic effects to the nuclear equations
of state partially reduces the mismatch. Another possible
scenario is that baryonic three-particle correlations are
present in the 2SC phase, so that reactions to changes in
ðμQ; TÞ become similar to the nuclear’s. Such phenomeno-
logical corrections are introduced through evolving cou-
plings, andwe call theCSCwith such contributions “CSCX”.
The unified equations of state, which cover from the

nuclear to quark matter domains, are constructed by
connecting the nuclear and 2SCX phases. At higher
density, the 2SCX phase turns into the CFLX phase.
Unlike the previous crossover constructions, equations

of state in this work include the first order phase transition,
but it is not a hadron-quark phase transition but the 2SC-
CFL transition within quark matter. The first order nature is
associated with radical appearance of the strangeness. We
suspect that the strangeness appears more smoothly if we
manifestly treat hyperonic baryons and would temper the
softening associated with the first order phase transition.
We leave this issue as a future problem.
The strangeness fraction has important impacts on the

structure of neutrino trapped, hot neutron stars. The
abundance of neutrinos and thermal effects reduces the
strangeness fraction and stiffens equations of state. For a
neutrino trapped neutron star at T ≃ 30 MeV with a lepton
fraction YL ≃ 0.05, the mass is larger than its cold static
counterpart by ∼0.1 M⊙. This should affect theoretical
estimates on the lifetime of neutron star mergers. More
detailed studies are called for.
Clearly, this work leaves a lot of room for improve-

ments. We close this paper by mentioning several possible
extensions.
First, we need to make explicit what the X is. We suspect

it to be a baryonic object; diquarks near the Fermi surface
would further pick up another quark, developing three-
particle correlations. If such three-particle correlations are
sufficiently strong, this likely leads to quarkyonic matter
proposed by McLerran and Pisarski [84]. Recently, the
picture was also discussed in the language of quantum
percolation [85]. Several schematic quarkyonic equations
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of state have been constructed [26,86–91], leading to “soft-
to-stiff” type equations compatible with observations for
static neutron stars. In the context of the quark-hadron
continuity, this description is probably even more powerful
at finite temperature and lepton fraction, as the Fermi
surface is made of baryons in quarkyonic matter.
Other candidates for the X are additional pairings to

usual diquark pairs. In fact, in the CFL domain, we have
already checked that our quark model leads to charged
meson condensations around μQ ≳ 20 MeV and μQ ≲
−100 MeV [92], as the CFL mesons have excitation
energies much smaller than in the vacuum case. These
charged mesons change the response to μQ already at
T ¼ 0. The equations of state with these exotic phases will
be reported elsewhere.
In this paper, we have omitted discussions on the

inhomogeneous phases such as crystalline CSCs [93–95]
and chiral spirals (or chiral density waves) [96–103]. These
phases have not been discussed in detail in light of recent
neutron star observations and further studies are called for.
We plan to work out more systematic analyses, examin-

ing the sensitivity to the choice of nuclear equations of
state, other choices of ðgV;HÞ, and so on. The results will
be presented elsewhere.
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APPENDIX: EXTRAPOLATING NUCLEAR
TABLES TO PROTON-RICH DOMAIN

Nuclear equations of state are written as (Yp þ Yn ¼ 1),

εðYpÞ ¼ εNRðYpÞ þ ðmpYp þmnYnÞnB: ðA1Þ

(We suppress nB and T in the thermodynamic quantities for
notational simplicity.) We explicitly separated the mass
contributions, as they should be most relevant isospin
breaking terms coming from md −mu. For the other parts,
the small mass difference is suppressed by the Fermi
momentum pF or the dynamical mass scale ΛQCD, so
we neglect the isospin breaking effects,

εNRðYpÞ ≃ εNRðYnÞ; ðA2Þ
then

εðYnÞ ≃ εNRðYpÞ þ ðmpYn þmnYpÞnB: ðA3Þ

Eliminating εNRðYpÞ from Eqs. (A1) and (A3), we get an
approximate relation,

εðYnÞ ≃ εðYpÞ þ ðmp −mnÞðYn − YpÞnB: ðA4Þ

For the entropy, we do not expect significant isospin
breaking effects and assume

sðYnÞ ≃ sðYpÞ: ðA5Þ

The other thermodynamic quantities are derived from these
approximate relations. The charge chemical potential is
obtained from ∂ε=∂nQjnB ¼ n−1B ∂ε=∂YQjnB ,

μQðYnÞ ≃ −μQðYpÞ − 2ðmn −mpÞ; ðA6Þ

and the baryon chemical potential is ∂ε=∂nBjnQ ,
μBðYnÞ ≃ μBðYpÞ þ μQðYpÞ þmn −mp: ðA7Þ

The pressure is P ¼ μBnB þ μQnQ þ Ts − ε, so the above
relations lead to

PðYnÞ ≃ PðYpÞ: ðA8Þ
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