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Neutron star tidal deformability extracted from gravitational wave data provides a novel probe to the
interior neutron star structures and the associated nuclear equation of state (EOS). Instead of the popular
composition of nucleons and leptons in neutron stars, we include hyperons and examine the role of
hyperons in the tidal deformability and its impact on the symmetry energy in a relativistic mean-field
approach with the density-dependent parametrizations. The hyperons are found to have a significant impact
on the deformability, correlated sensitively with the onset density and fraction of hyperons in neutron
star matter. A moderately lower onset density of hyperons can yield considerable modification to the
tidal deformability and shift its inference on the nuclear EOS. The future measurements of the tidal
deformability at multifiducial star masses are anticipated to lift the degeneracy between the contributions
from the hyperon component and symmetry energy.
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I. INTRODUCTION

According to the general relativity, the moving body
changes the surrounding geometry, and the reciprocal
motion or transient mass-change process can cause the
sonic propagation of space-time oscillation, the so-called
gravitational wave. The massive celestial binary merger is
one of the strongest sources of gravitational waves. It was
fascinating that the gravitational wave signal from the
GW170817, which is a neutron star merger with a chirp
mass 1.188 M⊙ and 40 Mpc away from the Earth, was
successfully detected by Ligo and Virgo detectors [1,2]
more than 3 years ago. It is a historic event in the deep-sky
detection. Its significance also exists in nuclear physics.
Since then, the study on neutron stars heads into a multi-
messenger era. The tidal deformability measures the size of
neutron stars and is correlated with the neutron distribution
of heavy nuclei [3,4]. In particular, during the inspiral of the
binaries close to merger, the tidal deformability of neutron
stars encodes the information of the equation of state (EOS)
of asymmetric matter in the interior neutron star.
The tidal deformability (or, alternatively the Love

number) of neutron stars can be derived as a metric
perturbation in the general relativity [5–7], since matter
is the source of the metric. It was found that the Love
number of normal neutron stars is quite different from that
of strange quark matter stars [8,9]. Several research groups

have engaged in exploring the tidal deformability with its
possible constraint on the EOS of asymmetric matter. The
uncertainty of the symmetry energy at saturation density
just has a moderate effect on the tidal deformability [10].
Recently, the tidal deformability from the experiments is
optimistically used to constrain the symmetry energy at
suprasaturation densities [11,12].
Among all non-nucleonic degrees of freedom in neutron

stars, the hyperon is an important but contentious ingre-
dient. Usually, the inclusion of hyperons can clearly soften
the nuclear EOS and reduce the maximum mass of neutron
stars significantly, for instance, see Refs. [13,14]. It was
even claimed that the observations of large-mass neutron
stars (for instance, pulsars J1614-2230 [15] and J0740þ
6620 [16]) seem to rule out the hyperon EOS. On the other
hand, quite a few hyperon EOSs were proposed to
reproduce the 2 M⊙ neutron stars [17–22]. One of the
authors and his collaborators also worked out the hyperon
EOS that is compatible with the mass and meantime the
radius constraints of neutron stars [13] and is in the rank of
fine models, see Ref. [23] and references therein. In spite of
the dispute of the existence problem, the onset densities
of hyperons and their fractions also diversify rather largely
in a variety of models. These issues are rooted in the in-
medium interactions for hyperons and remain largely
unsolved. In a multimessenger era, the gravitational wave
signals would hopefully light the secrets for the hyperon
component in stars and the underlying interactions,
although no much attention has been paid to the accordance
between the available hyperon EOSs and the tidal deform-
ability of the 1.4 M⊙ stars for simplicity or due to the
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absence of the hyperon involvement in extracting the EOS
of asymmetric matter from terrestrial experiments.
However, the seemly small chirp mass (1.188 M⊙) of
the GW170817 with the component masses ranging from
1.17 to 1.6 M⊙ does not ever mean that the hyperon
component is negligible. In this work, we will aim to
scrutinize the interplay between the tidal deformability and
the hyperon EOS based on the previous density dependent
relativistic mean-field (RMF) models [24,25]. In order to
single out the hyperon effect beyond saturation density, we
need first pin down the EOS in the low density region
where there is a transition from the interior homogeneous
phase to inhomogeneous crustal phase. We will determine
the transition density by the instability condition of uniform
matter [26,27] and further distinguish the inner and outer
crusts by appropriately choosing different EOSs for the
inner and outer crusts [28]. With moderately tuned onset
densities and fractions of hyperons, we can observe the
significant role of hyperons in affecting the tidal deform-
ability of intermediate-mass neutron stars and the extraction
of nuclear symmetry energy beyond saturation density.
The remainder of the paper is organized as follows. In the

subsequent section, a brief formalism is presented for the
differential equation of the Love number integrated in
the Tolman-Oppenheimer-Volkoff (TOV) equation and the
RMF EOS. The emphasis is placed on the corresponding
parametrization of nuclear EOS concerning the hyperon
interactions. In Sec. III, we present numerical results and
analyze the hyperon effect on the tidal deformability and
the nuclear EOS. Finally, a brief summary is given
in Sec. IV.

II. FORMALISM AND PARAMETRIZATIONS

The quadrupole tidal field can be incorporated in the
spacetime metric as an external perturbation specified by a
function H which satisfies the following differential equa-
tion [6]:

H00ðrÞ þ
�
2

r
þ eλðrÞ

�
2MðrÞ
r2

þ 4πrðpðrÞ − EðrÞÞ
��
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and the metric functions λðrÞ and νðrÞ are given as
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with MðrÞ, pðrÞ, and EðrÞ being the mass, pressure, and
energy density, respectively. By redefining the quantity
y ¼ H0=H, Eq. (1) turns out to be the following first-order
differential equation:

y0ðrÞ þ y2ðrÞ þ FðrÞyðrÞ þQðrÞr2 ¼ 0; ð4Þ

where

FðrÞ ¼ eλðrÞ½1þ 4πr2ðpðrÞ − EðrÞÞ�; ð5Þ

with yð0Þ ¼ 2. The Love number k2 is obtained at the
neutron star surface with yR ¼ yðRÞ, and it is given by

k2ðyRÞ ¼
8

5
β5ð1 − 2βÞ2½2 − yR þ 2βðyR − 1Þ�f2β

× ½6 − 3yR þ 3βð5yR − 8Þ� þ 4β3½13 − 11yR
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× ½2 − yR þ 2βðyR − 1Þ� lnð1 − 2βÞg−1; ð6Þ

where β ¼ M=R is the dimensionless compactness param-
eter in units of G ¼ c ¼ 1. The tidal deformability is
given by

Λg ¼
2

3
k2

�
R
M

�
5

; ð7Þ

with R andM being the radius and mass of the neutron star,
respectively.
Equation (4) for the perturbation tidal field should be

solved together with the TOV equations:

p0ðrÞ¼−ν0ðrÞ½pðrÞþEðrÞ�=2; M0ðrÞ¼ 4πr2EðrÞ; ð8Þ

which are solved by integrating over the radial coordinate
from the star center to the surface where the pressure
vanishes. We perform the integration with the fourth-order
Runge-Kutta method. The nuclear EOS, i.e., pðEÞ is an
input of the integration. The central energy density or
pressure is chosen as a free parameter to obtain a mass-
radius trajectory for neutron stars.
In obtaining the deformability, the conveniently and

popularly used method relies on the EOS with a simple
neutron star composition of nucleons and leptons or a
polytropic piecewise EOS, whereas we start the work from
a Lagrangian that consists of the fields of baryons, leptons
(e, μ), and mesons, and the interactions between them.
Here, we invoke directly the energy density and pressure
from the previous density-dependent RMF models [13]:
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where i runs over the species of baryons and leptons
considered in neutron star matter, E�

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

i

p
with

m�
i being the Fermion effective mass, and ΣR

0 is the
rearrangement term, originated from the density-dependent
parameters. The explicit formula of the rearrangement term
can be referred to Ref. [29]. The meson coupling constants
and masses with asterisks denote the density dependence,
given by the Brown-Rho scaling functions [13,24,25]. It is
interesting to note that the parametrization with this density
dependence respects the chiral limit in terms of the
vanishing scalar density and nucleon effective mass at
high densities, which is interpreted as the vector manifes-
tation of chiral symmetry in the hidden local symmetry
theory [30]. In the present work, the RMF parameter sets
SLC and SLCd [13,25] that can reproduce the ground-state
properties of finite nuclei and meet the 2 M⊙ constraint of
neutron stars are adopted to study neutron stars with
hyperonization, and the composition of neutron stars
consists of baryons ðN;Λ;Σ;ΞÞ and leptons ðe; μÞ.
For the hyperonic sector, the strange mesons ϕ

(1020 MeV) and σ� (i.e., f0, 975 MeV), in addition to
normal mesons, are included with their parameters free of
density [13]. The coupling of hyperons with normal
mesons can generally be specified by the ratios of the
meson coupling with hyperons to that with nucleons: XiY ¼
giY=giN with i denoting meson species. Although these
ratio parameters are, in most cases, taken to be constants in
the literature, they are being density-dependent ones XiYðρÞ
for the scaling functions for hyperons [13]:

ΦωΛðΣÞðρÞ ¼
�
1

3
− α

�
ΦωNðρ0Þ þ

�
2

3
þ α

�
ΦωNðρÞ;

ΦωΞðρÞ ¼
�
2

3
− α

�
ΦωNðρ0Þ þ

�
1

3
þ α

�
ΦωNðρÞ;

ΦσYðρÞ ¼ ð1 − fσYÞΦσNðρ0Þ þ fσYΦσNðρÞ; ð11Þ

where ΦiNðρÞ are the nucleon scaling functions, ρ0 is the
saturation density (0.16 fm−3), and fσY and α are adjustable
constants. The scaling function ΦρΞ for the ρ meson takes
the same as that of the ω meson. The product of the free-
space meson-baryon coupling constant and the scaling
function defines the coupling constant at each density. In
Eq. (11), the parameter α is newly invoked to tune the

density dependence in the vector meson couplings, which is
relevant to the in-medium effect from the hyperonic sector.
This small parameter can be used to adjust the onset density
and fractions of hyperons in neutron star matter efficiently.
The two free parameters α and fσY do not change the
hyperon potentials at saturation density that are set as the
empirical values [13,31,32]

UðNÞ
Λ ¼ −30 MeV ¼ −UðNÞ

Σ ; UðNÞ
Ξ ¼ −18 MeV: ð12Þ

The free-space parameters concerning the hyperons are the
same as those in Table 1 of Ref. [13], regardless of the new

parameter α. Note that the choice of UðNÞ
Σ ðρ0Þ has some

arbitrariness for uncertainty [22], and in the present models
the Σ hyperons actually do not appear for any repulsive
potential. Similar expulsion of Σ hyperons was also
revealed in the RMF model GM1 [33].
In the low density region, there are no hyperons and even

no muons. The EOS of this density region comprises two
pieces: the inner and outer crustal ones. In the inner crust,
we adopt a phenomenological EOS pðrÞ ¼ aþ bEðrÞ4=3
[28,34] with constants a and b being determined by the
continuous condition at the core-crust transition density
and the density ρ ¼ 2.57 × 10−4 fm−3 with the energy
density E¼ 0.24MeV fm−3 and p¼4.87×10−4MeVfm−3

which is a point connecting to the outer crust [28,35]. The
core-crust transition density ρt is here determined as the
lowest density of uniform phase by the stability ofmatter that
requires the convex energy against the volume [26,27], and it
is 0.0912 and 0.0928 fm−3 for SLC and SLCd, respectively.
In addition to the above continuous connection, high-order
discontinuities may still exist at the core-crust interface.
Here, we follow the method in Ref. [9] to deal with the
discontinuity in dE=dp using the Dirac delta function. We
have noticed in the work by Piekarewicz et al. that a
continuous first derivative of pressure is imposed on both
interfaces of the inner crust [36]. For the outer crust, we
employ the empirical EOS given by Baym et al. [35].
Eventually, we adopt the piecewise EOSs for neutron stars
with the interfacial matching specified above. It is worth
mentioning that Fortin et al. studied systematically the
uncertainty in the crust thickness and star radius arising
from a variety of core-crust EOS matchings [37]. A similar
study combined with the GW170817 data was later per-
formed by Ji et al. [38]. In this work, we use the same
matching scheme to focus on the hyperon contribution
concerning the core EOS. For comparison, we also examine
the case with the total crustal EOS of Ref. [35] below ρt, but
find a negligible deviation from the one herein.

III. NUMERICAL RESULTS AND DISCUSSIONS

The discovery of large-mass neutron stars imposed the
challenge to the hyperon EOS for neutron stars. In the
previous work, the hyperon EOS survives in the large-mass
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neutron stars by invoking the density-dependent nucleon-
hyperon interactions which allow the hyperons to reside in
a shell in the interior of neutron stars [13]. In a multi-
messenger era, it is necessary to check whether such a
hyperon EOS is compatible with the neutron star tidal
deformability extracted from data years ago.
Prior to the discussion of the numerical results, we first

interpret the RMF models SLC and SLCd briefly. These
two models can reproduce the ground-state properties of
finite nuclei fairly well. The only difference of the two
models is that the SLCd has a softer symmetry energy at
high densities than that of the SLC. The slope parameter L
of the symmetry energy at saturation density is 92.3 and
61.5 MeV for the SLC and SLCd, respectively. These
values are within or close to some globally averaged values
59� 16 MeV [39]. For the slope parameter L, there are
also clearly lower ranges either extracted from data [40,41]
or obtained from the ab initio results of neutron matter [42].
With inclusion of the clearly lower L range, an average of
the L values gives a larger range of 58.7� 28.1 MeV [43].
Note that the latest measurement of 208Pb neutron skin
thickness (0.283� 0.071 fm) through the weak-interaction
probe [44] would suggest a significantly larger value of
L ¼ 106� 37 MeV [45]. Very recently, a large span of the
L with an upper bound 117 MeV was extracted from the
spectra of charged pions [46]. In these cases, the value of
L ¼ 61.5 MeV with the SLCd would be near the lower
bound, and the value 92.3 MeVwith the SLC should be still
well within the experimental bounds. The neutron skins of
208Pb are 0.21 and 0.17 fm with SLC and SLCd, respec-
tively [25], which agree satisfactorily with values extracted
from various experiments. It was found that the symmetry
energy is associated with the onset density of hyperons
[47]. The soft symmetry energy leads to the smaller neutron
chemical potential and consequently the smaller chemical
potential of Λ hyperon in chemical equilibrium. The
threshold density for the hyperon onset has to be larger
so that the required minimum neutron chemical potential
can be reached. Thus, we will find that the onset density of
hyperons with the SLCd is larger than that with the SLC.
In addition to the symmetry energy, the parameter α in

Eq. (11) can also shift the hyperon onset density. The
negative value of α ramps up the fraction of the density-
independent part of ΦωY , and increases the hyperon
chemical potential and consequently the onset density.
The positive value of α shifts them on the opposite. In
Table I, we present the onset densities of Λ hyperons in
different cases. In fact, the hyperon onset density cannot be
detected directly and is very different with various inter-
actions in different models, ranging from about 2ρ0 to 4ρ0.
For instance, in usual RMF models, the hyperon onset
density locates roughly at twice normal density [47]. In the
nonlinear self-interactions involving a vector meson with
hidden strangeness, the onset density of hyperons can be as
high as 3ρ0 arising with a suppressed hyperon fraction [18].

Such a suppression with larger onset densities can also be
given by invoking a new boson coupling with hyperons
[17]. In Refs. [19,20], hyperons were found to arise above
4ρ0 with a rather limited effect on the EOS of neutron star
matter. As one can see in Table I, the onset densities in our
work are above 2.5ρ0, and the small tuning of the parameter
α away from naught yields the moderate shift in the onset
density within 0.3ρ0 that is just moderate, compared to the
large diversity presented in the literature.
With the appearance of the hyperons, the EOS becomes

softened as naturally given by the stability of matter. This
usually results in the considerable reduction of the maxi-
mum mass of neutron stars. For instance, with the constant
ratio parameters XiY in the present RMF models, the
maximum mass of neutron stars is just as high as
1.4 M⊙ [13], which is obviously against the observation
of large-mass neutron stars. However, it was revealed [13]
that the softening can evolve in density consecutively to a
stiffening by invoking the density-dependent hyperonic
interaction in terms of the density dependent ratio param-
eters XiY . More specifically, the occurrence of the stiffening
results dominantly from the repulsion provided by the ω
meson through the ratio parameter XωY. Note that with
constant ratio parameters, the problem of the negative
nucleon effective mass, encountered at high densities in
hyperonized matter, has to be treated by necessarily
connecting to the quark matter EOS prior to the occurrence.
There is no such problem for the density dependent ratio
parameters that are adopted for hyperons in this work.
While the stiffening comes up with the suppression of
hyperon fractions, the neutron star matter can transit for
stability to the normal isospin-asymmetric matter prior to
the vanishing of hyperons.
With the EOSs specified, we can carry out the mass-

radius relation and tidal deformability parameters of
neutron stars. In Fig. 1, the mass-radius trajectories with
the SLC and SLCd are plotted for α ¼ 0.05 and −0.05. The
results with α ¼ 0 lie between the two cases and were given
in Ref. [13]. We take the curve without hyperons as the
fiducial case and measure the relative variation of the
trajectories with various parametrizations. As shown in
Fig. 1, the parameter α plays a sensitive role in shifting the
mass-radius trajectory and radius separation between the
normal neutron stars and hyperonized neutron stars. Such
an α-induced separation is related to the various hyperon

TABLE I. Onset densities of the Λ hyperon for various choices
of α and fσΛ with the SLC and SLCd. The density is in units of ρ0
that is 0.16 fm−3.

Model fσΛ α ¼ 0 α ¼ −0.05 α ¼ 0.05

SLC 0.8 2.63 2.70 2.57
0.9 2.78 2.88 2.69

SLCd 0.8 2.85 2.97 2.77
0.9 3.06 3.24 2.93
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onset densities shifted by α. Meanwhile, the parameter α
also induces the suppression or enhancement of hyperon
fractions corresponding to the larger or smaller hyperon
onset densities, respectively. As an evidence, we plot in
Fig. 2 the total hyperon number fraction as a function of the
star mass. We see that the hyperon fraction, which is a ratio
of the Λ plus Ξ number over the total baryon number, is
generally small. On the other hand, the curves in Fig. 2

have two more distinct features. The first one is that the
significant difference appears in the curves of the SLC and
SLCd parametrizations with different peak positions. The
smaller fraction with the SLCd is associated with its larger
onset density, in contrast to that with the SLC. The peaks in
the curves around 1.5 M⊙ with the SLCd and 1.55 M⊙
with the SLC arise as the balance between the heavier star
with more hyperons included and the exclusion of the
hyperon component in the high density region for the
stiffening of the EOS, as mentioned above and referred to
Ref. [13] for more details. For instance, an exclusion zone
of the hyperons in the 1.5 M⊙ star with all the SLCd
parametrizations is a sphere with a radius of about 3 km
from the star center, and the hyperon zone extends down to
the low density region for about 4 km. For a 1.5 M⊙ star
with the SLC, the exclusion zone in about a 1 km radius
around the center forms only for the parametrization
with α ¼ 0.05. Second, a large difference also arises from
different α’s. With more suppression induced by the
parameter α further, the neutron star radius with the
SLCd runs almost out of the zone that is sensitive to the
hyperon composition, as shown in the lower panel of Fig. 1.
As a result, the difference in star radii with the SLC and
SLCd reduces clearly by including the hyperon fraction
in neutron stars. This clear reduction is eventually attrib-
uted to the only difference in two models, namely, the
density dependence of the symmetry energy. The softer
symmetry energy in the SLCd increases the hyperon onset
density and reduces the hyperon fraction significantly,
while the SLC with a stiffer symmetry energy gives a
smaller onset density with a clearly larger hyperon fraction.
The inclusion of hyperons in SLC thus lowers the pressure
ofmatter significantly and results in a clear shrinkage of the
star radius, which is consistent with the pressure-radius
correlation at intermediate densities (1.5ρ0 < ρ < 2–3ρ0)
[26]. Accordingly, an appreciable reduction of the radius
difference from two models is observed in Fig. 1.
The Love number k2, which is carried out together with

the mass-radius relation in a set of coupled equations, is
shown in Fig. 3. The maximum value of k2 is situated
around 1 M⊙ for the SLC and 0.9 M⊙ for the SLCd, and
the difference in k2 between the two models reaches the
maximum around the peak regions. It is found that the
difference in k2 at the given star mass is correlated
predominantly with the difference in the star central
pressure (or, the central energy density), since the central
pressure at the origin serves as the starting point with the
largest resistance against the gravity and affects the density
profile in the neutron star by integrating the TOVequations
and Eq. (4) outwards. For instance, the relative difference in
the central energy densities of the two models decreases
from about 24% for a 0.91 M⊙ neutron star to about 4% for
a 1.3 M⊙ one. As shown in the upper panels in Fig. 3, the
difference in the star radii that can be specified by the one in
the symmetry energies between the two models just has a
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10 12 14 16 18

α=-0.05

SLCd SLC

 R (km)

FIG. 1. The mass-radius relation of neutron stars. The para-
metrizations for various curves are either labeled explicitly or
specified in Table I. The star composition of the case without
hyperons includes the nucleons, electrons and muons. The
hatched areas give the probability distributions with 1σ (blue)
and 2σ (green) confidence limits [48].
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FIG. 2. The hyperon number fraction as a function of star mass.
NY and NB are the total hyperon and baryon numbers in the star,
respectively. The curves are presented for two models SLC and
SLCd with fσY ¼ 0.8 and various α as labeled.
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very limited effect on the difference in k2, especially, for
neutron stars with M > 1.3 M⊙, which is consistent with
the result in Ref. [10]. Shown in the lower panels of Fig. 3
is the k2 versus the compactness parameter β, and the
difference in k2 from the two models at given β can be
specified by the different yR’s in Eq. (6) that depend on the
radius and central energy density both. It is interesting to
see that the hyperon composition, albeit with small frac-
tions in neutron stars, can shift the Love number to some
extent, especially in the case of the larger hyperon fraction.
This is shown rather clearly in the upper right panel of
Fig. 3 with α ¼ 0.05 where the hyperon fraction is at the
top of three cases as shown in Fig. 2. Here, the relative shift
of the Love number between two models arises from a
moderate enhancement of the difference in central energy
densities and the distinct softening of the pressure in the
star interior induced by the hyperons.
Shown in Fig. 4 is the tidal deformability of neutron stars

as a function of neutron star mass M. All curves with and
without hyperon fractions pass through the experimental
constraint extracted for the 1.4 M⊙ neutron star which is
190þ390

−120 [2]. With the inclusion of hyperons, the curves
move downwards to the centroid point or further to the
lower experimental bound. More displacement of the
curves is observed with larger hyperon fractions included.
For quantitative clarity, we tabulate the tidal deformability
of the 1.4 M⊙ star in Table II. One can see, for instance,
that the case with fσΛ ¼ 0.8 and α ¼ −0.05 in the third
column where the inclusion of 3% hyperons reduces the
tidal deformability from 394.6 to 310.5 by 21.2%, while an
inclusion of 10.7% hyperons (in the last column with
α ¼ 0.05) can reduce the tidal deformability by 42.4%.
Such a reduction of tidal deformability can be larger for
moderately heavy neutron stars within a rough mass range

of 1.4 M⊙ < M < 1.6 M⊙, as can be observed in Fig. 4.
Here, we further mention the role of the parameter α. As
shown in Table II and Figs. 1 and 4, the roles of the
parameters α and fσY are comparable in adjusting various
quantities. We note, however, the small parameter α is more
sensitive to adjust the hyperon fractions, see Table II, and
can efficiently readjust the effect induced by the parameter
fσY , see Fig. 1.
TheΛg −M relation, also see Eq. (7), is advantageous for

observing the effect of the radius difference from various
models at the given star mass, since in this case the various
models may have close Love numbers in a large mass range.
This is especially true for models SLC and SLCd that only
differ in the density dependence of the symmetry energy and
consequently the radius of normal neutron stars with the
simplest compositions (eþ μþ nþ p). Without hyperons,
the difference between the Λg’s from the SLC and SLCd in

TABLE II. The tidal deformability Λg of the 1.4 M⊙ star,
together with the hyperon number fraction (in percentage) in
brackets. Without hyperons, Λg is 394.6 and 229.5 with the SLC
and SLCd, respectively.

Model fσΛ α ¼ −0.05 α ¼ 0 α ¼ 0.05

SLC 0.8 310.6 (3.06) 255.2 (5.98) 227.4 (10.7)
0.9 358.8 (1.07) 319.5 (2.65) 260.9 (5.33)

SLCd 0.8 215.0 (1.90) 193.1 (4.07) 163.5 (7.72)
0.9 226.7 (0.47) 216.4 (1.55) 195.1 (3.61)

0
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0.1

0 1 2

α= -0.05

 k
2

0 1 2

fσY=0.8
fσY=0.9
no hyp.

α=0

 M / M ⋅
0 1 2

α=0.05

0
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α= -0.05

SLCd
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0 0.2

α=0

SLCd
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 β
0 0.2

α=0.05

SLCd

SLC

FIG. 3. The Love number as a function of star mass in units of
solar mass (upper panels) and compactness β ¼ M=R (lower
panels) for α ¼ −0.05, 0, 0.05. In each panel, the curves subject
to the models SLC and SLCd are respectively presented for three
cases: without hyperon, fσY ¼ 0.8, and 0.9.
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FIG. 4. The tidal deformability as a function of star mass with
the same legend as in Fig. 3. The error bar in red is the
experimental bounds extracted for the 1.4 M⊙ neutron star [2].
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the mass region M > 1.3 M⊙ can be specified by a R5

dependence as given by Eq. (7), as we see from Fig. 3 that
the corresponding Love number nearly overlaps for two
models.As the hyperons are included, theΛg difference from
two models reduces clearly with increasing the hyperon
fraction in neutron stars. This reduction is dominated by the
correspondingly reduced radius difference from two models
in the presence of hyperons, see Fig. 1 and Eq. (7). Second,
the Love number undergoes a nonlinear decrease with
the increase of the hyperon fraction, see Fig. 3, and this
further reduces the difference of Λg dominated by the R5

dependence.
As a result of the reduced Λg difference in the models

SLC and SLCd that just differ in the density dependence of
the symmetry energy, the symmetry energy constraint
extracted from the gravitational wave data will be quite
different with and without the consideration of hyperon
compositions. This is not surprising because the symmetry
energy is determined by the in-medium strong interactions
and the inclusion of hyperons changes the in-medium
effect. As shown in Fig. 4, the Λg with the SLC and
SLCd come closer with the moderate lowering of the
hyperon onset density accompanied by a rise of hyperon
fraction. In an extreme case where the Λg overlaps, the
sensitivity to the symmetry energy vanishes, which means
that the experimental bounds of the tidal deformability
cannot be employed to constrain the symmetry energy at
all. Generally, the inclusion of more hyperons can smear
out the constraints on the symmetry energy. The lowest
onset density in the present model parametrizations is
2.57ρ0. While other models may have the onset density
as low as 2ρ0 or smaller, even much severer smearing out
can be expected to occur for the symmetry energy con-
straint. On the other hand, were the experimental bounds
extracted for heavier stars whose high density content
occupies larger fraction, it is advantageous to obtain the
constraints for hyperon component in stars, as implied from
the results in Fig. 4. For the constraint on the symmetry
energy, it favors the experimental bounds of a lower mass
star. In order to decouple the effects from the symmetry
energy and hyperon component, measurements of multi-
fiducial mass points seem to be necessary in future
gravitational wave experiments. At last, we clarify that
other non-nucleonic degrees of freedom, in addition to the

hyperon component, may also affect the extraction of the
density dependence of the symmetry energy. For instance,
the inclusion of appropriate dark matter candidates can
affect the relation between the mass-radius trajectory of
neutron stars and the symmetry energy [49].

IV. SUMMARY

In a multimessenger era, the gravitational wave from
neutron star mergers provides a novel probe to the neutron
star interior and the relevant nuclear EOS. In this work, we
utilize the RMF models with the density-dependent para-
metrizations to study the neutron star tidal deformability
with and without the inclusion of the hyperon fraction.
With a small parameter α, the in-medium vector potential
for hyperons is adjusted to affect the onset densities and
fractions of hyperons sensitively. The decreased (increased)
onset density can result in a clear enhancement (suppres-
sion) of the hyperon fraction. We have found that the shift
of the hyperon fraction with various onset densities (within
0.3ρ0) can sensitively affect the star tidal deformability. The
present results indicate that the gravitational wave can
signal the interior structure and composition of neutron
stars. On the other hand, the complication also arises since
the constraint on the nuclear symmetry energy, extracted
from the gravitational wave signals, would depend on the
scenarios of neutron star composition. According to the
present results with and without inclusion of hyperons,
such a dependence is not negligible. In particular, the
difference in symmetry energies signaled by the star tidal
deformability may be largely smeared out by the inclusion
of hyperons, though the concrete result relies on the values
of the free parameters (α and fσY) and is strongly model
dependent. To distinguish the effect of the symmetry
energy and the hyperon component, the measurement of
multifiducial mass points is thus necessary in future
gravitational wave experiments.
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