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The marginally stable circular orbits (MSCOs) of test particles in the spacetime exterior to a charged
Kiselev black hole are investigated for three characteristic values of the equation of state parameter w,,
namely (i) w, = —1/3, (ii) w, = —1, and (iii) 0, = —2/3, and for different values of the normalization
factor a and electric charge Q of the black hole. It is found that the presence of the quintessence field shifts
outward the innermost stable circular orbits (ISCOs) around the Kiselev black hole, having the same charge
parameter Q, as compared to the ISCOs around a Riessner-Nordstrom black hole, while the effect of the
quintessence field on the outermost stable circular orbits (OSCOs) is just opposite to that on the ISCOs.
Further, the radii of the photon circular orbits are also calculated for different ranges of the parameters o
and Q. It is observed that the photon orbits are also shifted outward as the value of « increases. The radial
and latitudinal epicyclic motion of test particles, which can be related to the quasiperiodic oscillations of
test particles slightly above the MSCOs in the vicinity of the charged Kiselev black hole, is analyzed for the
three different values of . It is seen that the azimuthal and latitudinal frequencies coincide, and the radial

epicyclic frequency is different in dependence on the spacetime parameters. In the case of w, = —1/3, the
azimuthal and latitudinal frequencies depend on the radial position r of the particle, the charge Q, and the
mass M of the black hole, and do not depend on the factor a. However, for o, = —2/3 and @, = —1, these

two frequencies, along with the black hole parameters—i.e., M and Q and the radial position r—also
depend on the factor a. The radial epicyclic frequency for all the values of w, depends on M, Q, r, and also
on the normalization factor a. We also compare the epicyclic frequencies with that for an uncharged black
hole. With the increase of electric charge, the ISCO becomes closer to the central object, and one can
observe epicyclic frequencies closer to the central object, which makes the epicyclic frequencies larger. The
ISCO gets larger as a increases, and thus the epicyclic frequencies can be observed away from the central
object and would be smaller as compared to the case of a pure Riessner-Nordstrom black hole without
quintessence. As the effect of the parameters Q and a on the OSCOs is just opposite to that on the ISCOs,
the epicyclic frequencies near the OSCOs behave the other way around.
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I. INTRODUCTION

_ According to the predictions of general relativity (GR),
_dmitriy.ovchinnikov @fpf.slu.cz astrophysical black holes in the mass range 3-30 M, are
*?;F;ﬂ?ﬁ;:ggéigg;ggt edupk formed as a result of the gravitational collapse of the end
§ahmédjon@astrin.ui RN product of the evolution of massive stars in the range
Yahmedov @astrin.uz 10-200 M. From the astrophysical point of view, the

““zdenek.stuchlik @physics.slu.cz accretion disks orbiting black holes are the most relevant
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objects, being governed by the circular geodesics of the
black hole’s close environment. Therefore, any study of the
dynamics of particles in the vicinity of black holes may be
helpful in comprehending the surrounding gravitational
field in the strong gravity regime. A vast literature exists on
this topic—e.g., Refs. [1-29]. However, astronomical and
astrophysical large-scale observations of the Universe [30]
indicate the crucial role of dark energy that can be treated as
a vacuum energy (cosmological constant) or quintessential
field [31]. Dark energy can have a significant role in the
astrophysical phenomena related to supermassive black
holes in galactic nuclei. In the case of the cosmological
constant, such effects were treated in a series of works
(see Refs. [32—44]). Quintessential black holes were first
introduced by Kiselev [45], and their rotational form was
discussed in Refs. [42,46]. The basic properties of such
black holes were investigated in Refs. [47-49]. A funda-
mental comment on the Kiselev black hole solution has
been presented in Ref. [50]. Here, we concentrate on the
exploration of the static and charged version of the Kiselev
black hole, to investigate the positions of the innermost
stable circular orbits (ISCOs) and outermost stable circular
orbits (OSCOs), and how they are affected by the black
hole parameters along with the quintessence field. In GR,
the radii of circular orbits for the particles in the vicinity
of black holes have lower bounds, and these orbits are the
ISCOs, while circular orbits at the upper bound on their
radii are the OSCOs. The ISCOs and OSCOs form a
boundary between the two regions—i.e., the stable region
and the unstable region. In the literature, this boundary is
termed as the marginally stable circular orbits (MSCOs). If
in some spacetime geometry there are only two MSCOs,
then the smaller one is known as the ISCO and the larger
one is called the OSCO. If there are more than two MSCOs
in a spacetime geometry, then the smallest is the ISCO and
the largest one is the OSCO.

To explain the nature of dark energy, among the
others, there is a model that examines the possibility of
the existence of the quintessence scalar field (see, e.g.,
Ref. [51]). The equation of negative state parameter (ratio
of the pressure and density) defines the quintessence scalar
field [52]. The black hole solution with quintessences,
of the Einstein field equations [45], has been studied by
different authors from different points of view (see
Refs. [53-59]). The charged Kiselev black hole solution
reduces to the Reissner-Nordstrom black hole solution of
the field equations in the limiting case when the quintes-
sence term tends to zero. If the charge term also tends to
zero, then this black hole solution reduces to the
Schwarzschild black hole solution. The motion of photons
in the vicinity of the Kiselev black hole has been studied by
Sharmanthie Fernando for some specific values of the
equation of state parameter @, = —2/3 and of the nor-
malization factor « = 0.1, 0.01, 0.005 [11] (a is given in the
metric coefficient of the line element of the charged Kiselev

black hole in Sec. III). The motion of massive particles
around a Kiselev black hole has been analyzed by Rashmi
et al. for w, = -1, =2/3, =1/3 and a = 0.1, 0.08, 0.05,
0.005 [25]. For a unit mass black hole with @, = —1 /3,
—2/3 and a = 0.1, they have shown that the ISCOs are
bigger than those of the Schwarzschild black hole. The
existence of such MSCOs for Kottler black hole spacetimes
was given using Sturm’s theorem in Ref. [32], and later
repeated in Ref. [26]. Recently, the MSCOs of the Kiselev
back hole for three different values of the equation of state
parameter w, = —1, —2/3, —1/3 have been investigated,
and upper and lower bounds were obtained on the value of
the normalization factor « for the existence of MSCOs [58].
In the present study, we are interested in the investigation of
the MSCOs in the spacetime geometry of a charged Kiselev
black hole. In particular, we are keen to look at the effects
of the quintessence on the MSCOs in the charged Kiselev
black hole spacetime.

A very interesting phenomenon of the particle dynam-
ics in black hole spacetimes is related to the quasiperi-
odic oscillations (QPOs) detected in the x-ray radiation
of microquasars. Microquasars are binary systems of a
black hole surrounded by an accretion disk consisting of
matter flowing from a companion star. Friction in the
orbiting accretion disk in the vicinity of the ISCO is so
strong that the matter of the accretion disk also starts to
emit x rays. The friction between layers of the disk
causes a decrease of the energy and angular momentum
of nearly freely orbiting matter in accordance with the
energy and angular momentum radial profiles of geodesic
circular motion. The QPOs are very important from the
astrophysical point of view, because they are considered
to be one of the most efficient tests of strong gravity
models and a useful tool for the precise measurement of
black hole parameters. In this regard, the QPOs from
accreting black holes have been studied by many scien-
tists, and some of the results can be found in literature
[60-63]. To explain the nature of the QPOs, various
theoretical models, including disk-seismic models, hot-
spot models, warped disk models, and resonance models
have been proposed [64].

It is important that for both Keplerian thin accretion disks
governed by energetics of stable circular geodetics of
the spacetime [65,66] and slightly extended tori that are
in equilibrium due to pressure gradients [67], the frequen-
cies of their oscillations are governed by the frequencies of
the epicyclic oscillatory motion around circular geodesics,
thus giving the so-called geodesic (epicyclic) models of the
QPOs obtained in microquasars or around supermassive
black holes in active galactic nuclei. Direct generalization
of the geodesic models can be obtained if electromagnetic
interaction of a slightly charged hot spot with a large-scale
magnetic field around a black hole is included in the
calculation of the frequencies of the epicyclic oscillations
[68—71]. The role of the synchrotron radiation representing
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a special kind of friction acting on moving charged particles
has been discussed in the literature [72].

QPOs observed in the x-ray spectra are widely believed
to be related to oscillations in regions of accretion disks
close to the ISCO [73]. Here we analyze the crucial
quantities for oscillation models based on the geodetic
epicyclic motion—namely, the orbital, radial, and latitudi-
nal epicyclic frequencies of test particles close to the stable
circular orbits in the vicinity of the charged Kiselev black
hole, for the three different values of w,.

The spacetime geometry of the charged Kiselev black
hole is discussed in Sec. II. The conditions for the existence
of MSCOs for a general spherically symmetric static
spacetime are given in Sec. III. Then, in Sec. III, we also
investigate MSCOs in the vicinity of the charged Kiselev
back hole for the three different values of the equation-of-
state parameter w,, where we find that the radii of the
ISCOs and OSCOs vary for different values of the charge O
and quintessence parameter «. Interestingly, we have
obtained bounds on the values of Q and « for the existence
of the charged Kiselev black hole. In Sec. IV, we study the
fundamental frequencies of test particles in the spacetime
field of the charged Kiselev black hole for the three cases of
w, and have observed how these fundamental frequencies
are affected by Q and a. A summary of our results is
presented in Sec. V. In the present study, we use geometric
units (G =c =1) and 7 = 1, where G is the Newtonian
gravitational constant, ¢ is the speed of light in vacuum, and
i is the reduced Planck constant. The metric signature is
taken as (—, +, +, +), and the greek (latin) indices run from
0 to 3 (1 to 3).

II. SPACETIME GEOMETRY OF THE
CHARGED KISELEV BLACK HOLE

General spherically symmetric static spacetime is rep-
resented by the line element

1
ds? = —N(r)df* + N—( )drz + r2(d6? +sin? 0d¢?), (1)
r

where the metric coefficient N(r) is called the lapse
function. For the charged Kiselev black hole, which is
extensively studied in the literature from different points of
view (for example, Refs. [47,53,74-87]), the function N(r)
takes the following form [45]:

2M a 0?

T - r3mq+l 7 . (2)

N(r)=1-

Using the standard procedure, the electric charge Q and the
ADM mass M of the black hole can be calculated as [88]

1
0= / V,A,.dS", (3)

I .
M =— lim gﬂy(aﬁgua - a,ugaﬁ)*dsav (4)

T §%—i0

where ,dS“ is the dual element of the hypersurface dS*7, i
is the spacelike infinity when the normalization factor «
(which is related to the cosmological constant in the case
where @, = —1) is equal to zero, and 0, stands for the
partial derivative with respect to coordinate x*. In the case of
a nonzero normalization factor a for w, < —1/3, spacetime
is not flat at infinity, and we cannot give the interpretation of
the parameters M and Q as the total mass and electric charge
of the central black hole. Although there is no generally
accepted interpretation of these quantities in asymptotically
de Sitter spacetime, there are some different points of view
on this problem—see, for example, Ref. [89], where the
author gives a definition of the parameter M as the Noether
charge. The interpretation of the parameters M and Q as the
total mass and electric charge of the central black hole is
possible only in the asymptotically flat spacetime case when
the parameter a vanishes.

The parameter w,, is responsible for the equation of state
of the surrounding matter. Depending on the values of the
parameter w,, the corresponding equation of state may
represent different matter surrounding the compact object.
Particularly, @, =0 corresponds to an ideal gas, while
w, = 1/3 represents the ultrarelativistic particles, includ-
ing neutrinos. Negative values of , represent some exotic
matter used in some models of dark matter and dark energy.
On the other hand, hypothetical so-called phantom energy
corresponds to the value w, < —1, which can cause a big
rip. Current cosmological observational data cannot dis-
tinguish whether space is fulfilled with phantom (v, < —1)
or nonphantom (@, > —1) matter [90]. For the quintes-
sence, it takes values in the interval —1 < w, < —1 /3 in
order to have the observed accelerated expansion of the
cosmos [45]. The extreme case of w, = —1 corresponds to
the cosmological constant, while the other extreme value of
the parameter—i.e., w, = —1/3—corresponds to the frus-
trated network of strings, for which the Universe remains
static and which is discussed in great detail in the literature
[91-93]. The case of w, = —1/3 has been considered by
different authors in different scenarios (see, for example,
Refs. [25,58,85]). In the original paper [45], it is shown that
parameter w, is related to the equation of state for the
quintessence matter with isotropic negative pressure p, by
the relation

Pg = WgPys (5 )
where p, is the energy density given by

3 aw,
Pq = g r3(l+(uq) : (6)
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In this work, we are interested only in studying the
charged Kiselev black hole (the spacetime where three
distinct horizons exist: the inner horizon r;,, the event
horizon r,;,, and the cosmological horizon r.;,, and where
Fin < Yo, < Fep). We should mention that we also consider
the limiting case w, = —1/3; for this value, spacetime is
flat at infinity and there is no cosmological horizon. We
also constrain our calculation to the region r,;, < r < rg,
because only in this region is the trajectory of the particles
relevant. The lapse function [Eq. (2)] in this region takes
positive values: N(r))0 [N(r) <0 for 0 <r < ry and
r > r.,]. The range where values of the parameter @ can
change depends on the chosen parameters w, and Q (for
each value of the parameter w,, limits are discussed later in
the text) and is similar to that for an uncharged Kiselev
black hole (where @ depends on @ only), as is shown in
Ref. [25]. In the case where @ = 0, the black hole reduces to
the Reissner-Nordstrom black hole, and if Q = 0 also, it
reduces to the Schwarzschild black hole. A detailed
discussion on the horizon structure of the Kiselev black
hole is presented in Refs. [57,77].

III. EQUATIONS OF MOTION AND CONDITIONS
FOR THE EXISTENCE OF MSCOs

Equations of motion can be found by the Hamilton-
Jacobi method. The Hamilton-Jacobi equation in the
general case for the Hamiltonian function, defined as

1 v
H= Egﬂ PuPu> (7)
can be written as

— @ — l v ﬁﬁ ( 8)
or 27 Ox*ox’

where 7 is the proper time in the case of massive particles
(in the case of massless particles, we should exchange =
with another affine parameter 1), the function S is the action
for a particle moving along a geodesic, and p, is the
components of the four-momentum written as partial
derivatives of the action S with respect to coordinates x*:

oS
w = Pyu- (9)

For the spacetime described by the metric in Eq. (1) with
the metric function N(r) given by Eq. (2), the Hamilton-
Jacobi equation can be written as

_g - _2Nl(r) (%)2 %N(” <%)2

F (B L (S (g
2r2 \ 00 2r2sin2 0 \d¢)

Since we are considering the stationary spherically sym-
metric spacetime, we can try to find the solution to the
Hamilton-Jacobi equation in separable form:

S(z.t.7.0.¢) = S.(z) + S,(t) + S,(r) + Sy(6) + S,().
(11)

The subscripts of the functions S.(z), S,(1), S,(r), Sy(0),
and S,(¢) should not be considered as indices of the
components of some vector.

Using the normalization condition for the massive
particle

P pu = —m?, (12)

where m is the rest mass of the test particle (m = 0 for
photons), and comparing it with the Hamilton-Jacobi
equations, we show that

98 _9S.(¢) 1
o o 2 (13)

Since the Hamiltonian does not depend explicitly on the
coordinates ¢ and ¢, from the Hamilton equations

dx* OH

dp, __0H  dx* _OH
N dr_apﬂ’

dr ox+’ (14)
we write that the components p, and p, of the four-
momentum are the constants of motion p, = —FE and
py = L. It is possible to show that these constants of
motion are related to the energy and azimuthal components
of the angular momentum of the particle.

According to the Noether theorem, the conservation
laws correspond to the isometries of a spacetime. For a test
particle with a constant rest mass m and momentum p#
moving along a geodesic, the geodesic equation can be
written as

i
Dd—’; = PLUY = mUL U = 0. (15)

If spacetime symmetries allow the existence of a Killing
vector & satisfying

5/4;1/ + 51/;;4 = Ov (16)

then the scalar quantity p = p,&" is conserved along the
geodesic trajectory due to Eqgs. (15) and (16):

dp/dr = D(p*é,)de = p*&,,, U* = mU¢,, U" = 0.
(17)

If the Killing vector & is timelike, then the scalar quantity
P can be interpreted as the conserved energy of the
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particle. There is always a coordinate system where the
curves to which & are tangent are coordinate lines along
which only the time coordinate x° = ¢ changes. It is easy to
choose the ¢ coordinate so that in this new coordinate
system, the Killing vector is & = (1,0,0,0), and the
Killing equation (16) becomes g,,, =0, which corre-
sponds to our concept of stationarity. From the statement
that there is a timelike Killing vector, it follows that there
exists such a coordinate system in which the metric tensor
is time-independent. The existence of a spacelike Killing
vector in the spacetime is responsible for the conservation
of angular momentum of a particle along the geodesic.

Using again the relation which connects components of
the four-momentum with derivations of the action S with
respect to coordinates, we obtain expressions for the
functions S,(z) and S;(¢) as follows:

oS 9S,(1)

a- o b (18)
s 0S,(p)

Using the obtained separable function for the action S,
with the functions S,(r) and S,(¢), expressed by the
constants of motion E and L, the Hamilton-Jacobi equation
can be written as

2 2
" g N(r)r? <0S,) — m%r?

N(r) or
0Sy\?  L?
— <%> + e C = constant. (20)

Since the left- and right-hand sides of the obtained
expression are differential equations which depend on
either r or 0, these two equations should be equal to the
same constant C, which is the separation constant. For
convenience, we introduce the constant K, which is related
to the separation constant C by the equation L? + K = C,
and K = 0 for a particle moving in the equatorial plane.

From the Hamilton-Jacobi equation, the covariant com-
ponents of the four-momentum for massive particles can be
written as

Pr = _E7 (21)

1 E? L>+K
=4+ —m? , 22
g \/ v ) @
po = £V K —L*cot? 0, (23)

The corresponding contravariant components of the four-
momentum are defined as

p—ii =

= j:\/EZ _N() <m2 + LZ:Q K), (26)

1
p’ =+ VK-L*cot?0, (27)
r

L
o —

P = e (28)
For further calculations, we introduce the specific angular
momentum L — L/m and specific energy E — E/m. It is
equivalent to take m = 1 in the equations of motion for a
massive particle, and using the relation between four-
momentum and four-velocity

pt = mU¥, (29)

the equations of motion can be written in the following
way:

dr E
—=—, 30
dr  N(r) (30)
dr L>+K
— =4/E>=N(r)( 1 : 31
& \/ O(+=55). e
do 1
—=+—VK—-L*cot* 6, (32)
dz r
dg L

(33)

dr  r2sin?26°

Because of the spherical symmetry of the spacetime, any of
the central planes can be considered as the equatorial one;
for the chosen coordinate system, we fixed the equatorial
plane to be at 6 = /2.

In the equatorial plane, the equation of motion for the
radial coordinate of the massive particle is given by

% — 4B~V (1), (34)

For studying the motion of particles in the equatorial
plane, it is useful to introduce the special function Vg (r),

Ve (r) = N(r) (1 + 6—22) (35)
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by analogy with the function of “effective potential”
used for studying particle orbits in asymptotically flat
spacetimes.

In the case of massless particles (photons), using
Hamilton-Jacobi equations, applying the appropriate nor-
malization condition p*p, =0, and exchanging proper
time 7 with affine parameter 4, components of the four-
momentum can be obtained by the same procedure that was
used for massive particles. The radial component of the
four-momentum for photons reads as

pr==y E? = Ve (r), (36)

where the function V. (r) is equal to

Ve (r) = N(r) <§> (37)

The spacetime under our consideration is asymptotically
de Sitter for w, = —1 when a > 0. In the case of w, =
—2/3 when a > 0, the spacetime under discussion has a
cosmological horizon, and particles moving in such space-
time experience a repulsive force acting on them like in the
Reisner—Nordstrom—de Sitter spacetime. However, the
lapse function does not reduce to that of the Reisner—
Nordstrom—de Sitter spacetime in this case. For o, = —2/3
and w, = —1 when a > 0, there is a radius where gravi-
tational attraction is balanced by the repulsive constant a
[32]. This position in a spacetime is called the static radius
(not to be confused with static orbit in rotating spacetime
[94]). The static radius plays a crucial role in the analysis of
de Sitter spacetimes, where there is no stable circular orbit
with a radius higher than this static radius. In the case of
w, = —1/3 when a > 0, there is no cosmological horizon
or static radius.

From the Hamilton equations (14), we can find the radial
component of the four-momentum, and then using Eq. (29),
we can obtain the equation for the radial component of a
particle’s four-acceleration:

3N'(r)
2N(r)

NG

_ N(r)
di ~ 2N(r) r

(p") +—5-L* (38
where the prime denotes a derivative with respect to the
radial coordinate r. It is expected that for a particle on the
static radius in the equatorial plane, the radial component of
the four-velocity is equal to zero, U" = 0; the radial four-
acceleration is equal to zero, dU"/dA = 0; and at the same
time specific angular momentum is also equal to zero,
L = 0. Applying this condition to Eq. (38), we obtain an
equation for the static radius rg, as

N'(r) =0. (39)

Further, it is shown that in the case w, =-2/3 and
w, = —1, OSCOs are located inside the static radius
(see also Ref. [95]).

For particles moving along a circular orbit, the conditions

E? = Ve (1), V’eff(r) =0 (40)
should be satisfied. For a particle on a MSCO, the condition
Vig(r) =0 (41)

should also be satisfied.
From these conditions for massive particles, we get the
equation for the radii of MSCOs r = rysco as

_ 4r(N'(r))>=6N(r)N'(r)=2rN(r)N"(r)
(2N(r)=rN'(r))(4rN'(r) = r*N"(r)=6N(r))’

(42)

Using the conditions given by Eq. (40), one can obtain the
expressions for the energy and the angular momentum of a
test particle in a circular orbit as

2 _ 2N(r)?
B =N -Gy “3)
, PN (r) (44)

~2N(r)=rN'(r)’

In the following subsections, we study the MSCOs for
the charged Kiselev black hole by taking into account the
conditions for their existence, given by Egs. (40) and (41)
for the three different values of w,—namely, w, = —1/3,
w, =—1, and w, = —2/3—in the lapse function N(r)
given by Eq. (2).

A. MSCOs for the charged Kiselev black hole
with w,=-1/3

In this section, we study the particle motion when the
parameter @, = —1/3. (The special character of this
specific version of the black hole solution is treated in
detail in Ref. [96].) In this case, the lapse function N(r)

takes the following form:

0> 2M

N(r) = a—i—rz p + 1. (45)
Like the Reissner-Nordstrom black hole, for the charged
Kiselev black hole there is a maximum magnitude of the
charge Q for which the event horizon disappears and
the spacetime becomes one with a naked singularity. The
maximal magnitude of the charge parameter is related with

the parameter o by the condition

ol <. (46)
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The maximum magnitude of the charge Q for the
charged Kiselev black hole is not equal to M, but depends
on the value of the parameter , and tends to infinity when
goes to 1. In Fig. 1, it is shown how the maximal magnitude
of the positive charge |Q|,,.x = M/ 1 — a depends on the
parameter o, and the shaded region shows the available
range of the permitted values for the parameters a and Q for
which the event horizon exists.

In this case, the effective potential [Eq. (37)] reduces to

V(1) = <1 —27M+(r2—22—a> (1 +’;—22> (47)

For the fixed value M = 1, the left column of Fig. 2
represents how the effective potential of the particles on
ISCOs changes with the variation of the parameters «
and Q. The second and third columns show how the
specific energy and the specific angular momentum of
the massive particle on the circular orbit depend on the
radial coordinate, with minima appropriate to the particles
on the ISCO. Table I shows the values of the specific
energy, the specific angular momentum, and radius of the
ISCO of a particle for the selected parameters @ and Q
represented in Fig. 2. Here, in this case, the ISCO is the
only MSCO located on the inner border of the region of
stable circular orbits, and no OSCO exists.

To find the radius of the event horizon, we solve the
equation

2 oM
Q—z——+1:0. (48)
r r

Figure 3 presents the dependence of the radius of the
event horizon on different values of the parameters a and Q.

3.0 T T T T

25 !

2.0F 9

0.5F 9

0.0 L L L L
0.0 0.2 0.4 0.6 0.8 1.0

a

FIG. 1. Shaded region shows available range of the permitted
values for the parameters a and Q for M = 1, allowing the
existence of a black hole. Parameter « can take values in the
interval a € [0, 1). The parameter Q varies from 0 to Q.. given
by the condition in Eq. (46) for the given value of the parameter a.
The maximal value of the positive charge Q.. is represented by
the solid curve on the graph.

The radius of the event horizon becomes bigger with

increasing a and becomes smaller with increasing Q.
The constants of motion, specific energy E2, and specific

angular momentum L2 given in Egs. (43) and (44) in the

case of w, = —1/3 can be written as
o (r(=2M —ar +r) + Q*)? (49)
 P2(r(3M = (1 —a)r) —20?)’
2 rz(Q2_Mr) (50)

T rBM = (1—a)r) —20%

In Figs. 2, 4, and 5, the dependence of the radial
coordinate r on E? and L? is presented.

From Egs. (42) and (2), for the fixed value of the
parameter @, = —1/3, one can get an equation for the
ISCOs:

Frms(r) =40% —OMQ?r + Mr*[6M — (1 — a)r] = 0,

(51)
which has the solution
r :_4M4_M2[3(1—a)Q2+2\3/§]+52/3 52)
" (1 —a)M+/3S g
where

S = —8M°® +9(1 —a)M*Q* = 2(1 - a)’M*Q* + VR
(53)

and

TABLE 1. The specific energy, specific angular momentum,
and radius of the ISCOs for the selected values of the parameters
a and Q, for fixed M = 1.

Q a E2 L2 rms

0 0 0.8889 12 6

0.6 0 0.8785 10.7427 5.4198
0.8 0 0.8673 9.6584 4.8908
1 0 0.8437 8.0106 4.0062
0 03 0.6222 24.4896 8.5714
0.6 0.3 0.6174 22.7214 8.0048
0.8 0.3 0.6127 21.2539 7.5184
1 0.3 0.6050 19.2002 6.8056
0 0.6 0.3556 75 15

0.6 0.6 0.3540 71.9477 14.4455
0.8 0.6 0.3527 69.4947 13.9917
1 0.6 0.3508 66.2186 13.3735
0 0.8 0.1778 300 30

0.6 0.8 0.1774 293.949 29.453
0.8 0.8 0.1771 289.17 29.0172
1 0.8 0.1767 282.923 28.4426
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FIG. 2. The left column shows plots of the effective potentials, the central column shows the specific energy, and the right column
shows the specific angular momentum of the test particle for different values of the parameters a and Q. In each row, for a chosen value
of the parameter Q, four graphs for four different values of a are presented. The red color corresponds to Q = 0, while the green, blue,
and violet colors correspond to Q = 0.6, O = 0.8, and Q = 1, respectively. The parameter « takes the values a = 0 for the first line,
a = 0.3 for the second, @ = 0.6 for the third, and @ = 0.8 for the fourth line in the graphs presented in the left column. With increasing
values of «, the radii of the MSCOs also increase. The values of specific energy and the specific angular momentum for particles on
ISCOs, with the radii of ISCOs, for the chosen parameters Q and « are presented in Table I.
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FIG. 3. Color map of the radius of the black hole event horizon
for different values of the parameters o and Q, for M = 1.
Parameter a changes from O to 0.8, and parameter Q changes
from O to Q,,,.x given by the condition in Eq. (46) for each value
of a. For higher values of the parameter @ (shown by the shaded
region on the graph), the qualitative behavior of the radius of the
event horizon is the same—it increases with the parameter a.

R=(1-a)M*Q* (M? — (1-)Q2) (SM? ~ 4(1 - ) 02).
(54)

Radii of the ISCOs for different values of the parameters
a and Q are presented in Fig. 6.

In the extremal case when energy tends to infinity, the
radius of the ISCO coincides with the radius of the circular
photon orbit. We can get the radii of photon circular orbits
by requiring that the energy in Eq. (49) go to infinity, and
then solving the equation

_ 2 __
frph(r)_r(3M_(l_a)r>_2Q =0, (55>

wf [T T T 5
\ 1 1 1 1 1

1.2} A A 1
NEH ]

1.0F \ il |y 1 .
—Sz3=rr T 1

] 08p A Y L ]
W 1 1 4

0.6f S L 1
=\t 1 1

0.4f NSV ]
N 1

o2 D S—
0-0 L L L ]
5 10 50 100

FIG. 4. Plots of the square of the specific energy, E?, for
different values of the parameters a and Q, for M = 1. Here o
increases from red to violet colors and takes the values a =
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9}, respectively. For each
value of a, Q takes two characteristic values: Q = 0 for dashed
lines and Q = 1 for solid lines.

5000

1000¢
500F

12

100§
50F

5 10 50 100

FIG. 5. Plot of the specific angular momentum, L2, for different
values of a and Q, for M = 1. Here a increases from red to violet
colors and takes the values a = {0,0.1,0.2,0.3,0.4,0.5,0.6,
0.7,0.8,0.9}, respectively. For each value of a, Q takes two
characteristic values: Q = 0 for dashed lines and Q =1 for
solid lines.

which has the following solution:

r

VIM? —8(1 —a)Q? +3M s6
ph = 2(1—a) ' (56)

Figure 7 presents the radius of the photon circular orbit
with varying parameters a and Q.

In order to show how the radius of the ISCO of massive
particles, the radius of the photon orbit, and the radii of
the horizons depend on the parameter o, we express «
as a function of the radial coordinate r of the spacetime
horizons, the ISCO, and circular photon orbit from
Egs. (48), (55), and (51). From Eq. (48), which defines
the radii of the spacetime horizons, one can express the
parameter a as a function of r in the following form:

—2Mr + Q2 + 72
ah(r) = 2 .

(57)
From Eq. (55), which defines the radius of the photon orbit,
one can express the parameter o as a function of r:

—3Mr +20% + r?

arph(r) = r2

(58)

Similarly, from Eq. (51), which defines the radius of the
ISCO, one can express the parameter « as a function of r
and Q in the following way:

6M>r* —9MQ*r — Mr® 4+ 40*

ams(r) = - Mr3

(59)

Figure 8 for the presented values of the parameter Q
allows us to determine the radii of the horizons, the radius
of the ISCO, and the radius of the photon orbit for different
values of the parameter «; also, from Fig. 8, it is possible
to determine the region where stable circular orbits exist
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FIG. 6. The left graph shows how the radii of ISCOs depend on Q for some different fixed values of & = {0, 0.1, ..., 0.8}. The right
graph shows how the radii of ISCOs depend on a for some different fixed values of Q in the range from Q =0to Q = 1.

and at what values of «, for a given Q, the event horizon
disappears.

B. MSCOs around the charged Kiselev black hole
with w,=-2/3
In this section, we explore the motion of particles when
the parameter w, = —2/3. In this case, the lapse function
N(r) takes the following form:

2 2M
N(r):—ar+Q—2——+1. (60)
r r
One can find the radii of the horizons by solving the
following equation:

3.0

25r

201

0.5

0.0

a

FIG. 7. Color map demonstrates the radii of photon orbits for
different values of the parameters @ and Q, for M = 1. Parameter
a takes values from 0 to 0.8, and parameter Q ranges from 0 to
Omax given by the condition in Eq. (46) for each value of the
parameter a.

0> 2M

—art 2 M2 1
c{r—l—r2 r+ 0 (61)

Figure 9 demonstrates the radius of the black hole event
horizon for different values of the parameters @ and Q.

In this case, the event horizon exists only for some
limited values of the charge Q; for the maximum value
of the charge, the parameter « is related with the parameter
Q by the conditions 0 <a < a, if 0 <0 <1, and a_ <
a<a, if Q > 1, where a is equal to

2 —2M 2
a.(g) =22 2Mr=+ 0 (62)
ry
and
ri(Q) =2M + \/4M? - 30Q%. (63)

Figure 10 shows the upper limit on the parameter a for
which the event horizon exists. Figure 11 shows the upper
limit on the parameter a for which MSCOs exist.

In this case, the effective potential [Eq. (37)] reduces to

2 2
Veff:<1_2_M+Q—2—OH’><1—L—2>. (64)
r r r

The effective potential for several values of parameters a
and Q is shown in Fig. 12.

The squares of the constants of motion E2 and L? given
in Egs. (43) and (44), in the case of w, = —2/3, can be
written as

063027-10



EPICYCLIC OSCILLATIONS OF TEST PARTICLES NEAR ... PHYS. REV. D 104, 063027 (2021)

1.0
4 i Q%=09
0.8 7 a=0.05
= "
- ’
0.6f & /
S S
I3 ~ 1
g a2 0
< £ [
- 0.4} - ‘{’
= =
< z 0
0.2f
4t
0.0 .
0 0 10 50
/™M
1.0 ,
af et @F=11
0.8f o7
e a=0.05
.
= ’z
3 SR Y
< 0.6F & {
= 2
g = ol
< £
.. 0.4f ~
= =
q? < —2+
0.2f
—4+
0.0 A
0 0 10 50
10 T T Ead T
4 e =11
0.8} prad
4 a=0.1
S
s § 2 .
< 0.6 &
S , S
£ I [
< \ £ i)
.. 0.4 1 - ’
= 1 =
< II < _ot
I
0.2F 1
[}
[}
1 —4r
0.0 L
) 2 0 10 50

/M

FIG.8. Plots in the left column show the radial dependence of functions a;, (), a,,,(7), and a,,,;,(r) [Egs. (57), (59) and (58) in the text]
for several values of the charge Q with the fixed value of M = 1. For better visualization, instead of the functions themselves on the
plOtS’ we show Ah(r) = Sgn(ah(r))|ah(r)|l/4’ Ams(r) = Sgn(ams(r))|ams(r)|1/4’ and Arph(r) = Sgn(arph(r))|arph(r)|1/4' The thin
black line is the graph of the function A,(r), which determines the positions of the event horizons. The blue dashed line is the
graph of the function A,,,(r), which determines the positions of the photon orbits. The thin green line is the graph of the
function A,,,(r), which determines the positions of the stable circular orbits. The gray dashed line defines the parameter a'/4,
for which the functions N(r), f,,4(r), and f,,,(r) are shown in the right column. In the right column, for some parameters «
and Q, the following graphs are presented: The thin black line is a graph of the function N(r) [Eq. (48) in the text]; zero values
of this function determine the positions of the horizons for the selected values of the parameter a. The blue dashed line is a
graph of the function f,,,(r), [Eq. (55) in the text]; zero values of this function determine the position of the photon orbit for
the selected values of the parameter a. The thin green line is a graph of function f,,,(r) [Eq. (51) in the text]; zero values of
this function determine the position of the ISCO for the selected values of the parameter . Parameters a and Q take the values
a=10.05,0.1] and Q =[0.9, 1.1].
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FIG. 9. Color map of the radius of the event horizon for
different values of the parameters @ and Q, for M = 1. The
parameter o varies from 0 to o, if 0 < Q < 1, and from a_ to o
if OQ>1 (ap = 1/6 and Q.. = 3/4). For the white regions,
there is no event horizon in the spacetime, and they correspond to
the naked singularity. The region where the event horizon exists is
given by the condition in Eq. (62).

0.05

00 02 04 06 08 10 12 14
Q

FIG. 10. The gray shaded region shows the allowable range of
the parameters a and Q for which the event horizon exists.
Parameter a takes values from O to o, if 0 < QO < 1, and a_ <
a<a, if Q>1; the value of ay is given by the condition
in Eq. (62).

) r(r—2M)+Q? —ar 2

E? = 2E ( —31:;)+2Q2) : ’ (65)
rrriz —ar
2Mr - Q) — ar®

L2 2Mr= Q) —ar (66)

2(r(r=3M)+20?) _

I

ar

Figures 12-14 provide the dependence of the radial
coordinate r on E* and L>.

Tables II and III show the specific energy and angular
momentum of a particle in the ISCO and OSCO for the
selected values of the parameters a and Q.

0.014|
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s 0.008|
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0.000
0

0 02 04 06 08 10 12 14
Q

FIG. 11. The red shaded region shows the allowable range of
the parameters a and Q for which the MSCOs exist. The
parameter « takes values from O to a,,,, if 0 < Q < 1,and a_ <
a<ay., if Q>1.

Now, using Eq. (39), one can get the condition for a
static radius:

fra(r) =ar* =2Mr +20% = 0. (67)

From Egs. (42) and (2), for the fixed value of the
parameter w, = —2/3, we get the following equation for
the radii of MSCOs:

Frms(r) = Q*>(18Mr — 11ar®) = 3ar*(r — 4M)
+2M7r(r — 6M) — 8Q* + a?r® = 0. (68)

The radii of ISCOs for different values of the parameters
a and Q are presented in Fig. 15:

The radius of the photon orbit can be obtained from the
equation for the specific energy [Eq. (65)], which for the
particles in the photon orbit goes to infinity:

r(r— 2
frph(r)zz( ( 3]‘f)+2Q)

r

—ar=0. (69)

Figure 16 shows the color map for the photon orbit for
different values of the parameters @ and Q.

In order to show how the ISCOs and OSCOs of
massive particles, the radius of the photon orbit, the radius
of the event horizon, and the static radius depend on «a, we
express the parameter a as a function of radial coordinate r
from the equations that correspond to these values:
Eqgs. (68), (69), (61), and (67).

From Eq. (61), one can express the parameter a as a
function of the radial coordinate r and the black hole charge
Q in the following form:

_ -2Mr+ Q4 r?

an(r) 3 (70)

r
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FIG. 12. The left column shows plots of the effective potentials, the central column shows the specific energy, and the right column
shows the specific angular momentum of the test particle for different values of the parameters a and Q. In each row, for a chosen value
of the parameter Q, eight graphs for four different values of a are presented. The red color corresponds to Q = 0, while the green, blue,
and violet colors correspond to Q = 0.6, Q = 0.8, and Q = 0.999, respectively. The parameter a takes the values @ = 0.001 for the first
line, @ = 0.002 for the second, @ = 0.003 for the third, and @ = 0.005 for the fourth line in the graphs presented in the left column. In the
first column, solid lines represent the effective potential of the particles in the ISCOs, and dashed lines represent the effective potential of
the particles in the OSCOs. With increasing values of a, the radii of the ISCOs also increase, and the radii of the OSCOs decrease. The
values of specific energy and the specific angular momentum for particles on MSCOs, with the radii of MSCOs, for chosen parameters

Q and a are presented in Tables II and III.
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FIG. 13. Plot of E? for different values of the parameters a and
Q. Here a increases from the red color to the violet one and takes
the values a=1{0,0.001,0.002,0.003,0.004,0.006,0.008,0.01},
respectively. For each value of a, Q takes two characteristic
values: Q = 0 for dashed lines and Q = 1 for solid lines.
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FIG. 14. Plot of L? for different values of a and Q. Here a
increases from the red color to the violet color and takes the
values «a = {0,0.001, 0.002,0.003, 0.004, 0.006, 0.008, 0.01},
respectively. For each value of a, Q takes two characteristic
values: Q = 0 for dashed lines and Q = 1 for solid lines.

From Eq. (69), one can express the parameter a as a
function of the radial coordinate r and the black hole charge
Q in the following manner:

2(r(r—3M) +20?%)

7'3 '

a,pn(r) = (71)

From Eq. (68), one can express the parameter « as a
function of the radial coordinate r and the black hole charge
Q in the following way:

—(192M%r2 — 336M Qr — 80Mr3)!/2
amx(r) N 273
x (1530 + 6601 + 9r*)!/?
12Mr + 110? + 372
273 ’

(72)

From Eq. (67), one can express the parameter a as a
function of the radial coordinate r and the black hole charge
Q in the following form:

TABLE II. The specific energy, angular momentum, and radius
of the ISCO of the test particle for selected values of the
parameters a and Q, for fixed M = 1.

Q a E2 L2 Fins

0 0.001 0.8782 11.8509 6.1182
0.6 0.001 0.8687 10.6325 5.5079
0.8 0.001 0.8583 9.5769 4.9571
0.999 0.001 0.8364 7.9667 4.0471
0 0.002 0.8673 11.6902 6.2633
0.6 0.002 0.8588 10.5147 5.6116
0.8 0.002 0.8493 9.4909 5.0328
0.9991 0.002 0.8288 7.9206 4.0918
0 0.003 0.8562 11.5145 6.4513
0.6 0.003 0.8487 10.388 5.7377
0.8 0.003 0.8402 9.3993 5.12095
0.999 0.003 0.8212 7.8721 4.1411
0 0.005 0.833 11.0852 7.2378
0.6 0.005 0.828 10.0967 6.1268
0.8 0.005 0.8215 9.1950 5.3589
0.999 0.005 0.8057 7.7667 4.2583
TABLE III. The specific energy, angular momentum, and

radius of the OSCO of the test particle for selected values of
the parameters @ and Q, for fixed M = 1.

Q a E2 L2 rms
0 0.001 0.92337 19.8171 24.6596
0.6 0.001 0.92334 19.3751 24717
0.8 0.001 0.92331 19.0322 24.7601
0.999 0.001 0.92327 18.5952 24.8133
0 0.002 0.89235 14.9869 16.9089
0.6 0.002 0.89221 14.4953 17.015
0.8 0.002 0.89211 14.1158 17.0918
0.999 0.002 0.89199 13.6341 17.1837
0 0.003 0.86901 12.9507 13.3434
0.6 0.003 0.86871 12.4093 13.5159
0.8 0.003 0.86849 11.9944 13.6345
0.999 0.003 0.86824 11.4708 13.77
0 0.005 0.83359 11.1433 9.1628
0.6 0.005 0.83251 10.4704 9.7385
0.8 0.005 0.83184 9.9738 10.0128
0.999 0.005 0.83113 9.3619 10,2751
2(0% — Mr
() = ~ AL MD) (73)

r

Figure 17 allows us to determine the existence of an event
horizon, stable circular orbits, photon orbit, and static
radius for three values of Q and certain values of a. If
the choice of parameters allows the existence of these
quantities, then it is possible to determine the correspond-
ing radii from Fig. 17.

For each value of the parameter Q, there is a maximum
value of the parameter a,,,, (Q), which defines the region
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In the left plot, the dependence of the radii of the ISCO and OSCO for the whole range of Q7 is shown; each graph is for

different values of a, from @ = 0 to a = 0.01. In the right plot, the dependence of the radii of the ISCO and OSCO for the whole range of
a is shown; each graph corresponds to different values of Q2, from Q2 =0 to Q% = 1.0.

of stable circular orbits. Taking the derivative with respect
to r from Eq. (72) for a,,,(r) and equating the resulting
expression to 0, one can obtain the value of r.; that
determines the radius of a stable circular orbit for values
of the parameter Q from 0 to Q... Substituting the
obtained value of r; for a given Q into Eq. (72) for
@,s(r), we obtain the maximum value of the parameter
Qs+ (Q) for a stable circular orbit for the given value
of Q. The thick red line in Fig. 11 shows the dependence
of the maximum value for the parameter @ on Q, and the
shaded area under the thick red line in Fig. 11 determines
the values of the parameters a and Q for which stable
circular orbits exist.

0.00t, N n n n ! .
00 02 04 06 08 10 12

Q

FIG. 16. Color map shows the radii of photon orbits for
different values of the parameters @ and Q. The parameter o
takes values from O to o, f 0<Q <1, and a_ <a < a, if
Q > 1; the value of . is given by the condition in Eq. (62).

C. MSCOs around the charged Kiselev black hole
with @, = —1 (the cosmological constant)

In this section, we study particles’ motion when the
parameter @, = —1. The lapse function [Eq. (2)] in this
case takes the following form:

2M 2
Nr)=1-—-ar+=. (74)
r r

The radii of the event horizons can be obtained by
solving the equation

2M 2
=M 2 (75)
r

2

Figure 18 demonstrates the dependence of the radius of
the black hole event horizon on different values of the
parameters « and Q.

By analyzing the behavior of the function (75), it is
possible to find the restrictions on the parameters a and Q
that are appropriate for the black hole spacetime. In
Ref. [35], it was shown that for the Reissner-Nordstrom
spacetime with a nonzero cosmological constant, the
solutions are

Mre h)+ — Q2
Qp(max) (Q) = (4)7Jr ’ (76)

and

Qp(min) (Q) = er4—_ ’ (77)
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FIG. 17. Plots in the left column show the radial dependences of the functions @, (r), @, (r), a,,(r), and @,,,(r) [Egs. (70), (73), (72),
and (71) in the text] for several values of the parameter Q with fixed M = 1. For better visualization, instead of the functions themselves
in the plots, we show A,(r)= Sgn(ah(r))|ah(r)|l/4v Ay (r) = Sgn(arst(r))|arsr(r)‘1/4’ A (r) = Sgn(anzs(r))‘ams(r)|l/4’ and
A, pn(r) = Sgn(a,,;,(r))|a,,,(r)|'/*. The thin black line is the graph of the function A, (r), which determines the positions of the
event horizons. The blue dashed line is the graph of the function A, ,,(r), which determines the position of the photon orbit. The thin
green line is the graph of the function A, (r), which determines the positions of the stable circular orbits. The red dotted line is the graph
of the function A, (r), which determines the position of the static radius. The gray dashed line defines the parameter a'/#, for which the
functions N(r), f, (7). frs(7), and f,,,,(r) are shown in the right column. In the right column, for some values of the parameters o and
Q, the following graphs are presented: The thin black line is the graph of the function N(r) [Eq. (60)]; zero values of this function
determine the positions of the horizons for the selected values of the parameter a. The blue dashed line is the graph of the function
frpn(r) [Eq. (69)]; zero values of this function determine the position of the photon orbit for the selected values of the parameter a.
The thin green line is the graph of the function f,,,(r) [Eq. (68)]; zero values of this function determine the position of the ISCO for
the selected values of the parameter a. The red dotted line is the graph of the function f,(r) [Eq. (67)]; zero values of the
function determine the position of the static radius for the selected values of the parameter a. Parameters a and Q take the values
a =1[0.05,0.001,0.005] and Q = [0.9, 1.001].
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FIG. 18. Color map of the radius of the event horizon for
different values of the parameters a and Q. Parameter Q changes
from 0 to Oy, and parameter a takes values from 0 t0 @j(max) if
0<0 <1, and aymin) £ @ < Aymax) if @ = 1. The functions
@p(min) and Ay (may) are given by the conditions in Egs. (77) and
(76) for each value of Q.

where

3 8 2\ 1/2
re(h)i = 5 |:M:t <M2 —%> :| (78)

The maximum value of the parameter ¢ which allows
the existence of the black hole solution corresponds to the
maximum value of the charge Q. = \/9/—8 and is
equal to

2

= (79)

A= Omax =

Figure 19 shows the range of acceptable values of the
parameters a and Q for the existence of a black hole.

We study only black holes with asymptotically de Sitter
behavior, and for this reason we imply that a > 0 for
0<Q<1,and a = aymp for 1 <0 </9/8.

Using Eq. (39), we get the condition for a static radius:

frst(r):ar‘t_Mr"—Qz:O- (80)

Then the effective potential [Eq. (37)] takes the follow-
ing form:

2M 2 L?
Ve = <1—+Q2—ar2> (1—2>. (81)
r r r

The effective potential for several values of parameters «
and Q is shown in Fig. 21.

The constants of motion E? and L?, given in Egs. (43)
and (44), in this case can be written as

0.07

0.06

0.05

0.04

0.03

0.02

0.01F

0.00
0.0 0.2 0.4 0.6 0.8 1.0 1.2

FIG. 19. The black line limits the interval of the variation of
the parameters a and Q in which the existence of black hole
spacetime is allowed. The parameters a and Q lying outside the
region confined by the black line are consistent with naked
singularities. Parameter a takes values 0 < a < @y if Q <1
and @ (min) < @ < Ay(max) if Q > 1. The functions @ (yin) (Q) and
®p(max) (Q) are given by the conditions in Egs. (76) and (77).

P

r(r—3M) +2Q?

o A (r(r—ZM)JrQ2 _ ar)2

, (82)

3 (Z(Mfr—QZ) _ 20”.3)

L= 2(r(r—3M) +20%)

(83)

Figures 22, 23, and 26 illustrate the dependence of E?
and L? on the radial coordinate r.

Tables IV and V show the specific energy and angular
momentum of a particle in the ISCO and the OSCO for the
selected parameters o and Q.

In the same way as it was done in the previous sections,
we can get the radius of the photon circular orbit by

0.0010

0.0008

0.0006 |

0.0004 -

0.0002

0.0000 * * * *
0. 0.2 04 06 08 1.0 1.2

FIG. 20. The red line limits the range of parameters « and Q for
which stable circular orbits exist. The values of the parameter a in
the case of Q > 1 are also bounded from below by the minimum
value of the parameter a,min) for which there is a black hole
event horizon.
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FIG. 21. The left column shows plots of effective potentials, the central column shows the specific energy, and the right column shows
the specific angular momentum of the test particle for different values of parameters a and Q. In each row, for chosen values of the
parameter Q, eight graphs are presented for four different values of a. The red color corresponds to Q = 0, while the green, blue, and
violet colors correspond to Q = 0.6, O = 0.8, and Q = 0.999, respectively. Parameter a takes the values a = 0.00005 for the first line,
a = 0.0001 for the second, @ = 0.00015 for the third, and @ = 0.0002 for the fourth line in the graphs presented in the left column. In
the first column, solid lines represent the effective potential of the particles on the ISCOs, and dashed lines represent the effective
potential of the particles on the OSCOs. With increasing values of a, the radii of ISCOs also increase, but the radii of OSCOs decrease.
The values of specific energy and the specific angular momentum for particles in MSCOs, with the radii of MSCOs for chosen
parameters Q and a, are presented in Tables IV and V.
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FIG. 22. Plot of the specific energy E? for different values of
parameters Q and a. Here « increases from the red color to the
violet color and takes the values a = {0,0.00005,0.0001,
0.00015, 0.0002, 0.0003, 0.0004, 0.0006}, respectively. For each
value of a, Q takes two characteristic values: Q = 0 for dashed
lines and Q =1 for solid lines. Parameter M is fixed and
equals 1.

20

FIG. 23. Plot of the specific angular momentum L? for different
values of @ and Q. Here a increases from the red color to the
violet one and takes the values a = {0,0.00005,0.0001,
0.00015, 0.0002, 0.0003, 0.0004, 0.0006}, respectively. For each
value of a, Q takes two characteristic values: Q = 0 for dashed
lines and Q =1 for solid lines. Parameter M is fixed and
equals 1.

requiring the energy in Eq. (82) to go to infinity, and
solving the equation

Fopn(r) = r(r=3M) +20* =0, (84)
we have

|
o =5 (3M +\/OM? — 8Q2). (85)

From Eq. (85), it is clear that photon orbits do not depend
on a. In Fig. 24, the dependence of the radius of the photon
circular orbit on the parameters @ and Q is shown.

From Egs. (42) and (2), for the fixed value of the
parameter w, = —1 we get the following equation for radii
of the MSCO:

TABLEIV. The specific energy, angular momentum, and radius
of the test particle in the ISCO for some values of the parameters
a and Q, for fixed M = 1.

Q a E2 L2 Tins
0 0.00005 0.88403 11.867 6.10741
0.6 0.00005 0.87444 10.6497 5.4914
0.8 0.00005 0.86391 9.5925 4.9389
0.999 0.00005 0.84152 7.9761 4.0298
0 0.0001 0.87904 11.7258 6.2425
0.6 0.0001 0.87032 10.5523 5.5756
0.8 0.0001 0.86049 9.5246 4.9932
0.999 0.0001 0.83909 7.9409 4.0551
0 0.00015 0.87387 11.5732 6.4261
0.6 0.00015 0.86611 10.45 5.6782
0.8 0.00015 0.85702 9.4544 5.0554
0.999 0.00015 0.83665 7.9052 4.0824
0 0.0002 0.86842 11.4026 6.7224
0.6 0.0002 0.86177 10.3412 5.8101
0.8 0.0002 0.85348 9.3814 5.1282
0.999 0.0002 0.83418 7.8688 4.1118

TABLE V. The specific energy, angular momentum, and radius
of the test particle in the OSCO for some values of the parameters
a and Q, for fixed M = 1.

0 a E? L? Fins

0 0.00005 0.91494 15.6594 15.9792
0.6 0.00005 0.91476 15.1641 16.0633
0.8 0.00005 0.91463 14.782 16.1244
0.999 0.00005 0.91447 14.2971 16.1977
0 0.0001 0.89423 13.2408 12.2499
0.6 0.0001 0.89379 12.6854 12.3961
0.8 0.0001 0.89348 12.2607 12.4962
0.999 0.0001 0.89311 11.726 12.6104
0 0.00015 0.88038 12.1508 10.3061
0.6 0.00015 0.87958 11.5381 10.5404
0.8 0.00015 0.87903 11.0752 10.6868
0.999 0.00015 0.87841 10.4979 10.8437
0 0.0002 0.87909 11.5325 8.8917
0.6 0.0002 0.87843 10.8552 9.2956
0.8 0.0002 0.87763 10.3537 9.5055
0.999 0.0002 0.87733 9.7360 9.7115

Frms(r) = O*(12ar* = 9Mr) + ar’ (4r — 15M)
+ Mr*(6M —r) — 40* = 0. (86)

The radii of ISCO and OSCO for different values of the
parameters o and Q are presented in Fig. 25.

In order to show how the radii of the MSCOs of massive
particles, the radius of the photon orbit, the radii of the
horizons, and the static radius depend on the parameter «,
we express a as a function of the radial coordinate » from
Eqgs. (86), (84), and (75).
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FIG. 24. Color map demonstrates the radii of photon orbits for
different values of the parameters a and Q, for fixed M = 1. The
radius of the photon orbit does not depend on a, but the parameter
defines the region where the existence of the black hole spacetime is
allowed. Parameter Q changes from 0 to Q,,,, and parameter a
takes values from 0 t0 @jmay) if 0 < Q <1, and @iy < Q0 <
@p(max) if @ > 1. The functions a,(min) and aj(may) are given by the
conditions in Eqgs. (77) and (76) for each value of parameter Q.

From Eq. (75), one can express the parameter a as a
function of the radial coordinate  and Q in the following
form:

r> —=2Mr + Q?
a(r) = ——7— (87)
From Eq. (86), one can express the parameter a as a
function of the radial coordinate » and Q in the following
form:

1 .O T T
— a=0
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FIG. 25.

6M*r2 —OMQ*r — M1 + 40"
rH(=15Mr + 120Q% + 47?)

(88)

ams(r) =

From Eq. (80), one can express the parameter a as a
function of the radial coordinate r and Q in the following
form:

ap(r) = M52 (89)

7

Figure 26 allows us to determine the existence of an event
horizon, stable circular orbits, photon orbit, and static
radius for two values of Q and certain values of a. If
the choice of parameters allows the existence of these
quantities, then it is possible to determine the correspond-
ing radii from Fig. 26.

For each value of the parameter Q, there is a maximum
value of the parameter a,,,, (Q), which defines the region of
stable circular orbits. Taking the derivative with respect to r
from Eq. (88) for a,,(r) and equating the resulting
expression to 0, one can obtain the value of r.; that
determines the radius of a stable circular orbit for values
of the parameter Q from 0 to Q... By substituting the
obtained value of r; for given Q into Eq. (88) for a,,(r),
we obtain the maximum value of the parameter @, (Q)
for a stable circular orbit for the given value of Q. The thick
red line in Fig. 20 shows the dependence of the maximum
value for the parameter ¢ on (, and the shaded area
under the thick red line in Fig. 20 determines the values
of the parameters a and Q for which stable circular
orbits exist.
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0.0000 bttt
4 6 8 10 12 14 16

In the left plot, the dependence of the radii of ISCO and OSCO for the whole range of Q? is shown; each graph is for different

values of a, from a = 0 to a = 0.0006. In the right plot, the dependence of the radii of ISCO and OSCO for the whole range of a is
shown; each graph corresponds to different values of Q?, from Q%> =0 to Q° = 1.0.
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FIG. 26. Plotsintheleftcolumnshow theradial dependences of the functions a;, (r), . (r), &, (r) and r,, (Q) [Egs. (87),(89),(88),and (85)
in the text; r,, (Q) does not depend on ain the case w, = —1] for several values of the parameter Q with fixed M = 1. For better visualization,

instead of the functions themselves in the plots, we show A, (r) = Sgn(a,(r))|a,(r)|'/*, A,q(r) = Sgn(a,.(r))|a.(r)|"/*, and
Ay (1) = Sgn (e, ()|, (r)|'/*. The thin black line is the graph of the function A, (r), which determines the positions of the event
horizons. The blue dashed line is the graph of the function r,,(Q), which determines the position of the photon orbit. The thin green line is the
graph of the function A, (r), which determines the positions of the MSCOs. The red dotted line is the graph of the function A, (r), which
determines the position of the static radius. The gray dashed horizontal line represents the chosen value of the parameter a'/#; intersections with
this line determine the positions of the horizons, photon circular orbit, MSCOs, and static radius. For the value of the parameter a represented by
the gray dashed horizontal line, in the right column, the functions N (7), f,,,(7), fus(r), and f,,(r) are shown; the zero values of these
functions determine the radii of the corresponding quantities (event horizons, photon orbit, ISCO and OSCO, static radius). In the right column,
forsome values of the parameters wand Q, the following graphs are presented: The thin black line is the graph of the function N (r) [Eq. (74)]; zero
values of this function determine the positions of the horizons for the selected values of the parameter a. The blue dashed line is the graph of the
function f, () [Eq. (84)]; zero values of this function determine the position of the photon orbit for the selected values of the parameter . The
thin green line is the graph of the function f,,,(r) [Eq. (86)]; zero values of this function determine the position of the ISCO for the selected
values of the parameter a. The red dotted line is the graph of the function f ,;(r) [Eq. (80)]; zero values of the function determine the position of
the static radius for the selected values of the parameter a. Parameters a and Q take the values a = [0.0005, 0.001] and Q = [0.9, 1.0001].
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IV. OSCILLATIONS OF TEST PARTICLES NEAR
MSCOs IN THE VICINITY OF A CHARGED
KISELEV BLACK HOLE

In this section, we show how the fundamental frequen-
cies of the test particles, performing epicyclic oscillatory
motion along orbits slightly above the ISCO, depend on the
parameters a and Q for the three different values of w,.
Here we also give their radial profiles. We use the method
based on the effective potential as discussed in Ref. [63].
The resulted frequencies are identical to those derived by
the perturbation methods as shown in Ref. [68]. The
derivation of the equations of the epicyclic frequencies
is provided in the Appendix.

The radial epicyclic frequency reads

1 N(r)3 aZWeff(r’ 0)

1 1 N(r)20*W(r,0)

=\ . 1
T\ AT o 0

The azimuthal (so-called Keplerian) frequency of the test
particle reads

e 1w
"2 2nE 2

(92)

where Qj = d¢/dt is the angular velocity of the test
particle. In spherically symmetric spacetimes, vy = v.

A. Oscillations of test particles near MSCOs of the
charged Kiselev black hole with w,=-1/3

The coinciding azimuthal and latitudinal frequency are

]/r = —_-— N (90)
2z \| 2E? or? equal to
itudinal epicych Vp = vo = — (Mr— Q) (93)
and the latitudinal epicyclic frequency v, takes the follow- ¢ = Vo= 52 .
ing form:
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FIG. 27. Fundamental frequencies of a test particle for

q

—1/3, and for the different values of parameters a and Q.

a=0.05,0.1,0.2 in the first, second, and third rows, respectively; Q = 0,0.5,0.9 in the first, second, and third columns,

respectively.
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FIG. 28. Fundamental frequencies of a test particle for o,

The radial epicyclic frequency is given by

(Mr2(r — ra — 6M) + 9MQ*r — 4Q*)2.

(94)

Figure 27 demonstrates the radial dependence of funda-
mental frequencies for different values of the parameters

B. Oscillations of test particles near MSCOs of the

charged Kiselev black hole with w, = -2/3

The azimuthal and latitudinal frequencies coincide again
in this case and take the following form:

V2

2 331
Uy =1y = (2Mr —2Q% —ar’):.
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(95)

Here, the radial epicyclic frequency is

2
v, = £3 M (r — 6M) — 80*
drzr

—3art(r — 4M) + o*r® + Q*(18Mr — 11ar?)):.
(96)

Figure 28 represents the radial dependence of the
fundamental frequency for different values of the param-
eters o and Q.

C. Oscillations of test particles near MSCOs
of the charged Kiselev black hole with w,= -1
(cosmological constant)

In this case, the azimuthal and latitudinal frequencies are

IJ(/, =Vl :2—(Mr—Q2—ar4)%.

zr?

97)
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q

= -2/3, and for the different values of parameters a and Q.

a = 0.0005,0.001,0.002 in the first, second, and third rows, respectively; Q = 0,0.5,0.9 in the first, second, and third columns,

respectively.
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FIG. 29. Fundamental frequencies of a test particle for w, = —1, and for the different values of the parameters a and Q. a =

0.00005,0.0001,0.0002 in the first, second, and third rows, respectively; Q = 0,0.5,0.9 in the first, second, and third columns,

respectively.

The radial epicyclic frequency takes the following form:

B 1
C 2zr

+ (15M — 4r)ar’ + 3Q*(3Mr — 4ar4))%.

Uy

3 (Mrz(r —6M) — 40*
(98)

Figure 29 represents the radial dependence of funda-

mental frequency for the different values of the parameters
a and Q.

V. APPLICATIONS TO REAL ASTROPHYSICAL
SCENARIOS

In order to estimate the effects of quintessence fields on
particle motion, we have considered a supermassive black
hole M = 10% M, and provide simple numerical estima-
tion for the radial four-acceleration equation (38) (which is
proportional to the radial force) of the test particle on
different radii for three values of the parameter w,, in the
cases of zero and nonzero charge parameter Q. We come to
the conclusion that for the physically relevant value of the
parameter a (@ = 10752 m™2 in the case of , = —1), and

also for value of the parameter @ (@ = 1072 m~! in case
of w, = —2/3) and two values of the charge, Q = 0 and
0= 10° C, the effects of the considered spacetime with the
repulsive constant a are not noticeable for the region near
the black hole in comparison to the Schwarzschild space-
time, but far from the black hole, the effects of the
considered spacetime become noticeable, and after a static
radius where attraction and repulsion are balanced, repul-
sion becomes the dominant force. For the values of the
parameter a (a=1072° m™2 in the case of w, = -1,
a=10""* m™! in the case of w, = —2/3), the effects of
the considered spacetime are also noticeable near to the
black hole, but the radius of the cosmological horizon
which appears in considered spacetime is much smaller
than the radius of the visible Universe. For the parameter
w, = —1/3, the difference between the acceleration of
particle in Schwarzschild spacetime, and in the spacetime
considered here, is noticeable for the value of the parameter
a = 1073 and is not noticeable for the value of @ = 1075, In
the graphs in Fig. 30, we compare the acceleration of the
test particle in the considered spacetime for the three
different values of y, for some representative values of
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FIG. 30. The plots show a comparison of the acceleration acting on a particle located in the gravitational field of a Kiselev black hole
with mass M = 10% M, for three values of the parameter w,, with a Schwarzschild black hole in the case of zero charge Q (top two
graphs), as well as with a Riessner-Nordstrom black hole for a charge Q = 10 C (lower two graphs). For nonzero values of the

parameter «, the graphs diverge at the horizons.

a and Q, with the acceleration in the Schwarzschild
spacetime. In the case of the charge Q = 10*° C, the
effects of the charge on the acceleration of the test particle
also become noticeable and are presented in Fig. 31.

VI. SUMMARY

In this work, we have extensively investigated the
MSCOs in the charged Kiselev black hole spacetime.
We have taken into account three different values of the
equations of state parameter w,, namely (i) w, = —1/3,
(ii) w, = —1, and (iii) @, = —2/3. For all three values of
w,, we have obtained bounds on the values of the electric
charge Q which allow the existence of a black hole and
depend on the normalization factor a. These are represented
in Figs. 1, 10, and 19 for the three values of parameter @y

It is seen that the MSCOs exist for all possible values of
the normalization factor a and the electric charge Q of the
black hole, in all three cases for different values of the
parameter .

Further, we have observed that the presence of the
quintessence field pushes the ISCOs of the test particles

outward, while the OSCOs contract. With decreasing
values of the parameter a, ISCO in the charged Kiselev
black hole spacetime approaches the ISCO for the pure
Riessner-Nordstrom black hole, while OSCO pushes
beyond the radius of the observable Universe. It is also
observed that the radii of the ISCOs shrink due to the
presence of the charge Q of the black hole, while those of
the OSCOs get larger in the presence of the charge Q. This
effect of charge Q on the radii of the MSCOs for the
charged black hole with a quintessence term can be seen by
comparing them with those obtained in the case of an
uncharged black hole with the quintessence term, given
in Ref. [53].

We have also studied the photon circular orbits and
noticed that they expand in the presence of the quintessence
field and shrink with an increase in the value of the charge
Q of the black hole. Note that properties of the unstable
photon circular orbit can also govern quasinormal modes of
black hole perturbation fields [97,98].

Finally, we have studied epicyclic frequencies around
charged Kiselev black holes and observed that they
coincide in the azimuthal and longitudinal directions.
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The plots show a comparison of the acceleration acting on a particle located in the gravitational field of a Kiselev black hole

with mass M = 10° M, for three values of the parameter w,, with a Riessner-Nordstrom black hole (top two graphs), as well as with a
Schwarzschild black hole (lower two graphs), with a charge Q = 10%® C for both cases. For nonzero values of the parameter a, the

graphs diverge at the horizons.

In addition, we have compared them with the frequencies
for an uncharged black hole (when electric charge Q is
equal to zero). With the increase of a black hole’s electric
charge Q, the ISCO becomes closer to the central object,
and one can observe epicyclic frequencies closer to the
central object, which makes the epicyclic frequencies
larger. With increasing «, the ISCOs expand, and hence
the epicyclic frequencies can be observed farther away
from the central object. Thus, the presence of the quintes-
sence field makes the epicyclic frequencies measured on
the ISCOs smaller, as compared to the epicyclic frequen-
cies in the vicinity of a Riessner-Nordstrom black hole
without quintessence. With an increase in the charge Q of
the black hole, the OSCOs stretch, and therefore the
epicyclic frequencies can be smaller in comparison to
the uncharged case of a black hole. It is also seen that
the increasing values of « shrink the OSCOs, and therefore
near OSCOs, the epicyclic frequencies can be higher due to
the presence of the quintessence field. The obtained results
can be applied to the real astrophysical scenario in black
hole close environments to get possible constraints on the
black hole’s basic parameters and quintessence field.
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APPENDIX: DERIVATION OF EQUATIONS
FOR FUNDAMENTAL FREQUENCIES

The procedure of finding equations for fundamental
frequencies is quite standard—they can be obtained by
direct perturbation of the geodetic equation as was done, for
example, in Ref. [99]. In this appendix, we briefly review
the algorithm presented in Ref. [73] for obtaining equations
for fundamental frequencies where oscillations in the radial
and vertical directions are considered separately.
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The geodesic motion of the particle is governed by the
Lagrangian

L= =g, 3. (A1)

2
We can notice that the metric that describes a charged
Kisselev black hole does not depend explicitly on the
coordinates ¢ and ¢. This means that there are constants of
motion related to these coordinates:

. . E
D= =gul=-E=t=—-——, (AZ)
ot 9t
oL . . L
p¢:%:g¢¢¢:L:>¢=@. (A3)

We can find fundamental frequencies using an equation that
describes the conservation of the rest mass, g,, "X = —1.
For spherically symmetric spacetime, it takes the form
Iu(D? + 9 (7)? + 900(0) + 9y (§)? = =1. (A4)
Now, we can apply to this equation 7 and ¢ expressed using

the constants of motion, and rearrange the equation in the
following way:

grr(i‘)2 + 996(9)2 =-l-—-—"

The right-hand side of this equation can be denoted as
Wi (r, 0), some function which depends on r and 0, and in
our notation for the interval of spherically symmetric static
spacetime, it can be written as follows:

E? L2

Wos(r6) = =14 ——— =
et (1. 0) +N(r) r2sin? @

(A6)

Now, we can consider small perturbations around circular
orbits separately for the radial and vertical directions.
For the radial direction, we assume 6 = 0 and g,,(i)? =
W (r, 0), and for the vertical direction, we assume 7 = 0

and ggp(0)2 = Weg(r. 0). Considering small displacements
around the mean orbit 6, and dy—i.e., r = ry + 9, and
0 = n/2 + 6p—and neglecting the terms of higher order
O(8%) and O(52), one can obtain equations for oscillating

particles:

25,
dr?

425, .
dr?

25, =0, 25, =0, (A7)

where Q, is related to the radial epicyclic frequency by
v, = Q,/2x, and Q is related to the latitudinal frequency
by Vg = Qg / 2.
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