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The marginally stable circular orbits (MSCOs) of test particles in the spacetime exterior to a charged
Kiselev black hole are investigated for three characteristic values of the equation of state parameter ωq,
namely (i) ωq ¼ −1=3, (ii) ωq ¼ −1, and (iii) ωq ¼ −2=3, and for different values of the normalization
factor α and electric chargeQ of the black hole. It is found that the presence of the quintessence field shifts
outward the innermost stable circular orbits (ISCOs) around the Kiselev black hole, having the same charge
parameter Q, as compared to the ISCOs around a Riessner-Nordstrom black hole, while the effect of the
quintessence field on the outermost stable circular orbits (OSCOs) is just opposite to that on the ISCOs.
Further, the radii of the photon circular orbits are also calculated for different ranges of the parameters α
and Q. It is observed that the photon orbits are also shifted outward as the value of α increases. The radial
and latitudinal epicyclic motion of test particles, which can be related to the quasiperiodic oscillations of
test particles slightly above the MSCOs in the vicinity of the charged Kiselev black hole, is analyzed for the
three different values of ωq. It is seen that the azimuthal and latitudinal frequencies coincide, and the radial
epicyclic frequency is different in dependence on the spacetime parameters. In the case of ωq ¼ −1=3, the
azimuthal and latitudinal frequencies depend on the radial position r of the particle, the charge Q, and the
massM of the black hole, and do not depend on the factor α. However, for ωq ¼ −2=3 and ωq ¼ −1, these
two frequencies, along with the black hole parameters—i.e., M and Q and the radial position r—also
depend on the factor α. The radial epicyclic frequency for all the values of ωq depends onM,Q, r, and also
on the normalization factor α. We also compare the epicyclic frequencies with that for an uncharged black
hole. With the increase of electric charge, the ISCO becomes closer to the central object, and one can
observe epicyclic frequencies closer to the central object, which makes the epicyclic frequencies larger. The
ISCO gets larger as α increases, and thus the epicyclic frequencies can be observed away from the central
object and would be smaller as compared to the case of a pure Riessner-Nordstrom black hole without
quintessence. As the effect of the parameters Q and α on the OSCOs is just opposite to that on the ISCOs,
the epicyclic frequencies near the OSCOs behave the other way around.

DOI: 10.1103/PhysRevD.104.063027

I. INTRODUCTION

According to the predictions of general relativity (GR),
astrophysical black holes in the mass range 3–30 M⊙ are
formed as a result of the gravitational collapse of the end
product of the evolution of massive stars in the range
10–200 M⊙. From the astrophysical point of view, the
accretion disks orbiting black holes are the most relevant
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objects, being governed by the circular geodesics of the
black hole’s close environment. Therefore, any study of the
dynamics of particles in the vicinity of black holes may be
helpful in comprehending the surrounding gravitational
field in the strong gravity regime. A vast literature exists on
this topic—e.g., Refs. [1–29]. However, astronomical and
astrophysical large-scale observations of the Universe [30]
indicate the crucial role of dark energy that can be treated as
a vacuum energy (cosmological constant) or quintessential
field [31]. Dark energy can have a significant role in the
astrophysical phenomena related to supermassive black
holes in galactic nuclei. In the case of the cosmological
constant, such effects were treated in a series of works
(see Refs. [32–44]). Quintessential black holes were first
introduced by Kiselev [45], and their rotational form was
discussed in Refs. [42,46]. The basic properties of such
black holes were investigated in Refs. [47–49]. A funda-
mental comment on the Kiselev black hole solution has
been presented in Ref. [50]. Here, we concentrate on the
exploration of the static and charged version of the Kiselev
black hole, to investigate the positions of the innermost
stable circular orbits (ISCOs) and outermost stable circular
orbits (OSCOs), and how they are affected by the black
hole parameters along with the quintessence field. In GR,
the radii of circular orbits for the particles in the vicinity
of black holes have lower bounds, and these orbits are the
ISCOs, while circular orbits at the upper bound on their
radii are the OSCOs. The ISCOs and OSCOs form a
boundary between the two regions—i.e., the stable region
and the unstable region. In the literature, this boundary is
termed as the marginally stable circular orbits (MSCOs). If
in some spacetime geometry there are only two MSCOs,
then the smaller one is known as the ISCO and the larger
one is called the OSCO. If there are more than two MSCOs
in a spacetime geometry, then the smallest is the ISCO and
the largest one is the OSCO.
To explain the nature of dark energy, among the

others, there is a model that examines the possibility of
the existence of the quintessence scalar field (see, e.g.,
Ref. [51]). The equation of negative state parameter (ratio
of the pressure and density) defines the quintessence scalar
field [52]. The black hole solution with quintessences,
of the Einstein field equations [45], has been studied by
different authors from different points of view (see
Refs. [53–59]). The charged Kiselev black hole solution
reduces to the Reissner-Nordström black hole solution of
the field equations in the limiting case when the quintes-
sence term tends to zero. If the charge term also tends to
zero, then this black hole solution reduces to the
Schwarzschild black hole solution. The motion of photons
in the vicinity of the Kiselev black hole has been studied by
Sharmanthie Fernando for some specific values of the
equation of state parameter ωq ¼ −2=3 and of the nor-
malization factor α ¼ 0.1, 0.01, 0.005 [11] (α is given in the
metric coefficient of the line element of the charged Kiselev

black hole in Sec. III). The motion of massive particles
around a Kiselev black hole has been analyzed by Rashmi
et al. for ωq ¼ −1, −2=3, −1=3 and α ¼ 0.1, 0.08, 0.05,
0.005 [25]. For a unit mass black hole with ωq ¼ −1=3,
−2=3 and α ¼ 0.1, they have shown that the ISCOs are
bigger than those of the Schwarzschild black hole. The
existence of such MSCOs for Kottler black hole spacetimes
was given using Sturm’s theorem in Ref. [32], and later
repeated in Ref. [26]. Recently, the MSCOs of the Kiselev
back hole for three different values of the equation of state
parameter ωq ¼ −1, −2=3, −1=3 have been investigated,
and upper and lower bounds were obtained on the value of
the normalization factor α for the existence of MSCOs [58].
In the present study, we are interested in the investigation of
the MSCOs in the spacetime geometry of a charged Kiselev
black hole. In particular, we are keen to look at the effects
of the quintessence on the MSCOs in the charged Kiselev
black hole spacetime.
A very interesting phenomenon of the particle dynam-

ics in black hole spacetimes is related to the quasiperi-
odic oscillations (QPOs) detected in the x-ray radiation
of microquasars. Microquasars are binary systems of a
black hole surrounded by an accretion disk consisting of
matter flowing from a companion star. Friction in the
orbiting accretion disk in the vicinity of the ISCO is so
strong that the matter of the accretion disk also starts to
emit x rays. The friction between layers of the disk
causes a decrease of the energy and angular momentum
of nearly freely orbiting matter in accordance with the
energy and angular momentum radial profiles of geodesic
circular motion. The QPOs are very important from the
astrophysical point of view, because they are considered
to be one of the most efficient tests of strong gravity
models and a useful tool for the precise measurement of
black hole parameters. In this regard, the QPOs from
accreting black holes have been studied by many scien-
tists, and some of the results can be found in literature
[60–63]. To explain the nature of the QPOs, various
theoretical models, including disk-seismic models, hot-
spot models, warped disk models, and resonance models
have been proposed [64].
It is important that for both Keplerian thin accretion disks

governed by energetics of stable circular geodetics of
the spacetime [65,66] and slightly extended tori that are
in equilibrium due to pressure gradients [67], the frequen-
cies of their oscillations are governed by the frequencies of
the epicyclic oscillatory motion around circular geodesics,
thus giving the so-called geodesic (epicyclic) models of the
QPOs obtained in microquasars or around supermassive
black holes in active galactic nuclei. Direct generalization
of the geodesic models can be obtained if electromagnetic
interaction of a slightly charged hot spot with a large-scale
magnetic field around a black hole is included in the
calculation of the frequencies of the epicyclic oscillations
[68–71]. The role of the synchrotron radiation representing
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a special kind of friction acting on moving charged particles
has been discussed in the literature [72].
QPOs observed in the x-ray spectra are widely believed

to be related to oscillations in regions of accretion disks
close to the ISCO [73]. Here we analyze the crucial
quantities for oscillation models based on the geodetic
epicyclic motion—namely, the orbital, radial, and latitudi-
nal epicyclic frequencies of test particles close to the stable
circular orbits in the vicinity of the charged Kiselev black
hole, for the three different values of ωq.
The spacetime geometry of the charged Kiselev black

hole is discussed in Sec. II. The conditions for the existence
of MSCOs for a general spherically symmetric static
spacetime are given in Sec. III. Then, in Sec. III, we also
investigate MSCOs in the vicinity of the charged Kiselev
back hole for the three different values of the equation-of-
state parameter ωq, where we find that the radii of the
ISCOs and OSCOs vary for different values of the chargeQ
and quintessence parameter α. Interestingly, we have
obtained bounds on the values of Q and α for the existence
of the charged Kiselev black hole. In Sec. IV, we study the
fundamental frequencies of test particles in the spacetime
field of the charged Kiselev black hole for the three cases of
ωq and have observed how these fundamental frequencies
are affected by Q and α. A summary of our results is
presented in Sec. V. In the present study, we use geometric
units (G ¼ c ¼ 1) and ℏ ¼ 1, where G is the Newtonian
gravitational constant, c is the speed of light in vacuum, and
ℏ is the reduced Planck constant. The metric signature is
taken as ð−;þ;þ;þÞ, and the greek (latin) indices run from
0 to 3 (1 to 3).

II. SPACETIME GEOMETRY OF THE
CHARGED KISELEV BLACK HOLE

General spherically symmetric static spacetime is rep-
resented by the line element

ds2 ¼ −NðrÞdt2 þ 1

NðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where the metric coefficient NðrÞ is called the lapse
function. For the charged Kiselev black hole, which is
extensively studied in the literature from different points of
view (for example, Refs. [47,53,74–87]), the function NðrÞ
takes the following form [45]:

NðrÞ ¼ 1 −
2M
r

−
α

r3ωqþ1
þQ2

r2
: ð2Þ

Using the standard procedure, the electric charge Q and the
ADM mass M of the black hole can be calculated as [88]

Q ¼ 1

4π

Z
∇αAt�dSα; ð3Þ

M ¼ 1

4π
lim
Sα→i0

Z
gμνð∂βgμα − ∂μgαβÞ�dSα; ð4Þ

where �dSα is the dual element of the hypersurface dSαβγ, i0

is the spacelike infinity when the normalization factor α
(which is related to the cosmological constant in the case
where ωq ¼ −1) is equal to zero, and ∂α stands for the
partial derivative with respect to coordinate xα. In the case of
a nonzero normalization factor α for ωq < −1=3, spacetime
is not flat at infinity, and we cannot give the interpretation of
the parametersM andQ as the total mass and electric charge
of the central black hole. Although there is no generally
accepted interpretation of these quantities in asymptotically
de Sitter spacetime, there are some different points of view
on this problem—see, for example, Ref. [89], where the
author gives a definition of the parameter M as the Noether
charge. The interpretation of the parametersM and Q as the
total mass and electric charge of the central black hole is
possible only in the asymptotically flat spacetime case when
the parameter α vanishes.
The parameter ωq is responsible for the equation of state

of the surrounding matter. Depending on the values of the
parameter ωq, the corresponding equation of state may
represent different matter surrounding the compact object.
Particularly, ωq ¼ 0 corresponds to an ideal gas, while
ωq ¼ 1=3 represents the ultrarelativistic particles, includ-
ing neutrinos. Negative values of ωq represent some exotic
matter used in some models of dark matter and dark energy.
On the other hand, hypothetical so-called phantom energy
corresponds to the value ωq < −1, which can cause a big
rip. Current cosmological observational data cannot dis-
tinguish whether space is fulfilled with phantom (ωq < −1)
or nonphantom (ωq ≥ −1) matter [90]. For the quintes-
sence, it takes values in the interval −1 < ωq < −1=3 in
order to have the observed accelerated expansion of the
cosmos [45]. The extreme case of ωq ¼ −1 corresponds to
the cosmological constant, while the other extreme value of
the parameter—i.e., ωq ¼ −1=3—corresponds to the frus-
trated network of strings, for which the Universe remains
static and which is discussed in great detail in the literature
[91–93]. The case of ωq ¼ −1=3 has been considered by
different authors in different scenarios (see, for example,
Refs. [25,58,85]). In the original paper [45], it is shown that
parameter ωq is related to the equation of state for the
quintessence matter with isotropic negative pressure pq by
the relation

pq ¼ ωqρq; ð5Þ

where ρq is the energy density given by

ρq ¼
3

8π

αωq

r3ð1þωqÞ : ð6Þ
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In this work, we are interested only in studying the
charged Kiselev black hole (the spacetime where three
distinct horizons exist: the inner horizon rih, the event
horizon reh, and the cosmological horizon rch, and where
rih < reh < rch). We should mention that we also consider
the limiting case ωq ¼ −1=3; for this value, spacetime is
flat at infinity and there is no cosmological horizon. We
also constrain our calculation to the region reh < r < rch,
because only in this region is the trajectory of the particles
relevant. The lapse function [Eq. (2)] in this region takes
positive values: NðrÞi0 [NðrÞ < 0 for 0 < r < rih and
r > rch]. The range where values of the parameter α can
change depends on the chosen parameters ωq and Q (for
each value of the parameter ωq, limits are discussed later in
the text) and is similar to that for an uncharged Kiselev
black hole (where α depends on ω only), as is shown in
Ref. [25]. In the case where α ¼ 0, the black hole reduces to
the Reissner-Nordström black hole, and if Q ¼ 0 also, it
reduces to the Schwarzschild black hole. A detailed
discussion on the horizon structure of the Kiselev black
hole is presented in Refs. [57,77].

III. EQUATIONS OF MOTION AND CONDITIONS
FOR THE EXISTENCE OF MSCOs

Equations of motion can be found by the Hamilton-
Jacobi method. The Hamilton-Jacobi equation in the
general case for the Hamiltonian function, defined as

H ¼ 1

2
gμνpμpν; ð7Þ

can be written as

−
∂S
∂τ ¼ 1

2
gμν

∂S
∂xμ

∂S
∂xν ; ð8Þ

where τ is the proper time in the case of massive particles
(in the case of massless particles, we should exchange τ
with another affine parameter λ), the function S is the action
for a particle moving along a geodesic, and pμ is the
components of the four-momentum written as partial
derivatives of the action S with respect to coordinates xμ:

∂S
∂xμ ¼ pμ: ð9Þ

For the spacetime described by the metric in Eq. (1) with
the metric function NðrÞ given by Eq. (2), the Hamilton-
Jacobi equation can be written as

−
∂S
∂τ ¼ −

1

2NðrÞ
�∂S
∂t

�
2

þ 1

2
NðrÞ

�∂S
∂r

�
2

þ 1

2r2

�∂S
∂θ

�
2

þ 1

2r2 sin2 θ

�∂S
∂ϕ

�
2

: ð10Þ

Since we are considering the stationary spherically sym-
metric spacetime, we can try to find the solution to the
Hamilton-Jacobi equation in separable form:

Sðτ; t; r; θ;ϕÞ ¼ SτðτÞ þ StðtÞ þ SrðrÞ þ SθðθÞ þ SϕðϕÞ:
ð11Þ

The subscripts of the functions SτðτÞ, StðtÞ; SrðrÞ, SθðθÞ,
and SϕðϕÞ should not be considered as indices of the
components of some vector.
Using the normalization condition for the massive

particle

pμpμ ¼ −m2; ð12Þ

where m is the rest mass of the test particle (m ¼ 0 for
photons), and comparing it with the Hamilton-Jacobi
equations, we show that

∂S
∂τ ¼ ∂SτðτÞ

∂τ ¼ 1

2
m2: ð13Þ

Since the Hamiltonian does not depend explicitly on the
coordinates t and ϕ, from the Hamilton equations

dpμ

dτ
¼ −

∂H
∂xμ ;

dxμ

dτ
¼ ∂H

∂pμ
; ð14Þ

we write that the components pt and pϕ of the four-
momentum are the constants of motion pt ¼ −E and
pϕ ¼ L. It is possible to show that these constants of
motion are related to the energy and azimuthal components
of the angular momentum of the particle.
According to the Noether theorem, the conservation

laws correspond to the isometries of a spacetime. For a test
particle with a constant rest mass m and momentum pμ

moving along a geodesic, the geodesic equation can be
written as

Dpμ

dτ
¼ pμ

;νUν ¼ mUμ
;νUν ¼ 0: ð15Þ

If spacetime symmetries allow the existence of a Killing
vector ξμ satisfying

ξμ;ν þ ξν;μ ¼ 0; ð16Þ

then the scalar quantity pðξÞ ¼ pμξ
μ is conserved along the

geodesic trajectory due to Eqs. (15) and (16):

dpðξÞ=dτ ¼ DðpμξμÞdτ ¼ pμξμ;νUν ¼ mUμξμ;νUν ¼ 0:

ð17Þ

If the Killing vector ξμ is timelike, then the scalar quantity
pðξÞ can be interpreted as the conserved energy of the
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particle. There is always a coordinate system where the
curves to which ξμ are tangent are coordinate lines along
which only the time coordinate x0 ¼ t changes. It is easy to
choose the t coordinate so that in this new coordinate
system, the Killing vector is ξμ ¼ ð1; 0; 0; 0Þ, and the
Killing equation (16) becomes gμν;t ¼ 0, which corre-
sponds to our concept of stationarity. From the statement
that there is a timelike Killing vector, it follows that there
exists such a coordinate system in which the metric tensor
is time-independent. The existence of a spacelike Killing
vector in the spacetime is responsible for the conservation
of angular momentum of a particle along the geodesic.
Using again the relation which connects components of

the four-momentum with derivations of the action S with
respect to coordinates, we obtain expressions for the
functions StðtÞ and SϕðϕÞ as follows:

∂S
∂t ¼

∂StðtÞ
∂t ¼ −E; ð18Þ

∂S
∂ϕ ¼ ∂SϕðϕÞ

∂ϕ ¼ L: ð19Þ

Using the obtained separable function for the action S,
with the functions StðtÞ and SϕðϕÞ, expressed by the
constants of motion E and L, the Hamilton-Jacobi equation
can be written as

r2

NðrÞE
2 − NðrÞr2

�∂Sr
∂r

�
2

−m2r2

¼
�∂Sθ
∂θ

�
2

þ L2

sin2θ
¼ C ¼ constant: ð20Þ

Since the left- and right-hand sides of the obtained
expression are differential equations which depend on
either r or θ, these two equations should be equal to the
same constant C, which is the separation constant. For
convenience, we introduce the constant K, which is related
to the separation constant C by the equation L2 þ K ¼ C,
and K ¼ 0 for a particle moving in the equatorial plane.
From the Hamilton-Jacobi equation, the covariant com-

ponents of the four-momentum for massive particles can be
written as

pt ¼ −E; ð21Þ

pr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NðrÞ
�

E2

NðrÞ −m2 þ L2 þ K
r2

�s
; ð22Þ

pθ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − L2 cot2 θ

p
; ð23Þ

pϕ ¼ L: ð24Þ

The corresponding contravariant components of the four-
momentum are defined as

pt ¼ E
NðrÞ ; ð25Þ

pr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − NðrÞ

�
m2 þ L2 þ K

r2

�s
; ð26Þ

pθ ¼ � 1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − L2 cot2 θ

p
; ð27Þ

pϕ ¼ L
r2 sin2 θ

: ð28Þ

For further calculations, we introduce the specific angular
momentum L → L=m and specific energy E → E=m. It is
equivalent to take m ¼ 1 in the equations of motion for a
massive particle, and using the relation between four-
momentum and four-velocity

pμ ¼ mUμ; ð29Þ

the equations of motion can be written in the following
way:

dt
dτ

¼ E
NðrÞ ; ð30Þ

dr
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − NðrÞ

�
1þ L2 þ K

r2

�s
; ð31Þ

dθ
dτ

¼ � 1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − L2 cot2 θ

p
; ð32Þ

dϕ
dτ

¼ L
r2 sin2 θ

: ð33Þ

Because of the spherical symmetry of the spacetime, any of
the central planes can be considered as the equatorial one;
for the chosen coordinate system, we fixed the equatorial
plane to be at θ ¼ π=2.
In the equatorial plane, the equation of motion for the

radial coordinate of the massive particle is given by

dr
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VeffðrÞ

q
: ð34Þ

For studying the motion of particles in the equatorial
plane, it is useful to introduce the special function VeffðrÞ,

VeffðrÞ ¼ NðrÞ
�
1þ L2

r2

�
; ð35Þ
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by analogy with the function of “effective potential”
used for studying particle orbits in asymptotically flat
spacetimes.
In the case of massless particles (photons), using

Hamilton-Jacobi equations, applying the appropriate nor-
malization condition pμpμ ¼ 0, and exchanging proper
time τ with affine parameter λ, components of the four-
momentum can be obtained by the same procedure that was
used for massive particles. The radial component of the
four-momentum for photons reads as

p̃r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ2 − ṼeffðrÞ

q
; ð36Þ

where the function ṼeffðrÞ is equal to

ṼeffðrÞ ¼ NðrÞ
�
L̃2

r2

�
: ð37Þ

The spacetime under our consideration is asymptotically
de Sitter for ωq ¼ −1 when α > 0. In the case of ωq ¼
−2=3 when α > 0, the spacetime under discussion has a
cosmological horizon, and particles moving in such space-
time experience a repulsive force acting on them like in the
Reisner–Nordstrom–de Sitter spacetime. However, the
lapse function does not reduce to that of the Reisner–
Nordstrom–de Sitter spacetime in this case. For ωq ¼ −2=3
and ωq ¼ −1 when α > 0, there is a radius where gravi-
tational attraction is balanced by the repulsive constant α
[32]. This position in a spacetime is called the static radius
(not to be confused with static orbit in rotating spacetime
[94]). The static radius plays a crucial role in the analysis of
de Sitter spacetimes, where there is no stable circular orbit
with a radius higher than this static radius. In the case of
ωq ¼ −1=3 when α > 0, there is no cosmological horizon
or static radius.
From the Hamilton equations (14), we can find the radial

component of the four-momentum, and then using Eq. (29),
we can obtain the equation for the radial component of a
particle’s four-acceleration:

dUr

dλ
¼ −

N0ðrÞ
2NðrÞE

2 þ 3N0ðrÞ
2NðrÞ ðp

rÞ2 þ NðrÞ
r3

L2; ð38Þ

where the prime denotes a derivative with respect to the
radial coordinate r. It is expected that for a particle on the
static radius in the equatorial plane, the radial component of
the four-velocity is equal to zero, Ur ¼ 0; the radial four-
acceleration is equal to zero, dUr=dλ ¼ 0; and at the same
time specific angular momentum is also equal to zero,
L ¼ 0. Applying this condition to Eq. (38), we obtain an
equation for the static radius rstat as

N0ðrÞ ¼ 0: ð39Þ

Further, it is shown that in the case ωq ¼ −2=3 and
ωq ¼ −1, OSCOs are located inside the static radius
(see also Ref. [95]).
For particles moving along a circular orbit, the conditions

E2 ¼ VeffðrÞ; V 0
effðrÞ ¼ 0 ð40Þ

should be satisfied. For a particle on a MSCO, the condition

V 00
effðrÞ ¼ 0 ð41Þ

should also be satisfied.
From these conditions for massive particles, we get the

equation for the radii of MSCOs r ¼ rMSCO as

0¼ 4rðN0ðrÞÞ2−6NðrÞN0ðrÞ−2rNðrÞN00ðrÞ
ð2NðrÞ−rN0ðrÞÞð4rN0ðrÞ−r2N00ðrÞ−6NðrÞÞ : ð42Þ

Using the conditions given by Eq. (40), one can obtain the
expressions for the energy and the angular momentum of a
test particle in a circular orbit as

E2 ¼ 2NðrÞ2
2NðrÞ − rN0ðrÞ ; ð43Þ

L2 ¼ r3N0ðrÞ
2NðrÞ − rN0ðrÞ : ð44Þ

In the following subsections, we study the MSCOs for
the charged Kiselev black hole by taking into account the
conditions for their existence, given by Eqs. (40) and (41)
for the three different values of ωq—namely, ωq ¼ −1=3,
ωq ¼ −1, and ωq ¼ −2=3—in the lapse function NðrÞ
given by Eq. (2).

A. MSCOs for the charged Kiselev black hole
with ωq = − 1=3

In this section, we study the particle motion when the
parameter ωq ¼ −1=3. (The special character of this
specific version of the black hole solution is treated in
detail in Ref. [96].) In this case, the lapse function NðrÞ
takes the following form:

NðrÞ ¼ −αþQ2

r2
−
2M
r

þ 1: ð45Þ

Like the Reissner-Nordström black hole, for the charged
Kiselev black hole there is a maximum magnitude of the
charge Q for which the event horizon disappears and
the spacetime becomes one with a naked singularity. The
maximal magnitude of the charge parameter is related with
the parameter α by the condition

jQj ≤ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − αÞp : ð46Þ
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The maximum magnitude of the charge Q for the
charged Kiselev black hole is not equal to M, but depends
on the value of the parameter α, and tends to infinity when α
goes to 1. In Fig. 1, it is shown how the maximal magnitude
of the positive charge jQjmax ¼ M=

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
depends on the

parameter α, and the shaded region shows the available
range of the permitted values for the parameters α andQ for
which the event horizon exists.
In this case, the effective potential [Eq. (37)] reduces to

VeffðrÞ ¼
�
1 −

2M
r

þQ2

r2
− α

��
1þ L2

r2

�
: ð47Þ

For the fixed value M ¼ 1, the left column of Fig. 2
represents how the effective potential of the particles on
ISCOs changes with the variation of the parameters α
and Q. The second and third columns show how the
specific energy and the specific angular momentum of
the massive particle on the circular orbit depend on the
radial coordinate, with minima appropriate to the particles
on the ISCO. Table I shows the values of the specific
energy, the specific angular momentum, and radius of the
ISCO of a particle for the selected parameters α and Q
represented in Fig. 2. Here, in this case, the ISCO is the
only MSCO located on the inner border of the region of
stable circular orbits, and no OSCO exists.
To find the radius of the event horizon, we solve the

equation

NðrÞ ¼ −αþQ2

r2
−
2M
r

þ 1 ¼ 0: ð48Þ

Figure 3 presents the dependence of the radius of the
event horizon on different values of the parameters α andQ.

The radius of the event horizon becomes bigger with
increasing α and becomes smaller with increasing Q.
The constants of motion, specific energy E2, and specific

angular momentum L2 given in Eqs. (43) and (44) in the
case of ωq ¼ −1=3 can be written as

E2 ¼ −
ðrð−2M − αrþ rÞ þQ2Þ2
r2ðrð3M − ð1 − αÞrÞ − 2Q2Þ ; ð49Þ

L2 ¼ r2ðQ2 −MrÞ
rð3M − ð1 − αÞrÞ − 2Q2

: ð50Þ

In Figs. 2, 4, and 5, the dependence of the radial
coordinate r on E2 and L2 is presented.
From Eqs. (42) and (2), for the fixed value of the

parameter ωq ¼ −1=3, one can get an equation for the
ISCOs:

frmsðrÞ ¼ 4Q4 − 9MQ2rþMr2½6M − ð1 − αÞr� ¼ 0;

ð51Þ

which has the solution

rms ¼ −
4M4 −M2½3ð1 − αÞQ2 þ 2

ffiffiffi
S3

p � þ S2=3

ð1 − αÞM ffiffiffi
3

p
S

; ð52Þ

where

S ¼ −8M6 þ 9ð1 − αÞM4Q2 − 2ð1 − αÞ2M2Q4 þ
ffiffiffiffi
R

p

ð53Þ

and

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q

FIG. 1. Shaded region shows available range of the permitted
values for the parameters α and Q for M ¼ 1, allowing the
existence of a black hole. Parameter α can take values in the
interval α ∈ ½0; 1Þ. The parameter Q varies from 0 to Qmax given
by the condition in Eq. (46) for the given value of the parameter α.
The maximal value of the positive charge Qmax is represented by
the solid curve on the graph.

TABLE I. The specific energy, specific angular momentum,
and radius of the ISCOs for the selected values of the parameters
α and Q, for fixed M ¼ 1.

Q α E2 L2 rms

0 0 0.8889 12 6
0.6 0 0.8785 10.7427 5.4198
0.8 0 0.8673 9.6584 4.8908
1 0 0.8437 8.0106 4.0062
0 0.3 0.6222 24.4896 8.5714
0.6 0.3 0.6174 22.7214 8.0048
0.8 0.3 0.6127 21.2539 7.5184
1 0.3 0.6050 19.2002 6.8056
0 0.6 0.3556 75 15
0.6 0.6 0.3540 71.9477 14.4455
0.8 0.6 0.3527 69.4947 13.9917
1 0.6 0.3508 66.2186 13.3735
0 0.8 0.1778 300 30
0.6 0.8 0.1774 293.949 29.453
0.8 0.8 0.1771 289.17 29.0172
1 0.8 0.1767 282.923 28.4426
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FIG. 2. The left column shows plots of the effective potentials, the central column shows the specific energy, and the right column
shows the specific angular momentum of the test particle for different values of the parameters α and Q. In each row, for a chosen value
of the parameter Q, four graphs for four different values of α are presented. The red color corresponds to Q ¼ 0, while the green, blue,
and violet colors correspond to Q ¼ 0.6, Q ¼ 0.8, and Q ¼ 1, respectively. The parameter α takes the values α ¼ 0 for the first line,
α ¼ 0.3 for the second, α ¼ 0.6 for the third, and α ¼ 0.8 for the fourth line in the graphs presented in the left column. With increasing
values of α, the radii of the MSCOs also increase. The values of specific energy and the specific angular momentum for particles on
ISCOs, with the radii of ISCOs, for the chosen parameters Q and α are presented in Table I.
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R¼ð1−αÞ2M4Q4ðM2−ð1−αÞQ2Þð5M2−4ð1−αÞQ2Þ:
ð54Þ

Radii of the ISCOs for different values of the parameters
α and Q are presented in Fig. 6.
In the extremal case when energy tends to infinity, the

radius of the ISCO coincides with the radius of the circular
photon orbit. We can get the radii of photon circular orbits
by requiring that the energy in Eq. (49) go to infinity, and
then solving the equation

frphðrÞ ¼ rð3M − ð1 − αÞrÞ − 2Q2 ¼ 0; ð55Þ

which has the following solution:

rph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8ð1 − αÞQ2

p
þ 3M

2ð1 − αÞ : ð56Þ

Figure 7 presents the radius of the photon circular orbit
with varying parameters α and Q.
In order to show how the radius of the ISCO of massive

particles, the radius of the photon orbit, and the radii of
the horizons depend on the parameter α, we express α
as a function of the radial coordinate r of the spacetime
horizons, the ISCO, and circular photon orbit from
Eqs. (48), (55), and (51). From Eq. (48), which defines
the radii of the spacetime horizons, one can express the
parameter α as a function of r in the following form:

αhðrÞ ¼
−2MrþQ2 þ r2

r2
: ð57Þ

From Eq. (55), which defines the radius of the photon orbit,
one can express the parameter α as a function of r:

αrphðrÞ ¼
−3Mrþ 2Q2 þ r2

r2
: ð58Þ

Similarly, from Eq. (51), which defines the radius of the
ISCO, one can express the parameter α as a function of r
and Q in the following way:

αmsðrÞ ¼ −
6M2r2 − 9MQ2r −Mr3 þ 4Q4

Mr3
: ð59Þ

Figure 8 for the presented values of the parameter Q
allows us to determine the radii of the horizons, the radius
of the ISCO, and the radius of the photon orbit for different
values of the parameter α; also, from Fig. 8, it is possible
to determine the region where stable circular orbits exist

2

4

6

8

10

FIG. 3. Color map of the radius of the black hole event horizon
for different values of the parameters α and Q, for M ¼ 1.
Parameter α changes from 0 to 0.8, and parameter Q changes
from 0 to Qmax given by the condition in Eq. (46) for each value
of α. For higher values of the parameter α (shown by the shaded
region on the graph), the qualitative behavior of the radius of the
event horizon is the same—it increases with the parameter α.
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FIG. 4. Plots of the square of the specific energy, E2, for
different values of the parameters α and Q, for M ¼ 1. Here α
increases from red to violet colors and takes the values α ¼
f0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9g, respectively. For each
value of α, Q takes two characteristic values: Q ¼ 0 for dashed
lines and Q ¼ 1 for solid lines.
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FIG. 5. Plot of the specific angular momentum, L2, for different
values of α and Q, forM ¼ 1. Here α increases from red to violet
colors and takes the values α ¼ f0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6;
0.7; 0.8; 0.9g, respectively. For each value of α, Q takes two
characteristic values: Q ¼ 0 for dashed lines and Q ¼ 1 for
solid lines.
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and at what values of α, for a given Q, the event horizon
disappears.

B. MSCOs around the charged Kiselev black hole
with ωq = − 2=3

In this section, we explore the motion of particles when
the parameter ωq ¼ −2=3. In this case, the lapse function
NðrÞ takes the following form:

NðrÞ ¼ −αrþQ2

r2
−
2M
r

þ 1: ð60Þ

One can find the radii of the horizons by solving the
following equation:

−αrþQ2

r2
−
2M
r

þ 1 ¼ 0: ð61Þ

Figure 9 demonstrates the radius of the black hole event
horizon for different values of the parameters α and Q.
In this case, the event horizon exists only for some

limited values of the charge Q; for the maximum value
of the charge, the parameter α is related with the parameter
Q by the conditions 0 ≤ α < αþ if 0 ≤ Q < 1, and α− ≤
α < αþ if Q ≥ 1, where α� is equal to

α�ðQÞ ¼ r2� − 2Mr� þQ2

r3�
ð62Þ

and

r�ðQÞ ¼ 2M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − 3Q2

p
: ð63Þ

Figure 10 shows the upper limit on the parameter α for
which the event horizon exists. Figure 11 shows the upper
limit on the parameter α for which MSCOs exist.
In this case, the effective potential [Eq. (37)] reduces to

Veff ¼
�
1 −

2M
r

þQ2

r2
− αr

��
1 −

L2

r2

�
: ð64Þ

The effective potential for several values of parameters α
and Q is shown in Fig. 12.
The squares of the constants of motion E2 and L2 given

in Eqs. (43) and (44), in the case of ωq ¼ −2=3, can be
written as
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FIG. 6. The left graph shows how the radii of ISCOs depend on Q for some different fixed values of α ¼ f0; 0.1;…; 0.8g. The right
graph shows how the radii of ISCOs depend on α for some different fixed values of Q in the range from Q ¼ 0 to Q ¼ 1.
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FIG. 7. Color map demonstrates the radii of photon orbits for
different values of the parameters α and Q, for M ¼ 1. Parameter
α takes values from 0 to 0.8, and parameter Q ranges from 0 to
Qmax given by the condition in Eq. (46) for each value of the
parameter α.
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FIG. 8. Plots in the left column show the radial dependence of functions αhðrÞ, αmsðrÞ, and αrphðrÞ [Eqs. (57), (59) and (58) in the text]
for several values of the charge Q with the fixed value of M ¼ 1. For better visualization, instead of the functions themselves on the
plots, we show AhðrÞ ¼ SgnðαhðrÞÞjαhðrÞj1=4, AmsðrÞ ¼ SgnðαmsðrÞÞjαmsðrÞj1=4, and ArphðrÞ ¼ SgnðαrphðrÞÞjαrphðrÞj1=4. The thin
black line is the graph of the function AhðrÞ, which determines the positions of the event horizons. The blue dashed line is the
graph of the function ArphðrÞ, which determines the positions of the photon orbits. The thin green line is the graph of the
function AmsðrÞ, which determines the positions of the stable circular orbits. The gray dashed line defines the parameter α1=4,
for which the functions NðrÞ, frphðrÞ, and frmsðrÞ are shown in the right column. In the right column, for some parameters α
and Q, the following graphs are presented: The thin black line is a graph of the function NðrÞ [Eq. (48) in the text]; zero values
of this function determine the positions of the horizons for the selected values of the parameter α. The blue dashed line is a
graph of the function frphðrÞ, [Eq. (55) in the text]; zero values of this function determine the position of the photon orbit for
the selected values of the parameter α. The thin green line is a graph of function frmsðrÞ [Eq. (51) in the text]; zero values of
this function determine the position of the ISCO for the selected values of the parameter α. Parameters α and Q take the values
α ¼ ½0.05; 0.1� and Q ¼ ½0.9; 1.1�.
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E2 ¼ 2ðrðr−2MÞþQ2

r2 − αrÞ2
2ðrðr−3MÞþ2Q2Þ

r2 − αr
; ð65Þ

L2 ¼ 2ðMr −Q2Þ − αr3

2ðrðr−3MÞþ2Q2Þ
r2 − αr

: ð66Þ

Figures 12–14 provide the dependence of the radial
coordinate r on E2 and L2.
Tables II and III show the specific energy and angular

momentum of a particle in the ISCO and OSCO for the
selected values of the parameters α and Q.

Now, using Eq. (39), one can get the condition for a
static radius:

frstðrÞ ¼ αr3 − 2Mrþ 2Q2 ¼ 0: ð67Þ

From Eqs. (42) and (2), for the fixed value of the
parameter ωq ¼ −2=3, we get the following equation for
the radii of MSCOs:

frmsðrÞ ¼ Q2ð18Mr − 11αr3Þ − 3αr4ðr − 4MÞ
þ 2Mr2ðr − 6MÞ − 8Q4 þ α2r6 ¼ 0: ð68Þ

The radii of ISCOs for different values of the parameters
α and Q are presented in Fig. 15:
The radius of the photon orbit can be obtained from the

equation for the specific energy [Eq. (65)], which for the
particles in the photon orbit goes to infinity:

frphðrÞ ¼
2ðrðr − 3MÞ þ 2Q2Þ

r2
− αr ¼ 0: ð69Þ

Figure 16 shows the color map for the photon orbit for
different values of the parameters α and Q.
In order to show how the ISCOs and OSCOs of

massive particles, the radius of the photon orbit, the radius
of the event horizon, and the static radius depend on α, we
express the parameter α as a function of radial coordinate r
from the equations that correspond to these values:
Eqs. (68), (69), (61), and (67).
From Eq. (61), one can express the parameter α as a

function of the radial coordinate r and the black hole charge
Q in the following form:

αhðrÞ ¼
−2MrþQ2 þ r2

r3
: ð70Þ
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FIG. 11. The red shaded region shows the allowable range of
the parameters α and Q for which the MSCOs exist. The
parameter α takes values from 0 to αmsþ if 0 ≤ Q < 1, and α− ≤
α < αmsþ if Q ≥ 1.
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FIG. 9. Color map of the radius of the event horizon for
different values of the parameters α and Q, for M ¼ 1. The
parameter α varies from 0 to αþ if 0 ≤ Q < 1, and from α− to αþ
if Q ≥ 1 (αmax ¼ 1=6 and Qmax ¼ 3=4). For the white regions,
there is no event horizon in the spacetime, and they correspond to
the naked singularity. The region where the event horizon exists is
given by the condition in Eq. (62).
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FIG. 10. The gray shaded region shows the allowable range of
the parameters α and Q for which the event horizon exists.
Parameter α takes values from 0 to αþ if 0 ≤ Q < 1, and α− ≤
α < αþ if Q ≥ 1; the value of α� is given by the condition
in Eq. (62).

DMITRIY OVCHINNIKOV et al. PHYS. REV. D 104, 063027 (2021)

063027-12



FIG. 12. The left column shows plots of the effective potentials, the central column shows the specific energy, and the right column
shows the specific angular momentum of the test particle for different values of the parameters α and Q. In each row, for a chosen value
of the parameter Q, eight graphs for four different values of α are presented. The red color corresponds to Q ¼ 0, while the green, blue,
and violet colors correspond toQ ¼ 0.6,Q ¼ 0.8, andQ ¼ 0.999, respectively. The parameter α takes the values α ¼ 0.001 for the first
line, α ¼ 0.002 for the second, α ¼ 0.003 for the third, and α ¼ 0.005 for the fourth line in the graphs presented in the left column. In the
first column, solid lines represent the effective potential of the particles in the ISCOs, and dashed lines represent the effective potential of
the particles in the OSCOs. With increasing values of α, the radii of the ISCOs also increase, and the radii of the OSCOs decrease. The
values of specific energy and the specific angular momentum for particles on MSCOs, with the radii of MSCOs, for chosen parameters
Q and α are presented in Tables II and III.
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From Eq. (69), one can express the parameter α as a
function of the radial coordinate r and the black hole charge
Q in the following manner:

αrphðrÞ ¼
2ðrðr − 3MÞ þ 2Q2Þ

r3
: ð71Þ

From Eq. (68), one can express the parameter α as a
function of the radial coordinate r and the black hole charge
Q in the following way:

αmsðrÞ ¼
−ð192M2r2 − 336MQ2r − 80Mr3Þ1=2

2r3

× ð153Q4 þ 66Q2r2 þ 9r4Þ1=2

−
12Mrþ 11Q2 þ 3r2

2r3
: ð72Þ

From Eq. (67), one can express the parameter α as a
function of the radial coordinate r and the black hole charge
Q in the following form:

αrstðrÞ ¼ −
2ðQ2 −MrÞ

r3
: ð73Þ

Figure 17 allows us to determine the existence of an event
horizon, stable circular orbits, photon orbit, and static
radius for three values of Q and certain values of α. If
the choice of parameters allows the existence of these
quantities, then it is possible to determine the correspond-
ing radii from Fig. 17.
For each value of the parameter Q, there is a maximum

value of the parameter αmsþðQÞ, which defines the region
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FIG. 13. Plot of E2 for different values of the parameters α and
Q. Here α increases from the red color to the violet one and takes
the values α¼f0;0.001;0.002;0.003;0.004;0.006;0.008;0.01g,
respectively. For each value of α, Q takes two characteristic
values: Q ¼ 0 for dashed lines and Q ¼ 1 for solid lines.
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FIG. 14. Plot of L2 for different values of α and Q. Here α
increases from the red color to the violet color and takes the
values α ¼ f0; 0.001; 0.002; 0.003; 0.004; 0.006; 0.008; 0.01g,
respectively. For each value of α, Q takes two characteristic
values: Q ¼ 0 for dashed lines and Q ¼ 1 for solid lines.

TABLE II. The specific energy, angular momentum, and radius
of the ISCO of the test particle for selected values of the
parameters α and Q, for fixed M ¼ 1.

Q α E2 L2 rms

0 0.001 0.8782 11.8509 6.1182
0.6 0.001 0.8687 10.6325 5.5079
0.8 0.001 0.8583 9.5769 4.9571
0.999 0.001 0.8364 7.9667 4.0471
0 0.002 0.8673 11.6902 6.2633
0.6 0.002 0.8588 10.5147 5.6116
0.8 0.002 0.8493 9.4909 5.0328
0.9991 0.002 0.8288 7.9206 4.0918
0 0.003 0.8562 11.5145 6.4513
0.6 0.003 0.8487 10.388 5.7377
0.8 0.003 0.8402 9.3993 5.12095
0.999 0.003 0.8212 7.8721 4.1411
0 0.005 0.833 11.0852 7.2378
0.6 0.005 0.828 10.0967 6.1268
0.8 0.005 0.8215 9.1950 5.3589
0.999 0.005 0.8057 7.7667 4.2583

TABLE III. The specific energy, angular momentum, and
radius of the OSCO of the test particle for selected values of
the parameters α and Q, for fixed M ¼ 1.

Q α E2 L2 rms

0 0.001 0.92337 19.8171 24.6596
0.6 0.001 0.92334 19.3751 24.717
0.8 0.001 0.92331 19.0322 24.7601
0.999 0.001 0.92327 18.5952 24.8133
0 0.002 0.89235 14.9869 16.9089
0.6 0.002 0.89221 14.4953 17.015
0.8 0.002 0.89211 14.1158 17.0918
0.999 0.002 0.89199 13.6341 17.1837
0 0.003 0.86901 12.9507 13.3434
0.6 0.003 0.86871 12.4093 13.5159
0.8 0.003 0.86849 11.9944 13.6345
0.999 0.003 0.86824 11.4708 13.77
0 0.005 0.83359 11.1433 9.1628
0.6 0.005 0.83251 10.4704 9.7385
0.8 0.005 0.83184 9.9738 10.0128
0.999 0.005 0.83113 9.3619 10.2751
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of stable circular orbits. Taking the derivative with respect
to r from Eq. (72) for αmsðrÞ and equating the resulting
expression to 0, one can obtain the value of rcrit that
determines the radius of a stable circular orbit for values
of the parameter Q from 0 to Qmax. Substituting the
obtained value of rcrit for a given Q into Eq. (72) for
αmsðrÞ, we obtain the maximum value of the parameter
αmsþðQÞ for a stable circular orbit for the given value
of Q. The thick red line in Fig. 11 shows the dependence
of the maximum value for the parameter α on Q, and the
shaded area under the thick red line in Fig. 11 determines
the values of the parameters α and Q for which stable
circular orbits exist.

C. MSCOs around the charged Kiselev black hole
with ωq = − 1 (the cosmological constant)

In this section, we study particles’ motion when the
parameter ωq ¼ −1. The lapse function [Eq. (2)] in this
case takes the following form:

NðrÞ ¼ 1 −
2M
r

− αr2 þQ2

r2
: ð74Þ

The radii of the event horizons can be obtained by
solving the equation

1 −
2M
r

− αr2 þQ2

r2
¼ 0: ð75Þ

Figure 18 demonstrates the dependence of the radius of
the black hole event horizon on different values of the
parameters α and Q.
By analyzing the behavior of the function (75), it is

possible to find the restrictions on the parameters α and Q
that are appropriate for the black hole spacetime. In
Ref. [35], it was shown that for the Reissner-Nordström
spacetime with a nonzero cosmological constant, the
solutions are

αhðmaxÞðQÞ≡MreðhÞþ −Q2

r4eðhÞþ
; ð76Þ

and

αhðminÞðQÞ≡MreðhÞ− −Q2

r4eðhÞ−
; ð77Þ
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FIG. 15. In the left plot, the dependence of the radii of the ISCO and OSCO for the whole range of Q2 is shown; each graph is for
different values of α, from α ¼ 0 to α ¼ 0.01. In the right plot, the dependence of the radii of the ISCO and OSCO for the whole range of
α is shown; each graph corresponds to different values of Q2, from Q2 ¼ 0 to Q2 ¼ 1.0.
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FIG. 16. Color map shows the radii of photon orbits for
different values of the parameters α and Q. The parameter α
takes values from 0 to αþ if 0 ≤ Q < 1, and α− ≤ α < αþ if
Q ≥ 1; the value of α� is given by the condition in Eq. (62).
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FIG. 17. Plots in the left column show the radial dependences of the functions αhðrÞ, αrstðrÞ, αmsðrÞ, and αrphðrÞ [Eqs. (70), (73), (72),
and (71) in the text] for several values of the parameterQ with fixedM ¼ 1. For better visualization, instead of the functions themselves
in the plots, we show AhðrÞ ¼ SgnðαhðrÞÞjαhðrÞj1=4, ArstðrÞ ¼ SgnðαrstðrÞÞjαrstðrÞj1=4, AmsðrÞ ¼ SgnðαmsðrÞÞjαmsðrÞj1=4, and
ArphðrÞ ¼ SgnðαrphðrÞÞjαrphðrÞj1=4. The thin black line is the graph of the function AhðrÞ, which determines the positions of the
event horizons. The blue dashed line is the graph of the function ArphðrÞ, which determines the position of the photon orbit. The thin
green line is the graph of the function AmsðrÞ, which determines the positions of the stable circular orbits. The red dotted line is the graph
of the function ArstðrÞ, which determines the position of the static radius. The gray dashed line defines the parameter α1=4, for which the
functions NðrÞ, frphðrÞ, frstðrÞ, and frmsðrÞ are shown in the right column. In the right column, for some values of the parameters α and
Q, the following graphs are presented: The thin black line is the graph of the function NðrÞ [Eq. (60)]; zero values of this function
determine the positions of the horizons for the selected values of the parameter α. The blue dashed line is the graph of the function
frphðrÞ [Eq. (69)]; zero values of this function determine the position of the photon orbit for the selected values of the parameter α.
The thin green line is the graph of the function frmsðrÞ [Eq. (68)]; zero values of this function determine the position of the ISCO for
the selected values of the parameter α. The red dotted line is the graph of the function frstðrÞ [Eq. (67)]; zero values of the
function determine the position of the static radius for the selected values of the parameter α. Parameters α and Q take the values
α ¼ ½0.05; 0.001; 0.005� and Q ¼ ½0.9; 1.001�.
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where

reðhÞ� ¼ 3

2

�
M �

�
M2 −

8Q2

9

�
1=2

�
: ð78Þ

The maximum value of the parameter α which allows
the existence of the black hole solution corresponds to the
maximum value of the charge Qmax ¼

ffiffiffiffiffiffiffiffi
9=8

p
and is

equal to

α ¼ αmax ≡ 2

27
: ð79Þ

Figure 19 shows the range of acceptable values of the
parameters α and Q for the existence of a black hole.
We study only black holes with asymptotically de Sitter

behavior, and for this reason we imply that α > 0 for
0 < Q ≤ 1, and α ¼ αhðminÞ for 1 < Q ≤

ffiffiffiffiffiffiffiffi
9=8

p
.

Using Eq. (39), we get the condition for a static radius:

frstðrÞ ¼ αr4 −MrþQ2 ¼ 0: ð80Þ

Then the effective potential [Eq. (37)] takes the follow-
ing form:

Veff ¼
�
1 −

2M
r

þQ2

r2
− αr2

��
1 −

L2

r2

�
: ð81Þ

The effective potential for several values of parameters α
and Q is shown in Fig. 21.
The constants of motion E2 and L2, given in Eqs. (43)

and (44), in this case can be written as

E2 ¼ r4ðrðr−2MÞþQ2

r3 − αrÞ2
rðr − 3MÞ þ 2Q2

; ð82Þ

L2 ¼ r3ð2ðMr−Q2Þ
r − 2αr3Þ

2ðrðr − 3MÞ þ 2Q2Þ : ð83Þ

Figures 22, 23, and 26 illustrate the dependence of E2

and L2 on the radial coordinate r.
Tables IV and V show the specific energy and angular

momentum of a particle in the ISCO and the OSCO for the
selected parameters α and Q.
In the same way as it was done in the previous sections,

we can get the radius of the photon circular orbit by

1.5
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3.0

FIG. 18. Color map of the radius of the event horizon for
different values of the parameters α and Q. Parameter Q changes
from 0 to Qmax, and parameter α takes values from 0 to αhðmaxÞ if
0 ≤ Q < 1, and αhðminÞ ≤ Q < αhðmaxÞ if Q ≥ 1. The functions
αhðminÞ and αhðmaxÞ are given by the conditions in Eqs. (77) and
(76) for each value of Q.
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FIG. 19. The black line limits the interval of the variation of
the parameters α and Q in which the existence of black hole
spacetime is allowed. The parameters α and Q lying outside the
region confined by the black line are consistent with naked
singularities. Parameter α takes values 0 ≤ α < αhðmaxÞ if Q < 1

and αhðminÞ ≤ α < αhðmaxÞ if Q ≥ 1. The functions αhðminÞðQÞ and
αhðmaxÞðQÞ are given by the conditions in Eqs. (76) and (77).
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FIG. 20. The red line limits the range of parameters α andQ for
which stable circular orbits exist. The values of the parameter α in
the case of Q > 1 are also bounded from below by the minimum
value of the parameter αhðminÞ for which there is a black hole
event horizon.
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FIG. 21. The left column shows plots of effective potentials, the central column shows the specific energy, and the right column shows
the specific angular momentum of the test particle for different values of parameters α and Q. In each row, for chosen values of the
parameter Q, eight graphs are presented for four different values of α. The red color corresponds to Q ¼ 0, while the green, blue, and
violet colors correspond to Q ¼ 0.6, Q ¼ 0.8, and Q ¼ 0.999, respectively. Parameter α takes the values α ¼ 0.00005 for the first line,
α ¼ 0.0001 for the second, α ¼ 0.00015 for the third, and α ¼ 0.0002 for the fourth line in the graphs presented in the left column. In
the first column, solid lines represent the effective potential of the particles on the ISCOs, and dashed lines represent the effective
potential of the particles on the OSCOs. With increasing values of α, the radii of ISCOs also increase, but the radii of OSCOs decrease.
The values of specific energy and the specific angular momentum for particles in MSCOs, with the radii of MSCOs for chosen
parameters Q and α, are presented in Tables IV and V.
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requiring the energy in Eq. (82) to go to infinity, and
solving the equation

frphðrÞ ¼ rðr − 3MÞ þ 2Q2 ¼ 0; ð84Þ

we have

rph ¼
1

2

�
3M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p �
: ð85Þ

From Eq. (85), it is clear that photon orbits do not depend
on α. In Fig. 24, the dependence of the radius of the photon
circular orbit on the parameters α and Q is shown.
From Eqs. (42) and (2), for the fixed value of the

parameter ωq ¼ −1 we get the following equation for radii
of the MSCO:

frmsðrÞ ¼ Q2ð12αr4 − 9MrÞ þ αr5ð4r − 15MÞ
þMr2ð6M − rÞ − 4Q4 ¼ 0: ð86Þ

The radii of ISCO and OSCO for different values of the
parameters α and Q are presented in Fig. 25.
In order to show how the radii of the MSCOs of massive

particles, the radius of the photon orbit, the radii of the
horizons, and the static radius depend on the parameter α,
we express α as a function of the radial coordinate r from
Eqs. (86), (84), and (75).

2 5 10 20
0

5

10

15

20

r

L2

FIG. 23. Plot of the specific angular momentum L2 for different
values of α and Q. Here α increases from the red color to the
violet one and takes the values α ¼ f0; 0.00005; 0.0001;
0.00015; 0.0002; 0.0003; 0.0004; 0.0006g, respectively. For each
value of α, Q takes two characteristic values: Q ¼ 0 for dashed
lines and Q ¼ 1 for solid lines. Parameter M is fixed and
equals 1.
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FIG. 22. Plot of the specific energy E2 for different values of
parameters Q and α. Here α increases from the red color to the
violet color and takes the values α ¼ f0; 0.00005; 0.0001;
0.00015; 0.0002; 0.0003; 0.0004; 0.0006g, respectively. For each
value of α, Q takes two characteristic values: Q ¼ 0 for dashed
lines and Q ¼ 1 for solid lines. Parameter M is fixed and
equals 1.

TABLE IV. The specific energy, angular momentum, and radius
of the test particle in the ISCO for some values of the parameters
α and Q, for fixed M ¼ 1.

Q α E2 L2 rms

0 0.00005 0.88403 11.867 6.10741
0.6 0.00005 0.87444 10.6497 5.4914
0.8 0.00005 0.86391 9.5925 4.9389
0.999 0.00005 0.84152 7.9761 4.0298
0 0.0001 0.87904 11.7258 6.2425
0.6 0.0001 0.87032 10.5523 5.5756
0.8 0.0001 0.86049 9.5246 4.9932
0.999 0.0001 0.83909 7.9409 4.0551
0 0.00015 0.87387 11.5732 6.4261
0.6 0.00015 0.86611 10.45 5.6782
0.8 0.00015 0.85702 9.4544 5.0554
0.999 0.00015 0.83665 7.9052 4.0824
0 0.0002 0.86842 11.4026 6.7224
0.6 0.0002 0.86177 10.3412 5.8101
0.8 0.0002 0.85348 9.3814 5.1282
0.999 0.0002 0.83418 7.8688 4.1118

TABLE V. The specific energy, angular momentum, and radius
of the test particle in the OSCO for some values of the parameters
α and Q, for fixed M ¼ 1.

Q α E2 L2 rms

0 0.00005 0.91494 15.6594 15.9792
0.6 0.00005 0.91476 15.1641 16.0633
0.8 0.00005 0.91463 14.782 16.1244
0.999 0.00005 0.91447 14.2971 16.1977
0 0.0001 0.89423 13.2408 12.2499
0.6 0.0001 0.89379 12.6854 12.3961
0.8 0.0001 0.89348 12.2607 12.4962
0.999 0.0001 0.89311 11.726 12.6104
0 0.00015 0.88038 12.1508 10.3061
0.6 0.00015 0.87958 11.5381 10.5404
0.8 0.00015 0.87903 11.0752 10.6868
0.999 0.00015 0.87841 10.4979 10.8437
0 0.0002 0.87909 11.5325 8.8917
0.6 0.0002 0.87843 10.8552 9.2956
0.8 0.0002 0.87763 10.3537 9.5055
0.999 0.0002 0.87733 9.7360 9.7115
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From Eq. (75), one can express the parameter α as a
function of the radial coordinate r and Q in the following
form:

αhðrÞ ¼
r2 − 2MrþQ2

r4
: ð87Þ

From Eq. (86), one can express the parameter α as a
function of the radial coordinate r and Q in the following
form:

αmsðrÞ ¼
6M2r2 − 9MQ2r −Mr3 þ 4Q4

r4ð−15Mrþ 12Q2 þ 4r2Þ : ð88Þ

From Eq. (80), one can express the parameter α as a
function of the radial coordinate r and Q in the following
form:

αrstðrÞ ¼
Mr −Q2

r4
: ð89Þ

Figure 26 allows us to determine the existence of an event
horizon, stable circular orbits, photon orbit, and static
radius for two values of Q and certain values of α. If
the choice of parameters allows the existence of these
quantities, then it is possible to determine the correspond-
ing radii from Fig. 26.
For each value of the parameter Q, there is a maximum

value of the parameter αmaxðQÞ, which defines the region of
stable circular orbits. Taking the derivative with respect to r
from Eq. (88) for αmsðrÞ and equating the resulting
expression to 0, one can obtain the value of rcrit that
determines the radius of a stable circular orbit for values
of the parameter Q from 0 to Qmax. By substituting the
obtained value of rcrit for given Q into Eq. (88) for αmsðrÞ,
we obtain the maximum value of the parameter αmaxðQÞ
for a stable circular orbit for the given value ofQ. The thick
red line in Fig. 20 shows the dependence of the maximum
value for the parameter α on Q, and the shaded area
under the thick red line in Fig. 20 determines the values
of the parameters α and Q for which stable circular
orbits exist.

1.75

2.00

2.25

2.50

2.75

3.00

FIG. 24. Color map demonstrates the radii of photon orbits for
different values of the parameters α and Q, for fixed M ¼ 1. The
radius of the photon orbit does not depend on α, but the parameter α
defines the regionwhere the existence of the black hole spacetime is
allowed. Parameter Q changes from 0 to Qmax, and parameter α
takes values from 0 to αhðmaxÞ if 0 ≤ Q < 1, and αhðminÞ ≤ Q <
αhðmaxÞ ifQ ≥ 1. The functions αhðminÞ and αhðmaxÞ are given by the
conditions in Eqs. (77) and (76) for each value of parameter Q.
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FIG. 25. In the left plot, the dependence of the radii of ISCO and OSCO for the whole range ofQ2 is shown; each graph is for different
values of α, from α ¼ 0 to α ¼ 0.0006. In the right plot, the dependence of the radii of ISCO and OSCO for the whole range of α is
shown; each graph corresponds to different values of Q2, from Q2 ¼ 0 to Q2 ¼ 1.0.
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FIG. 26. Plots intheleftcolumnshowtheradialdependencesofthefunctionsαhðrÞ,αrstðrÞ,αmsðrÞandrphðQÞ [Eqs. (87),(89),(88),and(85)
in the text; rphðQÞ does not dependonα in the casewq ¼ −1] for several values of theparameterQwith fixedM ¼ 1. For better visualization,
instead of the functions themselves in the plots, we show AhðrÞ ¼ SgnðαhðrÞÞjαhðrÞj1=4, ArstðrÞ ¼ SgnðαrstðrÞÞjαrstðrÞj1=4, and
AmsðrÞ ¼ SgnðαmsðrÞÞjαmsðrÞj1=4. The thin black line is the graph of the function AhðrÞ, which determines the positions of the event
horizons. The blue dashed line is the graph of the function rphðQÞ, which determines the position of the photon orbit. The thin green line is the
graph of the function AmsðrÞ, which determines the positions of the MSCOs. The red dotted line is the graph of the function ArstðrÞ, which
determines thepositionof the static radius.Thegraydashedhorizontal line represents the chosenvalueof theparameterα1=4; intersectionswith
this linedeterminethepositionsof thehorizons,photoncircularorbit,MSCOs,andstatic radius.For thevalueof theparameterα representedby
the gray dashed horizontal line, in the right column, the functions NðrÞ, frphðrÞ, frmsðrÞ, and frstðrÞ are shown; the zero values of these
functionsdetermine the radii of thecorrespondingquantities (eventhorizons,photonorbit, ISCOandOSCO,static radius). In the rightcolumn,
forsomevaluesoftheparametersαandQ, thefollowinggraphsarepresented:Thethinblacklineis thegraphofthefunctionNðrÞ [Eq.(74)];zero
values of this functiondetermine thepositions of the horizons for the selected values of the parameterα. Thebluedashed line is thegraphof the
functionfrphðrÞ [Eq. (84)]; zerovaluesof this functiondetermine thepositionof thephotonorbit for the selectedvaluesof theparameterα. The
thin green line is the graph of the function frmsðrÞ [Eq. (86)]; zero values of this function determine the position of the ISCO for the selected
valuesof the parameterα. The reddotted line is thegraphof the functionfrstðrÞ [Eq. (80)]; zerovaluesof the functiondetermine thepositionof
the static radius for the selected values of the parameter α. Parameters α andQ take the values α ¼ ½0.0005; 0.001� andQ ¼ ½0.9; 1.0001�.
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IV. OSCILLATIONS OF TEST PARTICLES NEAR
MSCOs IN THE VICINITY OF A CHARGED

KISELEV BLACK HOLE

In this section, we show how the fundamental frequen-
cies of the test particles, performing epicyclic oscillatory
motion along orbits slightly above the ISCO, depend on the
parameters α and Q for the three different values of ωq.
Here we also give their radial profiles. We use the method
based on the effective potential as discussed in Ref. [63].
The resulted frequencies are identical to those derived by
the perturbation methods as shown in Ref. [68]. The
derivation of the equations of the epicyclic frequencies
is provided in the Appendix.
The radial epicyclic frequency reads

νr ¼ −
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðrÞ3
2E2

∂2Weffðr; θÞ
∂r2

s
; ð90Þ

and the latitudinal epicyclic frequency νθ takes the follow-
ing form:

νθ ¼ −
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2E2

NðrÞ2
r2

∂2Weffðr; θÞ
∂θ2

s
: ð91Þ

The azimuthal (so-called Keplerian) frequency of the test
particle reads

νϕ ¼ Ωϕ

2π
¼ 1

2π

L
E
NðrÞ
r2

; ð92Þ

where Ωϕ ¼ dϕ=dt is the angular velocity of the test
particle. In spherically symmetric spacetimes, νθ ¼ νϕ.

A. Oscillations of test particles near MSCOs of the
charged Kiselev black hole with ωq = − 1=3

The coinciding azimuthal and latitudinal frequency are
equal to

νϕ ¼ νθ ¼
1

2πr2
ðMr −Q2Þ12: ð93Þ
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FIG. 27. Fundamental frequencies of a test particle for ωq ¼ −1=3, and for the different values of parameters α and Q.
α ¼ 0.05; 0.1; 0.2 in the first, second, and third rows, respectively; Q ¼ 0; 0.5; 0.9 in the first, second, and third columns,
respectively.
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The radial epicyclic frequency is given by

νr ¼
1

2πr3
ðMr2ðr − rα − 6MÞ þ 9MQ2r − 4Q4Þ12: ð94Þ

Figure 27 demonstrates the radial dependence of funda-
mental frequencies for different values of the parameters
α and Q.

B. Oscillations of test particles near MSCOs of the
charged Kiselev black hole with ωq = − 2=3

The azimuthal and latitudinal frequencies coincide again
in this case and take the following form:

νϕ ¼ νθ ¼
ffiffiffi
2

p

4πr2
ð2Mr − 2Q2 − αr3Þ12: ð95Þ

Here, the radial epicyclic frequency is

νr ¼
ffiffiffi
2

p

4πr3
ð2Mr2ðr − 6MÞ − 8Q4

− 3αr4ðr − 4MÞ þ α2r6 þQ2ð18Mr − 11αr3ÞÞ12:
ð96Þ

Figure 28 represents the radial dependence of the
fundamental frequency for different values of the param-
eters α and Q.

C. Oscillations of test particles near MSCOs
of the charged Kiselev black hole with ωq = − 1

(cosmological constant)

In this case, the azimuthal and latitudinal frequencies are

νϕ ¼ νθ ¼
1

2πr2
ðMr −Q2 − αr4Þ12: ð97Þ
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FIG. 28. Fundamental frequencies of a test particle for ωq ¼ −2=3, and for the different values of parameters α and Q.
α ¼ 0.0005; 0.001; 0.002 in the first, second, and third rows, respectively; Q ¼ 0; 0.5; 0.9 in the first, second, and third columns,
respectively.
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The radial epicyclic frequency takes the following form:

νr ¼
1

2πr3
ðMr2ðr − 6MÞ − 4Q4

þ ð15M − 4rÞαr5 þ 3Q2ð3Mr − 4αr4ÞÞ12: ð98Þ

Figure 29 represents the radial dependence of funda-
mental frequency for the different values of the parameters
α and Q.

V. APPLICATIONS TO REAL ASTROPHYSICAL
SCENARIOS

In order to estimate the effects of quintessence fields on
particle motion, we have considered a supermassive black
hole M ¼ 106 M⊙, and provide simple numerical estima-
tion for the radial four-acceleration equation (38) (which is
proportional to the radial force) of the test particle on
different radii for three values of the parameter ωq, in the
cases of zero and nonzero charge parameter Q. We come to
the conclusion that for the physically relevant value of the
parameter α (α ¼ 10−52 m−2 in the case of ωq ¼ −1), and

also for value of the parameter α (α ¼ 10−28 m−1 in case
of ωq ¼ −2=3) and two values of the charge, Q ¼ 0 and
Q ¼ 106 C, the effects of the considered spacetime with the
repulsive constant α are not noticeable for the region near
the black hole in comparison to the Schwarzschild space-
time, but far from the black hole, the effects of the
considered spacetime become noticeable, and after a static
radius where attraction and repulsion are balanced, repul-
sion becomes the dominant force. For the values of the
parameter α (α ¼ 10−26 m−2 in the case of ωq ¼ −1,
α ¼ 10−14 m−1 in the case of ωq ¼ −2=3), the effects of
the considered spacetime are also noticeable near to the
black hole, but the radius of the cosmological horizon
which appears in considered spacetime is much smaller
than the radius of the visible Universe. For the parameter
ωq ¼ −1=3, the difference between the acceleration of
particle in Schwarzschild spacetime, and in the spacetime
considered here, is noticeable for the value of the parameter
α ¼ 10−3 and is not noticeable for the value of α ¼ 10−6. In
the graphs in Fig. 30, we compare the acceleration of the
test particle in the considered spacetime for the three
different values of ωq, for some representative values of
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FIG. 29. Fundamental frequencies of a test particle for ωq ¼ −1, and for the different values of the parameters α and Q. α ¼
0.00005; 0.0001; 0.0002 in the first, second, and third rows, respectively; Q ¼ 0; 0.5; 0.9 in the first, second, and third columns,
respectively.
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α and Q, with the acceleration in the Schwarzschild
spacetime. In the case of the charge Q ¼ 1026 C, the
effects of the charge on the acceleration of the test particle
also become noticeable and are presented in Fig. 31.

VI. SUMMARY

In this work, we have extensively investigated the
MSCOs in the charged Kiselev black hole spacetime.
We have taken into account three different values of the
equations of state parameter ωq, namely (i) ωq ¼ −1=3,
(ii) ωq ¼ −1, and (iii) ωq ¼ −2=3. For all three values of
ωq, we have obtained bounds on the values of the electric
charge Q which allow the existence of a black hole and
depend on the normalization factor α. These are represented
in Figs. 1, 10, and 19 for the three values of parameter ωq.
It is seen that the MSCOs exist for all possible values of

the normalization factor α and the electric charge Q of the
black hole, in all three cases for different values of the
parameter ωq.
Further, we have observed that the presence of the

quintessence field pushes the ISCOs of the test particles

outward, while the OSCOs contract. With decreasing
values of the parameter α, ISCO in the charged Kiselev
black hole spacetime approaches the ISCO for the pure
Riessner-Nordstrom black hole, while OSCO pushes
beyond the radius of the observable Universe. It is also
observed that the radii of the ISCOs shrink due to the
presence of the charge Q of the black hole, while those of
the OSCOs get larger in the presence of the charge Q. This
effect of charge Q on the radii of the MSCOs for the
charged black hole with a quintessence term can be seen by
comparing them with those obtained in the case of an
uncharged black hole with the quintessence term, given
in Ref. [53].
We have also studied the photon circular orbits and

noticed that they expand in the presence of the quintessence
field and shrink with an increase in the value of the charge
Q of the black hole. Note that properties of the unstable
photon circular orbit can also govern quasinormal modes of
black hole perturbation fields [97,98].
Finally, we have studied epicyclic frequencies around

charged Kiselev black holes and observed that they
coincide in the azimuthal and longitudinal directions.

FIG. 30. The plots show a comparison of the acceleration acting on a particle located in the gravitational field of a Kiselev black hole
with mass M ¼ 106 M⊙ for three values of the parameter ωq, with a Schwarzschild black hole in the case of zero charge Q (top two
graphs), as well as with a Riessner-Nordstrom black hole for a charge Q ¼ 106 C (lower two graphs). For nonzero values of the
parameter α, the graphs diverge at the horizons.

EPICYCLIC OSCILLATIONS OF TEST PARTICLES NEAR … PHYS. REV. D 104, 063027 (2021)

063027-25



In addition, we have compared them with the frequencies
for an uncharged black hole (when electric charge Q is
equal to zero). With the increase of a black hole’s electric
charge Q, the ISCO becomes closer to the central object,
and one can observe epicyclic frequencies closer to the
central object, which makes the epicyclic frequencies
larger. With increasing α, the ISCOs expand, and hence
the epicyclic frequencies can be observed farther away
from the central object. Thus, the presence of the quintes-
sence field makes the epicyclic frequencies measured on
the ISCOs smaller, as compared to the epicyclic frequen-
cies in the vicinity of a Riessner-Nordstrom black hole
without quintessence. With an increase in the charge Q of
the black hole, the OSCOs stretch, and therefore the
epicyclic frequencies can be smaller in comparison to
the uncharged case of a black hole. It is also seen that
the increasing values of α shrink the OSCOs, and therefore
near OSCOs, the epicyclic frequencies can be higher due to
the presence of the quintessence field. The obtained results
can be applied to the real astrophysical scenario in black
hole close environments to get possible constraints on the
black hole’s basic parameters and quintessence field.
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APPENDIX: DERIVATION OF EQUATIONS
FOR FUNDAMENTAL FREQUENCIES

The procedure of finding equations for fundamental
frequencies is quite standard—they can be obtained by
direct perturbation of the geodetic equation as was done, for
example, in Ref. [99]. In this appendix, we briefly review
the algorithm presented in Ref. [73] for obtaining equations
for fundamental frequencies where oscillations in the radial
and vertical directions are considered separately.

FIG. 31. The plots show a comparison of the acceleration acting on a particle located in the gravitational field of a Kiselev black hole
with mass M ¼ 106 M⊙ for three values of the parameter ωq, with a Riessner-Nordstrom black hole (top two graphs), as well as with a
Schwarzschild black hole (lower two graphs), with a charge Q ¼ 1026 C for both cases. For nonzero values of the parameter α, the
graphs diverge at the horizons.

DMITRIY OVCHINNIKOV et al. PHYS. REV. D 104, 063027 (2021)

063027-26



The geodesic motion of the particle is governed by the
Lagrangian

L ¼ 1

2
gμν _xμ _xν: ðA1Þ

We can notice that the metric that describes a charged
Kisselev black hole does not depend explicitly on the
coordinates t and ϕ. This means that there are constants of
motion related to these coordinates:

pt ¼
∂L
∂t ¼ gtt_t ¼ −E ⇒ _t ¼ −

E
gtt

; ðA2Þ

pϕ ¼ ∂L
∂ϕ ¼ gϕϕ _ϕ ¼ L ⇒ _ϕ ¼ L

gϕϕ
: ðA3Þ

We can find fundamental frequencies using an equation that
describes the conservation of the rest mass, gμν _xμ _xν ¼ −1.
For spherically symmetric spacetime, it takes the form

gttð_tÞ2 þ grrð_rÞ2 þ gθθð_θÞ2 þ gϕϕð _ϕÞ2 ¼ −1: ðA4Þ

Now, we can apply to this equation _t and _ϕ expressed using
the constants of motion, and rearrange the equation in the
following way:

grrð_rÞ2 þ gθθð_θÞ2 ¼ −1 −
E2

gtt
−

L2

gϕϕ
: ðA5Þ

The right-hand side of this equation can be denoted as
Weffðr; θÞ, some function which depends on r and θ, and in
our notation for the interval of spherically symmetric static
spacetime, it can be written as follows:

Weffðr; θÞ ¼ −1þ E2

NðrÞ −
L2

r2 sin2 θ
: ðA6Þ

Now, we can consider small perturbations around circular
orbits separately for the radial and vertical directions.
For the radial direction, we assume _θ ¼ 0 and grrð_rÞ2 ¼
Weffðr; θÞ, and for the vertical direction, we assume _r ¼ 0

and gθθð_θÞ2 ¼ Weffðr; θÞ. Considering small displacements
around the mean orbit δr and δθ—i.e., r ¼ r0 þ δr and
θ ¼ π=2þ δθ—and neglecting the terms of higher order
Oðδ2rÞ and Oðδ2θÞ, one can obtain equations for oscillating
particles:

d2δr
dt2

þ Ω2
rδr ¼ 0;

d2δθ
dt2

þ Ω2
θδθ ¼ 0; ðA7Þ

where Ωr is related to the radial epicyclic frequency by
νr ¼ Ωr=2π, and Ωθ is related to the latitudinal frequency
by νθ ¼ Ωθ=2π.
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