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We explore the prospects for direct detection of dark energy by current and upcoming terrestrial dark
matter direct detection experiments. If dark energy is driven by a new light degree of freedom coupled
to matter and photons then dark energy quanta are predicted to be produced in the Sun. These quanta
free-stream toward Earth where they can interact with Standard Model particles in the detection
chambers of direct detection experiments, presenting the possibility that these experiments could be
used to test dark energy. Screening mechanisms, which suppress fifth forces associated with new light
particles, and are a necessary feature of many dark energy models, prevent production processes from
occurring in the core of the Sun, and similarly, in the cores of red giant, horizontal branch, and white
dwarf stars. Instead, the coupling of dark energy to photons leads to production in the strong magnetic
field of the solar tachocline via a mechanism analogous to the Primakoff process. This then allows for
detectable signals on Earth while evading the strong constraints that would typically result from stellar
probes of new light particles. As an example, we examine whether the electron recoil excess recently
reported by the XENON1T collaboration can be explained by chameleon-screened dark energy, and
find that such a model is preferred over the background-only hypothesis at the 2.0σ level, in a large
range of parameter space not excluded by stellar (or other) probes. This raises the tantalizing possibility
that XENON1T may have achieved the first direct detection of dark energy. Finally, we study the
prospects for confirming this scenario using planned future detectors such as XENONnT, PandaX-4T,
and LUX-ZEPLIN.
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I. INTRODUCTION

More than two decades after the discovery that the
expansion of the Universe is accelerating [1,2], the nature
of the dark energy (DE) component driving this phenome-
non and making up ∼70% of the energy budget of the
Universe remains a mystery [3–7]. What is perhaps the
simplest theoretical DE candidate, a cosmological constant
(CC) resulting from the collective zero-point energy of
quantum fields, suffers from a severe disagreement between
its theoretical value suggested from quantum field theory
considerations, and the tiny value inferred from cosmo-
logical observations [8–10]. This staggering discrepancy
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goes under the name of cosmological constant pro-
blem [9,10]. Several DE models have been proposed as
alternatives to the CC, within most of which the cosmic
acceleration phenomenon is ascribed to additional (typi-
cally scalar) degrees of freedom, either in the form of
new fundamental particles and fields, or modifications to
general relativity (GR). Competing models predict a variety
of novel cosmological phenomena which will be actively
sought for by the next generations of cosmological sur-
veys, including but not limited to the Simons Observatory
[11,12], CMB-S4 [13,14], Euclid [15,16], DESI [17], the
Vera C. Rubin Observatory Legacy Survey of Space
and Time [18], and the Nancy Grace Roman Space
Telescope [19].
In all but the simplest models, the scalar field leads to a

modification of gravity where the associated new light
scalar degree of freedom couples to matter [20–22]. Such
theories predict the existence of fifth forces that are
ostensibly excluded by solar system tests of GR [23,24].
To circumvent this problem, realistic models inevitably
need to include some form of screening mechanism
[6,25–28]. Screening mechanisms dynamically suppress
fifth forces in the solar system without the need to tune the
model parameters, resorting to environmental effects in
the case of several (but not all) of these mechanisms. This
then allows for strong deviations from GR on cosmological
scales, which could modify the growth of structure. The
ability to account simultaneously for cosmic acceleration
and satisfy solar system tests of GR have made modified
gravity (MG) theories with screening mechanisms leading
science targets for current and upcoming cosmological
surveys [29]. In addition to their indirect effects on the
cosmological background expansion and structure forma-
tion [30,31],1 DE and MG theories with screening mech-
anisms have the attractive feature that they are also
amenable to direct detection of their associated effects.
The distinctive fifth forces they predict can be searched for
in laboratory experiments [29,37,38] and astrophysical
environments [27,28,39–51], and their observation would
unequivocally confirm the hypothesis that DE is linked to a
modification of GR.
The purpose of this paper is to broaden the scope of new

physics accessible to terrestrial dark matter (DM) direct
detection experiments by exploring their potential to detect
DE quanta produced in the Sun, and to open up a new
frontier for the direct detection of dark energy. Screening
mechanisms suppress the production of DE quanta in the
core of the Sun due to the large scalar mass or weak
coupling to matter, but they can be produced in regions of
strongly magnetised plasmas through couplings of the
scalar to photons. In particular, they can be produced in

the solar tachocline,2 in a manner analogous to the
Primakoff process for axions [53,54]. This possibility
opens up yet another exciting avenue for directly detec-
ting DE fluctuations: DE particles produced in the solar
tachocline could be observed in dark matter (DM) direct
detection experiments. To date, searches for DE-like par-
ticles in direct detection experiments have mostly focused
on axion-specific experiments such as the CERN Axion
Solar Telescope (CAST) [55–58] and the Axion Dark
Matter Experiment (ADMX) [59]. Other detection tech-
niques currently being considered are at different stages
of realization, or have started to gather data [60–66]. For
additional details, see Refs. [67–70].
All well-known screening mechanisms can be classified

into chameleon [71], symmetron [72], Damour-Polyakov
[73], K-mouflage [74], and Vainshtein [75] screened
theories. In order to encapsulate the diversity exhibited
by screening mechanisms, we will use an effective theory
for the fluctuations of the scalar about the background
profile due to the environment that includes operators
relevant for each mechanism, including generic couplings
to the standard model (SM). Using this, we will lay out the
formalism for computing the expected signal in the associa-
ted detectors following from the scattering/absorption of
DE scalars produced in the solar tachocline by nuclei or
electrons (depending on the specific detector details). We
will assume that the DE scalar possesses a coupling to
photons, allowing for its production from photons in the
tachocline. We will also use the environmental dependence
of the couplings in the effective theory for the scalar
fluctuations. We note that screening mechanisms of the
chameleon, symmetron and Damour-Polyakov types show
a clear dependence of these coupling on the local density,
i.e., on the environment. On the other hand, screening
mechanisms of the K-mouflage and Vainshtein types
depend on more global features of the matter distribution,
such as the total mass of the stars, with little or no depen-
dence on the local matter density [76]. In order to provide a
well-studied and well-constrained example, we will later
specialize to the chameleon mechanism. Theories that
screen using the chameleon mechanism [29,71,77,78] do
so by increasing the mass of the DE scalar in dense
environments, making their fifth force too short-ranged
to be relevant in the solar system or in terrestrial fifth force
searches.
As a case study, we will apply our methodology to the

XENON1T DM direct detection experiment [79], which
recently reported a ∼3.3σ excess in the electron recoil data
above their expected background, in the energy range
1–7 keV [80]. The XENON1T collaboration finds that a

1See e.g., Refs. [32–36] for recent works studying the effect of
direct couplings of DE to baryons on both local and cosmological
observables.

2The tachocline is the turbulent shear layer located at the base
of the solar convection zone, marking the transition between the
radiative interior and the differentially rotating convective zone
[52]. The radial position of the tachocline is approximately
0.7R⊙, with R⊙ the solar radius.
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fit to the signal which includes a solar axion component is
preferred over the background-only hypothesis at a sig-
nificance of 3.4σ. Alternative explanations proposed by the
collaboration include an additional tritium background and
a neutrino magnetic moment, both of which are preferred
with a significance of 3.2σ. Unfortunately, for the solar
axion (and, to a minor but still important extent, for the
neutrino magnetic moment), the parameters that best fit the
XENON1T signal are strongly excluded by astrophysical
observations of stellar evolution [81], particularly by
constraints from the cooling of horizontal branch stars in
globular clusters, the cooling of white dwarfs, and the tip of
the red giant branch I-band magnitude of globular clusters
and galaxies. The difficulties faced by these three scenarios
have spurred the proposal of various new physics models
that might also be able to explain the XENON1T excess,
with varying degree of motivation or plausibility: for a list
of works in this direction, we refer the reader to e.g.,
Refs. [81–135].
Applying our formalism to XENON1T, we find that

chameleon-screened DE provides a fit to the signal of
only slightly lower quality than the aforementioned sce-
narios, and is preferred over the background-only hypoth-
esis at a significance of 2.0σ. The stellar bounds that
are debilitating for the solar axion interpretation of the
XENON1T signal are avoided by chameleon-screened DE
theories due to the associated fifth force screening, as well
as by the dependence of the mass of the scalar field on the
local density of matter [53,54]. In particular, the astro-
physical objects from which the strongest axion bounds
derive—red giant, horizontal branch, and white dwarf
stars—have cores whose density is larger than that of the
solar tachocline by a factor of >106. As a consequence,
chameleon-screened DE scalars are too heavy to be
thermally produced within these objects, and cannot act
as a new source of energy loss. This raises the tantalizing
possibility that XENON1T, originally devised to detect
DM, may instead have detected dark energy, or in any case
a propagating scalar degree of freedom of a theory of
modified gravity.
The possibility that chameleon-screened scalars might

indeed be at the origin of the XENON1T signal is inde-
pendently testable by a number of upcoming low-threshold
DM direct detection experiments. These experiments are all
sensitive to recoil energies of Oð100 eVÞ or lower, and are
expected to detect the chameleon-induced signal at much
higher statistical significance than XENON1T. Examples
of experiments in this class, some of which make use of
cryogenic semiconductor detectors, include SuperCDMS
[136], CDEX-10 [137], DAMIC [138], CRESST-III [139],
PICO [140], LUX-ZEPLIN [141], EDELWEISS [142],
SENSEI [143], PandaX-II [144], PandaX-4T [145], and of
course XENONnT [146] among others. We will demon-
strate that these experimental setups, often discussed in the
context of searches for light (sub-GeV or even MeV) DM

scattering off nuclei or electrons, are equally well-placed to
detect the signal of solar chameleons.3

The rest of this paper is organized as follows. Our
effective theory for screened dark energy in the solar
system is presented and discussed in Sec. II. The specific
chameleon model we specialize to in this work is presented
in Sec. III, where we calculate its flux from production
in the solar tachocline, and detection cross section in DM
direct detection experiments. In Sec. IV we discuss the
data analysis method we use to confront our model against
the XENON1T signal. In Sec. V we present the results
following from this analysis. We critically discuss these
results and prospects for probing chameleons in current
and future DM direct detection experiments in Sec. VI.
Finally, we draw our concluding remarks in Sec. VII. In
addition, our paper contains three technical Appendixes.
Appendix A is devoted to a more detailed discussion of the
chameleon mechanism. Appendix B revises the production
of chameleon-screened DE scalars in the Sun, as well as the
resulting flux and energy spectrum of solar chameleons on
Earth. Appendix C presents details concerning the compu-
tation of the cross section for what we refer to as the
“chameleo-electric effect,” a process which is analogous to
the photoelectric and axio-electric effects for photons and
axions respectively, and which is relevant for the compu-
tation of the expected signal in the XENON1T detector. All
the codes associated with this work are made publicly avai-
lable online at github.com/lucavisinelli/XENONCHAM.

II. DARK ENERGY EFFECTIVE THEORY
IN THE SOLAR SYSTEM

Here, we work under the assumption that dark energy
arises as a result of the cosmological dynamics of a single
scalar field, which we denote by φ. This scalar does not
have to be a fundamental field. Instead, it could arise as a
low energy degree of freedom emerging from more
involved dynamics at higher energy. For example, the
scalar could be the Stückelberg field of the broken time-
diffeomorphism symmetry of the cosmological back-
ground [147]. Our further assumption is that this scalar
is involved in generating the acceleration of the Universe
and at the same time couples to gravity and/or the SM in a
manner that is ghost- and pathology-free, as explicitly
realised e.g., in models of the Horndeski [148], beyond
Horndeski (GLPV) [149,150], or Degenerate Higher-Order
Scalar-Tensor (DHOST) classes of scalar-tensor theories
[151,152]. These theories are among the leading candidate
DE theories accompanying a modification of gravity (see
Refs. [3,6,20–22,31,153] for more general reviews con-
cerning MG theories and cosmological tests thereof).

3In the following we will use the word chameleon for all
chameleon-screened scalars. When the original chameleon scalar
with an inverse power potential is meant, this will be explicitly
specified.
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Multimessenger astronomy involving a gravitational
wave (GW) and an associated optical counterpart can be
used to constrain the properties of theories of modified
gravity. To date, there has been one such confirmed event.
In 2017, the LIGO/Virgo collaboration observed the
gravitational wave event GW170817 [154], resulting
from a binary neutron star merger. Simultaneously, the
FermiGamma-ray Burst Monitor and the INTEGRALAnti-
Coincidence Shield spectrometer detected the short
gamma-ray burst GRB170817A [155,156], which was
identified as being the electromagnetic counterpart to
GW170817. The joint GW170817/GRB170817A detec-
tion restricts the speed of GWs to differ from the speed of
light by no more than one part in 1015, setting strong
constraints on theories of the Horndeski [157–163], beyond
Horndeski [164,165], and DHOST types [166–170],
although these constraints are subject to important caveats
[171,172]. Other important constraints on such theories
arise from potential instabilities in GW backgrounds
[173,174], astrophysical bounds [27,28,175–177], and
cosmological constraints [178–181]. Nevertheless, large
regions of parameter space remain observationally and
theoretically viable [182–186]. Since we will work at the
level of the effective theory in the solar system, our
formalism is insensitive to the details of the fundamental
theory responsible for driving cosmic acceleration. We will
thus assume that the aforementioned bounds are satisfied.
The chameleon-screened dark energy theories that we study
in this paper predict that the speed of gravitational waves is
luminal so the bounds are automatically satisfied without
the need to tune parameters. Attempts to embed our more
general solar system effective theory into a covariant model
which can be extended to cosmological scales should
ensure that these bounds are satisfied. We defer this study
to future work.
We begin by expanding the field φðx⃗; tÞ around some

background value φ0ðx⃗; tÞ as φðx⃗; tÞ ¼ φ0ðx⃗; tÞ þ ϕðx⃗; tÞ,
where ϕðx⃗; tÞ is a spacetime-dependent perturbation.
Depending on the nature of the fundamental theory,
φ0ðx⃗; tÞ could either be the field in the cosmological
background, the field sourced by the Milky Way, or even
different in the Earth and the Sun. The latter scenario is
realised by the chameleon screening mechanism. The
relevant part of the action for studying solar phenomenol-
ogy comprises two terms. The first is the quadratic part of a
scalar field action with background-dependent kinetic and
mass terms

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
Zμνðφ0Þ∂μϕ∂νϕ −

1

2
m2ðφ0Þϕ2

�
; ð1Þ

where Zμν is the kinetic matrix. We have not included self-
interaction terms in the form of a polynomial in ϕn, n ≥ 3
as they are not relevant to the scalar production mechanism
we will consider. In principle, each of the monomials in this

expansion have φ0-dependent couplings. The second rel-
evant part of the action is the coupling to matter and
photons

Sϕi ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
βi

ϕ

MPl
Ti

þ cμνi ðφ0Þ
∂μφ∂νφ

M4
Ti þ

1

M4
Tμν
i diρσμνðφ0Þ∂ρϕ∂σϕ

�
;

ð2Þ

where MPl is the reduced Planck mass, M is the UV-cutoff
of the theory, Tμν

i is the energy-momentum tensor for SM
particle species i, with Ti ¼ gμνT

μν
i its trace, and with

background-dependent tensors cμνi ðφ0Þ and dμνρσðφ0Þ.
Here we assume for simplicity’s sake that cμνi ðφ0Þ ∝ ημν

and diμνρσðφ0Þ ∝ ημρηνσ , where the proportionality coeffi-
cients are assumed to be density-dependent and species-
dependent constants. As a result we shall concentrate on the
following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
Zμνðφ0Þ∂μϕ∂νϕ

−
1

2
m2ðφ0Þϕ2 − βγ

ϕ

MPl
FμνFμν

þ
X
i

�
βiðφ0Þ

ϕ

MPl
Ti þ ciðφ0Þ

X
M4

Ti

þ diðφ0Þ
M4

Tμν
i ∂μϕ∂νϕ

��
; ð3Þ

where X ¼ −gμν∂μϕ∂νϕ and Fμν is the photon field-
strength tensor. The sum in Eq. (3) includes photons,
but since their energy-momentum tensor is traceless they
do not contribute to the first two terms. A direct coupling to
photons through their field-strength tensor can arise
through quantum anomalies [187], and we have therefore
included this coupling with strength βγ . This term is of
critical importance since it allows for the production of
scalars in the solar tachocline. The couplings to matter arise
from the Jordan frame metric, i.e., the metric coupling SM
particles to the scalar when the graviton is canonically
normalized in the underlying covariant theory:

gJμν ¼
�
1þ 2βiðφ0Þ

ϕ

MPl
þ 2ciðφ0Þ

X
M4

�
gμν

þ 2
diðφ0Þ
M4

∂μϕ∂νϕ: ð4Þ

From a quantum field theory perspective, it is unlikely that
the couplings to each matter species are universal, hence
our choice to treat the couplings βi, ci, and di as being
species-specific. The term multiplying gμν is referred to as
the conformal factor and the term multiplying ∂μϕ∂νϕ is
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referred to as the disformal factor. We therefore refer to the
βis and cis as conformal couplings, and dis as disformal
couplings (ci can also be referred to as kinetic-conformal
coupling).
The effective theory in Eq. (3) includes environmental

variations of the various coupling constants via their
dependence on the background field φ0, and therefore
on the local matter density when the energy-momentum
tensor of matter is dominated by nonrelativistic species,
such as in the late-time Universe after matter-radiation
equality, or in astrophysical situations through the virialized
matter density. In particular, we have allowed the kinetic
matrix Zμνðφ0Þ to be nondiagonal and to depend on the
background field. This structure typically emerges from
ghost-free higher-derivative couplings of the field to
curvature tensors, and gives rise to the Vainshtein [75]
and K-mouflage [74] screening mechanisms. We have also
allowed the mass to be background field-dependent. This
gives rise to the chameleon mechanism [71,77]. Note that
mðφ0Þ is the mass of fluctuations about φ0. The mass of φ
in the cosmological background is insteadOðH0Þ, so that φ
can act as a DE scalar. Finally, we have allowed the
coupling constants βi, ci, and di to be field-dependent too.
This field-dependence is utilized by the symmetron [72]
and dilaton [188] mechanisms.
In this work, we shall focus on theories that utilize the

chameleon mechanism, and therefore set Zμνðφ0Þ ¼ ημν,
while taking βi, ci, and di to be background field-
independent. We also introduce the energy scales Mi≡
M=d1=4i , which depend on the species being considered (i).
Applying these simplifications to the action in Eq. (3), the
effective theory considered is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂μϕ

−
1

2
m2ðφ0Þϕ2 − βγ

ϕ

MPl
FμνFμν

þ
X
i

�
βi

ϕ

MPl
Ti þ ci

X
M4

Ti þ
1

M4
i
Tμν
i ∂μϕ∂νϕ

��
: ð5Þ

The mechanism by which DE is produced in the Sun
and either scatters or is absorbed in DM direct detection
experiments is the following. The Sun is necessarily
screened, implying that the mass of the scalar in the Sun
is m⊙ ¼ mðφ⊙Þ > 103H0 [189,190]. In practice, the high
density of the Sun with respect to the cosmological back-
ground (ρ⊙=ρc ∼ 1029) implies that m⊙ is in fact much
heavier than this deep inside the Sun. The exact value is
model-dependent, as it depends on the exact density
dependence of the scalar’s mass. The high mass prevents
the efficient production of chameleons via Compton or
bremsstrahlung processes in the Sun’s core via a Boltzmann
suppression. However, the direct coupling to photons
allows for production in the magnetic field of the tachocline

via a mechanism analogous to the Primakoff process for
axions [191]: we review the chameleon production process
in Appendix B. The relevant operators for this production
process are

Sϕγ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν − βγ

ϕ

MPl
FμνFμν

þ 1

M4
γ
Tμν
γ ∂μϕ∂νϕ

�
; ð6Þ

where Mγ ¼ M=d1=4γ is the energy scale related to the
disformal coupling to photons. As chameleons are pro-
duced in the tachocline and not in the core, we need to
impose that the mass of the chameleon in the core be larger
than the local temperature. This can be achieved using the
density-dependence of the mass, as the ratio between the
densities in the core and in the tachocline is around two
orders of magnitude.
Once produced, solar chameleons free-stream out of

the Sun, with a fraction passing through the Earth, and an
even smaller fraction through the chambers of DM direct
detection experiments. In these chambers the mass is
mostly determined by the detector’s geometry [71,77]
and is typically small (mDC ≪ me, where me is the mass
of the electron). Chameleons can therefore be treated as
massless particles in the chambers of DM direct detection
experiments for all intents and purposes. Chameleons
passing through the detector chamber can scatter off or
be absorbed by the particles utilized for the detection, via
couplings of the form

Sϕi ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
βi

ϕ

MPl
Tiþ ci

X
M4

Tiþ
1

M4
i
Tμν
i ∂μϕ∂νϕ

�
:

ð7Þ

These couplings give rise to what we refer to as the
“chameleo-electric effect,” and correspondingly to electron
recoils in the OðkeVÞ range. Similar interactions with
neutrons and protons will instead give rise to atomic
recoils, which we will not explicitly consider in this paper.
In the subsequent analysis, we will neglect the coupling

ci, which controls the strength of the kinetic-conformal
coupling XTi. We find that this coupling has an effect
similar to that of the conformal coupling bi at the level
of detection. Moreover, from a statistical perspective, it
does not lead to a substantial improvement in the fit to the
XENON1T signal (which would otherwise warrant its
inclusion as a free parameter), as the disformal detection
channel dominates over the conformal one(s), for reasons
we will discuss in Sec. IV below. The choice of setting
ci ¼ 0 for the purposes of this work should be viewed as a
simplifying working assumption, which sets a minimal
phenomenologically working model: (re)-including ci
would not change our results, nor the goodness of the fit.
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III. MODEL

A. Theoretical considerations

As it stands, our effective theory is still too general to
calculate the production and detection processes because
we need to determine the free functions m2ðϕ0Þ ¼
m2ðx⃗Þ ¼ m2ðρÞ, βiðρÞ, and diðρÞ. There are two possibil-
ities for fixing the spatial-dependence of the scalar’s mass.
The first is to parameterize our ignorance by assuming a
functional form for its density and constraining the param-
eters associated with this choice. The second is to provide
an explicit model and thereby to calculate the spatial-
dependence explicitly. We opt for the second choice for
three reasons. First, it is not guaranteed that an arbitrary
fitting function will reproduce the dynamics of any funda-
mental theory, so it is not clear what information is lost
by making such a choice. Second, chameleon models are
well-constrained by laboratory and astrophysical probes,
so choosing a well-studied model allows us to explore
complementarity with these bounds, and to determine the
feasibility of our scenario by identifying the existence of
regions of parameter space where our model can simulta-
neously satisfy these bounds and successfully explain the
XENON1T signal. Finally, chameleons have βi and di
constant, so we can exemplify our scenario using a simple
minimal model.
Chameleon theories are subject to a no-go theorem [190]

that excludes the possibility of self-acceleration defined
strictly as acceleration in the Jordan frame but not the
Einstein frame in the complete absence of any cosmologi-
cal constant. Dark energy scenarios where the acceleration
is driven by the scalar potential, i.e., a quintessencelike
explanation, are not excluded by this theorem, but require a
tuning of an overall additive constant. Of course, such a
tuning is also present in self-acceleration scenarios as
this additive constant is arbitrarily set to zero. The gener-
alized couplings (disformal and kinetic-conformal, XT)
that we consider here are additional potential caveats
to the no-go theorem since they were not considered
when deriving it [192]. Other caveats are discussed in
Ref. [190].
As discussed in more detail in Appendix A, the density-

dependence of the chameleon’s mass arises because its
dynamics are governed by an effective potential

VeffðϕÞ ¼ VðϕÞ þ ρ exp
�
βmϕ

MPl

�
; ð8Þ

where ρ is the density of the matter species coupled to the
chameleon, βm is the strength of such coupling, and VðϕÞ is
the bare potential, which would govern the dynamics if the
field were not coupled to matter. A common model for the
bare potential is the power-law chameleon [71,77,78]
leading to a density-dependent mass at the minimum
ϕmin of the effective potential

m2
ϕ ¼ d2VeffðϕÞ

dϕ2

����
ϕ¼ϕmin

¼ nð1þ nÞΛ4þn

�
βmρ

nMPlΛ4þn

�2þn
1þn

; ð9Þ

where Λ is an energy scale and n is a power-law index
(VðϕÞ ∝ ϕ−n). Note that both n > 0 (inverse power-law)
and n < 0 (power-law) can lead to the chameleon behavior
provided n ≠ −1;−2, or an odd negative integer. We also
assume that βmϕ=MPl ≪ 1, in order for the excursion of the
chameleon field not to exceed MPl=βm. Note that the
swampland conjectures (see Ref. [193]) lead to a lower
bound on βm ≳ cV=ρ, where c is a constant of order
unity [194].

B. Production in the Sun

Chameleons can be resonantly produced in a dense
magnetized plasma when the chameleon mass matches
the plasma frequency of the environment. This process,
governed by the chameleon-photon coupling in Eq. (6),
occurs in the Sun within a narrow shell whose location
depends on the chameleon rest mass [54,195]. Chameleon
production can also occur through nonresonant processes,
which occur in all magnetized regions inside the Sun.
Here we adopt the nonresonant production mechanism and
consider a magnetic field profile B ¼ BðrÞ, where r is the
radial coordinate.4 For the solar model, we adopt the
profiles described in Ref. [198], which has also been used
to derive the formula for the Primakoff flux used by the
XENON1T collaboration, see Ref. [199]. We also note that
there is some disagreement in the field between different
solar models, see e.g., Refs. [200–205].
The resulting differential flux per unit energy of solar

chameleons on Earth, resulting from isotropic production in
the Sun, is given by

dΦEarth

dω
¼ πR2

t

4πd2⊙

dΦ
dω

; ð10Þ

where d⊙ ¼ 1 A:U: is the Earth-Sun distance, and Rt ∼
0.7R⊙ is the tachocline radial coordinate. The flux of
chameleons produced in the Sun, dΦ=dω, is calculated in
Appendix B, see Eq. (B13).
In principle, one could also consider production from

toroidal magnetic modes deeper within the Sun. However,
we note that there are significant uncertainties associated to
the strength and profile of these modes [206–208]. The
equipartition value for the large-scale toroidal magnetic
field due to shearing is ∼1 T [206–208]. As we later
assume a strength Bt ¼ 30 T for the tachocline magnetic
field, we expect the associated contribution to the

4Note that we do not consider couplings of chameleons to
longitudinal plasmons, as recently considered in Refs. [196,197].
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chameleon flux relative to the contribution we considered
to be suppressed by a factor ð1=30Þ2 ≈Oð10−3Þ, and to
appear at higher energies than those of interest for the
XENON1T excess. While the strength of these modes may
be amplified locally by up to Oð102Þ their equipartition
values in the convection zone to form sunspots [206], the
significant uncertainties at play prevent us from fully
quantifying the impact of these processes on our results.
We thus conservatively choose to neglect the effect of
toroidal magnetic modes on chameleon production deeper
within the Sun, noting that these could lead to subdominant
features in the event rate at higher energies, but deferring a
full study to follow-up work.
We have not considered other more “standard” produc-

tion mechanisms, which in the parameter space spanned are
subdominant. For example, chameleons could be produced
through so-called ABC reactions (atomic recombination
and deexcitations, bremsstrahlung, and Compton), in a
similar fashion to axions [209–211]. However, by virtue of
the chameleon mass being density-dependent, we can
always find large regions of parameter space where these
processes are kinematically disfavored (in particular by
adjusting the energy scale Λ). As discussed at the end of
Appendix A, this can be achieved by requiring that
m2

effðρcoreÞ ≳ T2
core, where m2

eff ≡m2
ϕ − ω2

Pl, with ω2
Pl the

plasma frequency squared given by Eq. (B6), ρcore ≃
150 g=cm3 the Sun’s core density, and Tcore ≃ 1.5 ×
107 K the Sun’s core temperature. Typically we expect
that the mass of the chameleons scale likemðρÞ ≃ ρα where
α ¼ 3=4 for chameleons with n ¼ 1. This implies that the
mass deep inside the core increases typically by two orders
of magnitude compared to the mass in the tachocline. If this
condition is satisfied, production of solar chameleons in the
deeper regions of the Sun is kinematically forbidden, with
the overall flux being dominated by Primakoff-like pro-
duction in the tachocline.
From Eq. (9), we see that the previous condition trans-

lates into constraints on βm, Λ, and n. Fixing βm and n > 0,
we find that this condition sets an upper limit on the
allowed value of Λ. Later in our analysis we will consider
βm ≃ 102 and n ¼ 1, since we find that the event rate in
XENON1T is mostly sensitive to βγ and Me, and only
weakly sensitive to βm, n, Λ, andMγ . For this choice of βm
and n, we find that production of solar chameleons in the
Sun’s core is kinematically forbidden as long as
Λ≲ 1 μeV. We remark again that fixing Λ to other values
has no appreciable effect on the XENON1T event rate, and
hence on our results.

C. Chameleon detection

To reach the XENON1T detector and leave detectable
imprints, solar chameleons with energies ω≳OðkeVÞ need
to propagate through various dense media unscathed. In
general, chameleons with incoming energy ω will be able

to traverse a dense barrier of energy ρ provided ω≳mðρÞ.
Let us focus on the benchmark point we discussed above
and which we consider throughout the paper, where
βm ≃ 102, Λ≲ 1 μeV, and n ¼ 1, so that m ∝ ρ3=4. We
thus need to ensure that chameleons make it through the
densest material along their path. The highest density
involved in the problem is that of lead, which the
XENON1T detector is partially made of, and whose density
is ρPb ∼ 10 g=cm3. For the above parameters, we find
mðρPbÞ ∼ 0.6 keV, meaning that chameleons with energies
ω≳ 0.6 keV are able to reach the XENON1T detector.
This is sufficient to ensure that chameleons are able to fit
the XENON1T excess, which occurs at energies higher
than this cutoff. Moreover, as rocks and the tachocline have
densities respectively one and two orders of magnitude
lower than that of lead, this also ensures that chameleons
are able to escape the tachocline and propagate through the
rock which makes up Gran Sasso (being mostly made of
limestone, with density ρ ∼ 3 g=cm3).
In the XENON1T detector, solar chameleons can be

absorbed by electrons via the chameleo-electric effect. This
is the chameleon analogue of the photoelectric and axio-
electric effects for photons and axions respectively. The
cross section for the chameleo-electric effect in DM direct
detection experiments, σϕe, is computed in Appendix C, see
in particular Eq. (C30). The resulting differential event rate
per unit production energy ω for chameleon absorption by
electrons in the XENON1T detector is given by:�

dR
dω

�
th
¼ ϵðωÞ

Z
dR0ðωRÞ
dωR

Θðω − ωRÞdωR; ð11Þ

where ΘðωÞ is the energy resolution of the detector and
ϵðωÞ is the XENON1T detection efficiency, given in Fig. 2
of Ref. [80].5 The “raw” differential event rate per unit
production energy of chameleons in the XENON1T detec-
tor, i.e., not taking into account energy resolution and
detection efficiency effects, is given by:

dR0ðωÞ
dω

¼ NXe
dΦEarth

dω
σϕe; ð12Þ

where the expression for the flux at Earth is given in
Eq. (10), and where the number of atoms per ton of xenon is
NXe ¼ 4.6 × 1027 ton−1, so that the differential event rate is
expressed in units of ton−1 yr−1 keV−1. We have appended
the subscript th to the differential event rate per production
energy in Eq. (11) to stress that this is a theoretical event
rate, which depends on the underlying chameleon param-
eters through the dependence of dΦEarth=dω and σϕe in
Eq. (12) on these parameters. Comparing the theoretical
event rate against the event rate measured by XENON1T

5As described below Eq. (1) in Ref. [80], the efficiency does
not enter the integral in the convolution function.
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will allow us to set constraints on the underlying chameleon
parameters.
While we focus on the XENON1T apparatus, we stress

that the results in Appendix B and Appendix C, from which
we derive Eqs. (11)–(12), are more broadly applicable. In
particular, they can be applied to future DM direct detection
experiments, which we discuss in more detail in Sec. VI B.
Note, moreover, that because we used an effective action,
the expression for the cross section we compute, as well as
its derivation, are general results that can be applied to any
mass and coupling and for different detector setups. Our
goals are now to explore whether solar chameleons are able
to account for at least part of the observed low-recoil excess
observed in XENON1T and, if so, to determine benchmark
examples of solar chameleon parameters which provide an
adequate fit to the XENON1T signal.
As discussed in Sec. II, we do not include the kinetic-

conformal ci coupling (i.e., the term proportional to XTi),
since we find a posteriori that including this operator does
not lead to a substantial improvement in fit to the
XENON1T signal, which would instead be required to
warrant its inclusion as a free parameter. If we were to
include this term, a fit to XENON1T data would strongly
prefer setting the associated coupling to zero, leading to the
one-parameter extension not being preferred from a stat-
istical point of view. This may not be the case for other DE
models but it is for the specific case of chameleon DE.
The physical reason why this coupling worsens the fit to

the XENON1T signal is that the associated cross section
does not scale fast enough with energy ω. This leads to the
corresponding peak in the resulting event rate being below
the ≈2 keV required to explain the XENON1T excess. On
the other hand, the disformal coupling leads to additional
powers of ω in the associated cross section, thereby moving
the peak to the correct position to explain the XENON1T
excess.

IV. ANALYSIS

In principle, the parameter space describing production
in the Sun and subsequent detection in the XENON1T
detector of solar chameleons is six-dimensional, and
spanned by the following parameters: the coupling to
matter (in this case electrons) βe ≡ βm, the scale governing
the disformal coupling to electrons (hereafter “electron
disformal scale”) Me ¼ M=d1=4e , the coupling to photons
βγ , the scale governing the disformal coupling to photons

(hereafter “photon disformal scale”) Mγ ¼ M=d1=4γ , and
finally the energy scale Λ and power-law index n describ-
ing the chameleon self-interaction potential as given
in Eq. (A12).
To simplify our analysis, we set Λ ¼ 1 μeV and n ¼ 1.

As explained earlier, requiring Λ≲OðμeVÞ ensures that
the chameleon’s effective mass is sufficiently high in the
core of the Sun so that production of chameleons through

the usual Compton and bremsstrahlung mechanisms is
kinematically suppressed. On the other hand, n ¼ 1 cor-
responds to the best-studied chameleon model, with bounds
typically only being reported for this specific choice [37].
These extensive studies have excluded a large region of
parameter space [29], and it is thus of interest to explore
whether XENON1T is able to probe part of the remaining
parameter space of this model. In any case, we have
explicitly verified that fixing Λ and n to other values
affects chameleon production and the resulting event rate
well below the %-level, and thus has no appreciable effects
on our results.
These choices leave us with 4 parameters: βe, Me, βγ ,

and Mγ . However, we anticipate that XENON1T will be
mostly sensitive to βγ andMe, and very weakly sensitive to
βe and Mγ, for the following reasons. First, we expect the
disformal detection channel to dominate over the conformal
one, as the former scales with a higher power of energy than
the latter, see Eq. (C30). This feature moves the peak in the
event rate toward higher energies, better fitting the
XENON1T excess. Therefore, detection in XENON1T is
mostly controlled by the electron disformal scaleMe rather
than the coupling βe, with the associated cross section
scaling as 1=M8

e, see Eq. (C30). Second, if we require that
Mγ ≫ OðkeVÞ so that Primakoff production in horizontal
branch stars does not dominate over neutrino losses [212],
production in the Sun will predominantly proceed through
the conformal channel.6 As a result, production will mostly
be controlled by the photon coupling βγ rather than the
photon disformal scale Mγ . In particular, the associated
production flux scales as β2γ , see Eq. (B13). Finally, the
expected event rate in XENON1T, which is the only
quantity we can directly compare to observations, depends
only on the product of the production flux and the detection
cross section, as can be clearly seen in Eq. (12). This
product scales as β2γ=M8

e. We therefore expect that the
XENON1T measurements will predominantly constrain
the following parameter combination, which we denote
by βeff, and refer to as the effective coupling:

βeff ≡ βγ

�
keV
Me

�
4

: ð13Þ

We can view βeff as being the chameleon equivalent of the
product gaγgae for the case of solar axions produced via the
Primakoff effect in the Sun and detected via the axio-
electric effect in the XENON1T detector. In particular, the
expected event rate in the XENON1T detector is propor-
tional to β2eff , as we derive in Eq. (C31) in the appropriate
limit discussed in the Appendix.

6Note that the bounds on Mγ derived in Ref. [212] do not
directly apply to our scenario, as they were derived assuming that
the scalar is massless.
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We now proceed to analyze the XENON1T measure-
ments to verify whether solar chameleons can fit these
measurements, and whether our previous expectations
are met. We perform a Bayesian statistical analysis to
constrain the four chameleon parameters, which we col-
lectively denote by θ≡ fβγ;Mγ; βe;Meg. The likelihood
LðθjdÞ to observe the data d given a certain set of model
parameters θ is

LðθjdÞ ¼ exp

�
−
χ2ðθ; dÞ

2

�
; ð14Þ

where the χ2 function entering the likelihood is given by

χ2ðθ; dÞ ¼
X
i

�ðdRdωÞthðθÞ þ B0 − ðdRdωÞmeasðdÞ
σ2i

�2
; ð15Þ

with the sum being performed over the energy bins ωi
at which XENON1T measure their event rates. In Eq. (15),
ðdR=dωÞth denotes the theoretical event rate given by
Eq. (11), ðdR=dωÞmeas denotes the rate as measured
by XENON1T (black rebinned data points of Fig. 4 in
Ref. [80]), and B0 denotes the background model (red curve
of Fig. 4 in Ref. [80]), which is itself a function of energy.
The XENON1T background model is described in more
detail in Sec. III B of Ref. [80] (see in particular their
Table 1 and Fig. 3), and includes contributions from ten
different components, ranging from 214Pb to solar neutri-
nos. We refer the reader to Ref. [80] for more a detailed
discussion of B0.
For simplicity, we only consider the first 16 bins, in the

recoil energy range 1.5 keV≲ ωR ≲ 16.5 keV. We do not
consider bins beyond the 16th for two reasons:
(1) the theoretical solar chameleon event rate drops

quickly beyond the third bin, partly due to the
limited width of the differential chameleon flux
(see Fig. 2 below), and to the effects of energy
resolution and detector efficiency, entering in
Eq. (11) through ΘðωÞ and ϵðωÞ;

(2) the measured rate in the bins beyond the third is
highly consistent with the background model B0,
and therefore does not call for new physics explan-
ations: the only exceptions are a few anomalous bins
(the 17th, the 20th, the 24th, the 26th, and the 29th
bins respectively), which none of the proposed
theoretical models (including the solar axions, neu-
trino magnetic moment, and tritium explanations
invoked by the XENON1T collaboration) have been
able to explain.7

Of these 16 bins, the second and third deviate the most from
the XENON1T background model B0, and therefore
contribute the most to the excess.
We impose flat priors on log10 βγ ∈ ½0; 11�, log10ðMγ=

keVÞ ∈ ½0; 25�, log10 βe ∈ ½1; 2�, and log10ðMe=keVÞ ∈
½0; 25�. For βγ, the upper prior edge is motivated by the
latest results from the Kinetic Weakly Interacting Slim
Particles (KWISP) detector on the CAST axion search
experiment at CERN, which finds βγ < 1011 [58], whereas
the lower prior edge is arbitrary (we have checked that
extending it to lower values does not qualitatively affect our
final results). Due to the weak sensitivity of the XENON1T
measurements to βe, we have chosen a narrow prior for this
parameter. We have explicitly verified that extending the
prior further has no effects on our results. Similarly, fixing
βe (for instance to βe ¼ 102) would also have no effect on
our results, see later discussion below Eq. (16).
We allow the photon and electron disformal scales to

span the range between the keV scale and the Planck
scale. It is worth noting that limits on the disformal
scale M obtained from collider searches, indicating M ≳
Oð100 GeVÞ as for instance in Refs. [213–216] (including
works from one of us), only apply to the chameleon-quark
disformal coupling scale, and not to the scale governing the
coupling to photons and electrons. The strongest bound on
the scalar-photon disformal coupling comes from demand-
ing that Primakoff production of scalars in horizontal
branch stars does not dominate over neutrino losses, and
the strongest bound on the scalar-electron disformal cou-
pling similarly derives from demanding that losses from
Compton and bremsstrahlung production do not signifi-
cantly alter the properties of these objects. In both cases, the
bounds impose Me, Mγ ≳Oð0.1 GeVÞ as derived by one
of us in Ref. [212]. Note, however, that these bounds only
apply in the limit where the scalar’s mass can be neglected.
This is not the case in our scenario since we impose
meffðφ⊙Þ > T⊙, where T⊙ is the core temperature of the
Sun. The bounds derived in Ref. [212] therefore do not
directly apply to our case. Moreover, as we will discuss
in Sec. VI A, we expect production within these stellar
objects to be kinematically suppressed for the benchmark
point in parameter space we considered. We consequently
conservatively choose to allow Me and Mγ to be as low as
OðkeVÞ, but not any lower. As discussed at the end of
Appendix B, forMe,Mγ ≲OðkeVÞ, the backreaction effect
of the disformal coupling on the scalar field profile in the
Sun can become non-negligible, resulting in the break-
down of the resulting production flux computation. The
OðkeVÞ scale which determines whether or not this effect is
negligible is set by the maximal temperature reached within
the Sun.
To sample the posterior distribution of the chameleon

parameters we use Markov Chain Monte Carlo (MCMC)
methods. We make use of the cosmological sampler
Montepython3.3 [217], configured to act as a generic

7Note that also the 11th and 14th bins lie ≈1σ above the
background model B0. The solar axion explanation of the low-
energy excess improves the fit to the 14th bin through the
contribution of 57Fe axions, see Fig. 7(b) in Ref. [80].
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sampler. The convergence of the generated MCMC chains
is monitored through the Gelman-Rubin parameter R − 1
[218], and we require R − 1 < 0.01 for the chains to be
considered converged.
Finally, we also quantify the significance of the prefer-

ence (if any) for the solar chameleon model over the
background-only model B0. We do so by adopting the same
test statistic qðsÞ used by the XENON1T collaboration,
with s symbolically denoting the signal parameters, see
Eq. (17) in Ref. [80]. This is essentially a profile log-
likelihood test statistic. The statistical significance of the
preference (if any) for the solar chameleon model is then
determined by qð0Þ, i.e., comparing the difference in
goodness-of-fit of the best-fit solar chameleon model
relative to a B0-only fit.

V. RESULTS

We now analyze the XENON1T data using the meth-
odology, priors, and likelihood described in Sec. IV. We
perform an MCMC run on the four-dimensional parameter
space spanned by βγ, βe, Mγ , and Me. This MCMC run
confirms our earlier expectation that we are only sensitive
to the parameter combination of βγ andMe given by βeff in
Eq. (13), while not being sensitive to βe and Mγ. We shall
discuss the obtained constraints on βeff later on.
A very important result of our analysis is that we are

able to identify regions/benchmark points in parameter
space which provide a good fit to the XENON1T signal
(to be quantified shortly). One such benchmark example is
presented in Fig. 1, where the blue curve is obtained by
fixing the chameleon parameters to βe ¼ 102, Me ¼
103.6 keV, βγ ¼ 1010, Mγ ¼ 1000 TeV, Λ ¼ 1 μeV, and
n ¼ 1. The black data points denote the XENON1T
measurements, and the grey curve is the XENON1T
background model B0 (the measurements and background
are taken from Ref. [80]). Overall, the resulting fit to the
XENON1T signal is good, with a best-fit χ2min ≃ 13.2 for 16
datapoints. Moreover, we find an improvement in fit of
χ2min − χ2B0

≃ −4.0 with respect to a B0-only fit, with the
latter delivering χ2B0

≃ 17.2. Under this signal model, and
using the previously discussed qðsÞ profile log-likelihood
test statistic, a B0-only fit to the signal is rejected at a
significance of 2.0σ.
The detection rate in Eq. (12) depends on the spectrum of

chameleons on Earth resulting from Primakoff-like pro-
duction in the tachocline, as given by Eq. (10). In Fig. 2 we
show this solar chameleon flux on Earth using the same
benchmark choice of chameleon parameters as in Fig. 1.
Note that the production flux remains high even at energies
below 1 keV, an aspect which will have important conse-
quences for our subsequent discussion.
Although the fit in Fig. 1 is visually adequate, some

features require further investigation. In fact, focusing on
the second and third bins, i.e., the two bins where the

measured event rate deviates the most from B0, the quality
of the fit is only slightly worse that of the solar axion,
neutrino magnetic moment, and tritium explanations
invoked by XENON1T (see Figs. 7a-7d in Ref. [80]).
For comparison, the predicted signal resulting from the
best-fit solar axion model is given by the red curve in Fig. 1.
However, as discussed in Ref. [80], the background model
is rejected at a significance of more than 3σ within all these
signal models, much stronger than our 2.0σ.
The paramount difference between the solar axion and

solar chameleon models is the available production chan-
nels. The effects of this are evident by comparing the blue
and red curves in Fig. 1 (for solar chameleons and solar
axions respectively). As discussed in the Introduction,
screening prevents the production of chameleons in the
core through bremsstrahlung, Primakoff, and Compton
effects and proceeds via the Primakoff effect [54] in the
tachocline. Axions, on the other hand, are not affected
by screening, and are produced in the core of the Sun
through different mechanisms: these include ABC reac-
tions [209–211], the Primakoff effect [219], and the 57Fe
transition line [220]. These differences appear clearly in

FIG. 1. Benchmark example of a solar chameleon fit to
the XENON1T signal (event rate in units of ton−1 yr−1 keV−1

versus recoil energy in units of keV), representative of the best
achievable fit within this scenario. The chameleon parameters are
fixed to βe ¼ 102,Me ¼ 103.6 keV, βγ ¼ 1010,Mγ ¼ 1000 TeV,
Λ ¼ 1 μeV, and n ¼ 1. The black data points denote the
XENON1T measurements, the grey curve is the XENON1T
background model B0, and the blue curve gives the event rate
predicted by the solar chameleon model with parameters fixed to
the aforementioned values. The fit improves with respect to a
background-only fit by Δχ2 ≃ −4.0, with a total χ2 ¼ 13.2 for 16
datapoints. Various combinations of the chameleon parameters
can lead to a fit of identical quality to the benchmark fit shown
here, which is almost entirely governed by the combination of βγ
and Me given by βeff in Eq. (13), see also Eq. (16). Also shown
for comparison (red curve) is the best-fit result for the signal
derived from the solar axion model discussed by the XENON1T
collaboration in Ref. [80], see Fig. 7(b) therein.
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Fig. 1, where the solar chameleon model (blue line) shows
one peak at ω ≈ 2 keV, while the solar axion model (red
line) shows three distinct peaks at three different energies
corresponding to the different production mechanisms.
These features result in a better fit of the solar axion
model to the third, fourth, fifth, sixth, and 14th bins,
improving the overall fit and significance at which the
model is preferred over the background. In particular, ABC
reactions are responsible for the considerably improved fit
to the bins from the third to the sixth. These differences
between the solar chameleon and solar axion scenarios can
be distinguished in future DM direct detection experiments
by their different spectra. We further discuss the prospects
for detection of solar chameleons in future DM direct
detection experiments in Sec. VI B.
Although the measured recoil rate in the first bin is

perfectly in line with the background model, the chameleon
model overshoots this first point by just over one standard
deviation. The reason is that the solar chameleon differ-
ential flux on Earth remains appreciable at low energies
≪ OðkeVÞ, see Fig. 2. This results in an increase in the
event rate over B0 at lower energies, leading to a poorer fit
to the first bin, which is perfectly in line with B0 and would
not call for any additional contributions to the fit.
The reason why the signal beyond the third bin is

completely dominated by the background model B0 (which
at that point is in very good agreement with the XENON1T
measurements) is that the production flux, after peaking at
an energy slightly below ω ¼ 1 keV, quickly drops for
higher energies (see Fig. 2). In other words, in the sum in
the numerator of Eq. (15), one has ðdR=dωÞth þ B0 ≃ B0 ≃
ðdR=dωÞmeas for i ≥ 4, and therefore ðdR=dωÞth þ B0−
ðdR=dωÞmeas ≪ 1, resulting in small contributions to the χ2

for i ≥ 4 in the numerator of Eq. (15). For this reason,
computing the χ2 over all 16 bins might be a misleading
goodness-of-fit metric. For the same choice of benchmark
parameters as mentioned above, and in Fig. 1, the con-
tribution of the first three bins to the total χ2 is ≃6.5, which
better quantifies the imperfect fit to the first three bins
visible in Fig. 1.
Finally, let us discuss how XENON1T constrains the

effective coupling βeff , given by Eq. (13). We treat βeff as a
derived parameter whose posterior distribution we infer
from our MCMC samples of the four fundamental param-
eters. The normalized posterior distribution for log10 βeff is
given in Fig. 3, which shows that XENON1T is indeed able
to set meaningful constraints on this parameter.
The shape of the log10 βeff posterior, with a tail as

log10 βeff → 0 and a plateau for large negative values
of log10 βeff , is worth explaining further. Moving
log10 βeff → 0 means that either βγ is being raised or Me

is being lowered. In other words, either or both solar
chameleon production and detection are being enhanced.
Enhancing the signal sufficiently will make the total event
rate too large compared to the XENON1T measurements,
and hence increasingly unlikely, leading to the tail in the
log10 βeff posterior as log10 βeff → 0.
On the other hand, moving log10 βeff toward large

negative values means that either or both solar chameleon
production and detection are being suppressed. Within this
regime, the resulting event rate would be too low compared
to the XENON1T detector background, and therefore
the total signal is dominated by B0. This implies that
ðdR=dωÞth þ B0 ≃ B0 for all i in the numerator of Eq. (15),
regardless of the choice of model parameters. This behavior
leads to an extended “plateau” in parameter space where the

FIG. 2. Solar chameleon differential flux per unit energy on
Earth, in units of cm−2 s−1 keV−1, resulting from isotropic
production in the solar tachocline. The chameleon parameters
are fixed to βe ¼ 102, Me ¼ 103.6 keV, βγ ¼ 1010,
Mγ ¼ 1000 TeV, Λ ¼ 1 μeV, and n ¼ 1. This is an example
of set of parameters which maximizes the resulting quality of fit
to the XENON1T signal, as shown in Fig. 1 (blue curve).

FIG. 3. Normalized posterior distribution for log10 βeff, the
combination of the photon coupling βγ and the electron disformal
scale Me to which the XENON1T measurements are most
sensitive, see Eqs. (13), (16). A value of log10 βeff ≃ −4.5 is
required to provide a good fit to the XENON1T signal, of quality
identical to that shown in Fig. 1.
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likelihood is completely flat with χ2 ≃ 17.2. Along the
plateau, the quality of the resulting fit to the XENON1T
signal is not only identical for any choice of parameters, but
also identical to the quality of a B0-only fit. The goodness-
of-fit along the plateau is worse by only Δχ2 ¼ þ4.0 with
respect to the solar chameleon best-fit (for which
χ2min ≃ 13.2, see Fig. 1). This explains the shallow plateau
in the log10 βeff posterior for large negative values
of log10 βeff .
We find that the best fit to the XENON1T signal occurs

for a value of βeff ≃ 10−4.5. This implies

log10 βγ − 4 log10

�
Me

keV

�
≃ −4.5: ð16Þ

Because of the shape of the log10 βeff posterior shown in
Fig. 3 (the tail can extend indefinitely to large negative
values of log10 βeff ), we do not quote a confidence interval
on log10 βeff . Rather, we use Eq. (16) as indicative of what
combinations of βγ and Me lead to a good fit to the
XENON1T signal, of quality identical to that shown in
Fig. 1. We have also verified our earlier expectation that βe
andMγ play a negligible role in our analysis. We have fixed
these parameters to βe ¼ 102 and Mγ ¼ 1000 TeV respec-
tively, and repeated the analysis. Doing so, we find
essentially the same posterior for log10 βeff as shown in
Fig. 3, which was instead previously obtained by varying
all four parameters.
Demanding that solar chameleons fit the XENON1T

signal, and combining the relation in Eq. (16) and the upper
limit of βγ < 1011 from CAST [58] sets an upper limit on
Me ≲ 10 MeV. In other words, if Me ≳ 10 MeV, for any
allowed value of βγ the event rate will be completely
dominated by B0, and we will find ourselves along the
plateau for large negative values of log10 βeff in Fig. 3. This
upper limit on Me is ostensibly in contradiction with the
lower limit one obtains by demanding that horizontal
branch stars are not affected by the disformal coupling,
which sets Me ≳ 0.1 GeV, as found by one of us [212].
However, we note that the limit obtained in Ref. [212] is not
applicable to our case, as it was obtained assuming that the
scalar is massless. This is clearly not the case in our
scenario, given the constraints we have imposed on the
chameleon mass within the Sun, which in turn suppresses
production, making it so that the bounds obtained in
Ref. [212] do not apply. This is generically true for all
of the relevant limits in Ref. [212], which were all derived
assuming a massless scalar.
The upper limit Me ≲ 10 MeV is nominally in tension

with LEP constraints, which require Me ≳ 3 GeV as
derived by one of us in Ref. [212]. However, care must
be taken with this bound, as it again was derived assuming
a massless chameleon. A proper reevaluation of the bounds
of Ref. [212] would require a dedicated analysis, for

instance determining the field profile in the LEP pipe
simultaneously including conformal and disformal cou-
plings, a calculation which is well beyond the scope of this
paper. Therefore, in continuing our exciting program for the
direct detection of dark energy quanta, reevaluating the
LEP bounds is of paramount importance, and will be the
subject of follow-up work.8

Let us summarize the main findings of this section:
(1) The expected event rate in the XENON1T detector is

sensitive to the combination of the photon coupling
βγ and the electron disformal scale Me given by the
effective coupling βeff in Eq. (13).

(2) On the other hand, XENON1T has only very weak
sensitivity to βe, Mγ, Λ, and n.

(3) A value of log10 βeff ≃ −4.5 is required to fit the
XENON1T signal well. This leads to an improve-
ment in χ2 of ≃4.0 compared to a B0-only fit (B0

excluded at 2.0σ), and a quality of fit as shown in
Fig. 1. In no region of parameter space can the
quality of the fit to the XENON1T signal be better
than that shown in Fig. 1. As CAST requires
βγ < 1011, demanding that solar chameleons explain
the XENON1T signal and therefore log10 βeff ≃
−4.5 implies Me ≲ 10 MeV.

(4) Given the previous points 1. and 2., we can identify
various combinations of the chameleon parameters
which lead to a fit of identical quality to that shown
in Fig. 1. There is therefore a large window of
parameter space which can account for part of the
XENON1T excess, while remaining consistent with
laboratory and astrophysical tests.

(5) With respect to the solar axion model invoked by
XENON1T, the statistical significance of the pref-
erence for the solar chameleon model is lower
because of the poorer fits to the first bin, as well
as to a few bins at higher energies (due to the larger
available number of production channels for solar
axions). However, we stress that the solar chameleon
model is not excluded by other bounds, unlike the
solar axion model.

Our overall conclusion is that solar chameleons are able to
provide an adequate fit to the XENON1T signal. This raises
the tantalizing possibility that XENON1T, originally con-
structed to detect dark matter, may have achieved the first
direct detection of dark energy quanta.
In principle, one may also consider a hybrid chameleon-

axion scenario where both particles are present and
contribute to the XENON1T signal, which thus results

8Should the model be in tension with LEP constraints,
extensions which can alleviate this tension are possible. For
instance, along the lines of Ref. [221], one could entertain the
possibility of an environmentally-dependent disformal coupling.
This effectively amounts to an extension of the chameleon
mechanism retaining the background field-dependence in the
disformal term in Eq. (4), which we dropped for simplicity.
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from an incoherent sum of solar-produced axions and
chameleons. This could be beneficial for the solar axion
model, as it might be able to alleviate the tension in the
axion-electron coupling between the XENON1T results
and astrophysical constraints [81]. Within this scenario, the
lower-energy excess would be fitted by solar chameleons,
plus a smaller contribution from solar axions, allowing for a
lower value of gae. On the other hand, the higher-energy
end would be fit by the solar axion via its couplings to
photons and nucleons. We defer the study of this interesting
hybrid possibility to follow-up work.

VI. DISCUSSION

In this section, we discuss other experimental bounds on
our scenario, stellar bounds in particular, and the prospects
for detecting dark energy in current and planned dark
matter direct detection experiments.

A. Stellar cooling constraints

The stellar bounds on the axion-electron and axion-
photon coupling are debilitating for the solar axion inter-
pretation of the XENON1T excess [81,222]. The situation
with chameleons is different. The paramount difference
between the two models is the environment-dependence
of the chameleon’s mass. This ensures that chameleons are
not produced in the Sun’s core since Compton and
bremsstrahlung processes are kinematically suppressed,
leading to a severe Boltzmann suppression. Instead, cha-
meleons are produced in the strong magnetic field of the
solar tachocline. Similarly, the cores of red giant, horizontal
branch (HB), and white dwarf stars are denser than the
Sun’s by a significant factor, implying an even stronger
suppression in these objects. It is possible that some of
these objects may have strong magnetic fields [223], but
without dedicated individual observations and detailed
stellar modelling, it is not possible to derive quantitative
constraints on chameleons.
Additionally, in Table I we report typical core den-

sities and temperatures for these objects, alongside the
chameleon mass for the benchmark parameter space point
we have considered throughout the paper. As we see,
production of chameleons within these objects is strongly
kinematically suppressed, even more so than within the
Sun, implying that stellar cooling constraints are evaded.
Therefore, the bounds obtained by one of us in Ref. [212],
derived assuming a massless chameleon, may be safely
evaded.
Finally, we note that the literature is rich with astro-

physical (stellar and galactic) bounds on chameleons, see
e.g., Refs. [27,28,224–229]. These refer to searches for the
effects of fifth forces rather than chameleon particle
production. Chameleon models predicting fifth forces in
astrophysical objects occupy a different region of parameter
space than those that give rise to chameleon particle

production in the solar tachocline considered in this work.
The underlying reason for this is that fifth forces are only
relevant in astrophysical bodies of radius R if mðφ0ÞR ∼ 1,
where φ0 is the background field in that body. The
chameleon theories accessible to the direct detection
experiments that we have discussed in this work have
mðφ⊙ÞR⊙ ≫ 1, implying a fifth force range too small to
affect stellar structure. For this reason, it is generally the
case that astrophysical fifth force searches do not constrain
our proposed scenario. These theories may be subject to the
bounds arising from laboratory tests [29,37], although such
bounds are highly model-dependent. The specific model
studied in this work is able to simultaneously satisfy
all experimental bounds and account for part of the
XENON1T signal.

B. Other dark matter direct detection experiments

Recent DM direct detection searches prior to XENON1T
did not report any excess over the expected background.
For example, the PandaX-II experiment with an exposure
of ≈27 ton × day placed an upper limit on the axion-
electron coupling gae ≲ 4.35 × 10−12 for an axion mass
ma≲1keV [230].9 A competitive limit has also been
placed by the LUX-ZEPLIN collaboration with an expo-
sure of 11.2 ton × day, which lead to the result gae ≲ 3.5 ×
10−12 at 90% confidence level [232]. These exposures are
all significantly lower than the XENON1T exposure of
0.65 ton × yr, which could explain why these experiments
did not observe any low-energy excess.
Various upcoming experiments plan to search for the

signal reported by the XENON1T collaboration, and will
either confirm or disprove it. These experiments include
XENONnT (the planned upgrade to XENON1T) [146], as
well as PandaX-4T [145] and LUX-ZEPLIN [141], all of

TABLE I. Typical core densities and temperatures for stellar
objects of interest: the Sun, white dwarfs, red giants, and
horizontal branch stars. The final column reports the chameleon
mass within the core of these objects for the benchmark
parameter space point we have considered throughout the paper,
where βe ¼ 102, Λ ¼ 1 μeV, and n ¼ 1. It is clear that produc-
tion of stellar chameleons is strongly kinematically suppressed
within these objects, as mcore ≫ Tcore.

Stellar object

ρcore
(typical)
[g=cm3]

Tcore
(typical)
[keV]

mcore
[keV]

Sun 150 1.3 6
White dwarfs 106 Oð1Þ ∼6000
Red giants 5 × 105 Oð10Þ ∼4000
Horizontal branch stars 5 × 104 Oð10Þ ∼100

9A more recent analysis with an exposure of 100.7 ton × day
found a similar result, gae ≲ 4.6 × 10−12 [231].
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which use a dual-phase xenon time projection chamber. In
Table II we report the expected exposure in units of ton ×
yr and electron recoil background in units of ðton × yr ×
keVÞ−1 for each of these experiments.
We focus on the benchmark point in parameter space

considered in Sec. V, as well as Figs. 1 and 2. Adopting
these values, the expected excess number of events per year
due to a hypothetical signal is about 20 for XENON1T, 180
for XENONnT, 130 for PandaX-4T, and 250 for LUX-
ZEPLIN. Note that we have not considered the effects of
background noise or energy resolution in obtaining these
estimates of excess number of events since the energy
resolution specifications for these future experiments are
currently unavailable.
As is clear from Table II, all of these next-generation

xenon-based experiments will have a background level B0 a
factor of ≈5–6 lower than current levels, while the exposure
will increase by over an order of magnitude. This combi-
nation of lower background and increased exposure results
leads to the extremely high number of expected events. By
virtue of this, future experiments will be able to confirm or
disprove our hypothesis that solar chameleons are the
origin of the XENON1T signal with extremely high
statistical significance. More generally, it will be possible
to test at high significance whether the XENON1Texcess is
due to a statistical fluke, a background contaminant, or new
physics such as the scenario considered here.

VII. CONCLUSIONS

Most of our knowledge about dark energy (DE) arises
from cosmological measurements which are mainly sensi-
tive to its gravitational effects. Yet searching for non-
gravitational signatures of DE by directly detecting DE
quanta would be an extremely important step toward
understanding the physics powering cosmic acceleration.
In this paper, our aim has been to broaden the scope of new
physics accessible to terrestrial dark matter (DM) direct

detection experiments by investigating the intriguing pos-
sibility that these instruments may be able to detect DE
quanta via their couplings to matter. Specifically, we have
envisaged a scenario wherein DE particles produced in the
strong magnetic fields of the solar tachocline travel to Earth
and are absorbed by electrons or nuclei in terrestrial DM
detectors. In this paper, focusing on DE scalars including
screening mechanisms of the chameleon type, we have laid
out the formalism for computing the expected signal from
such a process, demonstrating that it can lead to measurable
recoils in the OðkeVÞ range, well within the sensitivity of
current and upcoming DM direct detection experiments.
We have applied our results to the XENON1T experi-

ment, which recently reported a ≈3.3σ excess in their
electron recoil data at recoil energies of ≈1–2 keV. We
have shown that solar chameleons can explain the
XENON1T excess (see blue curve in Fig. 1), and are
preferred over the background-only hypothesis at a sig-
nificance of ≈2.0σ. Our results have been obtained using
the code which we make publicly available at github.com/
lucavisinelli/XENONCHAM.
Compared to themuchdiscussed solar axion interpretation

of the XENON1T signal, the statistical preference for solar
chameleons is lower, mostly due to the reduced number of
available production channels in the Sun (chameleons are
only produced through Primakoff-like processes in the
tachocline). However, the stellar cooling constraints which
are debilitating for the solar axionmodel do not apply to solar
chameleons due to the environment-dependence of the
chameleon mass, which within the dense environments of
red giants and white dwarfs results in Compton and brems-
strahlung production processes being suppressed.
We have also studied prospects for testing this explan-

ation in future DM direct detection experiments. If solar
chameleons are indeed at the origin of the XENON1T
excess then this will be confirmed at very high significance
in upcoming experiments such as XENONnT, PandaX-4T,
and LUX-ZEPLIN. What is perhaps more important is that
future low-threshold DM direct detection experiments will
be well-suited to detect the signatures of DE particles
produced within the Sun.
There are several avenues for future research in this

direction. While our study has focused on chameleon-
screened scalars, we stress that the effective theory approach
we have adopted is quite general, and our formalism can
therefore be applied (with appropriate modifications) to
several other physical scenarios of interest. More generally,
we hope that this paper will stimulate further research aimed
toward enablingdirect detection of dark energy, searching for
nongravitational signatures of dark energy, and unraveling
the physics of cosmic acceleration in terrestrial laboratories.
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APPENDIX A: CHAMELEON SCREENING

Chameleon-screened theories provide an explicit exam-
ple where the mapping between the effective theory in the
solar system given in the main text and a more complete
theory can be calculated [189] (see Refs. [29,233] for more
details about screening). In this case, the scalar ϕ is
canonically normalized with a scalar potential VðϕÞ. The
interaction with matter is obtained via the Jordan frame
metric gJμν ¼ A2ðϕÞgμν. We treat the disformal and deriva-
tive interactions as negligible perturbations compared to the
dominant effect due to the conformal rescaling given by
AðϕÞ. This is valid provided the suppression scales of the
disformal and derivative interactions are large enough. In
the Einstein frame, where the graviton and scalar are
canonically normalized but the coupling to matter is non-
minimal, the dynamics of ϕ depend on the effective
potential

VeffðϕÞ ¼ VðϕÞ þ ρAðϕÞ: ðA1Þ

where ρ is the conserved matter density in the Einstein
frame, related to the density in the Einstein frame as

ρE ¼ Aρ. This relationship between ρE and ρ follows from
the nonconservation of the Einstein-frame energy momen-
tum tensor which, for pressureless matter, gives [234]

_ρE þ 3hEρE ¼ β

mPl
ρE _ϕ; ðA2Þ

where _ρE ¼ uμDμρE is the Einstein-time derivative along
the trajectories of the matter particles with 4-velocities uμ.
The local Hubble rate in the Einstein frame is hE ¼ Dμuμ=3
which reduces to the cosmological Hubble rate hE ¼ H on
large scales. From Eq. (A2), we deduce that

_ρþ 3hEρ ¼ 0; ðA3Þ

which expresses the local conservation of the matter
density ρ. The Jordan frame matter density ρJ ¼ A−4ρE
is conserved in the Jordan frame where dtJ ¼ AdtE and the

local Hubble rate is given by hJ ¼ hE
A þ _A

A2, i.e.,

dρJ
dtJ

þ 3hJρJ ¼ 0: ðA4Þ

The Jordan frame matter density is deemed to be the
“physical” density as, in the local Jordan frame where the
Jordan metric is nearly Minkowskian, the Lagrangian of the
standard model reduces to the usual one. As long as A ≈ 1,
the difference between ρ and ρJ is negligible.
Chameleon-screened models have a minimum of the

effective potential ϕðρÞ which depends on the conserved
matter density ρ in the Einstein frame. The minimum
equation reads

dV
dϕ

����
ϕðρÞ

þ ρ
dA
dϕ

����
ϕðρÞ

¼ 0; ðA5Þ

which can be used to obtained a parametric description of
the value ϕðρÞ. Taking the derivative of the minimum
equation with respect to ρ leads to

m2
ϕðρÞ

dϕðρÞ
dρ

¼ −
dA
dϕ

����
ϕðρÞ

; ðA6Þ

where we have defined the effective mass

m2
ϕðρÞ ¼

d2V
dϕ2

����
ϕðρÞ

þ ρ
d2A
dϕ2

����
ϕðρÞ

: ðA7Þ

It is convenient to introduce the effective coupling

βðρÞ ¼ MPl
d lnA
dϕ

����
ϕðρÞ

; ðA8Þ

and to integrate (A6)
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ϕðρÞ
MPl

¼ ϕ0 −
Z

ρ

ρ0

AðρÞβðρÞ
m2

ϕðρÞM2
Pl

dρ: ðA9Þ

This provides a one-to-one relationship between the density
of matter and the value of the minimum ϕðρÞ. Moreover
from (A6) we get

dA−1ðρÞ
dρ

¼ β2ðρÞ
m2

ϕðρÞM2
Pl

; ðA10Þ

allowing one to obtain AðρÞ as a decreasing function of ρ,
i.e., A−1 is an increasing function of ρ with a positive
derivative. Finally the minimum equation gives

dV
dρ

¼ −ρ
β2ðρÞA2ðρÞ
m2

ϕðρÞM2
Pl

; ðA11Þ

from which we can find VðρÞ. Hence eliminating ρ between
AðρÞ, VðρÞ, and ϕðρÞ, one can reconstruct AðϕÞ and VðϕÞ.
The potential VðϕÞ is defined up to an integration

constant, i.e., the screening properties of the models do
not depend on an additive cosmological constant. This
constant has to be tuned to generate the appropriate
acceleration of the Universe. As the screening properties
are independent of this choice, this has no effects on the
results obtained in this paper. As a specific example, let us
consider the inverse power law potential.

VðϕÞ ¼ V0 þ
Λ4þn

ϕn ; ðA12Þ

where we have included the constant V0 which needs to be
adjusted to fit the current dark energy value. As we have
seen, the screening properties only depend on the inverse
power law part. We note that models could arise from the
strong dynamics of a confining supersymmetric dark sector
at higher energy [235].
The configuration of the field at which the potential is

minimized ϕðρÞ, and the chameleon rest mass squared
obtained from the curvature of the effective potential, m2

ϕ,
are given by

ϕðρÞ ¼
�
nMPlΛ4þn

βmρ

� 1
1þn

; ðA13Þ

m2
ϕðρÞ ¼ nð1þ nÞΛ4þn

�
βmρ

nMPlΛ4þn

�2þn
1þn

; ðA14Þ

This is the mass mϕ that we use as a template in the main
text [see Eq. (9)].
Finally this reconstruction procedure of VðϕÞ and AðϕÞ

from mϕðρÞ and βðρÞ allows one to design models where
the production of scalars in the tachocline is favored
compared to very deep inside the Sun or in other even

denser stars. In the Sun, all that is required is that in the core
where the density ρcore ≈ 150 g cm−3 is large compared to
the one in the tachocline ρtach ≈ 1 g cm−3, the production of
scalars is kinematically forbidden. For chameleons pro-
duced in matter, e.g., by the Primakoff process deep in the
electric field of a nucleus, their effective mass is modified
by the presence of the surrounding plasma and their mixing
with photons as m2

eff ¼ m2
ϕðρcoreÞ − ω2

Pl where the plasma
frequency is defined in Eq. (B6). For large enough
densities, the mass mϕðρcoreÞ is generically larger than
the plasma frequency which scales as ρ1=2.10 As a result,
only scalars of momenta k2 ≃ T2

core −m2
eff can be produced.

When meff ≳ Tcore, production is highly suppressed. This
also applies to the Compton and bremsstrahlung processes
involving the direct coupling between scalars and electrons
where the same kinematical obstruction is at play. This
mechanism was first proposed in Ref. [236].

APPENDIX B: PRODUCTION OF CHAMELEONS
IN THE SUN

Given the chameleon-photon disformal coupling in
Eq. (6), the probability of a photon in the uniform magnetic
field B converting into a chameleon after a distance l is
given by [195]

Pγ→ϕ ¼ 4Δ2
B

4Δ2
B þ ðΔpl − ΔaÞ2

sin2
l
lω

; ðB1Þ

where the coefficients are

ΔB ¼ 2βγ
MPl

Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p ; ðB2Þ

Δpl ¼
ω2
pl

2ω
; ðB3Þ

Δa ¼
m2

ϕ þ 2b2ω2ð1 − B2
z=B2Þ

2ωð1þ b2Þ ; ðB4Þ

lω ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Δ2

B þ ðΔpl − ΔaÞ2
q : ðB5Þ

In the expressions above, ω is the energy of the produced
chameleon, the dimensionless parameter b ¼ B2

t =M4
γ is the

ratio of the magnetic field in the solar tachocline Bt to the
UV-cutoff scale of the effective theory, and the plasma
frequency is given in terms of the electron number density
ne and the electron mass me as

10For the inverse power law chameleons with n ¼ 1, their mass
scales as ρ3=4.
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ω2
pl ¼

4πne
me

≈ ð2.0 × 108 GHzÞ2
�

ne
1023 cm−3

�
: ðB6Þ

The quantity Bz is the z-component of the magnetic field
which we fix by assuming an isotropic magnetic field
distribution as B2

z ¼ B2=3.
The thickness of the tachocline is much larger than the

main free path of photons in the region, λ ≈ 0.3 cm
[237,238], so that photon propagation in this region
proceeds through a random walk process, which can be
described as a Poisson diffusion process with mean free
path λ. For a typical distance l between two scatterings, the
total number of scatterings per unit time is ∼c=l. For a
given length path l, the differential probability of con-
version in the solar interior is [54]

dPϕ

dR
¼

Z þ∞

0

dl
l

ffiffiffiffi
ls
l

r
e−l=λ

λ
Pγ→ϕ; ðB7Þ

where ls ¼ ct̄ ≃ 3 × 1010 cm in the tachocline, i.e., approx-
imately one light-second. Here, t̄ is the typical time such
that the photon flux at the tachocline nγ;t ¼ v̄n̄t where n̄t is
the photon number density at the tachocline and v̄ ¼
ðcλ=t̄Þ1=2 is the typical radial velocity of photons due to
their Brownian motion. The differential flux of chameleons
per unit energy emitted by the Sun is

dΦ
dω

¼
Z

R⊙

0

dRpγðRÞnγðRÞ
dPϕ

dR
; ðB8Þ

where nγðRÞ is the photon flux profile and the photon
spectrum pγðRÞ depends on the temperature profile of the
plasma T ¼ TðRÞ as

pγðRÞ ¼
1

2ζð3ÞT3

ω2

expðω=TÞ − 1
: ðB9Þ

We model the magnetic field profile inside the Sun as a
thin shell around the solar tachocline, where the magnetic
field is taken to be constant with a value Bt ¼ 30 T. The
thin shell around the tachocline has radius Rt ¼ 0.7R⊙,
where R⊙ is the radius of the Sun, and the thickness
ΔR ¼ 0.01R⊙. The integrand in Eq. (B8) at the tachocline
is then

dΦ
dω

¼ ΔRpγ;tnγ;t

Z þ∞

0

dl
l

ffiffiffiffi
ls
l

r
e−l=λ

λ
Pγ→ϕ; ðB10Þ

where nγ;t ¼ nγðRtÞ ≈ 1021 cm−2 s−1 and pγ;t is the expres-
sion in Eq. (B9) evaluated at the tachocline temperature
T ≈ 0.2 keV, and we have used Eq. (B7) which expresses
the differential probability of conversion. Inserting Eq. (B1)
into Eq. (B10) we obtain

dΦ
dω

¼ pγ;tnγ;t
ΔR
λ

4Δ2
B

4Δ2
B þ ðΔpl −ΔaÞ2

ffiffiffiffiffiffi
ls
lω

s
I
�
lω

λ

�
; ðB11Þ

where the integral over y ¼ l=lω has been performed
exactly. For any constant a, we find

IðaÞ≡
Z þ∞

0

dy
sin2y

y3=2
e−ay¼

ffiffiffi
π

2

r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

ffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4

pq
−

ffiffiffiffiffiffi
2a

p �
:

ðB12Þ

For most of the region of the parameter space we explore,
the relation lω ≪ λ holds, for which the integral in
Eq. (B12) is Iðlω=λÞ ≈

ffiffiffi
π

p
.

For the region of parameters allowed we haveΔB ≪ Δpl.
We also assume Mγ ≫ OðkeVÞ, which corresponds to
b ≪ 1. In this limit, the expression for the solar chameleon
flux in Eq. (B11) reduces to

dΦ
dω

¼ pγ;tnγ;t
ΔR
λ

32β2γ ls1=2B2

M2
Pl

�
ω

ω2
pl −m2

ϕ

�
3=2

I
�
lω

λ

�
:

ðB13Þ

In the limit where m2
ϕ ≪ ω2

pl, Eq. (B13) reduces to

dΦ
dω

¼ pγ;tnγ;t
ΔR
λ

32β2γ ls1=2B2

M2
Plω

3
pl

ω3=2I
�
lω

λ

�
: ðB14Þ

The computation we have just outlined is valid as long as
the effect of the disformal coupling on the scalar field
profile in the Sun is negligible. In other words, that the
backreaction effect due to the disformal coupling can be
neglected. The disformal coupling leads to a contribution to
the kinetic term of the scalar field proportional to P=M4

i
[239–243], with P ∝ T4 the pressure of the solar photon
gas, at a temperature T (where, in our units, the propor-
tionality factor is smaller than unity). Therefore, requiring
that the disformal coupling does not modify the field-
profile in the Sun is tantamount to requiring that
Mi ≳ Tcore, and therefore Mi ≳OðkeVÞ. The condition
in the tachocline is weaker as its temperature is lower than
the core temperature by an order of magnitude.
In the analysis of Sec. IV, we have imposed priors which

ensure thatMγ,Me ≳OðkeVÞ, to satisfy the previous bound.
In addition, we note that for the benchmark point of para-
meter space we have discussed throughout the paper, and in
particular in Figs. 1 and 2, we have setMe ¼ 103.6 keV and
Mγ ¼ 1000 TeV, such that the bound is well satisfied.

APPENDIX C: CHAMELEO-ELECTRIC CROSS
SECTION

In this Appendix we derive an expression for the
detection cross section of chameleons from the analogue
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of the photoelectric effect. The cross section for the
“chameleo-electric” effect receives contributions from each
of the three terms in the last line of the Lagrangian in
Eq. (5). We first consider the disformal coupling between ϕ
and the electron,

L ⊃
ffiffiffiffiffiffi
−g

p 1

M4
e
∂μϕ∂νϕT

μν
e ; ðC1Þ

where Me ¼ M=d1=4e is the energy scale related to the
disformal coupling with electrons. The stress-energy tensor
associated with an electron four-spinor ψ is

Tμν
e ¼ i

2
ðψ̄γðμDνÞψ −Dðμψ̄γνÞψÞ; ðC2Þ

where γμ are the Dirac matrices and a bracket denotes a
symmetrization over the four-indices μ, ν. In the following,
we adopt Feynman slash notation =A ¼ γμAμ for a four-
vector Aμ, and we define ψ̄ ¼ ψ†γ0.
We decompose the electron free field as

ψ ¼
X
s

Z
d3pffiffiffiffiffiffiffiffi
2Ep

p ðusðpÞbse−ip·x þ vsðpÞcseip·xÞ; ðC3Þ

where the subscript s labels the spinor component and
usðpÞ and vsðpÞ are Dirac spinors following the normali-
zation condition

P
s usūs ¼ =pþme and

P
s vsv̄s ¼

=p −me. The operator bsðpÞ and its adjoint satisfy the
anticommutation relation

fbsðpÞ; b†s0 ðp0Þg ¼ δð3Þðp − p0Þδss0 ; ðC4Þ

and similarly for the operator csðpÞ, where curly brackets
denote the anticommutation of the two operators. We have
defined d3p ¼ d3p=ð2πÞ3.
The nonrelativistic electron bound state is

ψ ¼
X
s

Z
d3pχsφðpÞbse−ip·x; ðC5Þ

where the Dirac spinor χsðpÞ has the antiparticle entries
equal to zero and φðpÞ is a nonrelativistic wave function in
the momentum representation. We consider the ground
state of a bound electron,

φðrÞ ¼ 1ffiffiffi
π

p
�
Z
a0

�
3=2

e−Zr=a0 ; ðC6Þ

where Z is the atomic number (Z ¼ 131 for xenon) and a0
is the Bohr radius. In momentum space, we obtain

φðpÞ ¼
Z

d3re−ip·rφðrÞ ¼ 8
ffiffiffi
π

p
ðp2 þ ðZ=a0Þ2Þ2

�
Z
a0

�
5=2

;

ðC7Þ

where the wave function is normalized such that

Z
d3pjφðpÞj2 ¼ 1: ðC8Þ

The scattering vertex from the disformal coupling in
Eq. (C1) is sketched in the Feynman diagram in Fig. 4 and
amplitude given by

M ¼ −
1

4M4
e
ūðp0ÞγμAμχφðpÞ; ðC9Þ

where we have introduced the vector

Aμ ¼ k0μðpþ p0Þνkν þ kμðpþ p0Þνk0ν: ðC10Þ

The square of the amplitude summed over the spins of
the final states and averaged over the spins of the initial
states is

jMj2 ¼ jφðpÞj2
64M8

e
Trð=Að=pþmeÞ=Að1þ γ0ÞÞ

¼ jφðpÞj2
16M8

e
½A2ðme − E0Þ þ 2A0ðAμp0

μÞ�; ðC11Þ

with the cross section

σϕe;dis ¼
Z

d3p
2k

d3k0

2ω0
d3p0

2E0 jMj2=δð4Þðkþ p − k0 − p0Þ

¼
Z

d3p
2k

d3k0

2ω0
1

2E0 jMj2=δðωþ E − ω0 − E0Þ

¼ 1

ð2πÞ5
Z

dydy0dτdpp2
ðk0Þ2
8kE0ω0 jMj2 dk

0

dω0 : ðC12Þ

FIG. 4. Feynman diagram for the scattering process associated
with the disformal coupling in Eq. (C1).

SUNNY VAGNOZZI et al. PHYS. REV. D 104, 063023 (2021)

063023-18



Here, =δðxÞ ¼ 2πδðxÞ and we decomposed the four-vectors
as follows. We consider the incoming and outgoing
chameleon four-vectors kμ ¼ ðω;kÞ and ðk0Þμ ¼ ðω0;k0Þ.
The electron is described by the systems pμ ¼ ðE;pÞ and
ðp0Þμ ¼ ðE0;p0Þ, where E ¼ me − Eb and Eb is the binding
energy of the atomic electron. In the following, we make
use of the magnitudes k ¼ jkj, k0 ¼ jk0j, p ¼ jpj, and
p0 ¼ jp0j. We also introduce the angle θ between k and p,
the angle θ0 between k and k0, and the azimuthal angle τ
between the projections of k0 and p on the plane orthogonal
to k. The orientations of these vectors are sketched
in Fig. 5.
Since dk0=dω0 ¼ ω0=k0, the expression for the cross

section in Eq. (C12) is

σϕe;dis ¼
1

128M8
eð2πÞ5

Z
dydy0dτdpp2jψðpÞj2

×
k0

E0k
½A2ðme − E0Þ þ 2A0ðAμp0

μÞ�; ðC13Þ

where we have used the expression for the amplitude
squared in Eq. (C11).
To proceed with the computation, we consider the

conservation of the four-vector on shell

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

ϕ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 þm2

e

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 þm2

ϕ

q
; ðC14Þ

ðp0Þ2 − ðk0Þ2 − p2 ¼ k2 − 2pk0xþ 2pky − 2kk0y0; ðC15Þ

where y ¼ cos θ, y0 ¼ cos θ0, x ¼ yy0 þ sin θ sin θ0 cos τ.
In the detector, the mass of the chameleon is expected to

be set by a resonance condition involving the size of the
cavity R [71,244,245], and thus to be of the order of
mϕ ∼ 1=R ≈ 10−7 eV, which is much smaller than other
energies in the system. For this reason, we neglectmϕ in the
rest of the computation. Combining Eqs. (C14) and (C15)
we obtain

jk0j ¼ E2 þ 2kE − p2 −m2
e − 2kpy

2ðkþ E − px − ky0Þ ≈ k; ðC16Þ

where “≈” indicates the limit me ≫ k ≫ jEbj ≫ mϕ. We
define the product

α1 ¼ ðpþ p0Þνkν ¼ ðEþ E0Þω − ðpþ p0Þ · k
¼ ðE0 þ EÞω − ð2pyþ k − k0y0Þk; ðC17Þ

where in the last line the spatial part is p0 ¼ pþ k − k0.
Similarly, we define

α2 ¼ ðpþ p0Þνk0ν ¼ ðEþ E0Þω0 − ðpþ p0Þ · k0

¼ ðE0 þ EÞω0 − ð2px − k0 þ ky0Þk0: ðC18Þ

We then have Aμ ¼ α1k0μ þ α2kμ. In the limit considered,
E ≈ E0 ≈me, so we obtain

α1 ≈ α2 ≈ 2meω: ðC19Þ

In the definitions of α1 and α2, the temporal part of the four-
product is the dominant one in the limit considered. The
time component of the vector Aμ is

A0 ¼ α1ω
0 þ α2ω ≈ 4meω

2; ðC20Þ

where in the last step we used Eq. (C19). The square of the
vector Aμ is

A2 ¼ AμAμ ¼ ðα1k0μ þ α2kμÞðα1k0μ þ α2kμÞ
¼ m2

ϕðα21 þ α22Þ þ 2α1α2ðωω0 − kk0y0Þ
≈ 2α1α2ðωω0 − kk0y0Þ; ðC21Þ

where the last approximation assumes a massless chame-
leon at detection, kμkμ ¼ 0 or jkj ¼ ω. Since ω0 ≈ ω, in the
limit considered we have

A2 ≈ 8m2
eω

4ð1 − y0Þ: ðC22Þ

We evaluate the product
FIG. 5. Relative orientation of the vectors k, k0, p, in the
spherical coordinate system chosen.
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Aμp0
μ ¼ A0E0 −A · p0

¼ ðα1ω0 þ α2ωÞE0 − ðα1k0 þ α2kÞ · ðpþ k − k0Þ
¼ ½α1ω0ðE0 − pxþ ky0 − k0Þ
þ α2ωðE − pyþ k − k0y0Þ�

≈ 4m2
eω

2; ðC23Þ

where in the last step E ≈ E0 ≈me ≫ jpj; jkj; jk0j0. Using
the approximation

E0 ≈me þ ð1 − y0Þ ω
2

me
; ðC24Þ

together with the expressions in Eqs. (C20), (C22), and
(C23), we find

A2ðme − E0Þ þ 2A0ðAμp0
μÞ ≈ −8meω

6ð1 − y0Þ2 þ 32m3
eω

4;

ðC25Þ

so the term is dominated by the part 2A0ðAμp0
μÞ. The

second line in the computation of the cross section in
Eq. (C13) is then

k0

E0k
½A2ðme − E0Þ þ 2A0ðAμp0

μÞ� ≈ 32m2
eω

4: ðC26Þ

For a chameleon produced in the Sun with an energy ω, and
in the limit in which its effective mass in the detector can be
neglected, the cross section is

σϕe;dis ≈
1

128M8
eð2πÞ5

Z
dydy0dτdpp2jψðpÞj2½32m2

eω
4�

¼ m2
eω

4

M8
eð2πÞ4

Z
dpp2jψðpÞj2 ¼ m2

eω
4

8π2M8
e
; ðC27Þ

where the angular integral is trivial as there are no angles
appearing in Eq. (C26). In the last step, we have normalized
the wave function according to Eq. (C8).
A second contribution to the cross section comes from

the conformal term in Eq. (5)

L ⊃
ffiffiffiffiffiffi
−g

p
βe

ϕ

MPl
Te; ðC28Þ

for which the absorption cross section depends on the
photo-electric cross section σphoto in the limit ω ≫ mϕ as
[210,246,247]

σϕe;conf ¼
β2eω

2

2παM2
Pl

σphoto: ðC29Þ

We have taken the energy-dependent photoelectric cross
section from Ref. [248]. Note, that we have not considered
the production/detection from the XT coupling and there-
fore set ce ¼ 0.
In terms of the parameters used in the MCMC analysis,

Eqs. (C27) and (C29) combine to give the following
expression for the cross section

σϕe ¼ σϕe;dis þ σϕe;conf ¼
m2

eω
4

8π2M8
e
þ β2eω

2

2παM2
Pl

σphoto: ðC30Þ

Although in this work we have focused on xenon-based
detectors such as XENON1T, the results of the computation
can be applied more broadly to any material.
When the second term can be neglected, the event rate in

the detector given by Eq. (12), with flux given in Eq. (B14),
gives

dR0ðωÞ
dω

¼ NXepγ;tnγ;t
ΔR
λ

R2
⊙

d2⊙

β2eff ls
1=2B2

π3=2M2
Plω

3
pl

m2
eω

11=2

keV8
; ðC31Þ

where βeff has been defined in Eq. (13).
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