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Nonthermal acceleration of particles in magnetohydrodynamic (MHD) turbulence plays a central role
in a wide variety of astrophysical sites. This physics is addressed here in the context of a strong
turbulence, composed of coherent structures rather than waves, beyond the realm of quasilinear theory.
The present description tracks the momentum of the particle through a sequence of frames in which the
electric field vanishes, in the spirit of the original Fermi scenario. It connects the sources of energy gain
(or loss) to the gradients of the velocity of the magnetic field lines, in particular the acceleration and the
shear of their velocity flow projected along the field line direction, as well as their compression in the
transverse plane. Those velocity gradients are subject to strong intermittency: they are spatially
localized, and their strengths obey power law distributions, as demonstrated through direct measure-
ments in the incompressible MHD simulation of the Johns Hopkins University database. This
intermittency impacts the acceleration process in a significant way, which opens up prospects for a
rich phenomenology. In particular, the momentum distribution, which is here captured through an
analytical random walk model, displays extended power law tails with soft-to-hard evolution in time, in
general agreement with recent kinetic numerical simulations. Extensions to this description and possible
avenues of exploration are discussed.
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I. INTRODUCTION

The remarkable wealth of physical phenomena that
inhabit the cascades of magnetohydrodynamic (MHD)
turbulence [1–3], from the large scales of stirring motions
down to the microscopic dissipative layers, the ubiquity
of magnetized turbulence in space plasmas, and the
decisive roles that it plays in various astrophysical
settings [4–7], have turned its study into a field of
research of its own right, with broad interdisciplinary
connections. In highly conducting, collisionless astro-
physical plasmas, MHD turbulence indeed governs the
transport of particles, including cosmic rays, it regulates
the thermodynamical properties of plasmas, and of more
direct concern to the present study, it promotes particle
acceleration, thereby opening a connection between the
fundamentals of plasma turbulence and nonthermal
astronomy.
In his seminal works [8,9], E. Fermi described particle

acceleration in highly conducting, turbulent plasmas
through the kinematics of discrete scattering events: a
bounce of the particle on a region of high magnetic field
strength in motion, or a turn-around of the trajectory in a
curved magnetic field configuration, which, in a more
modern context of guiding center theories of particle
motion, can be pictured as “grad-B drift” and “curvature
drift” energization.

Most of the literature in this field nevertheless hinges on
the notion of wave particle resonance in the context of
quasilinear theory [10–13] and its more recent nonlinear
extensions [14–17]. In this picture, the turbulent plasma is
described as a linear superposition of uncorrelated waves,
e.g., Alfvén and magnetosonic modes in ideal magnetohy-
drodynamics (MHD). Energy gain then derives from phase
locking of the particle trajectory with those waves. A truly
remarkable aspect of quasilinear theory is its ability to
provide explicit calculations of the acceleration process, up
to the very shape of the accelerated spectrum, from a limited
number of parameters, most notably the turbulence strength
and the power spectrum of magnetic fluctuations [18–24].
This has triggered a wealth of applications in astrophysics,
on all scales, from the Sun [25–29] to the remote Universe
[30–35], including high-energy sources harboring relativistic
plasmas in extreme environments [36–42].
However, the realization [43–45] that wave particle

resonances disappear in the context of modern anisotropic
MHD turbulence theories [46–52] has cast shadows on this
program and more generally on the role of waves in
turbulent dissipation. Accounting for nonlinear effects,
such as resonance broadening related to the finite lifetime
of the eigenmodes, can at best lead to scattering timescales
of the order of the coherence scale of the turbulence, at
least for those modes that are subject to anisotropy.
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Consequently, this renders hazardous the extrapolation of
predictions based on quasilinear calculations to the regime
of strong turbulence1; this point will be detailed in the
following Sec. II.
Meanwhile, in situ measurements in the solar wind

[53–56] as well as numerical simulations [57–59] have
revealed that dissipation is closely associated to coherent
structures with sharp gradients, e.g., current sheets and flux
tubes. It has become apparent that MHD turbulence must
be described as a collection of structures rather than linear
uncorrelated waves, or possibly as a combination of the
two [60,61].
Recent numerical simulations suggest that particles

can draw energy from their interaction with the coherent
structures of a turbulent bath [62,63], and it is known that
particles exploring a sheared velocity field with a finite
mean free path can gain energy in a nonresonant fashion
[34,40,64–74]. However, a definite model able to relate the
physics of particle acceleration with the characteristics of
the structures of a turbulent bath remains lacking.
The aim of this paper is to make progress along those

lines, in particular to study the physics of particle accel-
eration in strong turbulence, through nonresonant inter-
actions with random velocity structures. To do so, it relies
on a formalism that connects the sources of energy
gain/loss to the shear of the E × B velocity field. That
formalism was introduced in Ref. [74], which considered
the case of a particle exploring in an isotropic manner a
random flow characterized by a single length scale. In a
turbulent context, this can represent a particle whose
gyroradius rg is comparable or greater than the coherence
scale lc of the turbulent bath. By contrast, the present paper
focuses on particles whose gyroradius is much smaller than
this length scale lc, i.e., deep in the inertial range. It thus
pays attention to the anisotropy imposed by the magnetic
field line, to the approximate gyromotion of the particle
around that field line, and it considers the influence of all
modes of scales larger than rg.
As will be made explicit, such nonresonant acceleration

has important consequences which distinguishes it from
linear wave particle interactions. Notably, particle energ-
ization can be seen as a form of shear acceleration; hence
energization scales with the gradients of the magnetic
energy density, rather than the turbulent magnetic energy
density. More importantly, the physics of acceleration
becomes strongly affected by intermittency because the
shear of the velocity field peaks on small scales. Different
particles thus experience vastly different histories, which
gives rise to power law tails of the momentum distribution

function. This effect will be made manifest through an
analytical random walk model that captures the effect of an
inhomogeneous repartition of structures.
While most of the discussion is analytical in nature,

contact will be made with large-scale simulations of
turbulence for specific points. The statistics of the random
velocity structures, in particular, will be extracted from the
forced MHD simulation of the Johns Hopkins Turbulence
database,2 a 10243 simulation of driven, incompressible
MHD simulation, hereafter referred to as the JHU-MHD
simulation [75,76].
The discussion is ordered as follows. Section II offers a

more in-depth perspective on the difference between
resonant wave particle interactions and nonresonant accel-
eration in a random velocity flow. Section III sets up and
describes the present model of nonresonant acceleration in
a bath of strong turbulence. Section IV provides a quanti-
tative assessment of particle energization in the present
framework; in particular, it evaluates the rates of mean and
diffusive energy gains, and it calculates the spectral shape
in the frame of a microscopic picture that considers the
influence of turbulence intermittency. A summary and
conclusions are drawn in Sec. V.

II. MOTIVATIONS: WAVE-PARTICLE
INTERACTIONS IN STRONG TURBULENCE

Whether collisionless MHD turbulence should be
described as a bath of waves, or structures, is a long-standing
debate; see [60,61] for recent discussions and comparison to
simulation and observational data. The general point of view
of the present study is that, even if wave packets are present
on some scales l in a bath of strong turbulence, they more
likely appear as random velocity structures of ill-defined
polarization to particles of gyroradius rg ≪ l, than as linear
wave packets. This view relies on the following arguments.
Quasilinear theory (QLT) has been devised for weak

turbulence, where the fluctuations are assumed to be much
smaller in magnitude than the mean quantities. It also rests
on the premise that the turbulent bath can be described as
the sum of noninteracting linear waves and that the particle
collects their influence as it propagates unperturbed along
the mean field [10–12]. It has since been enlarged and
generalized to account for interactions with wave packets
of finite temporal coherence and for deviations of the
particle trajectory from its unperturbed orbit, in the frame of
so-called extended quasilinear calculations or nonlinear
guiding center theories [14–17].
The extrapolation of quasilinear theory to the realm of

large-amplitude turbulence—δB ∼ B—faces essential dif-
ficulties, however. A first one is that one can no longer
regard the waves as uncorrelated and noninteracting, which

1By “strong turbulence,” it is meant here the large-amplitude
regime in which the magnetic fluctuations are comparable to the
mean field, δB≳ B0. It also implies that, all along the cascade,
the turbulence will be strong in the sense defined by Goldreich
and Sridhar, i.e., governed by critical balance [46].

2Available from: http://turbulence.pha.jhu.edu/Forced_MHD_
turbulence.aspx.
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invalidates the random phase approximation central to QLT
calculations. This is notably illustrated in Ref. [49] and for
what regards acceleration, in Ref. [77]. A second one is
related to critical balance [43,44]: eddy anisotropy implies
that the interaction between waves and particles becomes a
nonresonant phenomenon,3 to such a degree that all scales
≳rg contribute equally to the diffusion of particles (see
below). However, the mean field direction on a given scale
does not coincide with that seen from another scale,
because in strong turbulence, this mean field is defined
through spatial coarse-graining, scale by scale [48].
Consequently, the polarization of a wave on some scale
l1 becomes lost if viewed from another smaller scale
l2 ≪ l1, which thus invalidates the predictions of QLT as
extrapolated to the regime of strong turbulence. This point
is made more explicit in the paragraphs that follow.
To understand why all scales contribute to particle

energization in the quasilinear view of anisotropic turbu-
lence, consider the QLT predictions for the momentum
diffusion coefficient,

Dpp ∼ β2Ae
2

Z
dk⊥dkkk⊥Rk

J1ðz⊥Þ2
z2⊥

Sk; ð1Þ

where only the dominant term has been retained, and
numerical prefactors of the order of unity have been ignored;
βA ≡ vA=c, vA the Alfvén velocity. A detailed expression
for the above can be found in, e.g., [80]. The wave numbers
k⊥ and kk are understood to be oriented perpendicular and
parallel to the (scale-dependent) mean field, while the
function Sk represents the power spectrum. For anisotropic
turbulence [46–52], Sk ∝ hδB2ik−10=3⊥ k1=3ming½kk=ðk2=3⊥ k1=3minÞ�,
where gðxÞ is a function peaked around 0 and spread around
½−1;þ1�, of integral unity, which characterizes the
anisotropy. J1ðz⊥Þ is a Bessel function, with z⊥ ¼ k⊥rg⊥,
rg⊥ the particle Larmor radius.
The quantity of interest, here, is the resonance function

Rk, which characterizes the strength/duration of the inter-
action between waves and particles. Accounting for wave
damping at a rate jℑωj ∼ kkvA broadens the resonance and
confers to Rk a Lorentzian or Gaussian shape. Performing
the integration over kk then brings the integral under the
form,

Dpp ∝ p2kminc
Z þ∞

ρ
dz⊥z−3⊥ J1ðz⊥Þ2; ð2Þ

and ρ≡ kminrg (kmin the minimum wave number of the
cascade) is assumed to be much smaller than unity, for
particles interacting with modes in the inertial range of the
turbulent spectrum. Most of the contribution comes from
the interval ρ ≤ z⊥ ≤ 1, corresponding to spatial scales
larger than rg, yet smaller than lc ≡ 2π=kmin, the integral
scale of the turbulent spectrum. The small argument limit of
the Bessel function implies that the integrand scales as z−1⊥ .
This confirms the above claim that, in this QLT description
of anisotropic turbulence, all modes of scale larger than rg
contribute equally to the scattering of the particle.
Now, the anisotropy of the cascade constrains the angle

θk between the direction of the longitudinal axis of an eddy
and that of the mean field to θk ≲ kk=k. On small scales,

meaning large k, kk ∝ k2=3⊥ implies θk ∼ ðk⊥=kminÞ−1=3.
However, on scale l ∼ 1=k ∼ 1=k⊥, the field direction itself
undergoes angular excursions of magnitude δθ ∼ δBl=B∼
η1=2ðk⊥=kminÞ−1=3, where η ¼ hδB2i=B2 denotes the ratio
of the turbulent magnetic energy density to the total
magnetic energy density and δB2

l ∼ khδB2
kijk∼1=l ∼

k2⊥kkSkjk∼1=l. Consequently, in large-amplitude turbulence,
η ∼ 1, those excursions are, on all scales, comparable to θk
and the wave polarization is ill-defined. As anticipated
above, this invalidates the QLT calculation, which rests
on Eq. (1).
The above compares the directions of the magnetic field

after coarse-graining on two different scales, but at the
same physical point, whereas the particle travels along the
line as it cumulates the effect of waves. Given the intrinsic
stochasticity of magnetic field lines in strong turbulence
[76], the correlation between the direction of the magnetic
field, scale to scale, is bound to be lost even more rapidly.
Small fluctuations in the magnetic field line direction
can be incorporated within the frame of extended quasi-
linear theories as an additional resonance broadening
attached to the randomization of the particle pitch angle,
see e.g., [80–82], but this does not change the above
conclusions.
Yet another implication of strong turbulence is that a

wave packet on a given scale l1 is nonlinearly distorted on a
timescale comparable to its wave period [49]; hence during
the interaction itself it loses its polarization and character-
istics of linear waves.
In summary, therefore, from the point of view of a

particle propagating in a strongly turbulent environment,
large-scale wave packets—assuming that they represent a
fair representation of the turbulence—are more likely seen
as imprinting velocity and magnetic fluctuations, rather
than as waves contributing to wave particle interactions that
are anyhow nonresonant given their inherent anisotropy.
Numerical simulations provide essential tools to test

such models, but their interpretation deserves special care.
In Ref. [83], for instance, it was shown that the above
predictions of (extended) quasilinear theory, viz. a

3Fast magnetosonic modes seem to preserve an isotropic
cascade and thus their efficiency in scattering particles through
gyroresonant and transit-time damping resonances [44,50,78]. If
these modes survive in large-amplitude turbulence, they may play
an important role in particle scattering and acceleration. Note that
transit-time damping is in itself a form of nonresonant accel-
eration [79], and as such, it will be captured in the nonresonant
formalism described in this paper.
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momentum diffusion coefficient Dpp ∼ v2Ap
2=ðlccÞ, could

account for the energization of test-particles in MHD
simulations of mildly sub-Alfvénic incompressible turbu-
lence. However, that agreement cannot be interpreted as a
confirmation of quasilinear predictions because the scaling
of that diffusion coefficient is, as a matter of fact, generic to
any nonresonant acceleration mechanism. The diffusion
coefficient indeed scales, for dimensional reasons, as
Dpp ∝ p2=tint, where tint defines some interaction timescale.
In the absence of resonant interactions, the integral length
scale lc sets this interaction time, viz. tint ∼ lc=v (with v the
particle velocity), while actual resonances would introduce
another scale in the problem (rg) and lead to the estimate

tint ∝ r2−qg , with q the index of the power spectrum of
magnetic fluctuations [22]. The nonresonant acceleration
mechanisms discussed thereafter, which do not involve
waves but velocity structures, will also yield estimates that
match those numerical simulations.
Finally, recent kinetic numerical simulations have con-

tradicted, in a rather direct way, the generic predictions of a
quasilinear picture of a homogeneous bath of waves:
Refs. [63,84] have observed that particles can be accel-
erated in localized regions, while Refs. [85–92] have
demonstrated that the particle distribution function exhibit
nonthermal power law tails, in stark contrast with the
standard log-normal spectrum predicted by QLT. Such
power law spectra appear to be related to the intermittent
nature of the acceleration process [93]. The prevalent role
of intermittency and the development of power law spectra
will emerge as natural consequences of the nonresonant
acceleration scenario that is discussed next.

III. PARTICLE ACCELERATION IN RANDOM
VELOCITY STRUCTURES

A. General framework

Within the frame of ideal MHD, a particle can gain
energy and diffuse in momentum space as it explores the
shear of the motional electric field in the plasma. It is the
shear, rather than the magnitude of the electric field that
matters, because in any region devoid of shear, one can
boost to a frame in which this electric field vanishes, and
there the particle undergoes helicoidal motion around the
magnetic field, at constant energy.
To describe such random interactions, it proves conven-

ient to define the frame R=E in which this motional electric

field vanishes. With respect to the lab-frame, R=E moves

at velocity (three-velocity, measured in units of c) βE ≡
E × B=B2 (Gaussian units are adopted all throughout).
More specifically, following Ref. [74], the idea is to track
the motion of the particle in physical space in the lab-frame,
and the history of its momentum in this R=E frame. This

provides a generalized picture of the classical Fermi
mechanism, which is usually described as elastic

interactions in the frame of pointlike, discrete magnetized
scattering centers. The present picture is well suited to
describe particle transport in a continuous random flow of
velocity structures.
An important difference with respect to quasilinear

theory is that the calculation for energy gain is performed
in this frame R=E, not in the lab frame. For subrelativistic

turbulence, in which the rms velocity fluctuation
hδu2pi1=2 ≪ c, this amounts to a simple velocity shift.
Nevertheless, it will be shown in the following that the
statistics of the field line velocity field uE differ from those
of the plasma velocity.
The formalism that follows is fully relativistic because

relativity offers the requisite tools to describe the history of
particles through this continuous sequence of (noninertial)
reference frames. This relativistic description is further-
more mandatory to make contact with kinetic numerical
simulations of relativistic turbulence, which have revealed
broad momentum spectra of accelerated particles [85–92],
and which thus offer ideal experiments for the present
model. Subrelativistic approximations will nevertheless be
provided where opportune.
As βE is a random quantity, theR=E frame is not globally

inertial, but the electric field is zero everywhere along the
particle trajectory. Consequently, energy gains and losses
are entirely expressed as inertial forces felt by the particle
as the R=E frame accelerates or decelerates. One clear

advantage of this point of view is to relate in a direct way
the statistics of energy gain to those of the velocity field.
A key ingredient is how the particle sees, or travels

through, the velocity structures. While Ref. [74] assumed
that the particle explored in an isotropic manner a random
velocity field whose variations were characterized by a
single length scale, the present work considers the more
realistic case of a particle subject to a crossed electric-
magnetic field configuration with perturbations spanning a
broad range of scales. The former study thus applies to
particles whose gyroradius is comparable or larger than
the coherence scale lc, while the present generalizes it to
particles in the inertial range, that is rg ≪ lc. Those
particles are sensitive to fluctuations on all scales larger
than their gyroradius as they gyrate around the local mean
field. On the other hand, fluctuations on scales smaller than
rg can be neglected here, as commonly done, because they
carry a small fraction of the power if rg ≪ lc and because
their influence averages out over a gyroperiod.
The acceleration of particles is thus described here as a

continuous sequence of interactions with moving magnet-
ized structures on scales larger than the gyroradius. This
implies that all quantities—velocity flow, magnetic field in
particular—must be understood as coarse-grained over the
scale rg. Formally, this means that we consider a velocity
field βEl ¼ El × Bl=B2

l , where El and Bl are as before
defined through coarse-graining on scale l, which differs
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from the “true” βE by OðδB2
l =B

2Þ. Note that the field
entering the “true” contribution is obtained without coarse-
graining here, although this limit is somewhat ambiguous
in the frame of an MHD description, which breaks down on
kinetic scales (see [94], in particular). Let us stress at this
point that ideal MHD is not a requisite of the present
approach, which only needs to assume that parallel electric
fields play a negligible role in particle acceleration. This
means, in particular, that the electric field characterizing
the velocity field βE can incorporate other terms of Ohm’s
law beyond the ideal one, such as, for instance, the Hall
MHD term.
For the sake of clarity and simplicity, all indices l

referring to coarse-graining will be suppressed when not
necessary. All quantities expressed in the frame R=E will be

primed. Furthermore, all four-velocities u0 in R=E are from

now on expressed in units of c, so that u0 ¼ p0=ðmcÞ in
terms of the momentum p0, and similarly for the four-
velocity of the magnetic field lines, uE ¼ βE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uE2

p
(unless otherwise noted).
Given the above scheme of approximation, the R=E frame

is mainly characterized by two four-vectors: uEα, the (time-
like) four-velocity of R=E, and bα, the unit spacelike four-

vector indicating the direction of the magnetic field line. This
construction is made more explicit in Appendix A, which
also provides the details of the calculations.
In R=E, the particle Lorentz factor γ0 and four-velocity

component parallel to the mean field, u0k, are then found to

evolve as follows:

1

c
dγ0

dτ
¼ −u0bu0ceβbeγc

∂
∂xγ uEβ;

1

c

du0k
dτ

¼ −u0bu0ceβbeγc
∂
∂xγ bβ: ð3Þ

In this equation, u0b, with b ∈ f0;…; 3g, represents a
component of the particle four-velocity and eβb is a
component of the vierbein that connects lab-frame quan-
tities to quantities evaluated inR=E, i.e., which provides the

instantaneous Lorentz transform between those two frames.
Note, in particular, that the spatiotemporal derivative
∂γ ≡ ∂=∂xγ in the above equation is expressed in lab-
frame quantities. On the other hand, the derivative on the
lhs is taken with respect to proper time τ which para-
metrizes the particle trajectory. The connection between the
statistics of the velocity flow of the magnetic field lines and
particle energization is manifest in Eq. (3).
On scales larger than rg, we can assume that, at each

point along the trajectory, the particle undergoes a heli-
coidal orbit around the (curved) magnetic field line. In this
case, the above equation can be further simplified, see
Appendix A,

1

c
dγ0

dτ
¼ −γ0u0kaE · b − u0k

2Θk −
1

2
u0⊥2Θ⊥;

1

c

du0k
dτ

¼ −γ02aE · b − γ0u0kΘk −
1

2
u0⊥2b · ∇ lnB0; ð4Þ

introducing the components of the shear of the field line
four-velocity, parallel (Θk) and perpendicular (Θ⊥) to the
magnetic field line, as well as its acceleration aE,

Θk ≡ bαbβ∂αuEβ;

Θ⊥ ≡ ðηαβ − bαbβÞ∂αuEβ;

aEα ≡ uEβ∂βuEα: ð5Þ

The first line of Eq. (4) represents the main equation
governing the acceleration of particles in random velocity
structures in our current scheme of approximation. The
force contributions that enter this equation find a natural
interpretation. The first term ∝ aE · b describes the effective
gravity that the particle feels in the R=E frame in the

direction of the magnetic field line as this line accelerates or
decelerates. The second term ∝ Θk captures energy gain or
loss through shear acceleration along the direction of
motion of the particle (along the field line). Similarly,
the particle can gain (or loose) energy if the field lines, to
which it is attached, are compressed (or dilated) in their
transverse plane; this gives rise to the third contribution.
In the subrelativistic regime, βE ≪ 1, uE ≃ βE, and the

above expressions can be approximated as

Θk ≃ b · ðb · ∇ÞuE
Θ⊥ ≃ ∇ · uE − Θk
aE ≃ ð1=cÞ∂tuE: ð6Þ

The acceleration is thus one order higher in βE than the
shear components because of the time derivative; conse-
quently, its contribution can be neglected when βE ≪ 1.
In the present scheme, no particular difference arises

between particles of different energies. Although the rhs of
Eq. (4) scales as the square of the particle four-velocity in
R=E, one power is absorbed by the fact that the derivative is

taken with respect to proper time τ on the lhs, because
dτ ¼ dt=γ in the lab frame (here, γ denotes the particle
Lorentz in the lab frame). The remaining power implies that
energy gain/loss scales in proportion to the particle energy,
as in the original Fermi model.
Figure 1 provides a contour map of the quantity Θ2⊥ in

the JHU-MHD simulation of incompressible turbulence,
superimposed on a density plot of the magnetic field energy
density. The distribution of Θ2

k is not shown here, but

comparable to that of Θ2⊥. The contribution of the gravi-
tational term ∝ aE · b is smaller than that of the other two;
for the JHU-MHD turbulence simulation, huE2i1=2 ≃ 0.41
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(units of c). Note that, for linear Alfvén waves, Θ⊥ ¼
Θk ¼ 0 exactly, while for linear magnetosonic modes,
Θk ¼ 0 but Θ⊥ ∼ βMSkδB=B ≠ 0, where βMS denotes the
phase velocity of magnetosonic modes (units of c), k the
wave number and δB=B the relative mode amplitude.
In the context of quasilinear theory, particle acceleration

scales with the power spectrum of magnetic fluctuations,
hence with the turbulent magnetic energy density, while in
the present nonresonant description, acceleration scales
with the shear of the field line velocity flow. Figure 1 thus
provides a vivid illustration of the difference between these
two pictures. It shows in particular that Θ2⊥ tends to take

large values in regions of strong gradients of the magnetic
energy density, with some preference for regions with
lower than average magnetic energy density. Such regions
are subject to the magnetic pressure from the neighbouring
regions of strong B; at the same time, small scale modes
exert a larger (relative) influence on the magnetic field
direction in zones of magnetic depressions, which can also
induce strong gradients.
This correlation with the gradients of the fields is of

particular importance in the context of modern turbulence
theories, as it directly connects particle acceleration with
turbulence intermittency, and with the coherent structures
that characterize this intermittency.

B. Connection to plasma heating/cooling

The two terms Θ⊥ and Θk appear in different combina-
tions in Eq. (4), because of the nature of particle gyromo-
tion, but they generalize the idea that a particle trapped in a
flow undergoing compression or dilation gains or looses
energy. Assume indeed, for the time being, that the particle
four-velocity is isotropic at all times: the acceleration
contribution then vanishes because hu0ki ¼ 0, while both

longitudinal and transverse shear contributions add up into
the isotropic combination,

1

c
dγ0

dτ
¼ −

1

3
u02∂αuEα; ð7Þ

as in [74] for isotropic scattering. In the subrelativistic
limit, ∂αuEα ≃ ∇ · βE.
In a fluid description, adiabatic heating/cooling through

compression/dilation is expressed through a similar oper-
ator, although it is expressed in terms of the fluid velocity
up, not the velocity of field lines uE. The fluid approxi-
mation tacitly assumes that particles are isotropized in the
fluid rest frame through some effective collision, while in
the collisionless case, what governs the energization is the
velocity of the field lines to which the particle is attached.
The quantities ∇ · uE and ∇ · up differ from one another.

To express this difference and relate the gradients of uE to
the sources of heating and cooling, we assume here uE ≪ 1
to make contact with subrelativistic MHD; similar develop-
ments can be found in [72,95]. Note first that

uE ¼ up − bðup · bÞ; ð8Þ

so that

∇ · uE ¼ ∇⊥ · up þ
up · B

B4
B · ∇B2 −

1

B2
up · ðB · ∇ÞB; ð9Þ

which indicates that the difference between the compres-
sion of uE and that of up mainly relates to field line
curvature.

FIG. 1. Density plot of the magnetic energy density (black
and white, in units of the average energy density) in a two-
dimensional slice of the JHU-MHD simulation cube, with
overlayed contours of Θ2⊥ at (from thin to thick, in blue, solid
lines): 0.5, 2., 8., 32. in units of ðvA=lcÞ2, and similarly for
negative values in yellow. Top panel: 10242 resolution, ex-
tending over about 10lc × 10lc; bottom panel: zoom over a
region of 1.3lc × 1.3lc.
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From Poynting’s theorem to first order in the electric
field contribution,

1

2c
∂
∂t B

2 ¼ −E · ð∇ × BÞ − ∇ · ðE × BÞ; ð10Þ

we obtain

∇ · uE ¼ −
1

2B2c
d
dt
B2 −

1

B2
uE · ðB · ∇ÞB; ð11Þ

with d=dt ¼ ∂t þ cuE · ∇. This equation relates the com-
pression of the field lines to the change of magnetic energy
density along the field line trajectory and to the field line
tension. The last term on the rhs of the above equation, in
particular, can be recast as Θk, given that uE · B ¼ 0.
Therefore,

Θ⊥ ¼ ∇⊥ · uE ¼ −
1

2B2c
d
dt
B2: ð12Þ

This relation can also be obtained directly from the
advection equation. In the fully relativistic regime, its
analog is provided in Appendix A,

1

2B02
1

c
∂
∂t0 B

02 ¼ −Θ⊥; ð13Þ

providing a direct connection between the tranverse com-
pression of field lines and the temporal evolution of the
magnetic energy density in the R=E frame.

The terms that contribute to energization, up to the
inertial one, are thus connected to the sinks to magnetic
energy. In this regard, the acceleration process which is
depicted here does not differ much from the physics of
heating in a plasma of infinite conductivity and, to a first
approximation, those particles that get accelerated to high
energies can be regarded as those that have had the chance
to encounter more zones of heating than the rest of the
population. The shape of the spectrum at high-energy is
then determined by sequences of outlier scattering events.
Those will be captured in Sec. IV B through the use of large
deviation theory.

C. Connection to the guiding center description

Equation (4) has been obtained under the assumption
that the particle experiences inertial forces in theR=E frame,

on spatiotemporal scales larger than its gyration around the
magnetic field line, with proper averaging over this
gyromotion and in the frame of ideal MHD. For this
reason, it captures to this order the contribution of guiding
center theories (at their first order).
The detailed relationships connecting the terms of

Eq. (4) to those of guiding center theories are provided
in Appendix A. It is shown, in particular, that the term

involving Θk represents the curvature drift, while the term
Θ⊥ captures the grad-B drift, i.e., the mirror force
responsible for transit-time damping acceleration, and
the gravitational term is connected to the inertial drift.
Equation (13) above also expresses the betatron nature of
the grad-B drift.
These two schemes of approximation remain of a

different nature, however, and differences should be seen
at higher orders. Theories of guiding center motion
are perturbative schemes based on expansions in rg=L,
where L ∼ lc represents the typical length scale on which
the electromagnetic fields evolve. In the framework of
Hamiltonian guiding center models, one defines at each
order an adiabatic invariant conjugate to a gyrofrequency,
its invariance expressing the fact that the short timescales
of gyromotion have been averaged out of the dynamics.
Such theories are difficult to expand, however, given their
inherent sophistication, e.g., [96–98], and the equations of
motions, written for quantities that are redefined order by
order, rapidly take a complicated form.
By contrast, Eq. (3) is exact, as it simply expresses the

equation of motion in a frame in which the electric field
vanishes. The equation that we use in this paper, Eq. (4),
is itself an approximation of that equation, to lowest
order in rg=lc: namely, the derivatives ∂γuEβ and ∂γbβ
have been calculated at the position of the guiding
center and the perpendicular velocity components u02
and u03 have been averaged out over this gyromotion.
To go to higher orders, one would nevertheless start from
Eq. (3) again and include different approximations for
those terms.
In this sense, the present formalism may allow for a more

phenomenological approach to the problem than guiding
center theories, which are based on a specific hierarchy
in rg=lc. For instance, Sec. IV will account for particle
diffusion along the field line, so that the particle position in
Eq. (4) will be treated as a random variable, in the spirit of
extensions to quasilinear theories [14–17]. A similar
improvement over the present description would be to
account for perpendicular transport in space, through field-
line wandering combined with particle jump from field line
to field line.
One should also consider the influence of drifts beyond

the classical E × B drift: such terms, spurred by large-scale
modes, would modify the lowest order form for the particle
four-velocity u0b and therefore generate additional force
terms, of higher order in the power of the gradients of the
velocity field. As mentioned earlier, one may also consider
introducing terms beyond ideal Ohm’s law in the definition
of the electric field, to capture physics at smaller length
scales. Regarding small-scale modes, one extension that
deserves investigation, is their contribution to the velocity
of the field line, as alluded to earlier. This effect, of order
OðδB2

l =B
2Þ, would also introduce higher powers of the

velocity fluctuations.
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D. Violation of the adiabatic invariant
and pitch-angle scattering

The adiabatic invariant M≡ u0⊥2=ð2B0Þ is conserved to
the present order of approximation, as can be explicitly
verified using Eq. (4). Such conservation represents an
obvious barrier to stochastic acceleration to large momenta,
because B0 can be regarded as a bounded quantity, just as
the pitch angle cosine inR=E, μ

0. In this regard, higher order
effects, such as those discussed above, are a necessity; see
also Refs. [62,99] for a related discussion. An important
issue, therefore, is the hierarchy between the rate at
which M is violated and that at which particles can gain
momentum according to the model described by Eq. (4).
We argue here that those two rates are likely of the same
order of magnitude.
Note first that the inertial forces that control energization

also contribute to scattering, as in any Fermi process. In
particular, Eq. (4) implies

1

c
dμ0

dτ
¼ −

γ02

u0
ð1 − μ02ÞaE · b − γ0μ0ð1 − μ02ÞΘk

−
1

2
u0ð1 − μ02Þb · ∇ lnB0 þ 1

2
γ0μ0ð1 − μ02ÞΘ⊥:

ð14Þ

In a turbulence of small r.m.s. velocity fluctuation, the third
term, which corresponds to the mirror force, dominates,
because all others scale with uE. This suggests that particle
scattering would be dominated in that regime by magnetic
mirroring effects. In strong turbulence, such mirrors may
differ from their linear magnetosonic mode counterparts, as
discussed in Sec. II. However, what matters to particle
acceleration, here, is chaoticity, and in that respect, one
must distinguish the violation of M, which at fixed u0 and
B0 corresponds to a stochastic excursion of μ0, from the
regular, nonchaotic evolution of the pitch-angle cosine in a
M—conserving environment.
Interactions that violate the conservation of M likely

arise from small-scale perturbations and/or from regions
of magnetic depressions where a magnetic fluctuation δB0
can strongly distort the mean field direction. At one
extreme, large-scale modes (l ≫ rg) renormalize the adia-
batic invariant by contributions of order δM=M ∼
O½ðrg=lÞðδB0=B0Þ� [100]. At the other extreme, small scale
perturbations (l ≪ rg) impart a deflection δu0⊥=u0⊥ ∼
O½ðl=rgÞðδB0=B0Þ� over their length scale l. This brings a
change in M to the order δM=M ¼ 2δu0⊥=u0⊥ − δB0=B0.
At a fixed value of δB0=B0, the comparison of the above

large-scale and small-scale influences suggest that the
dominant contribution comes from scales comparable to
the gyroradius. However, intermittency implies that large
excursions in δB0=B0 become more frequent at smaller
length scales, which means that, overall, order unity
violations of M are more likely to occur from small scale

modes. Shock waves or reconnection layers provide exam-
ples of microscopic phenomena that can lead to substantial
variation in δB0.
Magnetic perturbations δB0=B0, when coarse-grained

on spatial scales ≳rg, also set the magnitude of the
(M—conserving) forces that control pitch-angle scattering,
see Eq. (14), hence acceleration, given that Δu0=u0 ∼
μ0Δμ0=ð1 − μ02Þ at fixed M and B0. Consequently, one
can reasonably expect that the rate ofM−violating events is
comparable—or even larger, if one takes into account the
contributions of modes l < rg that can violateM but do not
contribute to energization in the present model—to that of
acceleration. Finally, acceleration itself takes place on
timescales larger than the gyrotime tg because it results
from the influence of modes on scales l > rg; consequently,
approximate gyromotion remains a valid approximation at
all times. This validates the assumptions that underlie the
main Eq. (4).
Another way to picture the energization process is thus

the following. At fixed M, the phase space variables u0
and μ0 evolve in a banana-shaped island defined by
u02ð1 − μ02Þ ¼ 2MB0, whose width is controlled by the
excursions of B0 around its mean. Islands corresponding to
two neighboring values of M are therefore not discon-
nected, and the junction of all islands for all values of M
span the whole phase space. Hence, provided that the rate
of evolution of M is comparable or larger to that of u0,
acceleration takes place at the rate fixed by Eq. (4).

IV. PARTICLE ENERGIZATION

The objective of this section is to quantify particle
energization in the frame of the present model. It is split
into three main parts. The first Sec. IVA calculates the one-
and two-point statistics of energy gain, that is the mean
energy gain hΔp0i and the diffusive term hΔp02i. Emphasis
is placed here on the ambiguity that arises in the calculation
of the latter quantity, given that the force terms that control
energization display highly non-Gaussian features charac-
teristic of intermittency. Section IV B then studies the
acceleration process in a microscopic picture, which
describes the momentum trajectory as a discrete random
walk in a set of intermittent structures. This will clarify
the role of intermittency and explain how it shapes the
momentum distribution of accelerated particles. Finally,
Sec. IV C provides some closing remarks.

A. Drift vs diffusion

1. Mean drift

In a purely kinematic description of Fermi acceleration,
particles gain energy through head-on collisions with
moving magnetized scattering centers, lose energy through
tail-on collisions. On average, particles suffer more head-on
than tail-on collisions, hence Fermi acceleration comes
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with a net (log-)momentum gain hΔ ln pi=Δt (in the
laboratory frame); the latter is comparable, in order of
magnitude, to the stochastic diffusive term hΔln2pi=Δt.
The present model departs from the Fermi scenario in

one fundamental way: as the particle interacts with a region
in whichΘk ≠ 0 orΘ⊥ ≠ 0, it does not gain or loose energy
according to whether the interaction is head-on or tail-on,
but according to whether Θk (or Θ⊥) is negative or positive;
see Eq. (4).4 Inside any such region, the acceleration
process is regular, akin to a Fermi type-1 process, and it
is rather through its encounter with many different sites of
alternating polarity that the particle undergoes a random
walk in momentum space. Consequently, the particle
population gains (or loose) energy at a net rate depending
on the sign of hΘki and hΘ⊥i, where the average is
computed over the spatial volume (assuming a homo-
geneous density distribution of particles).
As discussed earlier, those mean values relate to turbu-

lent plasma heating (in the MHD approximation) through
large scale motions. In the JHU-MHD turbulence simu-
lation, hΘki ≃þ0.03vA=lc, while hΘ⊥i ≃ −0.1vA=lc, and
haE · bi ≃ 0. Assuming a homogeneous and isotropic dis-
tribution of particles, this implies net heating at a rate

dhln p0i
γ0dτ

¼ 1

3
ðhΘki þ hΘ⊥iÞ

≃ 0.02vA=lc: ð15Þ

Those values do not depend on the coarse-graining spatial
scale Δx that is adopted in calculating the spatial average,
provided Δx < lc. On scales Δx > lc, all averages rapidly
tend to zero, which is expected insofar as energy is
continuously injected on scales lc in that simulation. In
a steady state, energy is thus spread over the cascade, down
to microscopic scales where it is dissipated through non-
ideal processes. In the frame of the present model, the
energy contained in sheared motions on scales l contributes
to net heating for particles with gyroradius rg ≲ l.
The above heating rate indicates a rather small drift of the

particle distribution on an eddy turnover timescale lc=vA.
In the context of particle acceleration, what truly matters,
however, is the acceleration timescale, which will be found
to be of the order of clc=v2A for that same simulation.
Extrapolating this to other regimes suggest that, at small
values of vA, heating may dominate over particle accel-
eration, while at larger values of vA (relativistic range),
acceleration may dominate over the drift. Aword of caution
is needed to specify what is understood by vA here: in the
JHU-MHD simulation, it corresponds to hu2Ei1=2, meaning
that it represents a rms velocity fluctuation, not a standard

Alfvén velocity defined with respect to a coherent magnetic
field. As Eq. (4) makes clear, indeed, what controls the
heating (and the acceleration) is the magnitude of velocity
fluctuations.
Those remarks illustrate another difference of the present

scheme with respect to quasilinear theory, where the
velocity that enters the diffusion coefficient is the phase
velocity of the linear waves, defined relatively to the
mean field.

2. Second-order moment

The diffusion coefficient can be derived as usual (inR=E)

from

Dp0p0 ¼ lim
Δt0→þ∞

1

2Δt0

Z
dτ1dτ2

�
dp0

dτ1

dp0

dτ2

�
: ð16Þ

with p0 the particle momentum in R=E. For reference, the

equation of evolution of the momentum reads

1

c
dp0

dt0
¼ −γ0mcμ0kaE · b−p0μ0k

2Θk −
1

2
p0ð1− μ02ÞΘ⊥: ð17Þ

The average in Eq. (16) involves the correlation function
at two different space-time points of the three force terms in
Eq. (4), including their cross-correlation functions. It also
involves a limit Δt → þ∞, which, less formally, means
that the time interval should be much larger than the
coherence time of the random force that is exerted on the
particle. This point will be discussed in greater detail
further below.
The main contribution to the integral is rewritten using

Z
dt01dt

0
2hQ1Q2i ¼ 2Δt0

Z
dkRkS

Q
k ; ð18Þ

with the following notations: Q1 (respectively Q2) denotes
one of the three random forces, that is the inertial, the
parallel shear or the perpendicular compressive term,
calculated at the particle position at time t01 (resp. t02).
On the rhs, SQ

k ¼ hQk
2i represents the (one-dimensional in

k—space) power spectrum of Q. We have neglected here
the cross-correlations between those terms, for the sake
of clarity and because those cross-correlations are smaller
in magnitude (as checked in the JHU-MHD simulation).
We have also assumed, as is customary, a random-phase
approximation, which allows us to write the rhs of Eq. (18)
as a one-dimensional integral over wave numbers, thus
separating the contributions mode by mode. Our goal here
is not to provide a detailed calculation of the diffusion
coefficient, but to illustrate the ambiguity that arises in this
calculation when non-Gaussian features arise, and to
motivate the model developed in the next sub-section.
Those assumptions are thus not restrictive. The resonance
function Rk captures as in Sec. II the duration of the

4The inertial term aE · b also depends on the sign of the particle
momentum; we neglect this (generally subdominant) term here,
for the sake of the discussion.
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interaction with the structure. We assume here ballistic
trajectories, in which case Rk ∼ 1=ðkkvÞ. Finally, we will
also assume for definiteness a Goldreich-Sridhar type
spectrum, in which case k → k⊥ in Eq. (18) and
kk → k2=3⊥ k1=3min, with kmin ∼ 1=lc.
Because Q involves a gradient, one generally expects

SQk ∝ k2SuEk , with SuEk ∝ k−qu the (one-dimensional in
k—space) power spectrum of fluctuations of uE.
However, Θ⊥ represents a perpendicular gradient, while
Θk is a gradient measured parallel to the mean field, hence
SΘ⊥ ∼ k⊥2SuEk and SΘk ∼ kk2S

uE
k . The above calculation of

the diffusion coefficient would then result in the following
scalings (for qu ¼ 5=3):

D
Θk
p0p0 ∼ p02hδuE2ikminc ln

�
k̄

kmin

�
;

DΘ⊥
p0p0 ∼ p02hδuE2ikminc

�
k̄

kmin

�
2=3

; ð19Þ

where hδuE2i provides the overall amplitude (squared) of
uE velocity fluctuations. The momentum k̄ represents the
maximum wave number up to which the integral can be
performed. This wave number is set by the coarse-graining
procedure, which considers only scales above rg, i.e.,
k̄ ∼ r−1g , or by the maximum wave number of the cascade
kmax, whichever is smaller. While the parallel shear con-
tribution involves all scales above rg, the perpendicular
compressive one peaks on small scales.
The above calculation recovers the quasilinear prediction

for transit-time damping in fast mode waves (described by
the Θ⊥ contribution in its linear limit) if one assumes
isotropic eddies: setting kk ∼ k⊥ ∼ k, one then obtains
Dp0p0 ∝ ðk̄=kminÞ1=3, which indeed matches the standard
result [21,79].
The ambiguity that arises in the above calculation is

related to the scaling of SQk with k, once Q departs from a
Gaussian random field. This problem is illustrated by the
statistics of the parallel shear and perpendicular compres-
sive term extracted from the JHU-MHD turbulence simu-
lation. Those are presented in Fig. 2, expressed as hQ2i1=2Δx ,
meaning the r.m.s. coarse-grained over scale Δx. The
correspondence with the spectra in k − space is obtained
as usual, through hΘ2⊥iΔx ∼ kSΘ⊥

k jk∼Δx−1 at k ∼ k⊥. We thus
expect hΘ2⊥iΔx ∝ Δx−3þqu ∝ Δx−4=3 for qu ¼ 5=3, but
hΘk2iΔx ∝ Δx−7=3þqu ∝ Δx−2=3 for qu ¼ 5=3.

The scaling hQ2i1=2Δx ∝ Δx−2=3 (expected for Θ⊥ and
aE · b) is overplotted as a dotted line in Fig. 2. It appears
to represent fairly well the statistics of the inertial term,
but not those of Θ⊥, which flatten on small scales to an
apparent hQ2i1=2Δx ∝ Δx0. The parallel contribution Θk, as
well as the mirror term hðb · ∇ ln B0Þ2i1=2Δx , also flattens out,

instead of the expected hQ2i1=2Δx ∝ Δx−1=3. Such flat scal-
ings would correspond to SQk ∝ k−1, hence to diffusion
coefficients strongly dominated by the large scales,

D
Θk
p0p0 ∼ p02hδuE2ikminc;

DΘ⊥
p0p0 ∼ p02hδuE2ikminc: ð20Þ

Out of the two results for the diffusion coefficients,
Eqs. (19) and (20), the latter appears more reliable, because
based on explicit measurements in the JHU-MHD simu-
lation. Neither is however able to capture the physics of
particle acceleration, for about the same reason that a

FIG. 2. Scaling of the r.m.s. of the terms contributing to particle
energization and scattering, as indicated: inertial aE · b, parallel
shear Θk and perpendicular compression Θ⊥ (all three in units of
vA=lc), and for scattering, the mirror term b · ∇ ln B0 in units of
1=lc, as extracted from the JHU-MHD turbulence simulation and
plotted as a function of smoothing scale Δx (units of lc). The
dotted line shows the scaling ∝ Δx−2=3; see the text for details.
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second-order moment cannot suffice to characterize a
non-Gaussian distribution. This is nicely illustrated in
Fig. 3, which plots the probability distribution function
of those force terms for various smoothing scales, as
extracted from the JHU-MHD turbulence simulation.
This figure reveals that the mean of the inertial con-

tribution shifts to larger values as the coarse-graining scale
decreases, in general agreement with the scaling observed
in Fig. 2, and with the expectations for a Gaussian random
field. By contrast, the distribution functions dN=d ln Q of
the three other quantities, namely Θk, Θ⊥ and b · ∇ lnB0,
develop power law tails up to large values, with slopes close
to (yet slightly larger than) −1. The mean of those three

quantities hardly shifts as the coarse-graining scale
decreases, but the slope of the power law becomes harder.5

This explains, at least qualitatively, the tendency of hQ2i1=2Δx
to fall below the predicted scaling in Fig. 2.
In this context, note that the variances shown in Fig. 2

have been evaluated as the median of the squared fluctua-
tions, instead of their mean, in order to avoid an excessive
source of noise associated to the finite statistics given the
frequent, large excursions of the quantities. Those peculiar
statistics are directly related to the scarcity of the structures,
quite apparent in Fig. 1: the force terms can take large
values in isolated regions of small spatial extent. This,
in turn, directly impacts the acceleration process; in
particular, it shapes the power law of accelerated particles,
as discussed next.

B. Random walk in intermittent structures

1. Overview

The classical description of turbulence intermittency
comes through the fractal β—model, which ascribes to
daughter eddies a probability of being turned on as the
parent cascades down [103]. Said otherwise, active daugh-
ter eddies do not span the full volume of their parent eddy,
but only a filling fraction, which is characterized by a
fractal Hausdorff dimension D < 3. It is defined by
D ¼ lnN=ln 2, if each parent eddy creates N daughter
eddies out of 23 possible ones, when cascading from scale l
to scale l=2. Correspondingly, at scale l, the filling fraction
of active eddies is fl ∼ flcðl=lcÞð3−DÞ, with flc the filling
fraction of active regions on the integral scale lc. Note that
Fig. 1 already suggests that flc takes values below unity.
The value of D can take different values depending on the
shape of the dissipative structures, for instance D ¼ 1 for
filaments, D ¼ 2 for sheets. Its value, hence the filling
fraction of active eddies, may depend on the general
characteristics of the turbulence [104].
The mean free path to interaction with random, uncorre-

lated structures of extent l and filling fraction fl in three-
dimensional space is lint ∼ f−1l l or, for fl as calculated
above, lint ∼ f−1lc lcðl=lcÞD−2, which can take values much
larger than l ifD takes values below 3, and even larger than
lc if D≲ 2. The probability of interaction per distance
traveled in a fractal structure has been calculated and
studied in detail in Ref. [105]. It leads to a slightly more
complex form for the mean free path to interaction.
Interestingly, it demonstrates that the probability of
“no interaction” remains nonzero up to infinite distances
if D < 2. In such a case, the random walk can be modeled
as a continuous time random walk with a Lévy type
distribution in waiting time. This situation has been

FIG. 3. Normalized distribution of the absolute values of the
main contributions to the energization and scattering, for different
smoothing scales:Δx=lc ¼ ð0.01; 0.09; 0.18; 0.26; 0.43; 1.1Þ, or-
dered from blue to red, or equivalently right to left. From top to
bottom: jΘkj; jΘ⊥j; jaE · bj; jb · ∇ ln B0j. The first three are
expressed in units vA=lc, while the last is expressed in units
1=lc. Each subpanel plots dN=d ln Q, whereQ represents one of
the above quantities. The departure from Gaussian statistics, in
particular the existence of power law tails is a clear signature of
intermittency. The dotted line represents a power law of index −1.

5Similar power laws have been recently reported for the
curvature of magnetic field lines in Refs. [101,102].
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considered in Ref. [93], where it is shown that the
momentum distribution then takes on a (near) power law
shape at all times. We will ignore this possibility in the
following.
The intermittent nature of acceleration sites introduces

a new timescale tint ¼ lint=v, whose magnitude (relative to
other timescales) controls the phenomenology, if large
enough. Here, tint sets the coherence time of the random
force that acts on particles. Consequently, a diffusion
coefficient becomes meaningful only on time intervals
Δt ≫ tint. On timescales Δt < tint, different particles
undergo vastly different histories, some interacting many
times, others none. As discussed further below, this gives
rise to the emergence of power law spectra. Such spectra
have been observed recently in simulations of test-particle
transport in synthetic fractal turbulent environments [106].
On large timescales, Δt ≫ tint, particles have had time to

interact with many acceleration sites; hence one expects,
in the spirit of the central limit theorem, to recover the
predictions of a standard random walk in momentum space.
However, this convergence will be found to be asymptotic,
in the sense that the spectrum will preserve a power law tail
at large momenta at all times. This will be made more
explicit further below.

2. Random walk in intermittent turbulence

We determine the time-dependent distribution function
in a microscopic picture, which describes a particle under-
going a random walk in a bath of isolated structures, of
extent l and filling fraction f ¼ fþ þ f− ≪ 1. Here, fþ
(respectively f−) represents the filling fraction of those
structures giving rise to energy gain Δp0=p0 ¼ þg (respec-
tively energy loss Δp0=p0 ¼ −g). In the frame of the
present model, those structures have a negative (respec-
tively positive) sign ofΘk orΘ⊥. We drop the primes in this
section, for clarity.
At each step of length l, the particle thus has a

probability f− of loosing a fraction g of its momentum,
a probability fþ of gaining g, and a probability f∅ ¼
1 − f− − fþ of crossing a void region, which corresponds
to an inactive eddy in the framework of the β −model. The
time-dependent solution to this random walk is captured
thanks to the methods of large deviation theory [107],
which is ideally suited to model outlier statistics before
central limit convergence. The details are provided in
Appendix B. At time t, this distribution can be approxi-
mated as

dN
d lnp

∼
1

gt̂
exp

�
−
ln p̂
g

ln

�
f∅ ln p̂þ Sp

2fþðln p̂max − ln p̂Þ
	

þ ln p̂max

g
ln

�
f∅ ln p̂max þ Sp
ln2p̂max − ln2p̂

	

; ð21Þ

with

Sp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2∅ ln2 p̂þ 4f−fþðln2 p̂max − ln2 p̂Þ

q
: ð22Þ

This makes use of the following short-hand notations:
p̂ ¼ p=pinj, where pinj denotes the momentum at which
particles are injected in the turbulent bath; t̂ ¼ t=τ, where τ
denotes the time between two steps, so that, correspondingly,
t̂ indicates the number of steps taken; ln p̂max ¼ gt̂, which
represents the maximum log-momentum that the particle can
achieve in t. We can assume τ ≃ l=v (v the particle velocity),
which corresponds to ballistic trajectories.
Two combinations of the parameters play a particular

role: tint ¼ τ=½fþ þ f− − ðfþ − f−Þ2� ∼ l=ðfþ þ f−Þv, the
interaction time with active regions, and fþ − f−, which
controls the amount of net heating. The momentum
distribution function displays the following properties:
(1) The mean log-momentum hln p̂i scales in proportion

to fþ − f−; see Fig. 4 for an illustration. Defining
this mean log-momentum as the peak of p3fðp; tÞ∼
dN=d lnp, we find hln p̂i ¼ gt̂ðfþ − f−Þ. This re-
sult agrees with the discussion of Sec. IVA, where it
is explained that the drift scales with the spatial
average of positive minus negative contributions,
that is fþ − f−.

(2) The distribution possesses a log-normal core with an
extended power law tail. For the log-normal core, the
variance can be expressed as

hΔ ln2 p̂i ¼ hln2 p̂ − hln p̂i2i
¼ g2t̂½fþ þ f− − ðfþ − f−Þ2�: ð23Þ

Consequently, at any time, the particle distribution
appears to follow a diffusive process characterized
by the diffusion coefficient,

Dpp ¼ g2p2
fþ þ f− − ðfþ − f−Þ2

τ

¼ g2
p2

tint
; ð24Þ

introducing the effective interaction timescale tint ¼
τ=½fþ þ f− − ðfþ − f−Þ2�. Note that tint approxi-
mately matches the time between two interactions
with active eddies, l=ðfþ þ f−Þc, at small values of
fþ and f−. For tint ∝ p0 and g ∝ p0, as discussed
below, we recover the scaling Dpp ∝ p2 observed in
numerical simulations.

(3) This diffusion coefficient only represents an average
value, measured over the particle population. It
characterizes the general broadening hΔ ln2 p̂i of
the core of the spectrum, but not its shape at large
momenta, which takes on a power law shape. This
general spectral shape—thermal log-normal core
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with power law extension—matches that observed in
recent kinetic numerical simulations [85–91].

(4) The spectral index s, defined through p2fðp; tÞ ∝
dN=dp ∝ p−s, can be derived as

s ¼ 1 −
d

d lnp
ln

�
dN
d lnp

	

¼ 1 −
1

g
ln

�
f∅ ln p̂þ Sp

2fþðln p̂max − ln p̂Þ
	
: ð25Þ

The power law is thus approximate, as the index runs
logarithmically with ln p̂. This noteworthy result
reveals that the extrapolation of the spectral index
measured in numerical simulations—which are

restricted in dynamic range—to a turbulent cascade
extending over many orders of magnitude, is not
straightforward. The power law tail extends here
from the r.m.s. hΔ lnp̂2i1=2∼gðt=tintÞ1=2 to ln p̂max ¼
gt=τ; its extent in log-space scales as ðt=tintÞ1=2=f.

(5) The power law shape hardens with time, just as it
hardens with increasing energy gain per interaction.
Those features are illustrated in Fig. 4. Those
properties also agree with the measurements of
power law spectra in kinetic simulations of relativ-
istic turbulence [85–91], which show that the
spectrum hardens with time, with increasing mag-
netization and with increasing fluctuation level
δB=B. Note that the energy gain per scattering event
is related to these latter two quantities, magnetiza-
tion and turbulence amplitude.

(6) The spectral index mainly depends on g and tint, for
fþ ∼ f−. In the power law range, indeed,Sp ≃ f∅ ln p̂
and 2fþðlnp̂max− lnp̂Þ∼2fþ lnp̂max∼gt=tint. More
specifically, at time t ∼ tint=g2, s takes values close to 3
for g ∼ 1; see Fig. 5. The quantity tint=g2 represents
the average acceleration timescale, hence this
spectral index matches nicely the values s ∼ 3 ob-
served in kinetic simulations of relativistic turbulence
if tint ∼ lc=c.

Finally, the spectrum converges asymptotically to the
log-normal shape, as announced earlier. This is manifest
from Eqs. (B2) and (B6) in the limit N → þ∞ (with
N ¼ t̂ the number of steps taken). This property of large
deviation functions derives from the central limit theorem.
On asymptotic timescales, diffusion then takes place as in
homogeneous turbulence because the particles can probe
all structures many times over, although the effective

FIG. 4. Spectra dN=d lnp from the stochastic acceleration of
particles in intermittent turbulence, as obtained from Eq. (21); see
also the discussion in Appendix B. Top panel: spectra plotted at
different (normalized) times t̂ ¼ 12:; 25:; 50:; 100 (ordered from
red to blue or left to right), for g ¼ 1 and fþ ¼ f− ¼ 0.01. Note
that t̂ ¼ t=τ characterizes the number of steps taken; hence the
average number of structures encountered is ðfþ þ f−Þt̂, which
takes values between 0.25 and 2 here. Middle panel: spectra
plotted at time t̂ ¼ 50., for different values of g ¼ 0.3, 0.6, 1.2,
2.4 (ordered from red to blue or left to right), and fþ ¼ f− ¼
0.01. Bottom panel: spectra plotted at time t̂ ¼ 50., for different
values of fþ ¼ 0.02, 0.03, 0.045, 0.68 (ordered from red to blue
or left to right), g ¼ 1 and f− ¼ 0.01.

FIG. 5. Spectral index of the power law tail, as derived from
Eq. (25) and plotted as a function of time in units of
tint=g2 ¼ l=½g2ðfþ þ f−Þv�, for g spanning the range from 0.3
to 3 in steps of 0.3 (from bottom to top, or dark to light). This
figure assumes fþ ¼ f−. This spectral index is measured here at
a momentum p ¼ 10pinj.
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interaction timescale is now set by tint, and the acceleration
timescale by tint=g2. To be more precise, the distribution
function preserves at all times a nonthermal power law
tail, which is pushed to larger and larger values of
the momentum, because the Gaussian core extends
farther in ln p, given that hΔ ln p̂2i1=2 ∼ gðt=tintÞ1=2. The
convergence to the standard log-normal shape is thus
asymptotic.
In kinetic numerical simulations, the power law slows

down its evolution in time once the maximum energy has
reached the confinement limit, viz. rgðpmaxÞ ∼ lc, which
takes place on a timescale t ∼ ðtint=g2Þ ln ½lc=rgðpinjÞ� [86].
Acceleration slows down at larger momenta, because the
particle decouples from the turbulence (its scattering time-
scale increases fast with energy) [74]. This bottleneck
results in a piling-up of the momenta close to this limit. It is
not captured by the present randomwalk, which considers a
momentum-independent energy gain per scattering event.
However, the above timescale is significantly longer than
the acceleration timescale tint=g2, all the more so if the
dynamic range of the cascade lc=rgðpinjÞ is large.

3. Estimates for g and tint
The above analytical model assumes a given value for g,

tint and the scale l. Those can be estimated from the values
that maximize the acceleration rate. Here, we extract them
from the JHU-MHD simulation, using two different meth-
ods. We first consider a given coarse-graining scale l≳ rg,
then compare the contributions of various scales l.
In the presence of a broad distribution of values of Q

(with Q symbolizing the force contributions as before), the
maximum contribution to the diffusion rate at a given l
maximizes Q2dN=d ln jQj, see Eq. (24) above, because
g ∝ Q. In this first exercise, we thus extract this optimal
value of jQj for each of the three force terms. We then
derive the optimal relative energy gain as g ¼ jQjl, see
Eq. (17), and extract the corresponding value of tint as
l=ðflvÞ, where flð> jQjÞ represents the filling fraction
of regions giving a contribution larger than jQj (thus, of
either sign),

flð> jQjÞ ¼ 1

N

Z þ∞

ln jQj
d ln jQ0j dN

d ln jQ0j
����
l
: ð26Þ

The results are shown in Fig. 6, which suggests that
g ∼ 0.4vA=c and tint=g2 ∼Oð20 c2lc=v2AvÞ are reasonable
estimates for those parameters. The measured values do not
depend strongly on l as long as l≲ lc, suggesting that all
scales contribute about equally to the acceleration process.
Finally, this exercise also suggests that, at least for the JHU-
MHD simulation, the parallel shear contribution Θk seem-
ingly provides the dominant contribution to energy gain.
Our second method for determining those parameters

takes into account the possibility of particle trapping inside

structures, which happens at values of Q sufficiently large
to impart pitch-angle deflections by order of unity. Once
inside a structure, the particle gains (or loses) energy in a
regular way, as explained in Sec. IVA. Consequently,
trapping may give rise to momentum gains in excess of
Ql for some particles. Such effects deserve a careful
investigation, which lies beyond the scope of the present
paper. Here, we seek a first-order estimate of tint from the
structures that are strong enough to give rise to particle
trapping, and for such structures, we derive a first-order
estimate of g as the minimum (most conservative) value, set
by g ¼ Ql. The actual gain g is determined by that acquired
over the lifetime of the structure, or by the time the particle
takes to escape from the structure, whichever happens first.
As for any such Fermi process, g is likely distributed as a
power law whose index is controlled by the competition
between the rate of energy gain Q vs the rate of escape
∼1=l. At values Ql below unity, this slope is large enough
that the average value of g is set by its minimum value,
g ∼Ql. Physically, this describes a situation in which the
particle suffers a pitch-angle deflection of the order of unity
through its crossing of the structure, which enhances its
energy gain by a factor of unity over the ballistic estimate,
but generally not more.
To determine tint, we use the distribution of the mirror

force term Qμ ≡ b · ∇ lnB0 that dominates pitch-angle
scattering and search for the filling fraction flð> jQμjÞ
such that jQμj ¼ 1=l (guaranteeing pitch-angle deflection
by order unity). We then set tint ¼ l=flð> jQμjÞ as before.
Finally, we determine, for each of the three force terms Q
contributing to particle energization, the energy gain g as

FIG. 6. Estimates of the effective acceleration timescale tint=g2

(upper curves, in units of clc=v2A, assuming v ≃ c) and of the
average energy gain per interaction g (lower curves, in units of
vA=c) in the JHU-MHD simulation, for different coarse-graining
scales. The contributions of the three force terms are colored as
follows: red for Θk, blue for Θ⊥ and magenta for aE · b. Solid
lines are estimated using the first method discussed in the text,
dashed lines using the second method. The gray areas delimit the
dominant contributions (meaning larger g, smaller tint=g2), which
are associated to the Θk term.
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QlwhereQ is the value associated to the above value of the
filling fraction. The results are overplotted in Fig. 6. They
happen to be rather consistent with those found through the
previous method, even though the two differ in their spirit.
It so happens, however, that the value of Qμ, as determined
through the previous method, is already close to unity,
meaning that the structures that maximize the product
Q2dN=d ln jQj also tend to trap the particles.
More in-depth studies appear needed to establish a

rigorous connection between the properties of the inter-
mittency and the statistics that govern the acceleration
rate as a function of scale. Nevertheless, the consistent
estimates that emerge from the above exercises suggest that
tint ≳ lc=v, g≲ vA=c provide reasonable estimates of the
parameters governing acceleration in the JHU-MHD sim-
ulation. In turn, this suggests an average diffusion coef-
ficient Dpp ∝ p2ðvA=cÞ2v=lc, as announced earlier, just as
it predicts very steep spectra for particle acceleration in this
JHU-MHD simulation configuration at a time of several
tintc2=v2A, see Fig. 5.

C. Further remarks and consequences

The model developed in the previous Sec. IV B, which
describes the momentum gain through a random walk in
intermittent structures shares some interesting features with
the observations made in dedicated numerical simulations:
it agrees on the general scaling of the diffusion coefficient;
it predicts a spectral shape similar to that observed, that is a
log-normal core slowly drifting in time to larger momenta,
with a power law tail; notably so, the spectral index agrees
with that measured in those simulations. It would certainly
benefit from further detailed analysis aimed at establishing
a closer link between the spectral shape and the properties
of the turbulence intermittency, as one may notably expect
those properties to depend on various external parameters,
such as the physics of stirring, the overall magnetization,
the amplitude of the turbulent component, the plasma
beta parameter etc., e.g., [108]. Such studies can involve
analytical models, or numerical simulations of particle
transport in synthetic intermittent settings, such as under-
taken in Refs. [106,106,109–113]. A more detailed analysis
of the statistics of interactions between particles and
structures in full-blown kinetic (or MHD) simulations of
magnetized turbulence would also bring direct constraints
and input for the present picture.
We also recall an important prediction of the above

model: the (logarithmic) running of the spectral index of
the power law tail with momentum. Such a running is not
apparent in kinetic numerical simulations, and it should not
be apparent given the restricted dynamic range that even the
most massive simulations can probe. However, this running
clearly deserves further investigation, as it may have a
direct impact on phenomenology, for turbulent cascades
extending over many orders of magnitude.

To conclude, it proves instructive to recast the above
model in the frame of usual quasilinear or Fermi-like
treatments of stochastic acceleration and mention a few
noteworthy consequences of the impact of intermittency. In
contrast to the present microphysical description of particle
transport, most treatments and phenomenological applica-
tions of stochastic acceleration make use of the Fokker
Planck equation to determine the particle distribution
function fðp; tÞ. This equation,

∂f
∂t ¼

1

p2

∂
∂p

�
p2Dpp

∂f
∂p

�
; ð27Þ

here written without a drift (other than the noise-induced
one) is entirely characterized by the momentum diffusion
coefficient Dpp ≡ hΔp2i=ð2ΔtÞ. This equation derives
from the original Fermi model provided the interaction
time between two scattering events does not depend on
momentum [114], corresponding to the scaling Dpp ∝ p2

observed in numerical simulations [83,85–91]. The same
Fokker-Planck equation also derives from the quasilinear
transport equation, when rewritten in the diffusion approxi-
mation, after averaging over spatial variables [115,116].
For Dpp ∝ p2, the solution for monoenergetic injection

at momentum pinj takes a Gaussian shape in lnp,

p3f ¼ ð4πνdifftÞ−1=2 exp
�
−
½ln ðp=pinjÞ − 3νdifft�2

4νdifft



;

ð28Þ

with νdiff ¼Dpp=p2. The mean of this distribution increases
as fast as the variance, indicating substantial drift in
momentum, in contrast with the present description; see
Sec. IVA.
Formally, the Fokker-Planck equation represents a trun-

cation to the second order of the Kramers-Moyal expansion
of the more fundamental equation that governs the evolu-
tion of f. This truncation is exact if the corresponding
microscopic dynamics can be described by a Langevin
equation with Gaussian noise of infinitesimally small
coherence time [117]. It is thus not surprising that this
solution fails to reproduce a power law extension in the
present context because the intermittency effectively
enlarges the coherence time of the random force to the
macroscopic timescale tint. The above Gaussian shape is
rather recovered as the asymptotic limit of the random
walk in intermittent turbulence at t=tint → þ∞, as dis-
cussed earlier. Several models have been proposed to
generalize the Fokker-Planck equation to incorporate
higher-order terms, e.g., effective resummations [36,66],
fractional transport equations [112], or more pragmatically,
a Fokker-Planck equation with a momentum-dependent
advection coefficient, tuned in such a way as to reproduce
the results of kinetic simulations [89].
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The role played by intermittency may have other, direct
implications for phenomenology. For one, strong intermit-
tency is associated to inhomogeneity, which directly
implies nonuniformity in space and time of the radiation
emitted by the accelerated particles [84,118,119]. It can
also impact the spatial transport of particles, just as it
impacts their transport in momentum space. In particular, if
the interaction length between two scattering events is ∼lc,
as suggested by the analysis of the previous section, then
the fraction of unscattered particles must remain of the
order of unity on length scales lc. This implies that
significant anisotropies can be maintained on long length
scales, with obvious consequences for cosmic-ray physics.

V. SUMMARY AND CONCLUSIONS

This paper has discussed the physics of particle accel-
eration in strong MHD turbulence characterized by an
ensemble of structures, rather than by the linear super-
position of random waves of quasilinear theory. To this
effect, it has made use of a novel formalism, applicable
from the subrelativistic to relativistic limits, that describes
the history of the particle in a mixed phase space, with
spatial variables expressed in the lab-frame, and momenta
in the R=E frame that moves at velocity βE ¼ E × B=B2

(in units of c; its four-velocity is written uE), where the
motional electric field vanishes. All energy gains or losses
can then be expressed as the influence of inertial forces that
derive from the noninertial nature of that frame R=E. These

energy gains/losses are thus directly related to the gradient
of the velocity flow of the magnetic field lines, in particular
their acceleration, their compression and their shear. This
allows us to connect in a direct manner the physics of
particle acceleration to the description of the turbulent bath
in terms of velocity structures. To quantify the terms of
energy gain/loss, we have assumed that the particle under-
goes local gyromotion around the perturbed field lines and
retained the lowest order contribution in rg=lc (ratio of
particle gyroradius to coherence length scale). The main
results can be summarized as follows:
(1) Three terms contribute to particle acceleration: the

effective gravity projected along the field line
(aE · b), associated to the acceleration field aE of
uE, the shear of uE along the field line (Θk), and its
compression in the transverse plane (Θ⊥); the last
two dominate over the first in subrelativistic turbu-
lence. In ideal MHD, and to the present order of
approximation, those forces capture the classical
drifts of guiding center models. The present formal-
ism is amenable to extensions that can capture terms
of higher order in rg=lc or nonideal contributions to
Ohm’s law.

(2) The present model is closer in spirit to the original
Fermi scenario of stochastic particle acceleration

than to quasilinear theory (QLT). It differs from this
original Fermi scenario in one crucial aspect: in each
region of nonzero gradient Θk or Θ⊥, the particle
gains (or loose) energy in a regular (nonstochastic)
manner that depends on the sign of the gradient, not
whether the collision with that region is head-on or
tail-on. The acceleration process becomes diffusive
once the particle has encountered several uncorre-
lated energizing sites.

(3) On average, the particles suffer net energy gain or
loss, whose amount is determined by the volume
average of those gradients (weighted by the particle
distribution). This mean energy gain can be directly
related to the net heating of the plasma through
large-scale motions. This also differs from the usual
quasilinear treatment, which implicitly assumes an
infinite reservoir of energy for particle energization,
and which predicts similar amounts of net and
stochastic energy gains.

(4) As demonstrated by measurements carried out in the
JHU-MHD 10243 numerical simulation of incom-
pressible MHD, the acceleration sites are localized
in isolated regions that occupy a small filling
fraction of the overall turbulent volume, unlike
QLT, which assumes a homogeneous space-filling
background of waves. Furthermore, those acceler-
ation sites are preferentially found in regions of
strong gradients of the magnetic energy density,
whereas QLT predicts an acceleration rate that scales
with the turbulent magnetic energy density.

(5) The circumscription of accelerating sites to sparse
regions is a hallmark of intermittency. Correspond-
ingly, the statistics of the velocity gradients exhibit
highly non-Gaussian features characterized by
power law tails leading to large excursions, all the
more so as the coarse-graining scale decreases.

(6) Intermittency plays a key role in shaping the dis-
tribution function of the accelerated particles. The
spectrum has been derived here in the frame of a
microscopic model describing the transport of par-
ticles in a bath of intermittent acceleration sites. This
spectrum exhibits a Gaussian core that broadens in
time, as in a diffusive process, together with a (near-)
power law at large momenta, which hardens with
time. Overall, the spectral shape will thus differ
from that evaluated assuming a homogeneous tur-
bulence, which opens interesting prospects for a rich
phenomenology.

(7) In such a situation, the average diffusion coefficient
characterizes the broadening of the Gaussian core, but
not the power law tail. The reason why the standard
Fokker-Planck treatment fails here is because the
intermittency introduces a macroscopic timescale tint,
defined as the typical interaction time with an accel-
erating site. In the JHU-MHD simulation, tint ∼ lc=v
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(v particle velocity). The corresponding diffusion
coefficient Dpp ∝ p2hδu2Eiv=lc agrees qualitatively
well with that measured in test particle simulations of
subrelativistic, weakly sub-Alfvénic MHD turbulence
[83], as well as that measured in fully kinetic
simulations of relativistic turbulence [85–91].

(8) The particles that populate the nonthermal power
law are those that have been able to interact with
sufficiently many sites in a given time. At time
t ∼ tint=g2, with g the characteristic relative energy
gain per interaction with an accelerating site, the
spectral index s (dN=dp ∝ p−s) is predicted to be of
the order of 3 for g ∼Oð1Þ. This agrees rather well
with the aforementioned kinetic numerical simula-
tions of relativistic turbulence. Smaller values of g
(as expected in subrelativistic turbulence) lead to
softer spectra.

As discussed in Sec. III, the energization in regions of
large shear of the velocity field of magnetic field lines is
closely related to the sources and sinks of magnetic energy
in the MHD description, and more generally with inter-
mittent structures characterized by large gradients. This
should be put in perspective with numerous observations
and simulations that have revealed that plasma heating in
turbulent environments is indeed associated with intermit-
tent structures [53–59], albeit generally interpreted as the
consequence of reconnection.
Those two pictures enjoy intriguing connections. For one,

reconnecting currents sheets are associated with violent bulk
plasma motions that can be described in an MHD approxi-
mation over most of the volume, outside the diffusion
regions. In such environments, particle energization is
dominated by Fermi-type interactions, at least in the absence
of a strong guide field, and all the more so at high energies,
e.g., [120,121]. More precisely, the perpendicular electric
field that governs those Fermi-type processes can be related
to the shearing and compressive motions of the flow, as in
the present formalism [95]. Zooming out to larger scales,
particles could also be accelerated through repeated encoun-
ters with the exhausts of many, randomly oriented recon-
nection regions [122], or more generally with the
nonuniform stirring motions around reconnection regions,
if reconnection takes place in a turbulent fashion on all scales
[123]. Therefore, what truly governs plasma heating in the
vicinity of intermittent structures deserves closer scrutiny,
from observational, theoretical and numerical viewpoints.
One merit of the present model is that it can be directly

tested against observations or numerical simulations by
comparing the observed amount of particle energization
with the expected contributions for the inertial, the parallel
shear and the transverse compression terms. To calculate
those expected contributions, it suffices to measure the
statistics of the gradients of uE and use Eq. (4). In that
regard, Fig. 1 provides a direct tomography of the accel-
eration regions in the JHU-MHD simulation.

This contrasts somewhat with the quasilinear view of
energization through wave particle resonant interactions,
which are difficult to observe; see however Ref. [124] for
recent progress in that direction. For that reason, one
commonly tests models of particle acceleration (or trans-
port) through the comparison of the predicted diffusion
coefficient with that measured in simulations. However,
this does not suffice, because various theoretical models
can lead to the same overall scaling with particle momen-
tum, and furthermore, the diffusion coefficient itself does
not fully characterize the acceleration process, as dis-
cussed above.
The role of turbulence intermittency regarding particle

transport, a novel aspect of the present model, deserves
further investigation. One of its most obvious signatures
to look for, in observations or numerical simulations, is
inhomogeneity in the rates of particle diffusion; such
inhomogeneity has actually been observed in
Refs. [63,84]. Intermittency is likely to entail important
consequences for phenomenological applications in space
plasma physics. For instance, it may lead to significant
anisotropies in phase space on scales comparable to the
coherence length, for the same reason that it affects the
momentum distribution function. One should thus aim at
establishing a closer relationship between the properties of
the turbulence (nature of the forcing, magnetization,
amplitude etc.) and the phenomenology of particle trans-
port and acceleration. This may involve test-particle propa-
gation in synthetic turbulence as well as full numerical
simulations of turbulence with advanced diagnostics.
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Sorbonne Université DIWINE Emergence-2019 program.
It is a pleasure to thank V. Bresci, A. Bykov, L. Comisso,
C. Demidem, L. Gremillet, M. Malkov, L. Sironi, and L.
Vlahos for insightful discussions.

APPENDIX A: PARTICLE ACCELERATION
IN R=E

The following conventions are used. Greek indices
refer to spacetime indices in the laboratory frame, while
latin indices ða; b;…Þ are spacetime indices in the frame
R=E in which the comoving electric field vanishes.

Correspondingly, tensors indexed with greek indices are
understood to be evaluated in the lab frame, while those
indexed with latin indices are expressed in the R=E frame.

Where confusion can arise, a prime is used to label
comoving frame quantities. Hence B0 denotes the magnetic
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field in the comoving frame, while B (as the electric fieldE)
that in the lab frame. These two are related through the
usual (instantaneous) Lorentz transforms,

B0 ¼ γEB − uE × E; B ¼ γEB0;

E ¼ −uE × B0; ðA1Þ

with B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − E2

p
. The quantities γE ¼ B=B0 and βE ¼

E × B=B2 represent the Lorentz factor and three-velocity
of R=E in units of c; its four-velocity is written uE ¼
βE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βE

2
p

in the lab frame. In the R=E frame,

uEa ¼ ð1; 0Þ.
Following [74], the four-velocity of the particle in the

locally inertial R=E frame, u0a, evolves according to

1

c
du0a

dτ
¼ q

m
Fa

bu0b − Γ̂a
bcu

0bu0c; ðA2Þ

with Fab the Maxwell field strength tensor in R=E (thus,

purely magnetic), and Γ̂a
bc the connection that captures the

inertial forces,

Γ̂a
bc ¼ −eβbeγc

∂
∂xγ e

a
β; ðA3Þ

here expressed as a function of the tetrad eβb (and its
inverse) that connects the lab to the R=E frame; see e.g.,

[125,126]. Note that the derivative is taken with respect to
proper time τ which parametrizes the particle worldline.
The choice of this tetrad is not unique and, in the present

case, it proves useful to define it as follows [96,127]:

feμa; a ¼ 0; 3g ¼ fuEμ; bμ; e2μ; e3μg
feaμ; a ¼ 0; 3g ¼ f−uEμ; bμ; e2μ; e3μg; ðA4Þ

with uEμ the (timelike) four-velocity ofR=E in the lab frame.

The spacelike four-vector bμ is the unit vector defined by
bμ ¼ Bμ=

ffiffiffiffiffiffiffiffiffiffiffi
BαBα

p
, with

Bμ ¼ −⋆Fμ
νuEν; ðA5Þ

the magnetic four-vector, which represents the magnetic
field measured by an observer moving at velocity uEν:
Bμ ¼ f0;B0g in the lab-frame. The dual field strength
tensor is written �Fμν ¼ 1

2
ϵμναβFαβ, with ϵ0123 ¼ −1. The

last two spacelike vectors e2μ and e3μ span the plane
orthogonal to uEμ and bμ. Their exact definition is not
important in what follows. They can be defined through
linear combinations of the eigenvectors of Fa

b with
eigenvalues þiB0 and −iB0.
This choice of tetrad tacitly implies a rotation of the

three spatial axes with respect to the lab frame. In

particular, the magnetic four-vector in R=E is written

Ba ¼ eaμBμ ¼ f0; B0; 0; 0g.
In the R=E frame, the four-velocity of the particle is

written ua ¼ fγ0; u0k; u02; u03g. Noting that the Lorentz force

in Eq. (A2) contributes neither to the evolution of γ0 nor to
that of u0k, we obtain

1

c
dγ0

dτ
¼ −γ0u0kb

βuEγ∂γuEβ − u0k
2bβbγ∂γuEβ

− u022 e2
βe2γ∂γuEβ − u023 e3

βe3γ∂γuEβ;

1

c

du0k
dτ

¼ γ02uEβuEγ∂γbβ þ γ0u0kuE
βbγ∂γbβ

þ u022 e2
βe2γ∂γbβ þ u023 e3

βe3γ∂γbβ: ðA6Þ

Crossed terms containing only one power of u02 or u
0
3 have

been neglected, for reasons discussed further below.
The force terms in Eq. (A6) find a clear meaning after

being rewritten in terms of derivatives of the velocity field.
To do this, decompose ∂βuEα as

∂βuEα ¼ σE
α
β þ ωE

α
β þ

1

3
ΘEhEαβ þ aEαβ; ðA7Þ

in terms of σEαβ the shear tensor, ωE
α
β the vorticity tensor,

ΘE the expansion scalar, hEαβ the orthogonal projector and
aEαβ the acceleration tensor, defined through

hEαβ ¼ ηαβ þ uEαuEβ;

σE
αβ ¼ 1

2
hEαμhEβνð∂νuEμ þ ∂μuEνÞ −

1

3
ΘEhEαβ;

ωE
αβ ¼ 1

2
hEαμhEβνð∂νuEμ − ∂μuEνÞ;

ΘE ¼ ∂αuEα;

aEαβ ¼ −uEβuEμ∂μuEα: ðA8Þ

The acceleration four-vector is aEα¼uEβaEαβ¼uEμ∂μuEα.
Given that the magnetic field vector defines a preferred
direction, we split ΘE ¼ Θk þ Θ⊥ with

Θk ¼ bαbβ∂αuEβ;

Θ⊥ ¼ ðηαβ − bαbβÞ∂αuEβ; ðA9Þ

which characterize the shear along and the compression
perpendicular to the magnetic field line.
This eventually leads to the main equation,

1

c
dγ0

dτ
¼ −γ0u0kaE · b − u0k

2Θk −
1

2
u0⊥2Θ⊥;

1

c

du0k
dτ

¼ −γ02aE · b − γ0u0kΘk −
1

2
u0⊥2b · ∇ lnB0: ðA10Þ

MARTIN LEMOINE PHYS. REV. D 104, 063020 (2021)

063020-18



The first two terms on the rhs of each equation derive
directly from the decomposition of ∂γuEβ and ∂γbβ.
The third are obtained as averages over a gyroperiod,
assuming that on such short timescales, the gradients do not
change significantly. Then, hu02i ¼ hu03i ¼ hu02u03i ¼ 0 but
hu022 i¼hu023 i¼u0⊥2=2. All terms containing only one power
of u02 or u03 have already been excluded from Eq. (A6).
The decomposition of the identity, ηαβ ¼ −uEαuEβþ
bαbβ þ e2αe2β þ e3αe3β, combined with uEα∂βuEα ¼ 0

then leads to the last term in the equation for γ0.
Defining h⊥αβ ≡ e2αe2β þ e3αe3β, the corresponding

term ∝ bα∂αB0 in the equation for u0k is obtained through

h⊥βγ∂γbβ ¼
1

B0 h⊥βγ∂γBβ

¼ 1

B0 ðηβγ þ uEβuEγ − bβbγÞ∂γBβ

¼ 1

B0 D
αBα −

1

B0 b
α∂αB0: ðA11Þ

The differential operator Dα denotes the orthogonally
projected derivative relatively to the timelike direction
set by uEα, see [128,129],

DαBα ≡ hEαμhEνα∂νBμ ¼ hEνμ∂νBμ; ðA12Þ

and, in the MHD approximation, DαBα ¼ 0 identically;
that latter equation generalizes ∇ · B ¼ 0 to accelerated
frames.
So far, everything has been written in terms of partial,

noncovariant derivatives, but general covariantization is
straightforward.

1. Connection to the guiding center approximation

The guiding center approximation relies on the con-
servation of the magnetic moment,

M ≡ u0⊥2

2B0 ; ðA13Þ

and it is best described (to lowest order) by the covariant
relativistic Hamiltonian [100],

H ¼ 1

2
mūμūμ þmMB0; ðA14Þ

in terms of ūμ the four-velocity of the guiding
center, defined as the particle four-velocity deprived of
gyromotion,

ūμ ¼ uμ − u02e2
μ − u03e3

μ ¼ γ0uEμ þ u0kb
μ: ðA15Þ

The equations of motion can be derived using the Poisson
brackets,

fx̄α; ūβg ¼ 1

m
ð−uEαuEβ þ bαbβÞ; ðA16Þ

which gives to lowest order,

1

c
dx̄α

dτ
¼ γ0uEα þ u0kb

α;

1

c
dūβ

dτ
¼ −Mð−uEβuEγ þ bβbγÞ∂γB0: ðA17Þ

The latter equation can be rewritten for γ0 and u0k,

dγ0

dτ
¼ u0kuE

α dbα
dτ

þMcuEα∂αB0;

du0k
dτ

¼ −γ0bα
duEα

dτ
−Mcbα∂αB0: ðA18Þ

Combiningboth equationsofEq. (A18)with the four-velocity
normalization ū0aū0aþ2MB0 ¼−1 leads to dM=dτ¼0,
expressing conservation of the adiabatic moment.
We can establish a connection between the two formal-

isms and rewrite Eq. (A18) in the form of Eq. (A10), as
follows. First note that the inertial contribution, viz. the first
term on the rhs of Eq. (A18) breaks down into the first two
terms on the rhs of Eq. (A10), noting that, in the guiding
center approximation,

1

c
d
dτ

≡ hγi 1
c
∂
∂tþ ukb · ∇þ hγiβE · ∇;

≡ γ0uEα∂α þ u0kb
α∂α; ðA19Þ

because

uEα∂α ¼ γEc−1∂t þ uE · ∇ ¼ c−1∂t0 ;

bα∂α ¼ b · ∇ ¼ b0 · ∇0: ðA20Þ

Those two terms on the rhs of Eq. (A19) lead to the
effective gravity force projected along the field line direction
(aEαbα) and the shear acceleration or compression along the
field line direction (Θk). The latter characterizes the curva-
ture drift part of the energy change. This is because the
curvature drift velocity scales as vd;curv ∝ B × ðb · ∇bÞ, so
that E · vd;curv ∝ ðE × BÞ · ð∇bÞ ∝ b · ðb · ∇uEÞ, given that
b · uE ¼ 0.
The third terms on the rhs of Eqs. (A10) and (A18)

match one another in the expression for u0k; they describe
the grad-B force. In the equation for γ0, this grad-B term can
also be rewritten in terms of derivatives of the velocity field
through the projection of the advection equation on bβ,
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bβ∂αðuEαBβ − uEβBαÞ ¼ 0

⇒ uEα∂αB0 ¼ −B0ðηαβ − bαbβÞ∂αuEβ

¼ −Θ⊥B0: ðA21Þ

Hence, the grad-B term appears here under a variety of
forms: it can be depicted as a betatron process, as in
Eq. (A22), as a mirror force, or as the result of compression
in the plane transverse to the field lines.
Finally, one can check that these equations match the

guiding center equations of motion of Vandervoort and
Northrop [130,131],

dhγi
dτ

¼ q
mc2

E · vd þM
∂
∂t B

0; ðA22Þ

where hγi ¼ γEγ
0 corresponds to the Lorentz force of the

particle in the lab-frame, averaged over a gyroperiod, with
drift velocity,

vd ¼
mc2

q

�u0k
B02 B ×

db
dτ

þ hγi
B02 B ×

dβE
dτ

þMc
B02 B × ∇B0 þ M

B02 E
∂B0

∂t


: ðA23Þ

Rewriting Eq. (A22) above for γ0 instead of hγi, it can be
shown that the inertial drift contribution reproduces the first
term of Eq. (A18), while the polarization drift vanishes in
the proper frame, and the grad-B drift terms can be
reorganized as the second term of Eq. (A18). Similar
operations can be conducted to recover the evolution of u0k.

APPENDIX B: MOMENTUM DIFFUSION IN
INTERMITTENT TURBULENCE

The random walk described in Sec. IV B can be modeled
as the adimensioned process,

ŷ ¼ 1

N

XN
i¼1

x̃i; ðB1Þ

with the short-hand notations: y ¼ lnðp=pinjÞ=ðN gÞ, g the
mean energy gain, N ¼ t=τ the number of jumps, each

taking time τ; x̃i a random variable that takes valueþ1with
(energy gain) probability fþ, −1 with (energy loss)
probability f− and 0 with probability f∅ ≡ 1 − f− − fþ.
The probability distribution function ϕðŷÞ can be

approximated using the techniques of large deviation
theory [107], as

ϕðŷÞ ∼
N≫1

exp ½−N IðŷÞ�; ðB2Þ

where

IðŷÞ ¼ sup
υ∈R

fυŷ − ψðυÞg; ðB3Þ

the function ψðυÞ being defined through the cumulant
generating function of the random variable x̃,

ψðυÞ ¼ ln fE½eυx̃�g
¼ ln ðf−e−υ þ fþeþυ þ f∅Þ: ðB4Þ

This gives

IðŷÞ ¼ ŷ ln

�
f∅ŷþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2∅ŷ2 þ 4f−fþð1 − ŷ2Þ

p
2fþð1 − ŷÞ

	

− ln

�
f∅ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2∅ŷ2 þ 4f−fþð1 − ŷ2Þ

p
ð1 − ŷ2Þ

	
: ðB5Þ

The mean value for ŷ is ŷm ≡ hŷi ¼ fþ − f−, as is
obvious from Eq. (B1). At ŷm, we have

IðŷmÞ ¼ 0; I0ðŷmÞ ¼ 0;

I00ðŷmÞ ¼
1

f− þ fþ − ðfþ − f−Þ2
: ðB6Þ

Consequently, for ŷ ∼ ŷm, corresponding to lnðp=p0Þ∼
N gðfþ − f−Þ, the distribution is nearly Gaussian,

ϕðŷÞ ∼
N→þ∞

exp
�
−
N
2
I00ðŷmÞðŷ − ŷmÞ2

	
; ðB7Þ

but, on intermediate timescales N < þ∞, it exhibits a
non-Gaussian tail at large values of ŷ.
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magnetosonic and Alfvénic turbulence, Astron. Astrophys.
420, 799 (2004).

[46] P. Goldreich and S. Sridhar, Toward a theory of interstellar
turbulence. 2: Strong alfvenic turbulence, Astrophys. J.
438, 763 (1995).

[47] P. Goldreich and S. Sridhar, Magnetohydrodynamic tur-
bulence revisited, Astrophys. J. 485, 680 (1997).

[48] J. Cho and E. T. Vishniac, The anisotropy of magneto-
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