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Binary neutron star mergers provide a unique probe of the dense-matter equation of state (EoS) across a
wide range of parameter space, from the zero-temperature EoS during the inspiral to the high-temperature
EoS following the merger. In this paper, we implement a new model for calculating parametrized finite-
temperature EoS effects into numerical relativity simulations. This “M�-model” is based on a two-
parameter approximation of the particle effective mass and includes the leading-order effects of degeneracy
in the thermal pressure and energy. We test our numerical implementation by performing evolutions of
rotating single stars with zero- and nonzero temperature gradients, as well as evolutions of binary neutron
star mergers. We find that our new finite-temperature EoS implementation can support stable stars over
many dynamical timescales. We also perform a first parameter study to explore the role of the M�

parameters in binary neutron star merger simulations. All simulations start from identical initial data with
identical cold EoSs, and differ only in the thermal part of the EoS. We find that both the thermal profile of
the remnant and the postmerger gravitational wave signal depend on the choice of M� parameters, but that
the total merger ejecta depends only weakly on the finite-temperature part of the EoS across a wide range of
parameters. Our simulations provide a first step toward understanding how the finite-temperature properties
of dense matter may affect future observations of binary neutron star mergers.

DOI: 10.1103/PhysRevD.104.063016

I. INTRODUCTION

With the recent detections of gravitational waves from
multiple likely neutron star-neutron star (NSNS) mergers
[1,2], we are now in a new era of gravitational wave and
multimessenger astronomy. Already, these gravitational
waves have been used to constrain the properties of the
dense nuclear matter contained in the neutron star interior
[see, e.g., [3–5], for recent reviews]. Because the LIGO-
Virgo sensitivity is highest for frequencies ≲1 kHz, the
main gravitational wave information detected so far comes
from the binary inspiral, during which neutron stars are
expected to remain thermodynamically cold. As a result, all
analyses of LIGO-Virgo events to date have specifically
constrained the equation of state (EoS) at effectively zero
temperature.
Following the merger, shock heating is expected to raise

the temperature of the system to 10–100 MeV [e.g., [6,7],
for reviews], which is well above the Fermi energy of the
matter. At such temperatures, the thermal pressure can

make up a significant fraction of the total pressure and can
thus influence the structure of the merger remnant. This, in
turn, has been shown to affect a wide range of NSNS
merger properties, from the lifetime of the merger remnant
to the postmerger gravitational wave (GW) spectrum and
the amounts of matter ejected [e.g., [8–13] ]. As a result,
observation of these postmerger properties could provide a
new probe into the EoS at finite temperature.
While a large number of cold, neutron star EoSs have

been calculated in the zero-temperature limit [for reviews,
see [14,15] ], there exists a much smaller number of EoSs
that are self-consistently calculated at nonzero temper-
atures. These finite-temperature EoSs include the well-
known LS model, which is based on a compressible liquid
drop model of nuclei [16], and the STOS model, which was
calculated using relativistic mean field theory with a
Thomas-Fermi approximation [17]. Another ∼10 models
have been calculated using a statistical model developed by
Hempel and Schaffner-Bielich [18] for different relativistic
mean field models and nuclear mass tables, spanning a
wider range of neutron star properties. Additionally, the
CompOSE online directory for neutron star EoS tables has*craithel@ias.edu
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provided a pathway for groups to easily publish finite-
temperature EoS tables as they become available, and has
further increased the number of available models [19] (for a
recent review of finite-temperature EoSs, see [20]).
Despite these efforts, the total number of publicly-

available finite-temperature EoS models remains relatively
small and they do not span the full range of possible dense-
matter physics. In addition, some models are not consistent
with modern astrophysical constraints. For example, several
of the finite-temperature EoS tables predict cold neutron star
radii of≳13 km (e.g., the NL3, TM1, DD2, and TMA EoSs;
see, e.g., Table 1 of [21] and references therein), which are in
tension with the latest constraints inferred from LMXB
observations and from GW170817 [3,4,15]. Critically, there
is currently no implementation of a framework where one
can attach a realistic thermal model to any underlying cold
nuclear EoS, since all existing finite-temperature EoS tables
have already assumed a particular cold component. Having
an analytic, parametric framework for the thermal physics
would be necessary if we hope to one day infer the properties
of finite-temperature matter from neutron star merger obser-
vations. Finally, compared to an analytic framework, these
tabulated EoSs add an extra computational expense to
already-expensive numerical simulations.
In order to span a larger range of underlying physics at a

low computational cost, many authors have turned, instead,
to an ad-hoc and analytic approach, in which the energy
density, ϵ, and pressure, P, are decomposed according to

ϵ ¼ ϵcold þ ϵth ð1aÞ

P ¼ Pcold þ Pth; ð1bÞ

where the subscript “cold” indicates that the thermody-
namic quantity is calculated at zero-temperature, while the
subscript “th” indicates the thermal contribution to that
quantity. The cold component can be a microphysical EoS
or an agnostic parameterization, and is typically assumed to
be in β-equilibrium. A thermal correction is then added to
the cold component, in order to allow for shock heating in
the system. In the so-called “hybrid” approach, which was
first introduced in [22] and is now widely used, the thermal
correction is approximated as

Pth ¼ ϵthðΓth − 1Þ; ð2Þ

where the thermal index, Γth, is assumed to be constant with
a value that is independent of the cold EoS.
In certain regimes, such as for an ideal fluid or for a gas

of relativistic particles, the thermal index is indeed con-
stant. In fact, the values of Γth that are commonly used in
recent binary neutron star simulations, Γth ∈ ½1.5; 2�, are
approximately consistent with an ideal-fluid EoS, for which
Γth ¼ 5=3. This is why the hybrid approach is sometimes
referred to as an ideal-fluid approximation. However, for

the degenerate matter that is expected to be found in the
cores of neutron stars, Γth has a strong density dependence,
which is neglected in this hybrid approach [see, e.g., [23] ].
By neglecting the effects of degeneracy, the hybrid
approach has been shown to overestimate the thermal
pressure by up to four orders of magnitude at densities
of interest [24], and can introduce significant shifts into the
postmerger gravitational wave frequencies found in NSNS
simulations [10,25].
Within Landau’s Fermi liquid theory, the density-

dependence of Γth can be written directly in terms of the
particle effective mass [26,27]. Using this fact, the authors
in [24] (hereafter RÖP) introduced a framework for
calculating finite-temperature effects based on a new para-
metrization of the particle effective mass, which is referred
to as the M�-approximation. This two-parameter model
allows for a robust calculation of the thermal pressure
including the leading-order effects of degeneracy, while
still keeping the flexibility of Eqs. (1a)–(1b). As with the
hybrid approach, the M�-approximation of the thermal
pressure can be added to any cold EoS, whether it is
microphysical or parametric in nature. This framework for
calculating the EoS at arbitrary temperatures and proton
fractions was found to closely approximate the results of a
large family of EoS tables, with errors of ≲30% in the
thermal pressure at densities of interest (cf. the four orders-
of-magnitude errors of the hybrid approach) [24].
While Fermi liquid theory is a useful approach to

calculating thermal effects in dense matter, non-Fermi
liquid effects [28] can be important in some neutron star
settings. For example, such effects can lead to corrections
to the specific heat [29], neutrino emissivity [30], and bulk
viscosity [31] of degenerate, ungapped quark matter. Fermi
liquid theory also cannot describe the formation of bound
states, such as the nuclei that form at densities below
0.5 nsat [32]. Accordingly, in the M�-framework of RÖP,
the matter is assumed to be nucleonic and the presence of
nuclei at low densities and temperatures is neglected. We
note, however, that in the numerical implementation in the
present paper, the nuclei are neglected in such a way that
this simplification effectively cancels out, and we never-
theless recover the correct description of the pressure and
energy at low densities (see the Appendix A).
Although other frameworks for calculating the EoS in

terms of the particle effective mass have been proposed
[e.g., [33–38] ], these models depend on a much larger
number of parameters, which dramatically increases the
computational cost of exploring their parameter spaces with
NSNS merger simulations. By capturing the relevant
thermal physics with just two free parameters, the
M�-approximation makes it computationally possible to
study the role of each parameter in merger simulations
in full numerical relativity. Additionally, because the
M�-approximation can be combined with any cold EoS,
it becomes possible to explore any part of the full EoS
parameter space within this framework.
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In this paper, we implement the M�-framework for
calculating finite-temperature effects into neutron star
merger simulations in full general relativity. We test the
implementation and performance of the M�-framework in
evolutions of isolated rotating stars in equilibrium, with
both zero and nonzero initial temperature profiles, as well
as in full evolutions of NSNS mergers. In all cases, we find
that our implementation of the M�-framework maintains
the stable equilibrium of stars over many dynamical time-
scales. We also perform a parameter study to explore the
range of outcomes from select NSNS mergers with differ-
ent values of M�-parameters. In particular, we study four
sets ofM�-parameters which span a broad range of possible
nuclear physics, and we compare the evolutions with these
M�-parameters to evolutions with constant values of Γth, to
demonstrate the differences between the M�- and hybrid
approaches. We find that the inspiral phase and the time to
merger are unaffected by the choice of M�-parameters, but
that the thermal profile of the remnant and the postmerger
GW signal are both sensitive to finite-temperature effects.
We find no numerically significant difference in the total
amounts of matter ejected for the various M�-parameters
explored in this work, although the ejecta can be a factor of
a few lower for Γth ¼ 2, compared to any of the M�
evolutions or the hybrid evolution with Γth ¼ 1.5.
The structure of the paper is as follows: We start in

Sec. II with a brief discussion of the current uncertainties in
the finite-temperature EoS. Section III presents an overview
of the tests performed in this paper. In Sec. IV, we discuss
the numerical methods used in our simulations, with the
implementation of theM�-framework discussed in detail in
Sec. IVA. Finally, in Sec. V, we present the results from the
NSNS merger simulations, and we discuss how different
assumptions about the thermal physics affect various
merger properties. Convergence tests and resolution studies
can be found in Appendixes B and C. Unless otherwise
specified, we adopt geometrized units in whichG ¼ c ¼ 1.

II. UNCERTAINTIES IN THE FINITE-
TEMPERATURE EOS FOR DENSE NUCLEAR

MATTER

Existing finite-temperature EoS tables remain quite
uncertain at the supranuclear densities and high temper-
atures relevant to binary neutron star mergers. The range of
thermal pressures predicted by a sample of commonly used
finite-temperature EoSs is shown in Fig. 1. These EoSs
include the DD2, TMA, TM1, FSG models calculated
within the statistical framework of Hempel and Schaffner-
Bielich [18] (and references therein), SFHo and SFHx [39],
NL3 and FSU [40], and the LS220 model of Lattimer and
Swesty [16]. The top panel shows the thermal pressure
relative to the cold pressure, for matter at a temperature of
kBT ¼ 20 MeV and proton fraction Ye ¼ 0.1. We note that
the “cold” pressure corresponds to kBT ¼ 0.1 MeV, which
is among the lowest reliable temperatures from the

tabulated EoSs, and is thermodynamically cold in that
the temperature is much less than the Fermi energy of
nucleons. The bottom panel of Fig. 1 shows the magnitude
of the thermal pressure under the same conditions. For
these EoSs, the thermal pressure can significantly exceed
the cold pressure at low densities; Pth can be comparable to
Pcold at the nuclear saturation density (nsat ¼ 0.16 fm−3);
and Pth is still ∼10% of the cold pressure at 2nsat.
Moreover, there is significant variation between the tabu-
lated EoSs, with the ratio of Pth=Pcold differing by a factor
of 5 at nsat and by a factor of 3 at 2nsat, between these EoSs.
We also note that the temperature after a binary neutron star
merger can reach even higher values than those considered

FIG. 1. Top: Ratio of thermal-to-cold pressure as a function of
the density for various finite-temperature EoSs. Bottom: magni-
tude of the thermal pressure for the same EoSs. For each EoS, the
thermal pressure is computed at kBT ¼ 20 MeV and Pcold is at
kBT ¼ 0.1 MeV, for proton fraction of Yp ¼ 0.1. The vertical
lines correspond to the nuclear saturation density, nsat ¼
0.16 fm−3, and 2nsat, while the horizontal lines indicate the
maximum range in the tabulated EoSs at these densities. The
green shading is included to visually highlight the range in
thermal pressures spanned by these EoSs.
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here, with temperatures up to 40–50 MeV at 2–3nsat, in
which case the thermal pressure can be up to ∼50% of the
cold pressure at supranuclear densities, as we show in
Sec. V B.
Thus, even within the family of commonly-used EoS

tables, thermal effects remain quite uncertain. This uncer-
tainty may be reduced through observations of neutron stars
at high temperatures, such as during the late stages of a
binary neutron star merger. However, constraining the
finite-temperature part of the EoS requires one to be able
to untangle the role of the cold EoS, which is uncertain in
its own right, from any thermal effects. This is not
straightforward in simulations adopting tabulated finite-
temperature EoSs, e.g., [12,41–46]. However, the analytic
framework of the M�-approximation, with its physically-
motivated parameters that can be varied systematically and
independently of the cold EoS, provides one major step
forward toward the goal of constraining the finite-temper-
ature EoS with future observations of NSNS mergers. We
begin to explore this approach in this work.

III. OVERVIEW OF SIMULATIONS PERFORMED

In this paper, we implement the M�-approximation into
NSNS merger simulations in full numerical relativity. In
order to validate the implementation and performance of
the M�-EoS, we run three different types of tests. For each
test, we evolve the initial data with:
(1) the hybrid approximation with a constant Γth, and
(2) the M�-approximation,

each added to the same cold EoS.
In the first set of tests, we evolve a single rotating, cold

neutron star, in order to ensure that the star remains cold
over time. In the second, we evolve a rotating, single
neutron star, to which we add a nonzero temperature
gradient. By studying whether the temperature gradient
can be maintained without loss of stability and without
spurious growth, this provides a more stringent test of the

M�-EoS. Finally, we evolve a set of NSNS mergers with a
large range of M�-parameters. This enables us to study the
performance of the M�-EoS in a dynamical setting, in
which the stars start cold and develop significant temper-
ature gradients through shock-heating. Additionally, by
using a wide range ofM�-parameters, we perform an initial
parameter study of how eachM�-parameter affects the late-
stage properties of an NSNS merger and we compare the
outcomes to the ideal-fluid approximation. We summarize
the various tests run in Table I.

IV. NUMERICAL METHODS

All simulations were performed with the Illinois dynami-
cal spacetime, general-relativistic magnetohydrodynamics
(GRMHD), adaptive-mesh-refinement code, which has
most recently been described in Etienne et al. [47], and
is built within the Cactus/Carpet framework [48–50]. The
spacetime is evolved using the Baumgarte-Shapiro-
Shibata-Nakamura formulation of the Einstein equations
[51,52]. We use 1þ log time slicing of the lapse [53] and a
2nd-order “Gamma-driver” condition for the shift [54].
Additionally, we modified the original Illinois GRMHD
code to use the primitive variable recovery routine
described in East et al. [55].

A. The M�-approximation of thermal effects

During the evolutions, the EoS is calculated locally at
each time step. The total energy and pressure are taken to be
the sum of a cold component and a thermal component, as
in Eqs. (1a)–(1b). For the hybrid evolutions, the thermal
component is trivially calculated according to Eq. (2), for
constant Γth. In theM�-formalism, the thermal pressure and
energy are not so simply related. In this section, we
summarize the M�-framework for calculating Pth and Eth
from one another, as was first presented in RÖP.
In this framework, the thermal energy per baryon and the

thermal pressure are given by

TABLE I. Summary of tests run. The parameters n0 and α in the M� model are described below.

Configuration Gravitational mass Initial temperature Cold EoS Thermal treatment

Single star 1.4 M⊙ Pth ¼ 0 Γ ¼ 2 polytrope Γth ¼ 1.66
M�ðn0 ¼ 0.12 fm−3; α ¼ 0.8Þ

Single star 1.4 M⊙ Pth ¼ 0.1Pcold Γ ¼ 2 polytrope Γth ¼ 1.66
M�ðn0 ¼ 0.12 fm−3; α ¼ 0.8Þ

NSNS 1.4 M⊙ þ 1.4 M⊙ Pth ¼ 0 ENG (piecewise polytropes) Γth ¼ 1.5
Γth ¼ 2

M�ðn0 ¼ 0.08 fm−3; α ¼ 0.6Þ
M�ðn0 ¼ 0.08 fm−3; α ¼ 1.3Þ
M�ðn0 ¼ 0.22 fm−3; α ¼ 0.6Þ
M�ðn0 ¼ 0.22 fm−3; α ¼ 1.3Þ
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Ethðn; T; YpÞ ¼
4σfsT4

cn
þ
��

3kBT
2

�
−1

þ ½aðn; Yp ¼ 0.5;M�
SMÞ þ aðn; Yp;meÞYp�−1T−2

�
−1

ð3aÞ

Pthðn; T; YpÞ ¼
4σfsT4

3c
þ
�
ðnkBTÞ−1−

�∂aðn; Yp ¼ 0.5;M�
SMÞ

∂n þ ∂aðn; Yp;meÞ
∂n Yp

�−1
n−2T−2

�−1
ð3bÞ

where n is the baryon number density, T is the temperature,
Yp is the proton fraction, σ is the Stefan-Boltzmann
constant, c is the speed of light, fs is the number of
relativistic species, a is the level-density parameter,M�

SM is
the relativistic Dirac effective mass of symmetric nuclear
matter, and me is the electron mass. The adiabatic sound
speed can also be calculated within this framework, as in
Appendix B of RÖP.We note that in the original framework
of RÖP, there was a typo, such that M�

SM was incorrectly
preceded by a factor of 0.5 in the level-density parameter
term. We have corrected this expression in Eqs. (3a) and
(3b) and in the remainder of the present work (see [56] for
further details).
Equations (3a) and (3b) each consist of three terms,

which characterize the different density regimes that can be
encountered in an NSNS merger. The first term (∝ T4)
describes the energy of a relativistic gas of particles with fs
degrees of freedom. This term dominates at very low
densities and thus will affect the atmosphere and low-
density outflows during a merger. The second term (∝ T) is
the ideal fluid contribution, which dominates at intermedi-
ate densities, up to ∼nsat ¼ 0.16 fm−3. At higher densities
(≳nsat; although the exact transition density depends
sensitively on the temperature), the matter is degenerate
and the corresponding thermal energy scales as T2 at
leading-order. Adding the ideal and degenerate-limit terms
inversely ensures that the degenerate term dominates at
high densities and guarantees a smooth transition between
the ideal and degenerate regimes. We note, however, that
doing this separately in Eqs. (3a) and (3b) means that these
quantities are no longer exactly thermodynamically linked
across the narrow range of densities where the transition
occurs (for further discussion, see RÖP).
When calculating the number of relativistic species that

contribute to the thermal energy, we consider two limits.
For kbT ≪ 2mec2, photons are the dominant relativistic
species, making fs ¼ 1. For kBT ≫ 2mec2, electrons and
positrons become relativistic as well, each with 7=8 degrees
of freedom, and thus fs ¼ 11=4. At temperatures above
10 MeV, thermal neutrinos and anti-neutrinos appear;
however, following the convention of common finite-
temperature EoS tables, we neglect the thermal contribution
from neutrinos in this calculation, but it is straightforward
to account for them in our approach. In order to smoothly
connect the two temperature regimes of interest, we
approximate the number of relativistic species with a
simple linear interpolation, according to

fS ¼

8>>><
>>>:

1; kBT < 0.5 MeV;

−0.75þ 3.5

�
kBT

1 MeV

�
; 0.5 ≤ kBT < 1 MeV;

11=4; kBT ≥ 1 MeV:

ð4Þ

At higher densities, the degenerate thermal terms are
characterized by the level-density parameter,

aðn; Yp;M�
qÞ≡ π2k2B

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3π2YpnÞ2=3ðℏcÞ2 þM�2

q

q
ð3π2YpnÞ2=3ðℏcÞ2

; ð5Þ

where nq and M�
q are the density and relativistic Dirac

effective mass of the species, respectively. Here, we
consider only symmetric nuclear matter, for which the
relevant species are protons, neutrons, and electrons, and
we neglect the small change to the thermal pressure caused
by the matter having unequal numbers of protons and
neutrons (see RÖP for additional details). In symmetric
matter, the number densities of protons and neutrons are
equal by definition (i.e., np ¼ nn ¼ 0.5n), and we take the
neutron and proton effective masses to be comparable as
well, such that M�

p ≈M�
n ≈M�

SM, where the last term is the
symmetric matter effective mass. We parametrize the
effective mass function as

M�
SM ¼

�
ðmc2Þ−2 þ

�
mc2

�
n
n0

�
−α
�
−2
�

−1=2
; ð6Þ

where n is the total baryon number density.
In this parametrization, we fix the low-density baryon

mass to the energy per baryon of 56Fe, mc2 ¼ 930.6 MeV.
This leaves us with two free parameters: n0, which controls
the density at which degeneracy becomes significant, and
α, which controls the rate at which the effective mass
decreases at high densities and which is related to the
strength of the particle interactions in the matter. These are
the parameters that will be varied in our NSNS evolutions.
The effective mass of the electrons is approximately
constant due to their small interaction cross section, so
their effective mass simply reduces to the electron mass.
For the bulk of the matter within a neutron star merger

remnant, the neutrino opacity is expected to be large
enough that the neutrinos are trapped on the timescales
considered in this paper [13,57]. As a result, the local
proton fraction in the remnant is not changed by neutrino
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interactions, although Yp can deviate from its initial
β-equilibrated value through advection. Because Yp does
not enter the hybrid approximation of Eqs. (1a)–(1b), it is
not possible to consider the advection of Yp within that
framework. Thus, in the regime of large neutrino opacities,
the hybrid approximation implicitly requires that the matter
remains in its initial composition (i.e., cold β-equilibrium),
so that the cold pressure expression does not change. In
order to perform the most direct comparison between the
M�- and the hybrid approximation, in this work we also
assume that the matter maintains its initial cold, β-equi-
librium composition. It should be noted, however, that the
most general form of the M�-formalism allows for full
composition dependence [24].
Accordingly, we set the proton fraction of the matter at

each time step such that it corresponds to that of cold
β-equilibrium. For nucleonic matter in β-equilibrium, the
proton fraction is uniquely given by the local density and
the symmetry energy, Esym, according to

Yp;βðnÞ ¼
1

2
þ ð2π2Þ1=3

32

n
ξ

×

�
ð2π2Þ1=3 − ξ2

n

�
ℏc

Esymðn; T ¼ 0Þ
�
3
�
; ð7Þ

where, for simplicity, we have introduced the auxiliary
quantity ξ, defined as

ξ≡
�
Esymðn; T ¼ 0Þ

ℏc

�
2

×

(
24n

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π2n

288

�
ℏc

Esymðn; T ¼ 0Þ
�

3

s #)
1=3

:

ð8Þ

We parametrize the nuclear symmetry energy in terms of a
kinetic and potential-like term [as in [58,59] ], according to

Esymðn; T ¼ 0Þ ¼ ηEkin
symðnÞ þ ½S0 − ηEkin

symðnsatÞ�
�

n
nsat

�
γ

;

ð9Þ

where S0 is the value of the symmetry energy at the nuclear
saturation density. The “kinetic” term, Ekin

sym arises from the
change in the Fermi energy, EF, of a gas as the relative
densities of protons and neutrons (nn and np) change, and is
given by1

Ekin
symðnÞ ¼

3

5

�
EF

�
np ¼ nn ¼

1

2
n

�
− EFðnn ¼ nÞ

�
ð10Þ

where

EFðnqÞ ¼
ℏ2

2m
ð3π2nqÞ2=3: ð11Þ

The potential-like term in Eq. (9) is less well understood and
is, thus, given an arbitrary density-dependence above the
nuclear saturation density, nsat, through the free parameter γ.
Finally, the parameter η, which accounts for the short-range
correlations [60–65], can be written as

η ¼ 5

9

�
L0 − 3S0γ

ð2−2=3 − 1Þð2=3 − γÞEFðnsatÞ
�
; ð12Þ

where L0 is related to the slope of Esym at nsat.
We adopt the full symmetry energy model described

above for the regime of uniform, nuclear matter, i.e., at
densities above 0.5nsat. At lower densities, however, this
model breaks down. Thus, for n < 0.5nsat, we transition to
a function that smoothly decays to zero, such that the
symmetry energy is given by

EsymðnÞ ¼ Esymð0.5nsatÞ þ Psymð0.5nsatÞ
�ð n

0.5nsat
Þx−1 − 1

0.5nsatðx − 1Þ
�
;

n < 0.5nsat ð13Þ

where x is empirically determined to ensure that Yp;β rises
to 0.5 at low densities, and where PsymðnÞ≡ n2∂Esym=∂n
(see [24] for the full expression). The form of this low-
density symmetry energy is chosen to ensure a reasonable
behavior of Yp;β at low densities.
In this work, we fix the symmetry energy parameters to

values that best fit the SFHo finite-temperature EoS, with
S0 ¼ 31.57 MeV, L0 ¼ 47.10 MeV, and γ ¼ 0.41 [24,66].
The SFHo EoS is based on a relativistic mean field theory
calculation, using the statistical model of Hempel and
Schaffner-Bielich [18], and is constructed to be consistent
both with experimental nuclear data and astrophysical
observations of neutron stars; additionally, SFHo has
similar cold neutron star properties to ENG, which is the
cold EoS used in our binary neutron star merger calcu-
lations (see Sec. IV B).
Finally, we need to be able to convert between the energy

and the total pressure. Unlike in the hybrid approximation
of Eq. (2), Eqs. (3a) and (3b) describe multiple regimes,
each of which have a different density- and temperature-
dependence. As a result, there is no simple expression for
Pth in terms of Eth and vice versa. We can, nevertheless,
simply convert between these quantities as follows: Given
the density, Yp;βðnÞ, and one thermodynamic quantity—
either Eth or Pth—we use Eq. (3a) or (3b) to numerically

1We note that there was a factor-of-2 typo in the equation for
Ekin
sym in RÖP which has been corrected in Eqs. (10) and (12).
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solve for the temperature, using a combination of the
Newton-Raphson and bisection methods. We then use n,
Yp;βðnÞ, and the inverted temperature to directly calculate
the other thermodynamic variable.
When implementing this framework numerically, we

also need to adopt one additional modification. During
binary neutron star evolutions, numerical errors can cause
the total pressure to drop below the cold pressure. By
Eq. (1b), this would imply the thermal pressure has become
negative; but, negative thermal pressures are not allowed
within the microphysical M�-framework. To mitigate this
unphysical error, we impose a pressure floor to prevent the
thermal pressure from becoming too negative. It was
previously shown in [47] that setting the pressure floor
at exactly Pcold can cause large drifts in the central density
of single-star evolutions; as a result, we adopt an inter-
mediate pressure floor of 0.9Pcold. In the regime where the
thermal pressure or energy become negative, we switch to a
hybrid EoS with Γth ¼ 2 in order to facilitate the con-
version between Eth and Pth.
Because the M�-framework involves only two free

parameters (n0 and α; as we are fixing the symmetry
energy parameters), we find that implementing the M�-
framework into binary evolution calculations introduces a
slowdown of only ∼30% to the overall speed of the code,
compared to an identical evolution with the hybrid
approximation.

1. M�-parameters explored in this work

For a sample of nine finite-temperature EoS tables, the
M�-parameters have been found to range between n0 ∈
½0.10 − 0.22� fm−3 and α ∈ ½0.72 − 1.08�, for symmetric
nuclear matter [24]. For our single star tests, we use one
representative set of parameters, with n0 ¼ 0.12 fm−3 and
α ¼ 0.8. For the binary evolutions, we explore values of

n0 ¼ 0.08 and 0.22 fm−3, and α ¼ 0.6 and 1.3, which
approximately bracket the range found in the sample of
tabulated EoSs cited above. These choices of parameters
are summarized in Table I.
An effective thermal index for each of these models can

be calculated according to

Γth ¼ 1þ
�
Pthðn; T; YpÞ
nEthðn; T; YpÞ

�
: ð14Þ

The resulting thermal indices for the five parameter
combinations used in this work are shown in Fig. 2. We
also include in Fig. 2 the thermal index for several finite-
temperature EoS tables, as dotted lines, for comparison. We
find a strong density dependence in the thermal index for all
of the M� EoSs, as expected. The range of Γth for the four
extremal M�-parameters approximately brackets the range
of tabulated Γth, as intended. The set ofM�-parameters used
for the single-star test (n0 ¼ 0.12 fm−3, α ¼ 0.8; shown in
gray in Fig. 2) was chosen as a more realistic set of
parameters, and it can be seen in Fig. 2 that this choice is
approximately consistent with the equivalent Γth of the
tabulated EoSs considered. Figure 2 also demonstrates the
dependence of Γth on the M�-parameters: namely, we find
that the density at which Γth starts to vary is directly
governed by the parameter n0, while the degree of
density-dependence is determined by the parameter α.
Microphysically, we can interpret n0 as being related to
the density at which particle interactions start to become
significant and α as corresponding to the strength of those
particle interactions.
Finally, we note that for theseM�-parameters and for the

regimes probed in our binary evolutions (n ≲ 5nsat; see
Sec. V B), the sound speed predicted by the complete EoS
is always subluminal.

FIG. 2. Effective thermal index for the parameters explored in this work at three different temperatures. From left to right, the panels
show Γth at kBT ¼ 1, 10, and 20 MeV; all panels are calculated for matter in neutrino-less β-equilibrium. We also show the effective
thermal index for a sample of finite-temperature EoSs as dotted lines, for comparison. The green shading is included to visually represent
the range of Γth values spanned by the realistic EoS tables. All sets ofM�-parameters confirm that Γth indeed depends on the density. The
degree of density-dependence is directly governed by the parameter α, while the density at which Γth begins to vary is determined by the
parameter n0.
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B. Initial conditions

We now describe the initial conditions for the various
tests performed in this paper. The single-star initial data
were constructed using the code of Cook et al. [67,68]. For
both temperature configurations, we used a Γ ¼ 2 poly-
trope for the cold EoS and we assumed the matter was
initially in β-equilibrium, with the proton fraction set
according to Eq. (7). For the zero-temperature test, this
completely describes the EoS. For the finite-temperature
single-star test, we added a thermal gradient to this cold
EoS, such that the thermal pressure is 10% of the cold
pressure at all densities. We constructed one EoS table with
the Pth=Pcold ¼ 0.1 profile assuming Γth ¼ 1.66 to calcu-
late the associated energies, as well as a second EoS table
with the same thermal pressure profile but instead assuming
the M�-approximation with n0 ¼ 0.12 fm−3 and α ¼ 0.8.
For all single-star tests, the gravitational mass of the stars
was 1.4 M⊙ and the stars were set to be rapidly rotating,
such that the ratio of rotational to gravitational binding
energy was T=W ¼ 0.037, with a ratio of the polar-to-
equatorial radii of 0.85. We note that while the ratio T=W is
the same for the three tests considered here, the individual
values of T and W vary between them.
The binary neutron star initial data were constructed with

the Compact Object Calculator (COCAL) code [69–71]. The
initial configuration describes two unmagnetized, equal-
mass neutron stars in a quasicircular orbit, with an
Arnowitt-Deser-Misner (ADM) mass of 2.8 M⊙, an initial
separation of 35 km, and ADM angular momentum of
JADM=MADM

2 ¼ 0.93. The neutron stars start at zero-
temperature and are described by a piecewise polytropic
representation of the ENG EoS ([72,73], as fit for in [74]).
With this EoS, the radius of a 1.4 M⊙, nonspinning, cold
neutron star is 12.06 km and the corresponding maximum
mass is 2.24 M⊙. Both properties are consistent with the
latest astrophysical observations (for a review of neutron
star radii, see e.g., [15]; for maximum mass constraints,
[75–78]). For the rotating configuration used here, the
coordinate equatorial radii of the initial stars is 9.2 km.

C. Grid hierarchy

For the single star evolutions, we use a fixed mesh
refinement grid hierarchy, consisting of 7 refinement levels,
each with a 2∶1 refinement ratio. The half-side length of the
finest level is set to be 30% larger than the coordinate
equatorial radius of the neutron star, so that the entire star is
contained within the innermost refinement level. This level
has grid spacing such that the equatorial diameter of the
neutron star is covered with 82 points for the baseline
resolution. We also run high-resolution evolutions with half
this grid spacing (i.e., 164 grid points across the star).
For the binary evolutions, we use 9 refinement levels,

again each with a 2∶1 refinement ratio. The computational
domain extends across ½−3025; 3025�2 × ½0; 3025� km.

Equatorial symmetry is imposed to save computational
resources. The baseline resolution corresponds to ∼100
points across the diameter of each initial neutron star at the
finest level, with a resolution of dxfinest ≈ 0.18 km. We also
perform simulations at 1.5625× and 2× the baseline
resolution for the M�-EoS with n0 ¼ 0.08 fm−3 and α ¼
1.3 (i.e., using ∼150 and 200 points across the diameter of
each initial star, respectively).

D. Diagnostics

We use several diagnostic quantities to analyze the
simulation output. For all evolutions, we monitor the L2
norm of the Hamiltonian constraint, kHk, in order to validate
our numerical calculations.We also track the evolution of the
maximum rest-mass density in order monitor the stability of
the stars against gravitational collapse.
Additionally, we extract gravitational radiation using the

Newman-Penrose Weyl scalar ψ4, which is related to the
GW strain via ψ4 ¼ ḧþ − iḧ×. The Weyl scalar is decom-
posed on spheres at large radii (r ≥ 120M) into s ¼ −2
spin-weighted spherical harmonics, such that

ψ4ðt; r; θ;ϕÞ ¼
X∞
l¼2

Xl
m¼−l

ψlm
4 ðt; rÞ−2Ylmðθ;ϕÞ ð15Þ

where θ and ϕ are defined with respect to angular
momentum axis, r is the extraction radius, and t is the
time. The total strain, h≡ hþ − ih×, is then given by

hðt; r; θ;ϕÞ ¼
Z

t

−∞
dt0

Z
t0

−∞
dt00ψ4ðt00; r; θ;ϕÞ: ð16Þ

We calculate the double time integration using the fixed-
frequency integration (FFI) method [79].
Finally, we calculate the amount of matter ejected during

the NSNS evolutions by integrating the total rest-mass
density, ρb, outside of a given radius r and for matter for
which −ut > 1, according to

Mejð> rÞ ¼
Z
>r

ρbut
ffiffiffiffiffiffi
−g

p
d3x; ð17Þ

where ut is the time-component of the fluid 4-velocity and
g is the determinant of the metric.

V. SIMULATION RESULTS

We now turn to the results of our numerical simulations.
We start with a brief summary of the findings from the single
star evolutions (for further details, see Appendix B). We find
that rotating stars evolved with theM�-EoS indeed maintain
their initial temperature profile and remain stable, for both
cold and finite-temperature initial data. Additionally, both
M� evolutions exhibit second-order convergence in the
central rest-mass density over time, as expected from our
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numerical scheme. With this validation of our numerical
methods now in hand,wedevote the remainder of this section
to the results of the binary star evolutions.

A. Stability and convergence

For all the M�-parameter choices and for both constant
Γth evolutions, we find that the neutron stars remain stable
and show no signs of significant heating prior to merger, as
is consistent with previous findings [e.g., [8] ]. As a result,
all thermal treatments lead to nearly identical inspirals.
The rest mass of the merger remnant is∼3.23 M⊙, which

exceeds the maximum rest mass for the zero-temperature
Kepler sequence of 3.17 M⊙. This suggests that the
remnant is likely supported by differential rotation, with
the thermal pressure providing additional support [13], but
that the remnant should eventually collapse. However, we
find no signs of collapse by the end of our evolutions,
which last for ∼20 ms following the merger for the M�-
EoSs and 25 ms postmerger for the hybrid evolutions.
Figure 3 shows that the minimum lapse function remains
stable at late times, indicating that the remnant has not
started collapsing by the end of these simulations, for all
thermal treatments considered here.
Finally, we also perform evolutions at 1.5625 and 2× the

baseline resolution for the EoS with M�-parameters n0 ¼
0.08 fm−3 and α ¼ 1.3. We find second-order convergence
of kHk during the inspiral and for the first few milliseconds
postmerger,which thendecays at later times (seeAppendixC
for more details).

FIG. 3. Minimum lapse, αmin, as a function of time since
merger, for the six thermal treatments considered in this paper.
The minimum lapse is approximately constant at late times,
indicating that the remnant remains stable against collapse until
the end of our simulations.

FIG. 4. Top: density profile just before and at three snapshots after merger, for theM�-EoS with n0 ¼ 0.08 fm−3 and α ¼ 1.3. Middle:
thermal pressure profile, relative to the cold pressure, at the same times. Bottom: temperature profile, extracted from the density and
thermal pressure using the microphysical model of Eq. (3b). All plots only include matter with densities above 0.01× the initial
maximum rest-mass density, ρmaxð0Þ.
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B. Post-merger evolution

In order to give a qualitative sense of the behavior of the
density and thermal profiles over time, we show 2D snap-
shots from theM�-EoS simulation with n0 ¼ 0.08 fm−3 and
α ¼ 1.3 in Fig. 4, just prior to merger and at select times
postmerger. The top row shows 2D rest-mass density
profiles; the middle row shows the thermal pressure relative
to the cold pressure; and the bottom row shows the
corresponding temperature, which is computed from
Eq. (3b). For comparison, we also show the late-time
(t ¼ 24.88 ms) 2D profiles for all four M�-EoSs in Fig. 5,
with differentM�-parameters shown in each column. In each
of these figures, we only include matter with densities above
10−2× the initial central density of each star, ρmaxð0Þ, with
lower-density material masked in white. Additionally, in
Figs. 4 and 5, wherever the thermal pressure is negative, it is
replaced with zero for display purposes (i.e., both zero and
negative thermal pressures are shown as dark purple, to
indicate the matter is “cold”; see Sec. IVA for further
discussion).
From the snapshots shown in Figs. 4 and 5, several

trends emerge. First, we find evidence of significant heating
at supranuclear densities. Figure 4 shows that the stars
remain cold prior to merger, but that the thermal pressure
can reach a few tens of percent of the cold pressure
shortly following merger. At late times, Fig. 5 shows that

differences persist in the thermal pressure profile depending
on the M�-parameters, with higher Pth=Pcold in the outer
layers of the remnant for evolutions with n0 ¼ 0.22 fm−3

than with n0 ¼ 0.08 fm−3. However, for allM� parameters,
the very core of the star (e.g., jX=Mj≲ 1) remains
thermodynamically cold (Pth ≲ 0.1Pcold) at late times.
Additionally, in comparing these snapshots, it becomes

clear that small differences in the thermal pressure can
translate to large differences in the temperature profile of
the remnant, due to the ∝ T2 dependence in Eq. (3b), which
dominates at high densities. From the bottom panel of
Fig. 5, we find that larger values of α correspond to higher
core temperatures at late times. When α is large,M� decays
more quickly. Thus, Fig. 5 suggests that having a small
effective mass at the core leads to larger core temperatures.
This is similar to the findings from 1D CCSN simulations,
in which EoSs with a smaller effective mass were found to
produce larger central temperatures in the proto-neutron
star [80,81]. However, we note that the trend breaks down
at other densities in our merger remnants: that is, it is not
generically true that temperature scales with the local
effective mass at every density.
These findings suggest that the parameters of the M�-

approximation play a role in determining the postmerger
thermal profile, with larger n0 contributing to a higher
degree of heating in the outer layers, and larger α

FIG. 5. Late-time (t ¼ 24.88 ms) profiles for each of the M�-EoSs. Each column corresponds to the specific set of M�-EoSs
parameters indicated, and the rows show the density (top), thermal pressure (middle), and temperature (bottom) profiles. We find that the
thermal pressure in the outer layers of the star is primarily determined by the value of n0, while the temperature of the inner core
(jX=Mj ≲ 1) is determined by α.
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contributing to hotter cores. As a result, the local neutrino
emissivity, and hence the cooling and ultimate neutrino
irradiation of the remnant disk likely will also depend on
the parameters characterizing the finite temperature part of
the EoS.
In order to be more quantitative in our comparison, we

also calculate characteristic 1D profiles of the thermal
pressure, temperature, and thermal index just after merger,
when the matter has not yet been redistributed by the
differing thermal pressures. To compute these characteristic
quantities, we first bin all grid points along the equatorial
plane at a fixed time (t ¼ 6.5 ms), using density bins that
are uniformly spaced between 0.5 nsat and the core density.
Within each density bin, we then compute the distribution
of Pth=Pcold, T, and Γth, and we take the median value as
characteristic. We show these characteristic values as a
function of the corresponding density bin in Fig. 6. We find
that, at the nuclear saturation density, the thermal pressure
can be a few times larger than the cold pressure, but that it
decreases in relative importance at higher densities. At core
densities (∼5nsat), the typical thermal pressure is ≲0.1Pcold
in all cases, but the exact value can vary by up to an order of
magnitude at these densities, depending on the thermal
treatment. TheM� evolution with n0 ¼ 0.22 fm−3 and α ¼
1.3 leads to the largest thermal pressure at the core just after
merger, whereas the evolution with n0 ¼ 0.08 fm−3 and
α ¼ 0.6 produces the coldest core. These thermal pressures
correspond to core temperatures ranging from nearly
70 MeV to ∼12 MeV, respectively. The other two sets
ofM� parameters lead to nearly identical core temperatures,
just after merger, but still differ significantly from each
other M�-EoS throughout the rest of the star.
The thermal pressure profile just after merger is par-

ticularly interesting to consider, since this governs in part
the redistribution of matter within the remnant and, hence,
the postmerger evolution. We show how the differences in
Pth=Pcold just after merger influence the resulting remnant
structure in Fig. 7, where we plot 1D density profiles,
extracted along the X-axis, at the end of our simulations
(t ¼ 24.88 ms). We find small differences in the central
density of the remnant between our various evolutions, with

the M� evolutions differing by ≲5% and the hybrid
evolutions differing by ∼15% from one another. The
late-time radial extent of the star differs more significantly
depending on the thermal treatment, with large values of α
or large Γth leading to a more extended mass distribution.
Although coordinate size is not a gauge-invariant quantity,
Fig. 7 is suggestive that differences in the thermal treatment
may influence the final compactness of the remnant.
Finally, Fig. 8 shows the azimuthally averaged angular

velocity,Ω ¼ vϕ, as a function of the cylindrical coordinate
radius, ϖ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
, for each of the thermal treatments.

These profiles are calculated on the equator of the remnant
at the end of the evolution (t ¼ 24.88 ms). We find that the
angular velocity profile is sensitive to the finite-temperature
part of the EoS, with core angular velocities that differ by
up to 60% and peak angular velocities that differ by up to

FIG. 6. Characteristic Pth=Pcold (left), temperature (middle), and thermal index (right) at each density. We define the characteristic
quantity as the median of the distribution of values within a particular density bin, at a fixed time just after merger (t ¼ 6.5 ms). We only
extract temperatures for the M�-EoSs, which have a microphysical relationship between Pth and T.

FIG. 7. Density profiles along the X-axis at late times
(t ¼ 24.88 ms), for the six different thermal treatments. Although
the remnant starts with a similar density profile in all cases, the
different thermal pressures in each of the six models cause the
matter to be redistributed in noticeably different ways by
late times.
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10% for the six thermal treatments explored here. Among
only the M�-EoSs, the range of angular velocities is
smaller, with differences of up to ∼14% and 3% in the
core and peak angular velocities, respectively. Trends with
particular M�-parameters are harder to identify in these
velocity profiles, but we note that the evolution with n0 ¼
0.08 fm−3 and α ¼ 1.3 leads to the lowest core velocity and

the largest peak velocity. The other M�-parameter choices
lead to more similar velocity profiles. In all cases, the
overall shape of the angular velocity profile remains the
same as has been found in earlier studies (see [82] and
discussion therein).

C. Gravitational wave signal

We extract the GW signal, as discussed in Sec. IV D, for
each evolution and show the resulting strains in Fig. 9, for
the l ¼ m ¼ 2 mode. We separate the four M�-EoS
evolutions (left) from the two constant-Γth evolutions
(right) for visual clarity. In all cases, the inspiral waveform
is nearly identical, with a characteristic time to merger of
4.7 ms. By contrast, we find significant differences in the
postmerger gravitational waves across all six thermal
treatments. Figure 9 shows differences not only between
the amplitudes of the postmerger strains, but also between
the beat frequencies of the decaying signals, suggesting
that the postmerger oscillation frequencies also depend on
the thermal treatment.
Many previous studies have found evidence of empirical

correlations between the oscillation frequencies of the
postmerger GW signal and the neutron star radius or stellar
compactness [for reviews, see [6,7,83] ]. These correlations
make it theoretically possible to constrain the properties of
the initial, cold neutron stars through the measurement of
the postmerger GW power spectrum. Using these types of
relationships, it has been estimated that Advanced LIGO
may constrain the radius to within 0.429 km for a nearby
(≲30 Mpc) event [84]. It may be possible to get even
smaller errors by coherently stacking postmerger spectra
from multiple events with third-generation facilities, at
which point systematic errors in the universal relations may

FIG. 8. Azimuthally averaged angular velocity profiles as a
function of the cylindrical coordinate radius, on the equator of the
remnant at late times (t ¼ 24.88 ms). The different thermal
treatments lead to up to 60% differences in the core angular
velocities and 10% differences in the peak angular velocities,
with a reduced range found between the M�-parameters.

FIG. 9. Gravitational wave strain for the l ¼ m ¼ 2 mode, for the six different evolutions, as a function of the retarded time. The
gravitational wave signals from the M�-EoS evolutions are shown in the left panel; the strains from the hybrid evolutions are shown in
the right panel. In all cases, the inspiral phase is nearly identical, but we find significant differences in the postmerger gravitational
waves.
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dominate the error budget [85]. However, these estimates
do not explicitly account for the uncertainties in the finite-
temperature part of the EoS, which are hinted at in Fig. 9
and which may be important to take into account in order to
extract precision radius estimates from such spectral
features.
On the other hand, if the cold EoS can be pinned down

from other observations—e.g., from the NSNS inspiral or
from X-ray observations—then any remaining dependence
of the postmerger oscillation frequencies on the M�-
parameters could potentially be used as an exciting new probe
of the finite-temperature part of the nuclear EoS. We leave a
more detailed exploration of the dependence of the postmerger
GWs on the various M�-parameters to future work.

D. Ejected mass

Finally, we also calculate the ejected mass for each of our
evolutions via Eq. (17) for a sphere with radius 100M.
Figure 10 shows the ejecta over time. We find a rapid rise in
Mej for the first ∼10 ms postmerger. For the M�-EoSs in
particular, we find that the fastest 10−4 M⊙ of ejecta have
speeds of up to ∼0.5 c for the M� evolutions, while the
fastest ejecta in the hybrid evolutions tend to be somewhat
slower, with speeds of up to ∼0.4 c.
We extract the amount of ejecta rest mass at the end of

our simulations (20 ms postmerger). While Mej is still
slowly increasing at late times, due to the slow-moving tail
of the distribution of ejecta, we use this value to facilitate an
approximate comparison of Mej between the different
thermal treatments. We also note that the integration to
compute Mej introduces some error, which we estimate by
comparing the extracted values of Mej between a low- and
high-resolution evolution. Based on this comparison, we

estimate that the error in our reported values of Mej is
∼150% (see Appendix C for further details). Higher
resolution is necessary for more accurate estimates.
As shown in Fig. 10, we find that Mej varies from

∼1.0–1.3 × 10−2 M⊙ for theM�-evolutions, which implies
a range much smaller than our estimated error. Thus,
although we do find some dependence of Mej on the
M�-parameters, the differences are not numerically signifi-
cant, at least for the particular cold EoS, binary parameters,
and resolutions explored here. In contrast, there is a factor-
of-8 difference between Mej for the Γth ¼ 1.5 and Γth ¼ 2

evolutions, with the latter producing significantly less
ejecta.
In [86] it was previously found that larger Γth can lead to

suppressed ejecta. In that work, the authors suggested that
Mej depends on Γth in two competing ways. On the one
hand, a larger value of Γth leads to more efficient shock
heating, which acts to increase the amount of matter
ejected. However, the remnant is also less compact for
large Γth and, accordingly, has a slower rotational velocity
(as shown in our Figs. 7 and 8). This reduces the torque that
the remnant exerts onto the surrounding material and, as a
result, less matter becomes unbound [86]. Thus, somewhat
counterintuitively, a large Γth can indeed lead to suppressed
ejecta. We leave further analysis of the properties of the
ejecta to future work.

VI. CONCLUSIONS

In this paper, we have implemented a new prescription
for studying finite-temperature effects in binary neutron
star mergers, using a two-parameter approximation of the
particle effective mass. This is the first implementation of
parametric finite-temperature effects that include the effects
of degeneracy and that can be added to any cold EoS, in a
compact binary merger simulation. We tested this new
prescription in rotating, single stars that are initially cold or
that initially have a nonzero temperature gradient, as well as
in several binary evolutions, and we find that the EoS can
support stable stars over long timescales.
We also performed a parameter study to explore a broad

range ofM� values in a series of NSNS merger simulations.
We considered four sets of M�-parameters, as well as two
constant-Γth values in order to provide a basis of compari-
son for the newM� results. While the inspiral portion of the
merger is virtually identical for all six thermal treatments,
we find significant differences in the postmerger evolution
for the different thermal prescriptions. Depending on the
thermal treatment, we find up to an order of magnitude
difference in the characteristic Pth=Pcold at core densities
just after the merger. As a result of these differences in the
postmerger thermal profiles, the mass distribution of the
remnant can also vary significantly by the end of our
simulations.

FIG. 10. Ejected matter over time for the six EoSs considered in
this work. The rapid rise is generated by the fast-moving ejecta,
while the increase in Mej at late times is caused by the slow-
moving tail of the distribution of ejected matter.
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Perhaps most interestingly, from an observational point
of view, are the differences that can emerge in the
postmerger GW signal. We find that the postmerger GW
strain is sensitive to the particular choice ofM�-parameters.
We plan to further study this dependence in future work. If
the postmerger GW spectrum does indeed depend on the
parameters ofM�, as our findings hint at, then observations
of postmerger GWs may one day offer a new window into
the properties of dense matter at nonzero temperatures.
Finally, it is worth noting that the relative importance of

thermal effects may change for binaries with different total
mass, mass ratio, underlying cold EoS (and, hence, stellar
compactness), and potentially also with the added presence
of magnetic fields. For example, we expect that the
dependence of merger properties on the M�-parameters
will become stronger for softer EoSs, which predict more
compact stars. More compact stars are expected to collide
at higher velocities, leading to stronger shock heating and
an enhanced thermal pressure. Combined with the lower
cold pressure of the softer EoS, we expect the thermal
pressure may play a more important role in such mergers.
We leave the study of such effects to future work.
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APPENDIX A: LOW-DENSITY
DESCRIPTION OF MATTER

While high-density nuclear matter is uniform, matter at
densities below 0.5nsat can cluster into light and even heavy
nuclei. Fermi Liquid Theory, in its standard form, cannot
describe the formation of bound states and thus does not
accurately capture this regime. (For one approach incor-
porating the formation of light clusters into Fermi Liquid

Theory, see [32]). In this Appendix, we describe how this
limitation affects the M�-framework in the low-density
regime.
The baryon number density, which is the conserved

quantity that enters the evolution equations, is given by

nb ≡ Nn þ Np þ
P

ANA;Z

V
ðA1Þ

where Nn and Np are the number of unbound neutrons and
protons, respectively, NA;Z is the number of nuclei with
atomic number and charge (A,Z), and V is the volume of
the system. If there are nuclei present, nb differs from the
density of effective particles,

neff ≡ Nn þ Np þ
P

NA;Z

V
: ðA2Þ

The particle and baryon density are related by

nb ¼ hBineff ; ðA3Þ

where hBi is the average number of baryons per particle. In
the limit of uniform nuclear matter, hBi ¼ 1; this number
increases with the formation of increasingly heavy nuclei.
For a general system of Neff particles, of which some

may be bound nuclei, the total thermal energy is given by
Uth ¼ 3

2
TNeff , via equipartition. The thermal energy per

baryon and thermal pressure are thus

Eth ¼
�
3

2
kBT

�
neff
nb

¼
�
3

2
kBT

�
1

hBi ðA4aÞ

Pth ¼ neffkBT ¼ nbkBT
hBi : ðA4bÞ

In the original RÖP framework, it was assumed that
hBi ¼ 1 at all densities, for simplicity. This approximation
introduces some error into calculations of Ethðn; TÞ and
Pthðn; TÞ at densities below 0.5nsat and at low temperatures
(T ≲ 1 MeV). At higher T, which is the focus of that
framework, the nuclei dissociate and hBi ≈ 1 again. We
note that, in merger simulations, the temperatures at
densities below 0.5nsat are typically much larger than
1 MeV (see, e.g., Fig. 6) and that there is little matter at
these densities to affect the dynamics of the evolution or the
gravitational wave emission. Thus, the impact of this
approximation should, in general, be small; but it may
become important when considering properties governed
by the low-density EoS, such as the ejecta.
In the numerical implementation used in this paper, we

take another approach, in which we do not calculate
Ethðn; TÞ and Pthðn; TÞ at fixed temperatures. Rather, we
exclusively calculate PðEÞ and EðPÞ (see Sec. IVA). As a
result, the factors of hBi in Eqs. (A4) cancel out, and we
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recover the correct description of the pressure and energy in
this low-density regime. In other words, although we do not
explicitly model the presence of nuclei at low-densities, the
evolutions are not affected by this approximation.

APPENDIX B: SINGLE STAR TEST RESULTS

In this Appendix, we describe the key results from our
single star evolutions in dynamical spacetimes. For both
zero-temperature single stars and single stars initialized

with Pth=Pcold ¼ 0.1, we perform evolutions for ∼5tdyn,
where tdyn ¼ 1=

ffiffiffiffiffiffiffiffi
ρb;c

p
is the dynamical timescale and ρb;c is

the central rest mass density. Each set of initial data is
evolved with the hybrid approximation with Γth ¼ 1.66, as
well as with theM�-thermal treatment with n0 ¼ 0.12 fm−3

and α ¼ 0.8.
While the hybrid EoS has been well tested within the

Illinois spacetimeþ GRMHD code in previous studies
[e.g., [47,87] ], we include the test results here again, in
order to validate our implementation of the primitive
recovery scheme of [55] into our code, as well as to
provide a basis of comparison for the M�-EoS results.
For both single star tests, we find that theM�-EoS is able

to maintain the initial thermal profile, with no evidence of
spurious heating. Figure 11 shows the change in the
characteristic value of Pth=Pcold from the beginning to
the end of the simulation, for each of the single star tests
considered.We calculate the characteristic value ofPth=Pcold
in each density bin at each time, as in Sec. V B. Over the ∼5
dynamical timescales that were evolved, Pth=Pcold changes
by ≲10−3 at supranuclear densities. Additionally, we find
that the M�-EoS performs comparably well to the hybrid
approximation at maintaining either a zero-temperature or
fixed thermal profile.
In order to monitor the stability of the stars, we track the

time-evolution of the quantity, Δρb;c, which represents the
change in central rest mass density relative to the value at
t ¼ 0, and which is expected to converge to zero at second-
order with increasing resolution. We show this quantity in
Fig. 12 for the zero-temperature evolutions (left panel) and
constant Pth=Pcold thermal profile (right panel). In both
cases, the low-resolution quantities have been scaled to
show 2nd-order convergence.

FIG. 11. Total change in the characteristic thermal pressure at
each density, between the initial and final time steps (i.e.,
jPth=Pcoldðt ¼ 0Þ − Pth=Pcoldð5tdynÞj). All profiles correspond
to the highest-resolution evolutions. Both the hybrid and M�
evolutions maintain the initial thermal profile to within≲1 part in
103 at supranuclear densities, for both zero- and finite-temper-
ature initial data.

FIG. 12. Left: change in the central rest mass density over five dynamical timescales, for the cold rotating star tests. The blue line
represents the tests evolved with the M�-EoS, while the orange dashed line represents the hybrid evolution. The lighter shade
corresponds to the low-resolution evolution (which has been scaled to show 2nd-order convergence), while the darker shade indicates
the high-resolution evolution. Right: same as the left panel, but for the rotating star tests with a nonzero initial temperature profile set by
Pth=Pcold ¼ 0.1. The convergence behavior is identical to the cold evolution.
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We find the anticipated 2nd-order convergence in Δρb;c
over time, in both the cold and finite-temperature evolu-
tions. The results are virtually indistinguishable between
the M� and hybrid evolutions, thus providing additional
validation of the numerical implementation of theM�-EoS.

APPENDIX C: RESOLUTION STUDY FOR
BINARY EVOLUTIONS

We now present the results of the resolution study for the
NSNS merger simulations, evolved with the M�-EoS with
n0 ¼ 0.08 fm−3 and α ¼ 1.3. The baseline (low) resolution
is described in Sec. IV C; the medium resolution is
1.5625× finer; and the high resolution is 2× the baseline
resolution. These resolutions correspond to ∼100, 156, and
200 grid points across the diameter of each initial star,
respectively.
Figure 13 shows the convergence of the L2 norm of the

Hamiltonian constraint in the left panel, as well as the self-
convergence of the amplitude and the phase of ψ4 in the
middle and right panels, respectively. The Hamiltonian
constraint violation is expected to converge to zero, with
increasing resolution. For the amplitude and the phase of
ψ4, we determine if there is self-convergence by comparing
to the highest- resolution evolution. Self-convergence at
second-order requires

QLR −QHR

QMR −QHR
¼ ðΔxLR=ΔxHRÞ2 − 1

ðΔxMR=ΔxHRÞ2 − 1
; ðC1Þ

where Q is the quantity of interest; LR, MR, and HR
indicate low, medium, and high resolutions, respectively;
and Δx is the grid spacing of each resolution. Rearranging
this expression, second-order convergence equivalently
implies

ðQLR −QHRÞ½ðΔxMR=ΔxHRÞ2 − 1�
¼ ðQMR −QHRÞ½ðΔxLR=ΔxHRÞ2 − 1�: ðC2Þ

These scaled, differential quantities are plotted in the middle
and right panels of Fig. 13, for the amplitude and phase ofΨ4.
The left-hand side of Eq. (C2) is plotted in light blue in
Fig. 13, while the right-hand side is plotted in dark blue. The
degree to which these two sets of lines agree indicates how
close the results are to exhibiting second-order convergence.
We find second-order convergence-to-zero in kHk during

the inspiral and for the first few milliseconds postmerger.
At later times, the convergence order decays significantly.
We likewise find second-order convergence in both the
amplitude and the phase of ψ4 during the inspiral, which
also decays at late times.
In order to understand the loss of convergence at late times,

we performed an additionalmedium-resolution evolution for
the Γth ¼ 1.5 EoS. In comparing kHk for the low- and
medium-resolution evolutions with the hybrid EoS, we find
qualitatively similar behavior to what is shown in the left
panel of Fig. 13—with second-order convergence at early
times which then disappears within a few milliseconds
postmerger. Although the turbulent nature of the postmerger
evolution makes it very difficult to achieve convergence
postmerger, we suspect that the decay of convergence at late
times found for both the hybrid and M� thermal treatments
stems from discontinuities in the piecewise polytropic
representation of the cold EoS. This is further supported
from the fact that our cold Γ ¼ 2 isolated stellar evolutions
exhibit approximate second order convergence as expected.
NSNS merger simulations performed with different codes
have also founda lackof convergence in the postmerger phase
whenmodeling the cold EoSwith piecewise polytropes [e.g.,
[88,89] ], lending support to the hypothesis that the issuemay

FIG. 13. Left: L2 norm of the Hamiltonian constraint violation, at three different resolutions, for the evolution with M�-parameters
n0 ¼ 0.08 fm−3 and α ¼ 1.3. Time of merger for the high-resolution evolution is marked with the vertical dashed line (tmerger ¼ 4.7 ms).
There is second-order convergence during the inspiral and for a short period postmerger, but that convergence decays at later times.
Middle: self-convergence of the amplitude of ψ4 for the l ¼ m ¼ 2 mode, for the same evolution. The results have been scaled to show
second-order convergence. Right: self-convergence of the phase of ψ4 for the l ¼ m ¼ 2 mode, for the same evolution, again scaled to
show second-order convergence. As with the Hamiltonian constraint, we find second-order convergence at early times, which disappears
after the merger.
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stem from the piecewise polytropes. We plan to investigate
this issue further in future work.
Finally, we compare the ejecta mass for the low-and

high-resolution evolutions in Fig. 14. The differences in the
characteristic speed of the fastest ejecta are negligible
between the three resolutions studied here. However, the
total value of Mej differs more significantly between the
resolutions. Because the higher-resolution cases are only
evolved for ∼10 ms postmerger, we are unable to extract a
late-time value forMej as we did in Sec. V. However,Mej is
starting to asymptote at 10 ms postmerger for all three
resolutions, thereby allowing us to make a reasonable
comparison. The values of Mej extracted in this way
indicate 1.5-order convergence. We note that, although
the overall convergence of the code decays at late times
after the merger, the ejecta are launched at the merger and,
hence, still exhibit convergence and can be used to make a
reasonable error estimate. We find a fractional error
between the low- and high- resolution values of ∼150%.
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