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We demonstrate how pulsar timing arrays (PTAs) yield a purely gravitational wave (GW) measurement
of the luminosity distance and comoving distance to a supermassive black hole binary source, hence
providing an estimate of the source redshift and the Hubble constant. The luminosity distance is derived
through standard measurement of the chirp mass, which for the slowly evolving binary sources in the PTA
band can be found by comparing the frequency of GW-timing residuals at the Earth compared to those at
distant pulsars in the array. The comoving distance can be measured from GW-timing parallax caused by
the curvature of the GW wave fronts. This can be detected for single sources at the high-frequency end of
the PTA band at distances up to 10 Gpcs with a future PTA containing well-timed pulsars out toOð10Þ kpc,
when the pulsar distance is constrained to less than a GW wavelength. While, for the farthest pulsars,
achieving this precision in pulsar distance measurements poses a great challenge, it may be met by future
spaced-based very long baseline interferometry (VLBI) pulsar distance measurements coupled with GW-
based pulsar distance measurements. Such a future PTA, with ≳30 pulsars with precise distance
measurements between 1 and 20 kpc, could measure the Hubble constant to better than 30% for a single
source at 0.1≲ z ≲ 1.5. At z≲ 0.1, the luminosity and comoving distances are too similar to disentangle,
unless the fractional error in the luminosity distance measurement is decreased below 10%. At z ≳ 1.5, this
measurement will likely be restricted by a signal-to-noise ratio threshold. Generally, clarification of the
different types of cosmological distances that can be probed by PTAs, and their relation to pulsar distance
measurements is important for ongoing PTA experiments aimed at detecting and characterizing GWs.

DOI: 10.1103/PhysRevD.104.063015

I. INTRODUCTION

Gravitational waves (GWs) from coalescing compact
object binaries are now being used to measure cosmologi-
cal parameters. This new handle on cosmology is an
important tool for understanding systematics in our current
measurements of the cosmological parameters, e.g., for
resolving the existing tension between different measures
of the Hubble constant [1–3].
Direct measurements of the Hubble constant rely on

knowledge of the redshift of an emitting source in addition to
a determination of its intrinsic luminosity, be it GW or
electromagnetic (EM), which is used to determine the
luminosity distance.Comparison of the redshift and distance
yields the Hubble constant. For example, the backbone of
the standard candle approach [2] leverages the Leavitt Law
[4] to relate the oscillation period of Cepheid variable light
curves to the intrinsic luminosity, while a redshift is

measured from the frequency shift of spectral lines in the
host galaxy. The standard sirens approach [5–10] uses the
predictedGWstrain and frequency evolution of a coalescing
binary to determine a luminosity distance, while again
relying on an EM determination of the redshift, z.
While both are vital techniques, contributing independent

measures of cosmology, the former relies on theoretical
knowledge of standard candles and their astrophysical
environments, e.g., supernovae, [11] while the latter relies
on the existence of an EM counterpart that can be identified
with the GW source, and hence understanding EM emission
mechanisms. Additionally, both approaches only apply out
to distances where EM emission can be detected.
The few methods that have been proposed to make

cosmological measurements with GWs alone make use of
inferred knowledge of the rest-frame GW source properties.
For example, [12,13] rely on models of the rest frame
neutron star mass distribution to break the mass-redshift
degeneracy of inspiraling neutron star binaries. This is
required because of the scale invariance of the binary*djdorazio@gmail.com
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merger problem. The GW luminosity is independent of the
binary mass (which is why a luminosity distance can be
measured), and the quantity Mf, the chirp mass times the
GW frequency, is invariant with redshift. Hence, one must
obtain knowledge about intrinsic source properties to make
a joint redshift and luminosity distance determination, or
one must introduce a new scale to the problem.
Here we do the latter. We propose a method for probing

the distance-redshift relationship, and hence, measure the
Hubble constant, via gravity alone, and without making
assumptions about the GW source. While we cannot break
the scale invariance of the binary merger problem, we can
infer the redshift through a different means, with a large
detector whose components are separated widely enough to
detect the GW wave front curvature. Measurement of this
curvature through the timing parallax will provide a
distance to the source that is formally a comoving distance.
The co-moving distance, Dc, is related to the luminosity
distance, DL, through Dc ¼ ð1þ zÞ−1DL. A separate
determination of the luminosity distance from the GW
chirp and amplitude gives the redshift. Comparison of
redshift and luminosity distance yields the Hubble constant
up to choices of the cosmological density parameters.
Such a determination of the comoving distance from GW

wave front curvature is not possible with current interfero-
metric GW detectors such as LIGO [14] and LISA [15],
which are sensitive to GWs from compact-object binary
mergers ranging in mass from a few to ∼107 M⊙. However,
Ref. [16] (hereafter DF11) shows that it is possible with the
galaxy-scale pulsar timing arrays [PTAs, [17]], which are
expected to detect low frequency GWs from the biggest
black hole mergers in the Universe with masses of
108–1010 M⊙, within the next decade [18]. We rederive
this result with the important clarification that the distance
recovered in this manner is indeed a comoving distance, not
a luminosity distance as posited in DF11.

II. DISTANCE MEASUREMENTS WITH PTAs

The PTAs employ millisecond pulsars (MSPs) across the
galaxy as precise clocks. A GW passing through the Earth-
pulsar array will cause detectable deviations in the arrival
times of the otherwise steady pulses that, when meticu-
lously separated from non-GW induced timing residuals
due to intrinsic changes in pulsar period and the intervening
Earth-pulsar medium [19], will allow the detection of GWs
in the 1–100 nHz frequency band. This is the relevant
band for tracking the late inspiral of the most massive,
108–1010 M⊙ black holes binaries at the hearts of massive
galaxies [20].
Unlike their high-frequency interferometric-detector

cousins, LIGO and LISA, one of the PTA’s primary targets
is a stochastic background of GWs, an astrophysical noise
floor generated by the superposition of many inspiraling
supermassive black hole binaries across cosmic distance
[21,22]. Above this noise floor, it is expected that a number

of single resolved binary sources will also be detected,
where different population models place this number at
Oð1–10Þ for near future arrays [18,23–25]. Here, we focus
on the single resolved binary sources and show how a
luminosity distance and a comoving distance can be
measured for a subset of them.

A. Luminosity distance

It is well known that the luminosity distance can be
measured for binary GW sources when their frequency
evolution can be detected (e.g., [5,9]). So-called chirping
binaries allow measurement of the chirp mass M and the
GW strain h. In the source frame these are related by

h ∝
M5=3

s f2=3s

Dc
; ð1Þ

where s denotes the source frame and Dc is the comoving
distance. Because the strain h and GW frequency f can be
measured over time, and the chirp mass can be measured
from the first time derivative of the frequency (or the chirp,
see [7,26]), Eq. (1) allows a measurement of the distance. In
the observer’s frame, the redshift of the frequency and its
derivative implies that the strain, written in terms of
observables, reads

h ∝
M5=3

o f2=3o

DL
; ð2Þ

where o denotes the observer’s frame and the measurable
distance is DL ¼ ð1þ zÞDc, the luminosity distance.
Whether or not a binary is chirping in the detectable band

is set by the timescale for GW frequency evolution. For a
binary on a circular orbit,

tchirp ∼
f
_f
¼ 5

96

�
GM
c3

�
−5=3

ðπfÞ−8=3

≈ 5.43 × 103 yr

�
M

109 M⊙

�
−5=3

�
f

yr−1

�
−8=3

: ð3Þ

For the high frequency and low mass binary inspirals and
mergers detected by LIGO (M¼1–103M⊙, f¼10–104Hz),
and in the future, by LISA (M ¼ 102–107 M⊙, f ¼
10−4–10−1 Hz), tchirp is short compared to observation
times and determination of the chirp mass and luminosity
distance is expected. For the PTAs, however, Eq. (3) shows
that the time for the GW frequency to evolve in the PTA
band can be thousands of years. Hence, it is often assumed
that only the combination M5=3

o =DL is measurable for
binary GW sources in the PTA band.
However, a number of works discussed below have

pointed out that chirp information in the PTA band can be
gleaned by incorporating the many thousand year light
travel time across the Earth-pulsar detector. Because the
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timing residuals measured on Earth are a culmination of the
entire path traveled by a EM pulse between the pulsar and
Earth, the chirp can be detected by comparing the GW
signal at the pulsar (pulsar term) compared to the signal at
Earth (Earth term). Chirp detection then requires that the
change in GW frequency at the detector (Earth-pulsar
system), over the course of the light travel time across
the detector, be larger than the frequency resolution of the
detector. Conservatively, the frequency resolution is given
by the inverse of the observation time, Δf ¼ 1=tobs, e.g.,
[27,28]. Hence the condition on the Earth-pulsar distance L
needed to measure the GW chirp is

L≥
c

_ftobs
≈0.08 kpc

�
M

109 M⊙

�
−5=3

�
f

yr−1

�
−11=3

�
tobs
20 yr

�
−1
:

ð4Þ

For standard pulsar distances in present day PTAs of
0.1–1 kpc, this condition is met for the high frequency,
high mass end of the expected binary population detectable
by the PTAs. Longer pulsar baselines of future arrays,
reaching out to 20 kpc (see Sec. III A), could allow chirp
detection from the largest, 1010 M⊙, binaries down to
a few tens of nHz, or from the smaller, 108 M⊙, binaries
at ∼100 nHz.
The parameter space of binaries that meet this criterion

and have a detectable strain is explored further in Ref. [29],
while Ref. [30] discusses the region of binary parameter
space where assuming zero-frequency evolution could be
detrimental for detection. Reference [27] uses the synthetic
population of supermassive black hole binaries from
Ref. [23] and shows that the majority will have resolvable
chirps when taking into account the pulsar term. While both
studies point this out, the primary focus of these works is
not binary frequency evolution, and so the chirp was
ignored. Reference [31], however, investigates recovery
of the luminosity distance with PTAs from such pulsar-
term, chirping binaries. They assume an SNR ¼ 20 detec-
tion, with 20 pulsars each having a 100 ns timing residual
and randomly oriented on the sky at distances between
0.5–1 kpc. They find that the fractional error on the distance
can be as low as 7% for edge-on inclination binaries
(i ¼ π=2) and rises to 30% for i ¼ π=4. We take the
findings from the above studies as conservative estimates
of how well the luminosity distance can be recovered as
they each assume pulsar distances on the order of 1 kpc,
where, as discussed in the next section, we are interested in
more futuristic PTAs that contain well-timed pulsars out
to 20 kpc.

B. Comoving distance

We now show for the first time how PTA observations of
GWs from a resolved, single-binary source can independ-
ently measure the source comoving distance.

1. Geometrical argument

The amount by which the arrival time of the EM pulses
to Earth deviates due to a passing GW is dependent upon
the changing amplitude, frequency, and phase of the GW
encountered by the EM pulse at it traverses the Earth-pulsar
distance. This is dependent on the shape of GW wave
fronts, surfaces of constant GW phase, across the Earth-
pulsar system. For very distant GW sources, the GW wave
fronts can be assumed to be planar. However, for nearby
sources, the true spherical nature of the wave fronts
becomes non-negligible and encodes the source distance.
Figure 1(a) illustrates a geometrical argument that eluci-

dates this concept and provides an estimate of when wave
front curvature is important. Our setup consists of the
detector: Earth and a pulsar separated by a distance L
aligned at an angle θ relative to the line of sight of a source of
GWs with observed frequency f at comoving distance Dc.
Without loss of generality, we consider the case where,

under the plane wave approximation, GWs emitted at some
time in the source frame arrive at the Earth and the pulsar
after the same travel time. For spherical wave fronts, the
travel time to the pulsar differs by δt ¼ δx=c [Fig. 1(a)],
causing an EM pulse to traverse a different accumulated
GW phase along its path. In comoving (flat-space) coor-
dinates, we can compute δt via Euclidean geometry,

δt ¼ Dc

c

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
L
Dc

�
2

s
− 1

#
≈
1

2

�
L
Dc

�
L
c
: ð5Þ

This extra travel time compared to the plane wave case only
affects the pulse arrival time if the EM pulse encounters a
significant extra portion of a GW cycle. Hence, a condition

(a) (b)

FIG. 1. Schematics for visualizing the geometrical (a),
Sec. II B 1, and mathematical (b), Sec. II B 2, description of
the comoving distance measurement. In (a), we assume θ ¼ 90°
to simplify the geometrical argument.
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on there being a significant difference between timing
residuals in the plane wave and spherical-wave cases is
found from requiring that δtf ≳ 1 (noting that at exact
integer values there is no change). This places a limit on the
distances Dc and L for which wave front curvature is
important,

Dc ≲ f
L2

c
¼

�
L
λ

�
L; ð6Þ

where λ ¼ c=f, in analogy to the Fresnel condition in
optics.
Because our observable is influenced by the relative time

of arrival of GW wave fronts across the Earth-pulsar
system, the distance to the source, Dc, must be a comoving
distance that takes into account time dilation along the
path of GWs from the source at an earlier time in the
Universe,

Dc ¼ c
Z

t0

tsrc

dt
aðtÞ ; ð7Þ

where aðtÞ is the scale factor of the expanding universe at
time t, t0 denotes the observation time, and tsrc denotes the
emission time at the source. Because f and L are present-
day observed quantities in Eq. (6), it is the comoving
distance that is encoded in the pulsar timing residuals
measured at Earth. Another way to see this is to recognize
that the GW phase,Φ, is the relevant quantity governing the
timing residual, and the GW phase, Φ ∝

R
fð1þ zÞdt,

where fð1þ zÞ is the GW frequency at redshift z along the
path. Since aðtÞ ¼ ð1þ zÞ−1, then Φ ∝

R
dt
aðtÞ ∝ Dc.

2. Mathematical argument

Following DF11, we outline the derivation of the pulse
arrival time correction due to curved GW wave fronts.
Building upon our previous setup, we illustrate relevant
quantities for the derivation in Fig. 1(b).
Assuming that the pulsar emits regular pulses at a

much higher frequency than that of the passing GW
(however, see [32]), the extra light travel time of a given
pulse due to the passing GW, the arrival time correction, is
given by [33–35]

tGWðtÞ ¼ 1

2
n̂in̂jHij; ð8Þ

Hij ¼
L
c

Z
0

−1
hij

�
tþ L

c
ξ;−Lξn̂

�
dξ; ð9Þ

which is the integral of each component of the transverse-
traceless GW metric perturbation hijðt;xÞ along a null
geodesic connecting the pulsar and the Earth, parametrized

by ξ.1 Here P is the position of the pulsar and n̂ is the unit
vector pointing from Earth to the pulsar.
Writing out the strain as a function of the spacetime

coordinates in the source frame, and in terms of the Fourier
components,

hijðt;XÞ

¼ 1

jX − Sj
Z

∞

−∞
½Ãijðfs; k̂Þe2πifsjX−Sj=c�e−2πifstdfsd3k;

ð10Þ

where the s subscript labels the source frame with no red-
shifting of the frequency. Here X is the vector pointing
from Earth to the EM pulse wave front that is traveling the
null geodesic connecting the Earth and pulsar,X ¼ Lξn̂. S
is the vector pointing from the Earth to the source,
S ¼ Dcŝ, where Dc is the comoving distance to the source.
The quantities Ãij are the components of the wave strength.
The spherical GW wave front propagates along the unit

vector,

k̂ ¼ X − S
jX − Sj : ð11Þ

The magnitude jX − Sj, namely the distance from source to
wave front at point XðξÞ, can be found by the law of
cosines. For a flat universe in comoving coordinates,

rðξÞ≡ jX − Sj ¼ Dc

�
1þ

�
Lξ
Dc

�
2

þ 2
Lξ
Dc

cos θ

�
1=2

: ð12Þ

Note that the GW amplitude is proportional to Ãij=rðξÞ,
which reduces to Ãij=Dc, as expected for Dc ≫ L.
Combining Eqs. (8)–(12), keeping terms to OðL=DcÞ,

integrating, and separating terms in order of L=Dc, we find
the expression for the plane wave and first-order-curvature
pulse travel-time corrections in Fourier space, matching
Eq. (10) of DF11. To write their expression in a more
elucidating form, we define

ΔT ≡ ½n̂in̂jÃij�s
2πfoDc

e2πifsDc=c

∝
M5=3

s f2=3s

2πfoDc
e2πifsDc=cQðαP; βP;ϕ;ϕ0; I;ψÞ; ð13Þ

where in the last line we write out the Ãij dependence
assuming circular binary orbits. The functionQ depends on

1Note that for our purposes it is sufficient to compute this pulse
travel-time correction due to the intervening GW. Whereas the
“timing residual” often encountered in the literature (e.g., [36]), is
this quantity divided by the pulsar period and integrated over the
observation time.
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the pulsar position angles ðαP; βPÞ, the binary orbital phase
ϕ and phase reference ϕ0, the binary inclination I, and the
polarization angle ψ . The other two angles of importance,
the angular position of the GW source (α, β), appear outside
of ΔT through the angle θ,

cos θ ¼ cos β cos βP cos ðα − αPÞ þ sin β sin βP: ð14Þ

Importantly, the denominator of Eq. (13) includes the
frequency at the Earth-pulsar detector. This is because the
observed timing residual is set by the observed strain over
the observed GW frequency. To put the above into observed

quantities for sources at cosmological distance, use that
Mo ¼ ð1þ zÞMs and fo ¼ ð1þ zÞ−1fs. Therefore,

ΔTo

QðαP; βP;ϕ;ϕ0; I;ψÞ
∝
M5=3

o f−1=3o

2πDL
e2πif0DL=c; ð15Þ

where the luminosity distance DL ¼ ð1þ zÞDc.
Using our definition of ΔTo, the Fourier travel-time

correction, broken into plane wave and first-order curvature
parts, becomes

τGW ¼ τpw þ τcr

¼ ΔTo

2

�
exp

�
2πi

foL
c

sin2
θ

2

�
sin ð2π foL

c sin2 θ
2
Þ

sin2 θ
2

þ 2ð1þ cos θÞ exp
�
πi

foL
c

�
4sin2

θ

2
þ L
2Dc

sin2θ

�� sin ðπfoL2

2cDc
sin2θÞ

sin2θ

�
: ð16Þ

Both terms still have a dependence on the distance through
the usual 1=DL in ΔTo. However, the curvature term now
has a dependence on foL2=Dc. Because we can independ-
ently measure fo and L, this term introduces a way to
measure the comoving distance separately from the lumi-
nosity distance.
The form of the travel-time correction also confirms

our simple geometric argument of the previous subsection,
that the curvature term decreases in importance as

πfoL2=ð2cDcÞ sin2 θ → 0. Indeed when Dc ≫
foL2

c , the
wave front curvature can be neglected. For values expected
for near-future PTAs, the timing residual due to the wave
front curvature corrections will be of order the plane wave
residual when

πfoL2

2cDc
¼ 0.5

�
fo
yr−1

��
L

10 kpc

�
2
�

Dc

1 Gpc

�
−1
: ð17Þ

Note that the dependence on pulsar distance is approx-
imately quadratic for sinðπf0L2=ð2cDcÞÞ∼πf0L2=ð2cDcÞ,
which is valid up to L ∼ 10 kpc in the above example.
Hence, if future PTAs can precisely time pulsars out to
10–20 kpc, then the comoving distance can be probed
through GW-timing parallax, at the same sensitivity as
required for detection of the plane wave terms, out to
Gpcs—for all conceivable supermassive black hole binary
mergers detectable by PTAs. If the GW detection has a high
signal-to-noise ratio (SNR), then even greater distances can
be probed. However, in addition to the criteria considered
thus far, measurement of the wave front curvature also
requires a precise measurement of the pulsar distance,
which we discuss below.

III. HUBBLE CONSTANT MEASUREMENT

When both the luminosity distance and the comoving
distance can be measured, and distinguished from each
other, for the same binary GW source, the redshift and
hence Hubble constant H0 can be measured. To distinguish
the two distances we require that the fractional errors onDL
and Dc be less than ðDL −DcÞ=Dc ¼ z, which is ∼0.25 at
1 Gpc. When this is possible, the redshift of the source can
be recovered with uncertainty,

δz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δDL

Dc

�
2

þ
�
DL

Dc

δDc

Dc

�
2

s
ð18Þ

and can be used to measure the Hubble constant via

H0 ¼
c

DcðzÞ
Z

z

0

dz0

Eðz0Þ ; ð19Þ

with relative uncertainty,

δH0

H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

δz
EðzÞ

�
2
�Z

z

0

dz0

Eðz0Þ
�

−2
þ
�
δDc

Dc

�
2

s
: ð20Þ

A. Distance measurement precision
and PTA dependence

We estimate the fractional error in the Hubble constant
measurement by considering PTA detections above a cutoff
SNR and hence a constant fractional error on DL. As a
fiducial value we use δDL=L ∼ 10% estimated in [31] for
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detections with a SNR of 20 (see Sec. II A). Next,
we numerically estimate the precision in the DcðzÞ
measurement.

B. Main challenges

A requirement for the measurement of Dc is that the
pulsar coordinates are precisely known, to within approx-
imately a GW wavelength. While this does not impose a
stringent constraint on the measured precision of the pulsar
angular coordinates, it does strongly constrain the required
precision on the pulsar distance measurement (e.g.,
DF11, [31]).
This δL requirement is seen geometrically from

Fig. 1(a). Imagine that the pulsar is at distance L and
angle θ ¼ π=2. In the plane wave limit the GW phase
observed at Earth is Φ ¼ Φ0 þ 2πfðt − L=cÞ, while for
spherical wave fronts the phase is approximately Φ ¼
Φ0 þ 2πf½t − L=cð1 − L=DcÞ�. Hence, if L is not known to
within δL≲ ðL=DcÞL, which is approximately λGW in the
limit of Eq. (6), one cannot distinguish between a phase
difference due to a different L or due to the L=Dc
correction. In Fig. 1 this translates to moving the pulsar
to a different distance in the plane wave approximation or
keeping it fixed but with differently curved wave fronts
(different Dc).
One might expect a similar requirement exists for DL, as

it also relies on including combined phase information at
the pulsar and at Earth. However, this requirement can be
circumvented by simultaneously fitting for the pulsar
distances in a joint analysis with the binary properties
and DL. The timing residual from each pulsar is modulated
at the beat frequency between the GWs at the Earth and at
the pulsar, which encodes the chirp from which DL is
measured. As long as a residual is monitored for long
enough to measure a beat modulation [the criteria of
Eq. (4)], the chirp can be measured from _f ∝ cfbeat;i=Li,
for the ith pulsar. Hence simultaneous fitting for the Li will
yield the one value of _f, and soDL, to higher precision with
more pulsars. See also the discussion in [31,37].
We first demonstrate how the H0 measurement depends

on pulsar distance uncertainties and the number of pulsars
in the array, we then turn to a discussion of the practicality
of such measurements and suggestions for near-term work
that should be done towards making such measurements a
reality.

C. PTA dependence

We envision an idealized PTA with Np pulsars having
randomly drawn angular coordinates (αi, βi) on the sky, at
randomly drawn distances Li in the range Lmin to Lmax, and
with fractional distance errors measured in units of the
gravitational wavelength λGW , δL=L ¼ χλGW=Lmax. We
consider further that, for each pulsar, the timing residual
divided by the prefactorΔTo in Eq. (16) can be measured to

within a constant fractional error of δτ=τ. This essentially
subsumes errors on the remaining binary parameters into
δτi and will generally be dependent on the SNR.
We generate mock observed timing residuals by calcu-

lating the expected travel time correction, τi, from Eq. (16).
We draw observed values τobs;i from a normal distribution
with mean and standard deviation given by τi and δτi,
respectively. We also draw observed pulsar distances Lobs;i

from a normal distribution with mean and standard
deviation given by Li and δLi, respectively. We recover
the source parameters from the observed arrival time
deviations by minimizing a least squares statistic that
compares to the model, Eq. (16), but with Lobs;i as the
input pulsar distances,

Xi¼Np

i¼1

ðjτGWðDc; α; β; Lobs;iÞj − jτobs;ijÞ2; ð21Þ

where j·j denotes the norm of the complex Fourier tim-
ing deviations. We impose a log-uniform prior on
logDc=Mpc ∈ ½0; 5� and uniform priors on the angular
source coordinates α ∈ ½0; 2π�; β ∈ ½0; π�. For fixed τobs;i,
we carry out 100 such minimizations for 100 different
realizations of the Lobs;i. We quote the mean and standard
deviation of the 100 sets of resulting source parameters
as estimates for the recovered parameters and their
uncertainties.
Throughout, we consider a fiducial PTAwith Np pulsars

in the Lmin ¼ 1 kpc to Lmax ¼ 20 kpc distance range and a
error on L parametrized in units of GW wavelengths. The
fractional error on τ will be SNR dependent; for the purpose
of this study, we choose a fiducial value of 10%. We study
the affect of varying these choices below.
For computational purposes, we draw pulsar sky loca-

tions within π=4 from the optimal θ ¼ π=2. This means that
an isotropic pulsar distribution would require twice the
number quoted here, though, for a favorably positioned
source, a pulsar distribution biased by the Milky Way
plane would require less pulsars than our Np suggests. We
find below that a factor of a few in our predicted pulsar
numbers is not significant compared to other uncertainties
and may not be a limiting issue given that hundreds to
thousands of pulsars may make up future PTAs [38].
Finally, we consider a fiducial GW source frequency of
fo ¼ 10−7 Hz, where the GW parallax distance determi-
nation is most effective.
Figure 2 shows how well our fiducial PTA recovers the

comoving distance (left), longitude (middle), and latitude
(right) of our GW source when it is placed at a redshift of
z ¼ 0.25 with angular positions ðα; βÞ ¼ ðπ=4; π=4Þ. The
top row shows that indeed the discussed requirement on the
pulsar distance is borne out in our numerical propagation of
errors experiment. Only for δL≲ 0.5λGW is a constraint
made on the source parameters. For a 32 pulsar array, Dc is
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constrained at the 10% level for δL=L ¼ 0.5λGW=Lmax,
while the angular coordinates of the source are constrained
to the sub-1% level. These source constraints tighten
proportionally to δL. In the bottom row, we vary the
number of pulsars in the δL=L ¼ 0.5λGW=Lmax array. We
find that the source coordinates are poorly constrained for
Np ≤ 16, but accuracy and precision of parameter recovery
increase with increasing pulsar number. Increasing the
number of pulsars for a PTA with δL ≥ λGW does not
allow a better (or any) measurement of the source
parameters.

D. Precision of redshift and Hubble
constant measurement

In the left panel of Fig. 3, we plot recovered comoving
distances as a function of redshift (orange) for fiducial PTA
and source properties and using 256 pulsars. For reference,
we also plot the corresponding luminosity distances with
10% fractional errors (blue). The dotted lines show the
theoretical expectation for each distance measure.2

Accurate determination of luminosity and comoving dis-
tances, and hence determination of the source redshift, is
possible when recovered values are consistent with the
theoretical values, and when the blue and orange error bars
do not overlap.
The right panel of Fig. 3 uses the distance errors in the

left panel and Eqs. (18)–(20) to display the fractional error
in the redshift and the Hubble constant measurements for

the corresponding points in the left panel. For this specific
GW source (α ¼ β ¼ π=4, f ¼ 10−7 Hz) and PTA, we find
that the redshift and Hubble constant can be determined to
better than order unity for z≳ 0.1 and to within 40% for
z≳ 0.5. At z ≤ 0.1, Dc and DL are indistinguishable from
each other, but their measurement could still impose upper
limits on z and H0. Choice of smaller δDL=DL ¼ 0.01
decreases the redshift at which a determination ofH0 could
be made, bringing the low-z side of the curve in the right
panel of Fig. 3 down to the level of the high-z values,
allowing 30–40% fractional errors on H0 and z for z≲ 1.5.
To further demonstrate the dependence on PTA proper-

ties, Fig. 4 replicates Fig. 3 but now for a more optimistic
scenario where the pulsar distances can be measured to a
five times higher precision of δL=L ¼ 0.1λGW=Lmax, but
including eight times fewer pulsars (Np ¼ 32). In this case,
the minimum redshift required for order-unity-precision
distance measurements remains at z ¼ 0.1, but ≤ 20% level
measurements of the Hubble constant are possible for
z ≥ 1. We do not consider higher redshifts as such binary
GW sources are likely not detectable beyond this range
with Square-Kilometer-Array (SKA)-era PTAs [23],
though futuristic arrays may extend beyond these redshifts.
Fractional errors on H0 and z would decrease further for
higher frequency sources, a better measurement of DL, or
the inclusion of more well-measured pulsars.

E. Beyond the pulsar distance constraint

Up until now we have only shown the dependence of the
H0 measurement on the parameters of a hypothetical PTA.
Such a hypothetical PTA, however, requires pulsar distance

FIG. 2. The recovered comoving distance,Dc, and sky coordinates (α, β) of the GW source for PTAs with varying numbers of pulsars
and precision in the distance measurement of these pulsars. The considered PTAs assume pulsars lying between 1 and 20 kpc from Earth
and with δτ=τ ¼ 0.1. In the x-axis label of the top panel, dLmax refers to the worst precision in the array, on the most distant pulsars.

2We use ΩM ¼ 0.3, ΩΛ ¼ 0.7, and h ¼ 0.7 throughout.

USING GRAVITATIONAL WAVE PARALLAX TO MEASURE THE … PHYS. REV. D 104, 063015 (2021)

063015-7



uncertainties, δL≲ λGW , which would pose a great chal-
lenge to achieve with present methods. This is because the
GW wavelength of interest is λGW ¼ 0.1–1.0 pc for a
10−7.0–10−8.0 Hz frequency range, which amounts to a
precision on the pulsar distance that has been approached
only for a few nearby pulsars (e.g., [39,40]). In the near
future, precise pulsar distance measurements using parallax
from VLBI determined astrometry will be able to achieve
parallax angle uncertainties of δp ¼ μas resulting in δL ∼
δp=p2 distance measurements [41]. For L ¼ 1 kpc, this is
δL ∼ 1 pcðL=ð1 kpcÞÞ2. Hence, with astrometry limited to
the μas level and without another way around the pulsar
distance problem, the technique presented here would seem
to be limited to using pulsars within 1 kpc, and so limits a
comoving distance measurement to sources with Dc ≲
100 Mpc via Eq. (17).
One way beyond this is to look to space VLBI, where

sub-μas astrometric limits are conceivable [42,43]. Though
parallax uncertainties of ∼10−2μas (sub-mm and higher

frequency VLBI over 106 km baselines) may be needed to
achieve the required precision for pulsars out to 10–20 kpc.
In addition to relying on future high-precision pulsar

distance determinations, it may be possible to use GW
detections with near-future PTAs to measure the pulsar
distances and build a ladder of precise distance measure-
ments from the well measured nearby pulsars out to the
distant pulsars, and then to the GW sources by means of
GW parallax. We speculate on a few possible scenarios that
could lead towards this goal:
(1) A calibrating GW source with known redshift could

be used to measure the pulsar distances using the
chirp and GW curvature for an entire array. The
redshift could derive from localization of a host
galaxy and/or an assumed cosmology coupled with a
measured luminosity distance.

(2) A nearby source of GWs (Dc ≤ 100 Mpc) could
allow measurement of the comoving distance and
source location using well-measured nearby pulsars

FIG. 4. Same as Fig. 3, but for 5× more precise pulsar distances but 8× fewer pulsars. Precise pulsar distances are clearly more
important than the number of pulsars in the array.

FIG. 3. Left: recovery of comoving and luminosity distances, Dc and DL, vs redshift, z, for a PTA with 256 pulsars, with
δL=L ¼ 0.5λGW=Lmax. Right: the corresponding fractional errors in the measured redshift and the Hubble constant. The fractional error
in DL is assumed constant.

DANIEL J. D’ORAZIO and ABRAHAM LOEB PHYS. REV. D 104, 063015 (2021)

063015-8



(L ≤ 1 kpc). The known source location could be
used to update the coordinates of distant pulsars,
which are more greatly affected by wave front
curvature terms.

A rigorous analysis of these possibilities and, in general,
the joint recovery of the luminosity, comoving, and pulsar
distances is the subject of current and future work.

IV. DISCUSSION AND CONCLUSIONS

We have demonstrated that PTAs can measure both the
luminosity distance and the comoving distance to a subset
of resolved binary sources of GWs. In doing so, they can
measure the source redshift and the Hubble constant. Thus
the PTAs, by themselves, could become cosmological
instruments. The distance out to which such a measurement
can be made, however, depends on how well the distances
to well-timed pulsars can be determined.
Currently, PTAs are operating with tens of pulsars at

distances out to a few kpc. Distance errors range from a
fraction of a percent to order unity, with some reaching
down to the sub-pc level precision required to measure a
comoving distance as described here (e.g., [39,40,44]). In
the coming years, the SKA is expected to expand the pulsar
population drastically [45]. Reference [38] estimates that
∼6000 MSPs are detectable by the SKA out to Oð10Þ kpc
with better than 20% error on their distances. If ∼ 5% of
these are suitable for high precision timing (e.g., [46]) and
also high precision distance measurements, either with
future space-VLBI, or via GW-based pulsar distance
measurements, then the PTAs envisioned here, with tens
to hundreds of pulsars between 1 and 20 kpc and with ≲pc
distance errors, could be realized. Note, however, that the
most crucial MSPs are the most distant, and these may be
the most difficult to time precisely due to a higher like-
lihood for lower SNRs.
In constructing the mock PTAs of the previous section,

we chose pulsars with a uniform distance distribution in
order to study the dependence on pulsar number in a
controlled way without dependence on a specific astro-
physical spatial distribution. Our maximum pulsar distance
in these calculation is consistent with the above quoted

MSP discovery simulations. However, these simulations do
assume a galactic pulsar distribution informed by obser-
vations. Hence, to see if the assumed pulsar spatial
distribution affects our results, we rerun our Np study
but instead of drawing pulsar distances uniformly between
Lmin and Lmax, we draw a pulsar galacto-centric radial
distance from the distribution of Ref. [47] (Model C), and
then randomly draw an azimuthal angle in the galactic disk
to find the pulsar distance from Earth, which we situate at
8 kpc from the galactic center. The results are presented in
Fig. 5, which is very similar to the bottom row of Fig. 2.
Because it is the most distant pulsars that most strongly
affect the DC measurement, this agreement primarily tells
us that a realistic galactic pulsar distribution, with no
imposed limits on the pulsar distance, can provide the
pulsars needed to make the measurement envisioned here.
That such pulsars could be detected and timed in the SKA
era is corroborated by the simulations carried out by, e.g.,
[38,46,48], though we have not included further possible
selection effects related to difficulties in timing and
measuring distances to the most distant pulsars. A more
rigorous analysis of the application of near-future PTAs to
this measurement is the focus of current work.
Note that Ref. [38] considers only galactic pulsars (see

their Fig. 1); pulsars in the Magellanic clouds could provide
MSPs out to 40–60 kpcs [49–52]. Though, again, without
ultrahigh precision distance measurements, such distant
pulsars may only be useful for measuring the luminosity
distance, and not the comoving distance. In addition to the
SKA, the next generation Very Large Array [53] and
astrometric pulsar distance measurements with WFIRST
[54] will make the pulsar-distance errors envisioned here
even more feasible, at least for nearby L≲ 1 kpc pulsars.
Such future arrays will also likely decrease the expected
error in the luminosity distance measurement, and further
reduce the error in the described Hubble constant
measurement.
If the Hubble constant can be measured in this manner

for tens of sources, then a PTA-only measured value could
reach a few to 10% precision. While the number of such
resolved “foreground” binaries that will be detected is
uncertain and relies on the poorly constrained binary

FIG. 5. The same as the bottom row of Fig. 2, but drawing the pulsar distances from the galacto-centric radial distribution of Ref. [47],
with no constraints on the pulsar distribution.
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population, multiple studies have attempted to estimate this
number. Reference [18] estimates that it may indeed be the
resolved single binary sources that are detected before a
stochastic GW background, with a detection every few
years. Older models suggest that the number of such
detections may be an order of magnitude lower [23–25].
Reassuringly, Ref. [23] shows that the most probable
redshift range for resolved sources is between
0.2≲ z≲ 1.5, in the right range for the measurement
envisioned here. However, [18] shows that while the
resolved single sources are the most common at the higher
GW frequencies considered here ∼10−7 Hz, their ampli-
tudes are lower and the PTAs are less sensitive at these
frequencies. This leads Ref. [18] to conclude that the
optimal single-source detection frequencies for near future
PTAs lie at ∼10−8 Hz. At these lower frequencies, the GW
parallax measurement is more difficult, as the curvature
term is less important for a GW binary at the same distance
[Eq. (17)], however, at lower frequencies the requirement
on the pulsar distance uncertainty is lessened by the same
amount. Future work could analyze expected supermassive
black hole binary populations in light of the measurement
at hand, quantifying how many sources per redshift and
frequency will contribute to a meaningful measurement of
the Hubble constant.
For nearby GW sources (z≲ 0.1), we found that only

upper bounds on the redshift and Hubble constant can be
set becauseDc andDL are within 10% of each other. This is
partly due to our adopted 10% fractional error on the
luminosity distance measurement. If this can be improved
upon, as it very well could be by the time that the Dc
measurement is feasible, then one can take advantage of
more nearby sources. In addition, because the comoving
distance can be measured to high precision for these nearby
sources, its measurement could facilitate identification of
the binary host galaxy (as discussed in DF11), and allow a
standard-siren-type determination of the Hubble constant,
as well as offer important astrophysical insight into, e.g.,
the morphology of supermassive black hole binary host
galaxies.
While we have provided a proof-of-principle error esti-

mation focusing on the largest error sources, future work
should consider more realistic parameter estimation tech-
niques, and the precision and accuracy to which all of the
binary parameters can be recovered jointly (e.g., [55,56]).

For example, by not modeling the orbital geometry of the
GW source, we do not include binary inclination or GW
polarization factors that would affect the degree with which
inclination and luminosity distance can be disentangled.
Furthermore, we have not included the frequency evolution
of the binary when including the wave front curvature terms
in the arrival time corrections, but this will be necessary for
joint recovery of the luminosity and comoving distances.
Finally, techniques that independently fit for the pulsar
distances as part of the model (e.g., [29,37]) could enhance
the precision of source parameter recovery presented here
and should also be considered for application to cosmology
with PTAs.3

In summary, we have presented a novel method by which
to measure the Hubble constant without the use of EM
radiation, by assuming only general relativity, and without
the need to model astrophysical properties of the emitting
source of radiation. This measurement can be made
uniquely by future PTAs that can determine the distances
to well-timed pulsars to sub-pc precision. Depending on the
distance to pulsars for which such a distance measurement
can be made, this would result in a single-source determi-
nation of the Hubble constant at the tens of percent level out
to redshifts of z≲ 1.5. Tens of such detections could yield a
≲10% measurement of the Hubble constant from gravita-
tional signals from cosmological sources.
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