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Space-based interferometric gravitational wave instruments such as the ESA/NASA Laser Interferom-
eter Space Antenna (LISA) observe gravitational waves by measuring changes in the light travel time
between widely separated spacecraft. One potential noise source for these instruments is interaction with
the solar wind, in particular the free electrons in the interplanetary plasma. Variations in the integrated
column density of free electrons along the laser links will lead to time-of-flight delays which directly
compete with signals produced by gravitational waves. In this paper we present a simplified model of the
solar plasma relevant for this problem, anchor key parameters of our model using data from the NASA
Wind/solar wind experiment instrument, and derive estimates for the effect in the LISA measurement. We
find that under normal solar conditions, the gravitational wave sensitivity limit from the free-electron effect
is smaller than other noise sources that are expected to limit LISA’s sensitivity.
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I. INTRODUCTION

Space-based interferometric gravitational wave instru-
ments will extend the promising new field of gravitational
wave (GW) astronomy from the high-frequency regime
(10 Hz≲ fGW ≲ 1 kHz) probed by current and future
terrestrial interferometers to a low-frequency regime
(0.1 mHz≲ fGW ≲ 1 Hz) populated with numerous and
varied astrophysical sources [1]. The ESA/NASA Laser
Interferometer Space Antenna (LISA) [2] will employ a
triangular constellation of spacecraft connected by two-
way optical links approximately 2.5 Mkm on a side. The
LISA constellation will occupy a heliocentric orbit at 1 AU
trailing approximately 20° in orbital phase behind the
Earth. As with all bodies in the Solar System, the LISA
constellation will be bathed in a plasma of charged particles
produced by the Sun. Interaction between this plasma and
the laser light traveling along the arms of the LISA
constellation will produce fluctuations in the effective
optical path length along the arms that will directly
compete with similar fluctuations produced by gravitational

waves. The existence of this effect, and its potential to limit
sensitivity to gravitational waves, was recognized in early
studies of LISA [3], where it was estimated to produce
length fluctuations with an amplitude spectral density of
5 × 10−12 mHz−1=2 over the LISA arms, which were
5 Mkm long in the LISA designs of the time. The resulting
strain limit of ∼10−21 Hz−1=2 was sufficiently small to
enable the full LISA science case. These estimates were
informed by an analysis of long-baseline radio transmis-
sions by Woo and Armstrong [4], who estimated fluctua-
tions in the column density of electrons in the solar plasma
between Earth and the Viking I and II spacecrafts at Mars.
The same effect was recognized as a limiting noise source
in searches for micro-Hertz gravitational wave signals
using two-way radio links with Cassini at Saturn [5].
More recently, in situ measurements of the solar plasma
from several spacecraft have provided an opportunity to
anchor our models and refine estimates of the effect in
LISA. In this paper, we review a simplified model of the
solar plasma (II), connect this model with data from the olar
wind experiment (SWE) instrument onboard the Wind
spacecraft (III), estimate the effect for LISA (IV), and
summarize our conclusions (V).*james.i.thorpe@nasa.gov
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II. SIMPLIFIED MODEL OF THE
SOLAR PLASMA

The solar wind is a stream of electrons, protons, and
heavier charged particles that originate in the Sun and
propagate at high speeds into interplanetary space. At low
solar latitudes, the typical velocity of the solar wind is
V ∼ 400 km=s. In the rest frame of the wind, the particles
and magnetic field are turbulent, meaning that on the length
scales of interest to LISA, fluctuations in relevant quantities
such as particle density are characterized by a Kolmogorov
spectrum of the form SðkÞdk ∝ k−5=3dk, where SðkÞ is the
power spectral density of the fluctuations parametrized by
their wave number k. For the case of propagation along the
LISA optical links, the particular quantity of interest is the
electron number density, which can be written as (see, e.g.,
Chap. 15 of [6]):

hδñ�eðk⃗Þδñeðk⃗0Þi≡ P0k
11=3
0 jk⃗j−11=3ð2πÞ3δðk⃗ − k⃗0Þ ð1Þ

where δneðx⃗Þ are the fluctuations of the electron number
density in the spatial coordinates defined by x⃗, δñeðk⃗Þ is the
Fourier transform of those fluctuations parametrized by the
3D wave number k⃗ conjugate to x⃗, P0 describes the overall
amplitude of the number density fluctuations, and k0 is a
reference wave number at which P0 is defined.
The expression for the spectrum of three-dimensional

Kolmogorov fluctuations in (1) can be used to derive an
expression for the spectrum of fluctuations along a single
axis, δNe ≡ δneð0; 0; zÞ which we will show shortly is
related to both the interpretation of in situ electron-density
measurements from spacecraft as well as the interaction
between the LISA optical links and the solar electron
plasma. We begin by separating those fluctuations into their
components along the z axis, measured by 1D wave
number kz, and those perpendicular to that axis, measured
by wave number k⊥. We then use the expression in (1) and
integrate using the expression d3k⃗ ¼ 2πk⊥dkzdk⊥:

hδÑe
�ðkzÞδÑeðk0zÞi ¼

�Z
dze−ikzz

Z
dz0ei k0zz0

Z
d3m⃗
ð2πÞ3 δñ

�ðm⃗Þeimzz
d3m⃗0

ð2πÞ3 δñðm⃗
0Þe−i m0

zz0
�

¼ P0k
11=3
0 δðkz − k0zÞ

Z
∞

0

ðm2⊥ þ k2zÞ−11=6m⊥dm⊥

¼ 3

5
P0k

11=3
0 kz−5=3δðkz − k0zÞ: ð2Þ

For reference, units of various quantities are as follows:
neðr⃗Þ, δðk⃗ − k⃗0Þ, and P0 all have units cm−3; ñeðk⃗Þ has units
cm0; δNeðkzÞ has units cm−2; and it follows that both sides
of Eq. (2) have units cm−4.

III. SOLAR PLASMA MEASUREMENTS
FROM WIND/SWE

The Wind spacecraft is a NASA heliophysics mission
launched in 1994 to study the solar plasma and its
interaction with the Earth’s magnetosphere. One of
Wind’s instruments is the SWE [7] from which a calibrated
measure of electron density is derived. Wind’s operations
have consisted of two main phases: a “near-Earth” phase
(1994–2004) when the spacecraft made a series of trips
through the Earth’s magnetosphere and an “L1” phase
(2004–present) when the spacecraft occupied a Lissajous
orbit around the 1st Sun-Earth Lagrange point, approx-
imately 1.5 Mkm in the sunward direction from Earth. In
both cases, the motion of the spacecraft in the rest frame of
the local solar wind is an approximately constant velocity
of V ≈ 400 km=s in the sunward direction. This velocity is
large compared with the velocity scales of the turbulent
motion (e.g., the spacecraft’s motion through the wind is
supersonic) and also at least an order of magnitude larger

than the orbital velocity of the spacecraft relative to the
Sun. Under both of these approximations, a spacecraft like
Wind will measure a set of turbulent electron-density
fluctuations that are “frozen” into the plasma and carried
across the detector by the bulk velocity of the solar wind,
sometimes referred to as the Taylor hypothesis [8]. This
allows us to relate the in situ measurements of electron
density made by Wind/SWE to the expressions for electron
density introduced in Sec. II. Specifically, the time series of
measured electron-density fluctuations is directly related to
the spatial fluctuations along the z axis defined by the flow
of the solar wind, δNeðtÞ≡ δneð0; 0;−VtÞ. The power
spectrum of neðtÞ at an in situ spacecraft is then easily
calculated from (2):

hδÑe
�ðωÞδÑeðω0Þi ¼ 3

5
P0k

11=3
0 V2=3ω−5=3δðω − ω0Þ ð3Þ

which we can reexpress in terms of the spectral density in
frequency space as

SNe
ðfÞ ¼ 4π

ð2πÞ5=3
3

5
P0k

11=3
0 V2=3f−5=3; ð4Þ

where f ≡ ω=2π is the cycle frequency of the fluctuations,
and where, every time we write SðfÞ in this paper, we are
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using the single-sided convention. To verify this simple
model of electron-density fluctuations, we selected an
ensemble of data from Wind/SWE between January
1997 and November of 1998, corresponding to times when
the SWE instrument was operating in its nominal configu-
ration (prior to an anomaly that occurred in 2002 [9]) and
when the spacecraft was at least 10 Earth radii from Earth,
placing it sufficiently outside the magnetosphere so as to
measure a representative interplanetary environment. For
each of the 620 days with available electron-density time
series data meeting our criteria, we computed the spectrum
of their fluctuations using the following algorithm [10]:
resample the time series to a regular 5-s sampling grid,
remove single-sample outliers, and compute the power
spectral density using Welch’s method of overlapped
averaged periodograms. Figure 1 shows example spectra
of electron-density fluctuations for four different dates,
along with the best fit to a simple power-law model SNe

¼
S1 mHzðf=1 mHzÞα over the range 10−4Hz<f<10−2Hz.
Clockwise from top left, the four spectra correspond to the
dates with the median PSD at 1 mHz (1997-02-19), the

midpoint in ensemble (1997-12-05), the maximum PSD at
1 mHz (1998-08-01), and the minimum PSD at 1 mHz
(1998-04-27).
Figure 2 shows the distribution of power-law fitting

parameters S1 mHz and α for all 620 samples in the
ensemble. Overplotted in green is a multivariate normal
distribution corresponding to log10ðS1 mHzÞ ¼ 1.74� 0.7
and α ¼ −1.75� 0.5. A clear anticorrelation between
spectral amplitude and spectral index is observed, with a
measured statistical correlation of −0.7. Note that the
median spectral index agrees well with the value of
−5=3 predicted in (4).
Figure 3 shows the time variation of the power-law

fitting parameters S1 mHz and α for all 620 samples in the
ensemble. The four samples from Fig. 1 are indicated using
the colored markers as well as a trend line produced by
applying a 71-point 3rd-order Savitzky-Golay filter [11] to
the data. Over the approximately two years of data, the
power of the fluctuations varies by about 1.5 orders of
magnitude. The anticorrelation between fluctuation ampli-
tude and spectral index is also readily apparent. For context,

FIG. 1. Example spectra of electron-density measurements from Wind/SWE and fits to a simple power law SNe
¼ S1 mHzðf=1 mHzÞα

in the region 10−4 Hz < f < 10−2 Hz. Each spectrum is made with a 24-hr period of data. For the ensemble of data considered here, the
four panels represent (clockwise from top left) the spectra with the median S1 mHz, median time sample, maximum S1 mHz,
and minimum S1 mHz.
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the time period when this data was taken was during a
period of low solar activity (as measured by number of
sunspots) during the beginning of solar cycle 23 [12].
Electron density is known to be anticorrelated with sunspot
number [13], thus the results shown here correspond
roughly to an epoch of maximum electron density within
the solar cycle. If the LISA schedule and solar activity
adhere to current predictions, science operations will begin
during a similar portion of solar cycle 26.

IV. ESTIMATED EFFECT FOR LISA

We now turn our attention to the effect the solar plasma
will have on the optical interferometric measurement made
between pairs of LISA spacecraft. The spacecraft are
arranged in a triangular constellation approximately
2.5 Mkm on a side that is placed in an Earth-like helio-
centric orbit, lagging behind (or potentially leading ahead)
the Earth by approximately 20° in orbital phase, equivalent
to an Earth-constellation distance of approximately
50 Mkm. The plane of the constellation is inclined with
respect to the ecliptic by 60°.
As the optical beams traverse the space between the

satellites, they will interact with the free electrons in the
solar wind, resulting in a phase shift that will be present in

FIG. 2. Distribution of power-law fit parameters S1 mHz and α
for the 620 samples in the ensemble. A multivariate normal
distribution with the same covariance is over-plotted in green.

FIG. 3. Timevariation of the power-law fitting parametersS1 mHz and α for all 620 samples in the ensemble ofWind/SWEdata. Points are
parameters for daily fits of the spectra, trend line is a 71-point, 3rd-order Savitzky-Golay filter, andmarkers correspond to the four examples
from Fig. 1. Top panel shows the evolution of power-law amplitude S1 mHz and bottom panel shows evolution of spectral index α.
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the LISA measurement. This phase shift or time delay can
be modeled as an effective index of refraction,

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ωp

ω

�
2

s
≈ 1 −

1

2

�
ωpλ

2πc

�
2

ð5Þ

where μ is the index of refraction, λ is the laser wavelength,
c is the speed of light, and ωp is the plasma frequency for
the solar wind electrons, given by

ω2
p ¼ 4πneðt; r⃗Þe2

me
¼ ð5.64 × 104 s−1Þ2 ×

�
neðt; r⃗Þ
cm−3

�
ð6Þ

where e is the fundamental electric charge, me is the mass
of the electron, and ne is the electron density introduced
previously. (Note we are using cgs units, with charge
measured in statcoulombs.) The relevant quantities for
LISA are the fluctuations in the optical path length along
the arms caused by variations in the electron density. In the
following, we make an estimate for the magnitude of those
fluctuations based on the simple model of the turbulent
solar wind described in Sec. II. We do this first for a single
LISA arm, which is useful for making rough comparisons
with other noise sources in the LISA measurement, and
then for differential fluctuations in a two-arm LISA
observable, which represents a more accurate estimate of
the effect.

A. The single-arm case

We begin by defining a coordinate system with origin at
the center of LISA, the ẑ direction pointing towards the
Sun, the x̂ direction normal to ecliptic, the ŷ direction lying
in the ecliptic, and the LISA arm pointing along the unit
vector L̂1 (see Fig. 4). The optical path-length fluctuations
along the LISA arm caused by electron-density fluctuations
are then given by

δL1ðtÞ ¼ χ

Z
L

0

δneðr⃗ ¼ lL̂1 − VtẑÞdl ð7Þ

where

χ ≡ λ2e2

2πmec2
≈ 5.08 × 10−22 cm3: ð8Þ

Each LISA arm points in a direction that has both a
tangential and a radial component in the heliocentric
coordinate system. Integration of (7) along the solar wind
(radial) direction produces a fundamentally different result
than a tangential direction. For LISA, this mix of radial and
tangential components will evolve as the constellation
undergoes its orbit around the Sun. Appendix A 1 provides
a detailed derivation of the apparent optical path length
induced by electron plasma with the following result:

hδL̃�
1ðωÞδL̃1ðω0Þi ≈ ðLχÞ2

�
3

5
P0k

11=3
0 V2=3jωj−5=3

��
25

9

�

× β1
5=3

�
V
Lω

�
δðω − ω0Þ ð9Þ

where
ffiffi
3

p
2
≤ β1 ≤ 1 is an angle that represents the time-

evolving orientation of the LISA constellation. The term in
square brackets is the power spectrum of in situ electron-
density measurements from (4), which allows the LISA
effect to be estimated from Wind/SWE data using a simple
transfer function:

SL1ðfÞ ≈ ðLχÞ2
�
25

9

�
β1

5=3

�
V

2πLf

�
SNeðfÞ: ð10Þ

It is insightful to break the transfer function into parts: it is
ðLχÞ2, times a factor of order one (25

9
≈ 2.78), times the

geometrical factor β15=3 (which varies between 0.79 and
1.0 as LISA’s orientation changes), times the quantity
ð V
2πfLÞ, which comes from the partial “averaging out” of
fluctuations along the arm. For f ¼ 5 mHz and
V ¼ 400 km=s, V=ð2πfLÞ ¼ 5.1 × 10−3. Figure 5 shows
the spectra obtained from Wind/SWE multiplied by the
transfer function in (10) for the case where β ¼ 1. Since the
observed spectra exhibit some non-stationarity, all spectra
are plotted with the median, 1-, 2-, and 3-σ values for each
frequency bin shown. For comparison, the single-link
equivalent displacement noise requirements from the
LISA mission requirements document (MRD) [14] are
plotted as thick black lines. The dashed line shows the
requirement on the LISA interferometry system alone
whereas the dashed curve includes the additional limit
on sensitivity that arises from imperfections in the free fall
of the LISA test masses.

B. Differential arms, TDI, and other effects

While the LISA MRD specifies sensitivity in terms of
equivalent single-link displacement, LISA is fundamentally

FIG. 4. Geometry of the LISA arm constellation with respect to
the direction of the solar wind.
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a multiple-arm interferometer. A differential measurement
between pairs of LISA arms allows suppression of laser
frequency noise which would otherwise overwhelm both
the gravitational wave signal as well as other interferometer
noise sources by 7–8 orders of magnitude. To evaluate the
effect of solar electron plasma effects on the differential
measurement, the analysis from Appendix A 1 can be
easily extended. We first introduce a second arm defined by

L̂2 ¼ α2ẑþ β2L̂2;⊥ ð11Þ

where α2 and β2 are the analogous direction angles for the
second arm. The differential length fluctuations δL can then
be expanded into the length fluctuations in the individual
arms plus cross terms that represent the correlation between
the arms:

hδL̃�ðωÞδ̃Lðω0Þi ¼ hδL̃�
1ðωÞδL̃1ðω0Þiþ hδL̃�

2ðωÞδL̃2ðω0Þi
− hδL̃�

1ðωÞδL̃2ðω0Þi− hδL̃�
2ðωÞδL̃1ðω0Þi:

ð12Þ

The first two terms are described by (9) and are identical
except that β1 → β2 for the second term. Appendix A 2
shows that the cross terms can be neglected with the result
that the power spectrum of electron-density fluctuations for
the differential case is approximately twice that of the

power spectrum for the single-arm case. Since the noise
requirements for differential measurements are similarly
higher, the relative importance of the effect is unchanged.
While the analysis above represents a simple differential

measurement, LISA’s approach is somewhat different.
Since the individual arm lengths in the constellation differ
by up to ∼0.5% and are slowly varying over the mission
lifetime, a simple differential measurement would not
sufficiently suppress the laser frequency noise present in
the interferometer. Instead, a technique known as time-
delay interferometry (TDI) (see, e.g., [15]) is applied to
combine multiple measurements of the single-link inter-
ferometers at different time epochs to generate observables
that further suppress laser frequency noise while retaining
GW signals. The TDI combinations are designed to exploit
correlations in the laser frequency noise terms at different
points and times within the constellation. Noise sources
which do not have these same correlations, such as the shot
noise and test-mass acceleration noise that make up the
single-link displacement curves in Fig. 5, are not sup-
pressed by TDI. Since the analysis in Appendix A 2
demonstrates that the correlation of electron-density noise
between multiple arms is negligible, TDI will have no
effect on the relative impact of the electron-density noise to
other uncorrelated noise sources such as photon shot noise
in terms of GW sensitivity. However, it is worth pointing
out that electron-density noise represents a plausible

FIG. 5. Estimated single-link displacement noise for LISA based on Wind/SWE measurements of electron-density spectra and the
transfer function in (9). The gray traces represent each of the 572 daily spectra as described in Sec. III and the green trace represents the
median at each frequency bin. The blue, orange, and red traces represent the 1-, 2-, and 3-σ intervals for each bin respectively. The two
thick black lines represent LISA single-link sensitivity requirements from the LISA mission requirements document, the dashed line
represents LISA’s sensitivity limit from the interferometric measurement system and the solid line represents the combined limit of the
interferometer and the test-mass motion.
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potential effect of correlation in the noise between the
different LISA arms and that such correlations are not taken
into account when deriving noise-orthogonal TDI combi-
nations. If solar plasma effects do produce substantial
correlations in the A and E channels, it could invalidate
the assumption of noise orthogonality between these
channels and thereby impact searches for unmodeled
stochastic GW signals.

V. DISCUSSION

Optical path-length fluctuations induced by time-varying
electron plasma densities in the solar wind are a potentially
important noise source for space-based gravitational wave
interferometers such as LISA. We have presented here a
simple model of the electron-density spectrum, demon-
strated that it matches reasonably well with data from the
Wind/SWE instrument, and estimated the resulting effect
for LISA in both simple one-arm models and accounting
for the more complex geometry of the constellation. Our
revised estimate is a factor of ∼2 lower than the estimate in
earlier LISA studies [3]. It is furthermore consistent with
estimates from long-baseline radio measurements [4]. Our
conclusion is that the resulting effect for LISA is not
expected to limit sensitivity to gravitational wave sources
except possibly during rare solar events, when spacecraft
operations may be impacted in other ways (e.g., through
test-mass charging). In any event, rare interruptions of the
link from such events would be entirely consistent with the
anticipated duty cycles of instruments like LISAwhich are
expected to be around 75%. It is clearly a noise source
which merits continued attention by the designers of LISA
and other future space-based interferometers such as
TianQin, Taiji, etc. Indeed, a recent analysis of the effect
for the proposed geocentric TianQin mission made using
modern MHD simulations of the near-Earth solar plasma
found qualitatively similar results—the sensitivity of
TianQin to gravitational waves will not be limited by solar
plasma effects, but their contribution to the overall noise
budget is not negligible [16]. For second-generation space
missions with increased displacement sensitivity, this may
be a noise source that requires mitigation of some kind.
Possibilities for mitigation include in situ measurements of
the electron density that would allow for postprocessing
subtraction of the effect or multifrequency laser systems
that would allow the electron-density fluctuations along the
arm to be directly measured and subtracted.
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APPENDIX A: OPTICAL PATH LENGTH
FLUCTUATIONS IN A 1D KOLMOGOROV

SPECTRUM

1. The single-arm case

We begin by defining a coordinate system with origin at
the center of LISA, the ẑ direction pointing towards the
Sun, the x̂ direction normal to ecliptic, the ŷ direction lying
in the ecliptic, and the LISA arm pointing along the unit
vector L̂1 (see Fig. 4), which is in turn represented in terms
of angles α1 and β1 as follows:

L̂1 ¼ α1ẑþ β1L̂1;⊥ ðA1Þ

where L̂1;⊥ is a unit vector orthogonal to ẑ. It is worth
noting that the geometry of the LISA orbits requires the
values of α1 and β1 to be determined by a single angle that
gives the orientation of the constellation within its plane

and that and that − 1
2
≤ α1 ≤ 1

2
and

ffiffi
3

p
2
≤ β1 ≤ 1.

The optical path-length fluctuations along the LISA arm
caused by electron-density fluctuations are then given by

δL1ðtÞ ¼ χ

Z
L

0

δneðr⃗ ¼ lL̂1 − VtẑÞdl: ðA2Þ

To connect with the model of the electron density from
Sec. II, we expand neðr⃗Þ into its spatial Fourier compo-
nents,

δL1ðtÞ ¼ χ

Z
L

0

dl
Z

d3k⃗
ð2πÞ3 δñeðk⃗Þe

ik⃗·ðlL̂1−VtẑÞdl: ðA3Þ

Expanding L̂1 using (A1) and taking the Fourier trans-
form of δL1ðtÞ, we find

δL̃1ðωÞ ¼ χ

Z
L

0

dl
Z

d3k⃗
ð2πÞ3 δñeðk⃗Þe

ilðα1kzþβ1k⃗⊥·L̂⊥Þ

× 2πδðω − VkzÞ ðA4Þ

¼ χ

Z
L

0

dl
Z

d3k⃗
ð2πÞ3 δñeðk⃗Þe

ilðα1ω=Vþβ1k⃗⊥·L̂⊥Þ

× 2πδðω − VkzÞ ðA5Þ

¼ χ

Z
d3k⃗
ð2πÞ3 δñeðk⃗Þ

1

iγ1
½eiγ1L − 1�

× 2πδðω − VkzÞ; ðA6Þ

where we have defined
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γ1 ≡ α1ω=V þ β1k⃗1;⊥ · L̂1;⊥: ðA7Þ

The above implies that

hδL̃�
1ðωÞδL̃1ðω0Þi ¼ χ2

Z
d3k⃗
ð2πÞ

d3k⃗0

ð2πÞ3 hδñ
�
eðk⃗Þδñeðk⃗0Þi

× 2δðω − VkzÞδðω − Vk0zÞCC� ðA8Þ

where

C≡ 1

iγ1
½eiγ1L − 1�: ðA9Þ

Next we use the Kolmogorov spectrum for the electron-
density fluctuations from (1) and integrate over k⃗0 and kz
to get

hδL̃�
1ðωÞδL̃1ðω0Þi

¼ χ2P0k
11=3
0

V

Z
d2k⃗⊥
ð2πÞ2 ððω=VÞ

2 þ k2⊥Þ−11=6ð2πÞ

× δðω − ω0ÞCC� ðA10Þ

where we have used thatZ
dkzδðω − VkzÞδðω0 − VkzÞ ¼ V−1δðω − ω0Þ: ðA11Þ

It is straightforward to show that CC� can be expressed as

CC� ¼ L2sinc2ðγ1L=2Þ; ðA12Þ

where sincðxÞ≡ x−1 sinðxÞ. Then the right-hand side of
Eq. (A10) becomes

ðχLÞ2 P0k
11=3
0

V

Z
d2k⃗⊥
2π

sinc2
γ1L
2

× δðω − ω0Þ
��

ω

V

�
2

þ k2⊥
�

−11=6
: ðA13Þ

Next we do the following coordinate transformation.
First we shift the origin of the k⃗1;⊥ plane to the point k⃗1;⊥ ¼
−ðα1=β1Þðω=VÞL̂1;⊥ (noting that γ1 vanishes at the new
origin), and starting at this new origin introduce the
orthonormal coordinate system ðku; kwÞ, where k̂u ¼
L̂1;⊥ and k̂w is the unit vector orthogonal to k̂u. Next note
that γ1 ¼ β1ku (and so is independent of kw) and that the
k21;⊥ in (A13) is given by

k21;⊥ ¼
�
ku −

α1ω

β1V

�
2

þ k2w: ðA14Þ

Given the above, we can rewrite (A13) as

ðχLÞ2 P0k
11=3
0

V

Z
dkudkw
2π

sinc2
kuL
2

δðω − ω0Þ
��

ω

V

�
2

þ
�
ku −

α1ω

β1V

�
2

þ k2w

�
−11=6

: ðA15Þ

It is simplest to do the integral over kw first. Using thatZ
∞

−∞
ðAþ x2Þ−11=6dx ¼ 2A−4=3

Z
∞

0

ð1þ x2Þ−11=6dx ≈ 5

3
A−4=3 ðA16Þ

(where the last approximation is good to about 1%), (A13) becomes

5

3
ðχLÞ2 P0k

11=3
0

V

Z
dku
2π

sinc2
β1kuL
2

δðω − ω0Þ
��

ω

V

�
2

þ
�
ku −

α1ω

β1V

�
2
�

−4=3
ðA17Þ

¼ 5

3
ðχLÞ2 P0k

11=3
0

V
L8=3

Z
dku
2π

sinc2
β1kuL
2

δðω − ω0Þ
��

Lω
V

�
2

þ
�
kuL −

α1
β1

Lω
V

�
2
�

−4=3
ðA18Þ

¼ 5

3
ðχLÞ2 P0k

11=3
0

V
L8=3

�
Lω
V

�
−8=3 Z dku

2π
sinc2

β1kuL
2

δðω − ω0Þ
�
1þ

�
kuV
ω

−
α1
β1

�
2
�

−4=3
: ðA19Þ

Because of the factor sinc2ðβ1kuL=2Þ, the integral will be dominated by the contributions in the region jkuj ≲ 2=L. We are
most interested in the regime ω ≫ V=L, or f > 2.55 × 10−5 Hz (for V ¼ 400 km=s and L ¼ 2.5 × 106 km), where we can
neglect the term kuV=ω in the expression ð1þ ðkuV=ω − α1

β1
Þ2Þ in the last line above, which then becomes
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5

3
ðχLÞ2 P0k

11=3
0

V
L8=3

�
Lω
V

�
−8=3

�
1þ

�
α1
β1

�
2
�

−4=3 Z dku
2π

sinc2
β1kuL
2

δðω − ω0Þ ðA20Þ

¼ 5

3
ðχLÞ2 P0k

11=3
0

V
L8=3

�
Lω
V

�
−8=3

�
1þ

�
α1
β1

�
2
�

−4=3 1

β1L
δðω − ω0Þ ðA21Þ

¼ ðχLÞ2
�
3

5
P0k

11=3
0 V2=3jωj−5=3

�
25

9
β1

5=3 V
Lω

δðω − ω0Þ; ðA22Þ

where in the second line we use the integral:Z
∞

−∞
dkusinc2

β1kuL
2

¼ 2π

β1L
ðA23Þ

and in the last line we we used the fact that β1−1ð1þ
ðα1β1Þ2Þ−4=3 simplifies to β15=3. The term in square brackets in
(A22) is the expression from (4) for the power spectral
density of electron-density fluctuations measured by a
“stationary” in situ spacecraft. The remaining terms in
(A22) can thus be viewed as a transfer function between
that measurement and the effect in a LISA arm.
The integral for δL1 is dominated by a thin elliptical

region in the k⃗1;⊥ plane. The center of the ellipse is the point

we defined as k⃗1;⊥, its major axis lies along the line where
γ1 ¼ 0, and has length of order 2ω=V (Fig. 6). The minor
axis of the ellipse is along L̂1;⊥ (which is orthogonal to the
line γ1 ¼ 0) and has width of order 2=L.

2. Differential arm case

The differential length fluctuations δL can then be
expanded into the length fluctuations in the individual
arms plus cross terms that represent the correlation between
the arms:

hδL̃�ðωÞδL̃ðω0Þi ¼ hδL̃�
1ðωÞδL̃1ðω0ÞiþhδL̃�

2ðωÞδL̃2ðω0Þi
− hδL̃�

1ðωÞδL̃2ðω0Þi− hδL̃�
2ðωÞδL̃1ðω0Þi:

ðA24Þ

The first two terms are described by (A22) and are
identical except that β1 → β2 for the second term. By
basically retracing the calculation that led to Eq. (A13), one
finds that last two terms in Eq. (A24) sum to

ðχLÞ2 P0k
11=3
0

V

Z
d2k⃗⊥
2π

sinc
γ1L
2

sinc
γ2L
2

cos
ðγ1 − γ2ÞL

2

× δðω − ω0Þ
��

ω

V

�
2

þ k2⊥
�

−11=6
; ðA25Þ

i.e., the same expression as (A13), but with
sinc2ðγ1L=2Þ replaced by the −2sincðγ1L=2Þsincðγ2L=2Þ×
cosððγ1 − γ2ÞL=2Þ. For the case ω ≫ ω0, where

ω0 ≡ 2πV=L (i.e., for the frequency region of most
interest), the maximum of the integrand for cross terms
is comparable to that for Eq. (A13) but the integrand
remains of order that value only in a region where both γ1
and γ2 are small. For a 60° angle between the two arms, this
region is much smaller than the region where either γ1 or γ2
is small (Fig. 6). More precisely, it is straightforward to
show that the magnitude of the cross terms is smaller than
the first two terms on the right-hand side of (A24) by a
factor of order ω0=ω. Thus we can neglect the cross terms
and the noise power spectrum for a two-armed LISA is
approximately twice the noise power spectrum for a
single arm.

FIG. 6. This figure is a cartoon illustrating the regions in the k⊥
plane that dominate various integrals. The integral in Eq. (A10),
for hδL̃�

1ðωÞδL̃1ðω0Þi is dominated by the red elliptical region
centered at −α1ωβ1V

L̂1;⊥, with semiminor axis parallel to L̂1;⊥ and of
length ∼π=L, and with semimajor axis lying along the line
γ1 ¼ 0, and having length ∼ω=V. Likewise, the blue elliptical
region in k⃗⊥ space dominates the contribution of the correspond-
ing integral for δL2. The red and blue ellipses depict the regions in
which either γ1 or γ2 is small. The green shaded area depicts the
region where both γ1 and γ2 are small. The integral for the cross
term hδL1δL2i is dominated (roughly) by the contributions from
the green shaded area. Intuitively, the fact that the green region is
much smaller than either the red or blue regions is what allows us
to neglect the cross terms, compared to the first two terms,
in Eq. (A20).
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APPENDIX B: HOW THE ABOVE RESULTS ARE
AFFECTED BY ANISOTROPY OF THE

KOLMOGOROV SPECTRUM

So far in this paper, we havemodeled the electron-density
fluctuations as having an isotropic Kolmogorov spectrum.
However, theoretical arguments, confirmed by observations,
show that when the eddy size d shrinks below the value
where the fluid velocity difference across the eddy exceeds
the Alfven speed, then the turbulent cascade of energy to
lower lengthscales becomes less efficient for wave vectors
parallel to B⃗ than forwavevectors perpendicular to B⃗ [17]. In
the solar wind at 1AU, both simulations and measurements
show that this transition to anisotropic turbulence occurs at
wave vector kB ≈ 1.2 × 10−5 km−1. For satellites moving
with at velocity V with respect respect to the wind, this
transition length scale corresponds to frequency ωB ≈
VkB ≈ 5 × 10−3 rad=s (for V ¼ 400 km=s) or fB ≈
0.8 mHz [18]. In position space, it is useful to picture the
turbulent eddies becomingmore elongated in the B̂ direction
as one goes to length scales below 1=kB (even though this
fluidlike picture is not really physically appropriate for the
solar wind, which is better described by nearly collision-less
MHD). More precisely, let k⃗ ¼ kBB̂þ k⃗⊥B, and define
k⊥B ≡ jk⃗⊥Bj, and define LB ≡ kB−1. In a series of papers
of increasing generality (see [17,19,20], and references
therein), Goldreich and collaborators showed that the
anisotropic spectrum at scales k⊥B ≳ 1=LB the factor
P0k

11=3
0 jk⃗j−11=3 in Eq. (1) transitions to the following form:

P0k
11=3
0 × ðLBÞ1=3k−10=3⊥B ΘððLBÞ−1=3k2=3⊥B − jkBjÞ: ðB1Þ

The conditions under which this holds were extended to
the conditions in the solar wind in [17]. Note that
approximating the spectrum with a Θ function in this
way—and so making the spectrum drop discontinuously to
zero as k⊥B drops from slightly above jkBj3=2LB

1=2 was to
slightly below—is clearly unphysical, and not meant to be
taken to completely literally. In [17], it is derived using
extremely insightful order-of-magnitude calculations,
which by themselves, however, are not sufficient to
describe the spectrum in finer detail. When we use
Eq. (B1) to calculate the spectrum of δL below, our results
will generally be discontinuous with our isotropic results at
ω ¼ ωB (though they will match each other at ωB to within
a factor of order one). Under these circumstances, it is
physically reasonable to slightly modify our anisotropic
results in order to enforce continuity at ω ¼ ωB. However
we shall do this only at the final step, so that the reader can
first see the answer if one were to take Eq. (B1) completely
literally.
Regarding both radar ranging and in situ measurements,

the “lore” in the literature is that this B-induced anisotropy
has only relatively small effect on the observed power

spectrum. To our knowledge, there is no publication in
which this lore is theoretically demonstrated—either by
analytic calculations or results of numerical simulations.
The following physical picture is useful for understanding.
(We found this analogy while doing background reading,
but were unable to re-locate it, so apologize for not being
able to cite it here.) Picture a bundle of eddies elongated in
the B̂ direction similar to a box of pencils. Then picture the
path of the in situ satellite, or the radar ranging beam, as a
line passing through the pencil box. For generic orienta-
tions of the pencil box and the line, the line passes through
each pencil in approximately the short direction, i.e., for
typical orientations, the length of the pencils makes little
difference. Similarly, integrated ne fluctuations along
generic directions in the solar wind should be roughly
the same as for an isotropic Kolmogorov spectrum.
While the “pencil argument” appears to apply to the

LISA case too, in the following we shall show explicitly
that the B-induced anisotropy has only a very modest effect
on our above results for the solar wind contribution to
LISA’s noise spectral density. We begin by restricting
ourselves to cases where V⃗⊥L⃗. This should not impact
our results very much, since V⃗ is always roughly orthogo-
nal to L⃗ (deviating by a maximum of π=6 radians, and more
typically by∼π=12). As throughout this paper, we take V⃗ to
be along the ẑ axis; additionally, in this Appendix, we take
L⃗ to be along the ŷ axis.
Starting with the above simplification, we consider in the

next three subsections three special cases for the direction
of B⃗. By the end, it should be clear that these special cases
should bound the ratio SanisoL ðfÞ=SisoL ðfÞ. And we shall see
that even for the most extreme cases, B⃗ along V⃗ and B⃗ along
L⃗, that the anisotropic spectrum changes our result for the
noise amplitude by less than a factor 2 in the frequency
range of interest. In a further subsection, we will argue that
the differential two-arm result also changes very little when
we include anisotropic effects.

1. B⃗ along the x axis

First recall that under our conventions, B⃗ along x̂ means
that B⃗ is orthogonal to both V⃗ and L⃗. So the pencil
argument, to the extent that it is valid at all, should certainly
apply in this case. We shall not go through all the steps in
the following calculations; instead we will point out how
the calculation changes from the isotropic case we solved in
Appendix A. For the anisotropic case, the rhs of Eq. (A13)
gets replaced by

ðχLÞ2 P0k
11=3
0

V
LB

1=3

Z
dkxdky
ð2πÞ2 ððω=VÞ2 þ ky2Þ−10=6

× ΘðLb
−1=3ðω=VÞ2 þ ky2Þ1=3 − jkxjÞ

× sinc2ðkyL=2Þð2πÞδðω − ω0Þ: ðB2Þ
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Since kx does not appear in the integrand, except for inside the argument of theΘ function, the integral over kx is completely
trivial, and Eq. (B2) reduces to

ðχLÞ2 P0k
11=3
0

V
LB

1=32

Z
dky
2π

Lb
−1=3ððω=VÞ2 þ ky2Þ−4=3sinc2ðkyL=2Þδðω − ω0Þ: ðB3Þ

As in the isotropic case, the sinc2 means that (in the LISA band) the integral is dominated by the region where jkyj≲ 2π=L,
and so, after a bit of algebra, (B3) becomes

ðχLÞ2
�
3

5
P0k

11=3
0 V2=3jωj−5=3

��
10

3

��
V
Lω

�
δðω − ω0Þ ðB4Þ

≈ðχLÞ2
�
3

5
P0k

11=3
0 V2=3jωj−5=3

��
25

9

��
V
Lω

�
δðω − ω0Þ ðB5Þ

where in the last line we changed 10=3 to 25=9 by hand (a 17% change) to enforce continuity with So for B⃗ along x̂, our best
estimate shows no substantial difference from the isotropic case.

2. B̂ along z axis

This is the case where B̂ is parallel (or antiparallel) to the wind velocity V⃗. For this case, the rhs of Eq. (A13) becomes

ðχLÞ2 P0k
11=3
0

V
LB

1=3

Z
dkxdky
ð2πÞ2 ðkx2 þ ky2Þ−10=6ΘðLb

−1=3ðkx2 þ ky2Þ1=3 − ω=VÞ sin c2ðkyL=2Þð2πÞδðω − ω0Þ: ðB6Þ

Again, the sinc2ðkyL=2Þ term guarantees that the integral is dominated by the region where jkyj is small, we can
approximate the above by

ðχLÞ2 P0k
11=3
0

V
LB

1=3ðLÞ−1
Z

∞

∞
dkxjkxj−10=3ΘðLb

−1=3ðjkxj2=3 − ω=VÞδðω − ω0Þ ðB7Þ

¼ðχLÞ2 P0k
11=3
0

V
LB

1=3ðLÞ−12
Z

∞

kx;min

ðkxÞ−10=3dkxδðω − ω0Þ ðB8Þ

where (from the Θ function) kx;min ¼ L1=2
b ðω=VÞ3=2, giving

ðχLÞ2 P0k
11=3
0

V
LB

1=3ðLÞ−1 6
7
ðL1=2

b ðω=VÞ3=2Þ−7=3δðω − ω0Þ ðB9Þ

¼ ðχLÞ2
�
3

5
P0k

11=3
0 V2=3jωj−5=3

��
10

7

��
V
Lω

�
FðωÞδðω − ω0Þ ðB10Þ

≈ðχLÞ2
�
3

5
P0k

11=3
0 V2=3jωj−5=3

��
25

9

��
V
Lω

�
FðωÞδðω − ω0Þ ðB11Þ

where in the last line we adjusted 10=7 to 25=9 by hand to maintain continuity at ωB ≡ V=LB, and where FðωÞ is defined as

FðωÞ≡
	
ω=ωB for ω > ωB

1 otherwise:
ðB12Þ

Thus when B is aligned with V, the spectral density of the noise for f > fB is reduced compared to the isotropic case. Since
the B field impedes the cascade of turbulent power along the B̂ direction, that accords with our expectations.
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3. B along y axis

This is the case where B⃗ is parallel to the arm L⃗. In this case, the rhs of Eq. (A13) becomes

ðχLÞ2P0k
11=3
0

V
LB

1=3

Z
dkxdky
ð2πÞ2 ððω=VÞ2þkx2Þ−10=6ΘðLb

−1=3ðω=VÞ2þkx2Þ1=3− jkyjÞsinc2ðkyL=2Þð2πÞδðω−ω0Þ: ðB13Þ

Again, because of the sinc2 term, the integral is dominated by the region ky ≲ 2π=L. In this region, it is easy to show that the
argument of the Θ function is positive if ðLω=VÞ > 23=2ðLB=LÞ1=2, which clearly is always satisfied in the LISA frequency
band. Thus we can replace the Θ function by one. Then the integral over ky is again trivial, leaving us with

ðχLÞ2 P0k
11=3
0

V
LB

1=3ðLÞ−1
Z

∞

−∞
dkxððω=VÞ2 þ kx2Þ−10=6δðω − ω0Þ: ðB14Þ

Using

Z
∞

−∞
dkxððω=VÞ2 þ kx2Þ−10=6 ≈ ð9=5Þðω=VÞ−7=3 ðB15Þ

the above is easily shown to equal

ðχLÞ2 P0k
11=3
0

V
LB

1=3L−1
�
9

5

�
ðω=VÞ−7=3δðω − ω0Þ ðB16Þ

¼ ðχLÞ2
�
3

5
P0k

11=3
0 V2=3jωj−5=3

�
3β1

5=3

�
V
Lω

�
F−1ðωÞδðω − ω0Þ ðB17Þ

≈ðχLÞ2
�
3

5
P0k

11=3
0 V2=3jωj−5=3

�
25=9
β1

5=3
�

V
Lω

�
F−1ðωÞδðω − ω0Þ ðB18Þ

where we defined FðωÞ above in Eq. (B12), and where in
last line we adjusted 3 → 25

9
to maintain continuity

with ω < ωB.
The factor FðωÞ indicates that for ω > ωB, the one-arm

power can be somewhat above the isotopic case, but only
very mildly so. For example, as the frequency f increases
from fB ¼ 0.8 to 50 mHz, the factor ðLBω

V Þ1=3 in the noise
increases by only 4. Compared to isotropic case, this is only
a factor 2 in noise amplitude.

4. Summary and implications of last
three subsections

We have seen that the B-field-induced anisotropy of the
turbulence spectrum only affects the spectrum above
fB ≈ 0.8 mHz. For the case B̂ along x̂, the spectrum
remains the same as for the isotropic case. For the case
of B̂ parallel to ẑ noise amplitude (the square root of the
noise power derived above) in the anisotropic case is the
isotropic result times ðfB=fÞ1=6, while for B̂ parallel to ŷ,

the correction factor is ðf=fBÞ1=6. Any other B-field
direction should interpolate between these two correction
factors, and so make less than a factor of difference 2 in
noise amplitude up to f ¼ 50 mHz.

5. Anisotropy and the differential two-arm case

In Appendix A, we showed that two-arm differential
solar-wind-noise spectrum is basically the sum of the one-
arm spectra, and that those two spectra are almost the
same—differing only by the geometrical term that depends
on α, β. That followed from showing that the cross terms in
Eq. (A24) are small compared to each of the one-armed
terms. What can change in the anisotropic case? First the
spectra for δL1 and δL2 can differ somewhat more, since
they now also depend on the angle between the arm and the
B field. But we have shown that change is also generally
quite modest. What about the cross terms? Their relative
size could possibly increase somewhat whenever B̂ is
roughly aligned with L⃗1 − L⃗2. But we have not bothered
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to calculate that effect, for the simple reason that any
increased correlation between the two arms can only
decrease the differential signal. That is, the “likely small”
effect of this alignment would only decrease the noise in the
two-arm differential signal, rendering LISA’s solar-wind
noise even less important.

APPENDIX C: COMPARISON
WITH OTHER ANALYSES

The analysis in this paper inspired by a similar analysis by
Smetana [21] which also used Wind/SWE data to estimate
the solar plasma displacement noise effect for LISA. That
analysis utilized 14 representative days of “normal” solar
activity as well as 6 days corresponding to solar events. All
20 of these days are included in the data set we presented in
Sec. III. The general procedure for both analyses consists of
the same two steps: estimating the power spectral density
from Wind/SWE time series data and then computing the
resulting effect in LISA using a transfer function model.
Contrary to our analysis, the analysis by Smetana indicated
that the solar plasma effect would exceed the allocated LISA
noise levels, leading to a degradation in sensitivity to
gravitational waves. Part of the difference in our analyses
comes from the difference in transfer functions between the
in situ point measurements of Wind/SWE and the column-
density effect in LISA. To assess the impact of this transfer
function difference, we computed the effect using the

transfer function of Smetana, which assumes that the entire
LISA arm experiences electron-density fluctuations that are
identical in amplitude and matched in phase. In such a case,
the relationship between the in situ electron-density fluctu-
ations and the induced path-length fluctuations is simply
δL1ðtÞ ¼ χLδNeðtÞ. The power spectrum of apparent
length fluctuations is then related to the power spectrum
of electron-density fluctuations for an in situ measure-
ment by the coupling factor ðLχÞ2 ≈ 1.61 × 10−20 cm8.
Compared with the transfer function accounting for
LISA’s orientation and the geometry of the solar wind, this
overly simple transfer function is missing a f−1 filtering
effect for Fourier frequencies f ≳ 25 μHz.
Figure 7 compares the two transfer functions using our

ensemble of spectra. The effect of the averaging in our
transfer function is clear in the steeper slopes, and lower
amplitudes, in the LISA band. However, even the (non-
physical) transfer function without this averaging effect still
estimates the median spectra to be below the allocation for
other noise sources in LISA. The 3-σ region does extend
above the allocation, at a roughly similar level to the curves
presented in Smetana’s analysis. The solid curves corre-
spond to the 14 normal days used in Smetana’s analysis, all
of which are below the LISA allocations. This suggests that
an additional reason for the difference in conclusions lies in
the estimation of the electron-density power spectra from
the corresponding time series.

FIG. 7. Comparison of the effective single-link displacement noise induced by solar plasma for the case of the single-arm transfer
function derived in (9) and the (nonphysical) case where the fluctuations in electron density are identical and coherent along the entire
LISA arm. In both cases, the electron-density fluctuations are taken from theWind/SWE data as described in (III). Note that, even for the
nonphysical case, while portions of the 3-σ region do exceed the overall LISA noise allocation, the median displacement noise lies
below the allowed contributions from other noise sources, as do the thin solid curves which correspond to 13 of the particular data
epochs utilized in [21]. The single-arm averaging case is identical to the curves in Fig. 5 and represents our best estimate for the effect.
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