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We theoretically investigate the influence of gravity on laser light in a plano concave, i.e., hemispherical
optical cavity, operating on Earth. The propagation of light in such a cavity is modeled by a Gaussian beam,
affected by the Earth’s gravitational field. On laboratory scale, this field is described by the spacetime of
homogeneous gravity, known as Rindler spacetime. In that spacetime, the beam is bent downwards and
acquires a height dependent phase shift. As a consequence the phase fronts of the laser light differ from
those of a usual Gaussian beam. Assuming that the initial beam enters the cavity along its symmetry axis,
these gravitational effects cause variations of the beam phase with every cavity round trip. Detailed
calculations are performed to investigate how these phase variations depend on the beam parameters and
the cavity setup. Moreover, we discuss the implications of our findings for cavity calibration techniques and
cavity-based laser stabilization procedures.
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I. INTRODUCTION

Laser interferometry and laser spectroscopy are today’s
most precise techniques to perform measurements at the
frontiers of metrology [1]. Due to that, in modern science
they are indispensable to gain a better understanding of our
world and to investigate nature. The unprecendented
precision of these techniques would not have been possible
without major advances in laser stabilization technology
[2,3]. Therefore, the optical reference cavities used for this
purpose are fundamental to the world’s most precise
measuring instruments like optical atomic clocks [2,4,5],
atom interferometers [6], and next generation gravitational
wave detectors [7,8]. Being essential to such a variety of
devices, optical cavities help to answer open questions of
physics, like the time variation of fundamental constants
[9], the structure of the early Universe [10,11] and the
nature of dark matter [12–15].
The precision of cavity-based frequency measurements

is limited by a multitude of influences. The biggest of these
influences are variations of the cavity’s resonator length
[3,16], which directly translate into an uncertainty of the
cavity output frequency. Many sources of length variations,
such as seismic vibrations and temperature fluctuations,
can be suppressed in modern state-of-the-art cavities. In
this case, the stability of the cavity is limited by the

fundamental Brownian noise of the mirror coatings
[3,16]. Using a cavity, which is fabricated from single-
crystal silicon and cooled down to cryogenic temperatures,
a relative uncertainty of the resonator length, and thus the
output frequency, of 10−17 can be archived [16]. Beyond
that, future experiments at lower temperatures, utilizing
crystalline coatings [17] or metamirrors [18] are very
promising to enhance the frequency stability of optical
cavities by more than one order of magnitude.
With further improvements of laser frequency stability,

additional physical effects become relevant to a cavity
setup. Besides the well-elaborated effects of quantum noise
[19] and thermo-optic noise [20], one can expect that also
the influence of gravity can not be neglected anymore.
From Einstein’s theory of general relativity it is known that
the propagation of light is affected by gravity in the
presence of heavy masses [21,22]. Thus also the light in
a cavity is slightly deflected by the Earth’s gravitational
field [23–25]. In this work we, therefore, investigate
theoretically how the propagation of a laser beam is
affected by gravitational light deflection with every cavity
round trip. Our analysis starts in Sec. II A, where we
motivate Rindler spacetime as a model of the Earth’s
gravitational field on a laboratory scale. The covariant
Maxwell equations in this spacetime are used in Sec. II B
to obtain a wave equation, which accounts for the leading
order gravitational effects on light propagation. In Secs. II C
and II D, this wave equation is utilized to derive the vector
potential for a gravitationally modified Gaussian beam. The
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obtained result is employed to study the propagation and
reflection of light in a plano-concave cavity (also called a
hemispherical cavity), which consists of a plane and a
spherical mirror. In order to describe how light evolves in
such a cavity, in Sec. III Awe present a method to calculate
the round trips of the gravitationally modified Gaussian
beam iteratively. The round trip calculation method is then
used to study the phase of the beam at the plane cavity mirror
and to estimate the phase variations caused by gravitational
effects in Sec. III C. In Sec. IV possible implications of our
findings are discussed for a wide range of cavity setups, such
as those used for laser frequency stabilization in Earth-based
high precision experiments like atomic clocks and gravita-
tional wave detectors. The summary of the results and our
conclusions are given in Sec. V.

II. GAUSSIAN BEAMS IN A HOMOGENEOUS
GRAVITATIONAL FIELD

A. The spacetime of homogeneous gravity

In the present work, we want to describe experiments
with optical cavities in a laboratory on Earth. In conse-
quence, the equipment in such an experiment is affected by
the Earth’s gravitational field. On usual laboratory scales,
this gravitational field can be considered as homogeneous.
Additional effects, accounting for the Earth as a spherical
body, can be neglected in a small region around the position
of an observer. In the theory of general relativity, the
comoving frame of this observer is described by the
spacetime of homogeneous acceleration, i.e., Rindler
spacetime [26,27] with the line element

ds2 ¼ gμνdxμdxν ¼
�
1þ gz

c2

�
2

dðctÞ2 − dr2; ð1Þ

where g is the module of g ¼ −9.81 m=s2 × ez, which
points into negative z direction in the coordinate system
ðct; x; y; zÞ. Here, c is speed of light and gμν is the metric
tensor with the sign convention ð1;−1;−1;−1Þ. Moreover,
we use the Einstein notation, which means a sum is
performed from 0 to 3 when paired Greek letters appear.
The line element (1) describes merely flat Minkowski

spacetime but seen by an accelerated observer. Due to
the nongeodesic motion of the observer it contains a
z-dependent factor ð1þ gz=c2Þ2, which accounts for the
gravitational redshift [26,27]. Apparently, for vanishing
acceleration, the line element of Rindler spacetime reduces
to the Minkowski line element. The same holds in the plane
z ¼ 0, where flat Minkowski spacetime is reached
asymptotically.

B. Light propagation in Rindler spacetime

As we know from general relativity, the properties of
spacetime not only affect the motion of matter but also the
propagation of light. This propagation mathematically is

described by the wave equation. In what follows, we will
motivate the gravitational modifications of this wave
equation in Rindler spacetime from first principles in a
general relativistic framework [28,29].
As usual in electrodynamics, the wave equation is

obtained from the vacuum Maxwell equations, which in
Rindler spacetime can be written in the covariant form

∇μFμν ¼ 0: ð2Þ

Those differential equations for the electromagnetic field
strength tensor Fμν ¼ ∂μAν − ∂νAμ are constructed from
partial derivatives of the four potential Aμ ¼ ðΦ=c;AÞ,
which contains the vector and scalar potentials A and Φ,
respectively. Moreover, in Eq. (2) the covariant deriva-
tive ∇μ ¼ ∂μ þ Γρ

μρ also carries information about
Rindler spacetime, encoded in the Christoffel symbol
Γρ
μρ ¼ g=c2ð1þ gz=c2Þ−1δ3μ. By inserting the four potential

in Eq. (2), the Maxwell equations in Rindler spacetime can
be written as

∇μ∇μAν ¼ 0; ð3Þ

where we assumed the Lorentz gauge condition ∇μAμ ¼ 0.
In Eq. (3) the equations of motion for the potentials Φ and
A decouple. Since the scalar potential is fully determined
by the Lorentz gauge condition [30], we can restrict our
discussion to the wave equation for the vector potential,
which is given by

1

c2
∂2

∂t2 A −D2A ¼ 0þOðϵ2Þ: ð4Þ

Here D ¼ ð1þ gz=c2Þ∇ differs from the usual nabla
operator ∇ ¼ ð∂x; ∂y; ∂zÞ by the factor ð1þ gz=c2Þ, which
now accounts for the gravitational redshift and light
deflection. Moreover, we have considered effects of gravity
only to linear order in the dimensionless parameter
ϵ ¼ gL=c2, which is in the range of ϵ ∼ 10−18…10−13

for typical experiments. In these experiments the length
scale L ranges from 1 cm to 1 km and is small in
comparison to the Earth radius, such that the gravitational
field can be considered homogeneous.
In order to solve Eq. (4), we assume paraxial light

propagation. Restricting our discussion to the paraxial
regime, the polarization vector e of the vector potential
close to the axis of light propagation can be assumed to be
coordinate independent [31]. Under this assumption we
make the ansatz

Aðt; rÞ ¼ TðtÞXðxÞYðyÞZðzÞe; ð5Þ

where the functions T, X, Y, and Z obey the linear ordinary
differential equations
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T 00 þ ω2
0T ¼ 0; ð6aÞ

X00 þ k2xX ¼ 0; ð6bÞ

Y 00 þ k2yY ¼ 0; ð6cÞ

Z00 þ 2γZ0 þ ðk2z − δk3zzÞZ ¼ 0: ð6dÞ

In Eqs. (6a)–(6c), the constants ω0, kx, and ky are arbitrary
constants of separation that determine k2z in Eq. (6d) by

k2z ¼ ω2
0=c

2 − k2x − k2y: ð7Þ

The triplet k ¼ ðkx; ky; kzÞ can be seen as a generalized
wave vector and Eq. (7) as the corresponding dispersion
relation. This picture is justified in the case of vanishing
gravity, where k is a real valued vector. In contrast to that, in
the presence of gravity, k2z from Eq. (7) can be also
negative, to account for gravitational damping in the z
direction. Moreover, an additional damping factor
γ ¼ g=2c2 and the height dependent deviation of the wave
vector δkz ¼ ð2gω2

0=c
4Þ1=3 appears in Eq. (6d). As we will

see in the next section, the latter gives rise to the Airy-kind
nature of light propagation in the z direction.

C. Solution to the wave equation up to Oðϵ2Þ
Above we derived the wave equation for the electro-

magnetic vector potential that contains the influence of
gravity on light propagation to leading order in ϵ ¼ gL=c2.
In what follows, we will solve this equation using the
ansatz (5).
We find that Eqs. (6a)–(6c) are solved by plane waves in

the ðx; yÞ plane, while the solution to Eq. (6d) is given by a
damped Airy Ai function. Therefore, and due to the linearity
of the wave equation (4), the vector potential A can be
expressed as a linear combination of the basis functions

ψk
δkz
ðt; rÞ ¼ 1

2π
ffiffiffiffiffiffiffi
δkz

p e−γzAi

�
−
�
kz
δkz

�
2

þ δkzz

�

× eikxxeikyye−iω0t; ð8Þ

which are defined for particular values of kx, ky, and k2z . The
normalization of these basis functions is chosen such that the
integral over the full parameter space with the infinitesimal
volume dκ4 ¼ dkxdkydðk2zÞ givesZ

∞

−∞

Z
∞

−∞

Z
∞

−∞
ψk�
δkz
ðt; r0Þψk

δkz
ðt; rÞdkxdkydðk2zÞ

¼ ½1 − γðzþ z0Þ�δð3Þðr − r0Þ þOðϵ2Þ;
¼ ð1 − 2γzÞδð3Þðr − r0Þ þOðϵ2Þ; ð9Þ

and produces a spatial delta function up to a prefactor
ð1þ 2γzÞ (cf. Ref. [32]). This prefactor, arising from the

damping terms e−γz ¼ 1 − γzþOðϵ2Þ cancels the redshift
factor in the coordinate invariant infinitesimal space volume
ð1þ 2γzÞdxdydz, such that the spatial integral over (9) is
one. The relation (9) implies that the set of basis functions (8)
is complete and can be used to express the vector potential A
as superposition of the ψk

δkz
ðt; rÞ. In the limit of vanishing

gravitation g ¼ 0, the set of basis functions fψk
δkz→0ðt; rÞg

becomes a plane wave basis feiðk·r−ω0tÞg, which describes
light propagation in the spacetime of an inertial observer.
This can be retraced to the asymptotic behavior of the Airy
Ai function [33]. In this limit, moreover, the normalization
integral (9) becomes an integration over the standard Fourier
space dkxdkydkz, which produces a spatial delta function.

D. Propagation of a Gaussian beam in Rindler
spacetime

In what follows, we want to discuss the findings of the
previous section for the particular case of a horizontally
propagating Gaussian beam. This beam is a suitable model
for laser light, as it is used in many experimental devices,
such as laser stabilization cavities [34] and gravitational
wave detectors [35]. Choosing the x axis as the propagation
axis of the beam, we define the boundary condition of the
Gaussian beam at x ¼ 0 by

Aðt; 0; y; zÞ ¼
�
1 −

gz
2c2

�
A0

2πb20
e
−z2þy2

2b2
0 e−iω0t; ð10Þ

where b0 is the beam waist. Moreover, we require
the boundary condition to share the redshift behavior
e−γz ¼ ð1 − gz=2c2Þ þOðϵ2Þ of the basis functions (8)
as the fundamental solution to the wave equation (4). In
order to express the boundary condition in terms of the
basis functions (8), we make use of the delta function and
Eq. (9) to obtain

Aðt; 0; y; zÞ

¼
Z

Aðt; 0; y0; z0Þδð3Þðr − r0Þdr03;

¼
Z Z

Aðt; 0; y0; z0Þψk�
δkz
ðt; r0Þψk

δkz
ðt; rÞð1þ 2γz0Þdκ4dr03;

¼
Z

Ãb
kðtÞψk

δkz
ðt; rÞdκ4: ð11Þ

Here the transformation of the vector potential at the
boundary

Ãb
kðtÞ ¼ A0 exp

�
−
1

2
ðk2z þ k2yÞb20

�
δðkxÞ

×
1ffiffiffiffiffiffiffi
δkz

p Ai

�
−
�
kz
δkz

�
2

þ 1

4
ðδkzb0Þ4

�
ð12Þ
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is obtained by evaluating the spatial integral in Eq. (11)
[36]. The first line of expression (12) is the Fourier
transformation of a spatial Gaussian profile, as is expected
in the case of vanishing gravity g ¼ 0. The gravitational
corrections in Eq. (12) are introduced by the Airy Ai
function in the second line.
Equations (11) and (12) only describe the vector poten-

tial Aðt; 0; y; zÞ at the boundary x ¼ 0. However, we aim to
find the vector potential of the Gaussian beam Aðr; tÞ in the
entire coordinate space and for all times. Therefore, we
recall that the vector potential has to obey the wave
equation (4) and the generalized dispersion relation (7),
everywhere in space. This requirement can be fully fulfilled
by the replacement

δðkxÞ → δðkx −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0=c

2 − k2y − k2z
q

Þ ð13Þ

in the Eqs. (11) and (12). Moreover, the resulting
replacement in the transformation of the vector potential
Ãb
kðtÞ → ÃkðtÞ still has the proper boundary condition (10).

Since we know that the solution to the wave equation is
uniquely determined by the boundary condition (e.g., [37]),
we obtain the vector potential in the full coordinate space by

Aðt; rÞ ¼
Z

ÃkðtÞψk
δkz
ðt; rÞdκ4: ð14Þ

Having made the substitution (13) in Eqs. (11) and
(12) and making use of the paraxial approximationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0=c

2−k2y−k2z
q

≈ω0=c−cðk2zþk2yÞ=2ω0 for kx ≫ ky; kz,

we can perform the kx integral over the delta function in
Eq. (14) to obtain

Aðt; rÞ ¼A0e−γzei
ω0
c ðx−ctÞ

×
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
e−

1
2
k2yBðμÞeikyy0dky

×
1ffiffiffiffiffiffi

2π
p

δkz

Z
∞

−∞
e−

1
2
k2zBðμÞAi

�
−
�
kz
δkz

�
2

þ 1

4
ðδkzb0Þ4

�

×Ai

�
−
�
kz
δkz

�
2

þ δkzz0
�
dðk2zÞ: ð15Þ

Here we introduced the complex quantity BðμÞ¼b20ð1þiμÞ,
with μ ¼ x=xR being the propagation distance in units of the
Rayleigh length xR ¼ ω0b20=c [38]. In order to further
investigate the vector potential Aðt; rÞ, we perform the
Fourier transformation in the second line of Eq. (15) and
employ Eq. (9) to calculate the k2z integral (cf. Ref. [33]). We
obtain

Aðt; rÞ ¼
�
1 −

gz
2c2

�
AGðt; rÞeSgðrÞ þOðϵ2Þ ð16Þ

as a product of an unperturbed Gaussian beam

AGðt; rÞ

¼ A0

2πb20
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

p exp

�
−

y2 þ z2

2b20ð1þ μ2Þ
�

× exp

�
iω0x=c − iω0tþ

iðy2 þ z2Þμ
2b20ð1þ μ2Þ − i arctanðμÞ

�
ð17Þ

and an exponential function with the complex argument

SgðrÞ ¼ −
gω2

0b
2
0z

2c4ð1þ μ2Þ ½μ
2 þ ið2μþ μ3Þ�: ð18Þ

This complex exponent accounts for the leading order
effects of a homogeneous gravitational field and results
in two major modifications of the Gaussian beam: on the
one hand, the real part of SgðrÞ leads to a bending
downwards of the beam’s intensity profile, so that the
intensity maximum of the beam follows the line
zðxÞ ¼ −gx2=2c2, see Fig. 1. On the other hand, the
imaginary part of SgðrÞ gives rise to a z-dependent
gravitational phase shift ϕgðx ≫ xRÞ ¼ −gω0=c3zx that
grows while the beam propagates along the x axis.
While in [25] we concentrated on the implications of the

gravitationalmodifications (18) for the intensity profile of the
Gaussian beam, in the present work we will focus on their
consequences for its phase. In order to do this, we formally
rewrite Eq. (16) in the formAðr; tÞ ¼ jAðr; tÞjeiϕðr;tÞe, where
the phase of the gravitationally modified Gaussian beam, up
to the Gouy phase arctanðμÞ, is given by

FIG. 1. Schematic picture of the Gaussian beam propagation in
a hemispherical cavity in the presence of a homogeneous
gravitational field (a) and without gravity (b). In an scenario,
where the symmetry axis of the initial beam coincides with the
cavity symmetry axis, in the presence of gravity, the wave fronts
deviate from the surface of the spherical mirror. Moreover, the
intensity maximum follows the line zðxÞ ¼ −gx2=2c2 in the
gravitational affected case.
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ϕðr;tÞ¼ω0

c

�
xþy2þz2−gzð2x2Rþx2Þ=c2

2b20ðxþx2R=xÞ
−ct

�
; ð19aÞ

≈
ω0

c

�
RðrÞ − x2R

x
− ct

�
þOðϵ2Þ; ð19bÞ

with RðrÞ defined as

RðrÞ2 ¼
�
xþ x2R

x

�
2

þ y2 þ
�
z −

g
c2

�
x2R þ x2

2

��
2

: ð20Þ

Here we recognized that Eq. (19a) is the paraxial approxi-
mation of Eq. (19b). The phase properties of the gravita-
tionally affected Gaussian beam can be illustrated in terms of
equal-time phase fronts ϕðr; t0Þ¼ ω0ðL=c − t0Þ ¼ const. In
order to obey this requirement, RðrÞ from (19b) has to be
substituted by

RðrÞ ¼ Lþ x2R
x
: ð21Þ

By this replacement, Eq. (20) parametrizes spheres of radius
Rðx ¼ LÞ ¼ Lþ x2R=L, with their focus at a horizontal
distance x0ðLÞ ¼ −x2R=L. This resembles the well-known
phase properties of a Gaussian beam, which starts as a plane
wave at L ¼ 0 and becomes a spherical wave for L ≫ xR
[38]. In the presence of gravity, however, the beam addi-
tionally is affected by gravitational light deflection, such that
the spherical phase fronts in Eq. (20) are shifted by a vertical
distance

z0ðLÞ ¼
g
c2

�
x2R þ L2

2

�
ð22Þ

with respect to the height of the initial Gaussian beam at
x ¼ 0. This shift into the positive z direction becomes more
pronounced with increasing propagation distance and
opposes the bending downwards of the intensity profile as
shown in Fig. 1. With this, we have identified the leading
gravitational effects on Gaussian beam propagation. In what
follows, we will analyze their consequences for optical
setups in a laboratory and for Earth-based cavity experiments
in particular.

III. HEMISPHERICAL CAVITIES

In the previous section we developed a formalism to
describe a Gaussian beam that is affected by a homo-
geneous gravitational field. The results of this analysis can
be used to discuss a wide range of applications in Earth-
based optical experiments. In what follows, we consider the
particular example of beam propagation in a cavity reso-
nator as it is utilized in various laser stabilization
procedures.

As we know, in an optical setup, the phase fronts of a
beam have to coincide with the mirror surfaces in order to
transpose the beam into it self by reflection. In the special
case of a Gaussian beam, therefore, a mirror of radius RðLÞ
has to be placed at a distance x ¼ L from a plane mirror at
x ¼ 0 in order to construct a phase matched resonator.
Equation (22) implies that, in the presence of gravity, the
beam would have to enter this plano-concave cavity, which
often is referred to as a “hemispherical cavity” at a vertical
position −z0ðLÞ below the cavity symmetry axis. Such a
modification of the optical axis would compensate the
effect of light deflection in the horizontal cavity to the first
order. Since z0ðLÞ ∼ L2, the relevance of this gravitational
effect, however, increases for longer cavity devices.
Moreover, the needed vertical shift grows with x2R ∼ b40,
such that it becomes more pronounced for large beam
waists: while for gravitational wave detectors like GEO600
and a light beam of λ ¼ 1064 nm and b0 ¼ 18 mm [39] the
needed shift z0ðLÞ would be in the range of nanometers,
it would even come to the micrometer regime for the
planned Einstein telescope with pursued beam waists of
b0 ¼ 12 cm [40]. Especially close to the ultimate case
b0 → ∞, where the beam approaches the plane wave limit
and the cavity becomes coplanar, the effect of light
deflection cannot be compensated by varying the vertical
beam position. These findings indicate that, depending on
the properties of the experimental setup, the influence of
the Earth’s gravitational field has to be taken into account in
the cavity calibration procedure.
In the following sections we discuss a scenario where the

symmetry axis of the initial beam coincides with the cavity
symmetry axis. In this scenario, the properties of the beam
slightly deviate between two round trips in the resonator.
The resulting phase deviations at the plane mirror will be
analyzed to quantify the impact of gravity on the beam
propagation of a hemispherical cavity.

A. Round trip calculation method

In order to consider gravitational effects in a hemispheri-
cal cavity, we first have to describe how the beam properties
evolve with every reflection at the cavity mirrors. For that
purpose, let us follow the beam on its first round trip, as
displayed in Fig. 2.
After entering the cavity at x ¼ 0, the gravitational

modified Gaussian beam propagates towards the spherical
mirror. As discussed in Sec. II D, in this way, its behavior
deviates from common Gaussian beam propagation. That
discrepancy becomes crucial when the light reaches the
spherical mirror, which is designed to reflect the unper-
turbed beam (17). In result, it is not transposed into itself
but reflected under a nonzero angle. After reflection, the
beam again is affected by gravity and, therefore, has to
obey the wave equation (4). Following these considera-
tions, we can express the reflected light, utilizing the
solution (16), but with a slightly changed direction of
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propagation. Thus, we assume that the vector potential after
reflection can be written as

Að1Þðr; tÞ ¼ Að0Þðr1; tÞ; ð23Þ

where Að0Þðr; tÞ ¼ Aðr; tÞ denotes the initial beam, which
coincides with the Gaussian beam (16). The change of the
propagation direction

r1 ¼ R̂ðθ1Þ · rþ a1ez ð24Þ

is determined by the angle θ1 and position a1 under which
the reflected beam hits the plane mirror at x ¼ 0 in the end
of the first round trip. Since these orientation coefficients
are of linear order in ϵ ¼ gL=c2, the propagation axis of the
beam after reflection keeps horizontal and, hence, remains
perpendicular to g to the desired order Oðϵ2Þ.
The parameters θ1 and a1 can be found in an elegant way

by comparing the phase fronts of the initial beam Að0Þðr; tÞ
and the reflected beam Að1Þðr; tÞ at the position of the
spherical mirror. To do that, we calculate the wave vectors
kð0Þ ¼ ∇ϕðr; tÞ and kð1Þ ¼ −∇ϕðr1; tÞ, which at the spheri-
cal mirror have to obey the relation

kð1Þ ¼ kð0Þ − 2ðkð0Þ · nÞn: ð25Þ

Here n ∼ ∇ϕðr; tÞjg¼0 is the normal vector of the spherical
mirror, which is normalized to one (cf. Ref. [31]).
In the example above, we have considered a single round

trip of light in the cavity. In order to start the next round
trip we only have to change x → −x in Að1Þðr; tÞ due
to the reflection at the plane mirror and repeat the
procedure explained above. That way, we obtain a series

rn ¼ R̂ðθnÞ · rþ anez, which characterizes the orientation
of the beam AðnÞðr; tÞ ¼ Aðrn; tÞ in every round trip.

B. Properties of the beam orientation coefficients

In the previous section, we developed a method to obtain
the orientation of the gravitational modified Gaussian beam
for every round trip in the hemispherical cavity. While the
presented method can be used to analyze a wide range of
specific cavity setups, characterized by the beam waist b0,
cavity lengths L, and wavelengths λ of the used laser light,
in this section we restrict our discussion to two limiting
cases. First, we consider the case of small beam waists
b0 ≪

ffiffiffiffiffiffi
Lλ

p
, in which the phase properties of the Gaussian

beam resemble the properties of a spherical wave. In this
regime, the orientation coefficients are given by

an ¼ −
gL2

2c2

�
1þ ð−1Þnþ1 cos

�
4πb20
Lλ

n

��
; ð26aÞ

θn ¼
gL
c2

ð−1Þnþ1
Lλ
4πb20

sin

�
4πb20
Lλ

n

�
; ð26bÞ

as displayed in Fig. 3 for a beam with b0 ¼ 50 μm and
λ ¼ 1064 nm in a L ¼ 21 cm cavity. As seen from the
figure and Eqs. (26a) and (26b), the evolution of both
parameters is described by an alternating series, which is
modulated by a periodic envelope with the frequency
πb0=Lλ. The parameters an and θn oscillate around the
mean values hθi ¼ 0 and hai ¼ −gL2=2c2, respectively.
The periodicity of the parameters can be explained due to
the interplay of two effects: since the beam is bent down-
wards by gravity, it tends to leave its initial axis of
propagation. However, the further the beam removes from
its initial propagation axis, the more it is reflected back
into the direction of this axis by the focusing effect
of the spherical mirror. In the result, for small but
finite beam waists b0, the hemispherical cavity acts as a
stable resonator. However, that is not the case for a
vanishing beam waist b0 → 0, where the orientation

coefficients become anðb0 → 0Þ ¼ gL2

2c2 fð−1Þn − 1g and

θnðb0 → 0Þ ¼ gL
c2 ð−1Þnþ1n. As the second limiting case,

we consider a gravitational modified Gaussian beam with a
large beam waist b0 ≫

ffiffiffiffiffiffi
Lλ

p
, where the orientation coef-

ficients with every round trip are given by

an ¼
gL2

c2

�
2πb20
Lλ

�
2
�
cos

�
Lλ
πb20

n

�
− 1

�
; ð27aÞ

θn ¼
gL
c2

2πb20
Lλ

sin

�
Lλ
πb20

n

�
: ð27bÞ

In Fig. 4 this is shown for a beam with b0 ¼ 900 μm and
λ ¼ 1064 nm in a L ¼ 21 cm cavity. From the figure and

FIG. 2. First reflection of the gravitational modified Gaussian
beam in a hemispherical cavity. Due to the homogeneous
gravitational field, the modified Gaussian beam is no eigenmode
of the cavity. In result the beam axis of the initial beam are not
reflected into itself by the spherical mirror. This deviation of the
reflected beam axis from the initial one is modeled by the angle
θ1 and the shifting parameter a1.
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the Eqs. (27a) and (27b) it can be seen that both parameters
again oscillate around their mean values, which now read
hθi ¼ 0 and hai ¼ −gL2=c2 × ð2πb20=LλÞ2¼ −gx2R=c2,
respectively. The frequency of these oscillations is given
by Lλ=πb20, which, in contrast to the case of small b0,
becomes smaller with increasing beam waists. Therefore,
also in the regime of large but finite b0, the cavity
acts as a stable resonator. However, the cavity becomes
unstable in the ultimate case b0 → ∞, when the orienta-

tion coefficients reduce to anðb0 → ∞Þ ¼ − g
2

ð2LnÞ2
c2 and

θnðb0 → ∞Þ ¼ 2 gL
c2 n. In that limit, the phase properties of

the Gaussian beam approach those of a plane wave. Hence,
the resonator becomes a Fabry-Pérot cavity with a plane
mirror at x ¼ L. This mirror has no focusing effect and
does not prevent the beam from falling down. Therefore,
after n round trips and a propagation distance of 2Ln in the
cavity, the beam finds itself at a height an ¼ − g

2c2 ð2nLÞ2,
as expected for a light ray, bent by Earth’s gravity in the
limit of geometrical optics [24,28].

C. Phase variations at the plane cavity mirror

Previously, we laid down a theory to describe the
propagation of light in a hemispherical cavity that is
affected by the Earth’s gravitational field. Below, we apply
this theory to cavities with the particular resonator lengths
of L ¼ 21, 30, and 50 cm, which currently represent the

world’s most stable optical frequency references [3,41–43]
and, therefore, are indispensable for the improvement of
high precision instruments, such as optical atomic clocks
[2,4,5] and gravitational wave detectors [7,8]. In what
follows, we will focus on the gravitational effects on the
output frequency of these devices. One can expect that the
stability of the output frequency is affected by the gravi-
tational distortion of the light propagation, discussed in
Sec. II. Due to this distortion, the beam hits the plane
mirror, which commonly is used as the cavity output, at
slightly different positions in each round trip. Hence, also
the phase of the vector potential AðnÞðr; tÞ slightly varies
with every reflection in the cavity. We can calculate that
effect by using the theory developed in Sec. III A and the
summation of the contributions from all round trips [44]
that are characterized by the orientation coefficients an and
θn. Since in real experiments the mirrors have a finite power
transmittance T, a fraction of light leaves the cavity with
every reflection and only an effective number of round trips
N has to be considered. This number is in the range of the
cavity finesse F ≈ π=T [45], which is above 105 for recent
experiments [3,16,46].
Having discussed qualitatively how gravitational light

deflection affects the phase of the Gaussian beam at the
plane cavity mirror, we are ready to perform this analysis
quantitatively. We start with Eq. (19a), which directly

FIG. 4. Oscillations of the beam orientation coefficients an and
θn in the parameter regime b0 ≫

ffiffiffiffiffiffi
Lλ

p
for a 21 cm cavity with a

beam waist of b0 ¼ 900 μm for light with λ ¼ 1064 nm. The
shift an initially follows the trajectory of free fall − g

2
ð2LnÞ2

(dashed), before the weak focusing effect of the spherical mirror
leads the beam back to the initial axis of propagation.

FIG. 3. Oscillations of the beam orientation coefficients an and
θn in the parameter regime b0 ≪

ffiffiffiffiffiffi
Lλ

p
for a 21 cm cavity with a

beam waist of b0 ¼ 50 μm for light with λ ¼ 1064 nm. Due to
the strong focusing effect of the spherical mirror, the series
alternates with ð−1Þn.
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relates the trajectory of the beam and its phase. From that
expression we can define the local phase deviations at the
plane cavity mirror

δϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕðr; tÞ − ϕðrn; tÞÞ2i

q ����
x¼0

ð28Þ

as the averaged difference between the phase of the initial
Gaussian beam and the phase of the beam on every round
trip. Since the beams orientation rn only slightly differs
from r, we can formally rewrite rn ¼ rþ δrn þOðϵ2Þ,
where the structure of δrn ¼ ðθnz; 0; an − θnxÞ follows
from Eq. (24). That way we can expand Eq. (28) around
r to obtain

δϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð∇ϕðr; tÞ · δrnÞ2i

q ����
x¼0

: ð29Þ

Due to the fact that rn already is of linear order in
ϵ ¼ gL=c2, we can evaluate the phase gradient of the
unperturbed Gaussian beam (17) at x ¼ 0. At this position,
the phase fronts of the beam are those of plane waves, such
that ∇ϕðr; tÞjx¼0 ¼ ðω0=c; 0; 0Þ þOðϵÞ. This simplifies
Eq. (29), which now reads

δϕðrÞ ¼ zω0

c

ffiffiffiffiffiffiffiffiffiffiffi
hδθ2i

q
þOðϵ2Þ: ð30Þ

As seen from the above expression, δϕðrÞ becomes zero in
the case of vanishing gravity, since the phase of the beam
remains unchanged with every round trip. In contrast, the
presence of the gravitational field leads to nonzero phase
deviations, which are proportional to the light frequency ω0

and the averaged deviation of the tilting angle
ffiffiffiffiffiffiffiffiffiffiffi
hδθ2i

p
,

which can be calculated as the root mean square value of
the series θn:

ffiffiffiffiffiffiffiffiffiffiffi
hδθ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

ðθnÞ2
vuut : ð31Þ

In this formula, we took into account that the periods of
oscillations in θn are much smaller, than the effective
number of round trips N ∼ F , such that no relative
weighting of the contributions from every round trip has
to be considered. Equation (31) was used to calculateffiffiffiffiffiffiffiffiffiffiffi
hδθ2i

p
for light with a wave length of λ ¼ 1064 nm as a

function of b0 for cavities with a resonator length of
L ¼ 21, 30, and 50 cm, see Fig. 5. As can be seen there,
the averaged deviation of the angle increases with L and is
rather sensitive to the beam waist b0.
Equation (30) describes the local phase deviations at

some particular point of the plane cavity mirror, located at
x ¼ 0. In order to calculate the variations of the phase over
the entire mirror, we have to weight it with the intensity
distribution of the Gaussian beam to obtain:

ffiffiffiffiffiffiffiffiffiffiffi
hδϕ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

πb20

Z
e
−z2þy2

b2
0 δϕðrÞ2dydz

s
;

¼ b0ω0

2c

ffiffiffiffiffiffiffiffiffiffiffi
hδθ2i

q
: ð32Þ

In what follows, we will analyze how
ffiffiffiffiffiffiffiffiffiffiffi
hδϕ2i

p
as a measure

for the gravitationally induced phase variations at the plane
mirror, commonly used as the cavity output, depend on the
cavity parameters and discuss its possible implications for
Earth-based cavity experiments.

IV. DISCUSSION

Above, we developed a theory to analyze the propaga-
tion of a Gaussian beam in a hemispherical laser cavity,
affected by the Earth’s gravitational field. This theory was
used to investigate how gravity influences the propagation
direction of a beam, which initially enters the cavity along
its symmetry axis. Applying the methods, presented in
Sec. III for a wide range of cavity settings, we find that, in
this scenario, the phase of the Gaussian beam at the plane
cavity mirror differs with every round trip. The root-mean-
square of these deviations, as a quantitative measure of the
gravitational phase variations, is given by

ffiffiffiffiffiffiffiffiffiffiffi
hδϕ2i

q
¼ gffiffiffi

2
p

c2
2πL
λ

�
Lλ
8πb0

þ πb30
Lλ

�
; ð33Þ

which depends on the characteristic lengths scales L, λ, and
b0 of the cavity system. In order to illustrate the depend-
ence of

ffiffiffiffiffiffiffiffiffiffiffi
hδϕ2i

p
on theses parameters, in Fig. 6 the phase

variations are displayed for light with λ ¼ 1064 nm and
cavity lengths of 21, 30, and 50 cm. As seen from that
figure, the gravitational phase variations strongly depend
on the beam’s waist. For small b0 < 100 μm, for example,

FIG. 5. Averaged deviation of the angle
ffiffiffiffiffiffiffiffiffiffiffi
hδθ2i

p
for light with a

wave length of λ ¼ 1064 nm as a function of the beam waist b0
for 21 cm cavities (solid), 30 cm cavities (dashed), and 50 cm
cavities (dot dashed).
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ffiffiffiffiffiffiffiffiffiffiffi
hδϕ2i

p
is proportional to 1=b0. In contrast, for large values

of b0 > 300 μm, it grows with b30. This behavior can be
traced back to the b0 dependence of the orientation
coefficients (26b) and (27b) and the definition (31).
The increase of the phase variations for small and large

beam waists implies the existence of a minimum in the
intermediate region. The position of that minimum

bgrav0 ¼
ffiffiffiffiffiffi
Lλ

p

ð24π2Þ1=4 ð34Þ

can be obtained from the analysis of Eq. (33). At this
optimum beam waist, the phase variations with respect to
gravitational perturbations are

ffiffiffiffiffiffiffiffiffiffiffi
hδϕ2i

q
min

¼
�
2π2

27

�
1=4 gL3=2

c2λ1=2
¼25=2π2

gλ
c2

�
bgrav0

λ

�
3

: ð35Þ

As seen from this expression,
ffiffiffiffiffiffiffiffiffiffiffi
hδϕ2i

p
min, for fixed λ,

depends on the third power of optimum beam waist. In
order to visualize this dependence, it is shown as a straight
line in Fig. 6 by taking b0 ¼ bgrav0 . As there also can be
seen, the optimum beam waist ranges between 100 and
300 μm, which fits very well to present experimental
configurations [3,16,42].
The expression (33) for the phase variations can be used

to quantify the impact of Earth’s gravity on a cavity system,
that is calibrated with respect to the cavity symmetry axis. It
also helps to estimate the general relativistic effect on the
horizontal cavity system, when it was precalibrated in an
other orientation with respect to, or even without, gravity.
Moreover, this can have qualitative consequences for cavity

properties as the contrast of the output signal and its
capability for frequency stabilization. In the considered
scenario, the phase fronts of the Gaussian beam in every
round trip hit the plane cavity mirror under different angles,
as analyzed in Sec. III B. Therefore, a fraction of light
interferes destructively and does not contribute to the cavity
output intensity. As a consequence the maximum output
intensity and the contrast of the cavity output signal are
reduced. Due to the relations between the contrast of the
cavity output signal and the intensity enhancement at the
cavity resonance [44], this also indicates that the effect of
gravitational light deflection may influence frequency
stabilization techniques that make use of the cavity reso-
nance curve [47].

V. SUMMARY AND CONCLUSION

In this article, we present a theoretical framework to
describe the propagation of light in the presence of a
homogeneous gravitational field. In particular, we derived
the wave equation for the vector potential of the electro-
magnetic field in Rindler spacetime, which accounts for
leading order gravitational corrections. The wave equation
is used to obtain a gravitationally modified Gaussian beam,
which can be utilized to model the propagation of light in
Earth-based laser experiments. As a specific setup of such
an experiment, a beam that enters a hemispherical cavity
along the cavity symmetry axis is considered in detail. Our
theory is applied to describe the round trips of light in the
cavity, and the resulting gravitational perturbations in such
a device. In particular we found that, if the optical axis of
the beam with respect to the cavity is not corrected, these
perturbations lead to phase variations at the plane mirror
that is commonly used as the cavity output. Detailed
calculations were performed to analyze the gravitationally
induced phase variations for a wide range of cavity settings,
characterized by the beam waists b0, the cavity lengths L,
and wavelengths λ. Special attention was paid to the effect
on the currently most stable cavities with typical resonator
lengths of L ¼ 21, 30, and 50 cm, which are used to
stabilize high precision instruments like optical atomic
clocks and gravitational wave detectors. Based on our
calculations and due to the strong interconnections between
phase and frequency in an optical cavity, we emphasize that
gravitationally induced phase variations may have impli-
cations for cavity calibration procedures, contrast optimi-
zation, and cavity-based frequency stabilization techniques.
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FIG. 6. Phase variations
ffiffiffiffiffiffiffiffiffiffiffi
hδϕ2i

p
at the plane mirror of a

hemispherical cavity for light with λ ¼ 1064 nm, depending on
the beam waist b0, for 21 cm cavities (solid), 30 cm cavities
(dashed), and 50 cm cavities (dotted). In the logarithmic axis
scales of this plot all three curves have the same shape. They are
only shifted along the dashed straight line of optimum beam waist
(dot dashed).
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