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Oscillons are long-lived, slowly radiating solutions of nonlinear classical relativistic field theories.
Recently it was discovered that in one spatial dimension their decay may proceed in “staccato” bursts. Here
we perform a systematic numerical study to demonstrate that although this behavior is not confined to one
spatial dimension, it quickly becomes unobservable when the dimension of space is increased, at least for
the class of potentials considered here. To complete the picture we also present explicit results on the
dimension dependence of the collapse instability observed for three-dimensional oscillons.
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I. INTRODUCTION

Nondissipative configurations play a very important role
in classical field theory. These are solutions of the equation
of motion, for which the energy density remains localized
during the time evolution. For a wide class of nondissipative
configurations, their stability is guaranteed by some con-
served charge. Such charges may be topological, or also
higher-spin charges due to integrability. However, there are
also examples of nontopological stable soliton configura-
tions such as the so-called “Q-balls” in complex scalar fields
whose stability is guaranteed by the global Uð1Þ charge [1],
and also “I-balls” whose stability is guaranteed by adiabatic
invariance [2].
Surprisingly however, even in theories where such con-

served charges or adiabatic mechanisms don’t exist, it is still
possible to find metastable solutions, which are strictly
speaking dissipative, but the energy dissipates very slowly
compared to the characteristic dynamical time scales. These
are spatially localized, coherently oscillating, long-living
solutions of relativistic classical scalar field theories, known
as oscillons. What makes them even more interesting is that
they are not exceptional configurations, but attractors in the
space of field configurations [3–8]; moreover, they are stable
against small perturbations [9]. The main conditions for their
existence are that the initial configuration’s energy is higher

than a threshold value (which is characteristic to the given
model), and that the model is nonlinear (for an estimation of
the lifetime of localized lumps in linear theories see [3]).
Since their occurrence is more or less independent of the
details of the theory, they are widespread in models of
cosmology and particle physics. Their properties have also
been studied at the quantum level [4,10]. (For a compre-
hensive recent review of oscillons the interested reader is
referred to [11]).
The dimensionality of space-time is known to strongly

influence the dynamics of oscillons. For a theory with a
scalar particle of mass m, their periods are Oð10Þ · m−1,
while their typical lifetimes in three spatial dimensions are
usually Oð103Þ · m−1 [3], and after slowly radiating their
energy away, their final decay happens via a sudden collapse.
Oscillons oscillate with a frequency below the threshold m,
which increases as they radiate their energy away, and the
sudden collapse happens when their frequency approaches
the threshold. However, in one and two spatial dimensions,
oscillons are radiating even slower; in two dimensions, their
typical lifetime exceeds Oð107Þ · m−1 [12,13] and no
collapse of oscillons has been observed. Earlier studies
mainly focused on the time evolution of oscillons with
frequencies close to the mass threshold, whose dynamics can
be described analytically using the small amplitude expan-
sion [11,14]; it is also possible to find nonperturbative
radiative corrections [15,16].
More recently it was found that in a particular class of

field theories in one spatial dimension large amplitude
oscillons decay in bursts via the so-called “staccato”
mechanism [17]. These bursts occur when the monotonically
increasing frequency of the oscillon reaches a value for
which a higher harmonic crosses the threshold and therefore
changes its nature from localized to radiative mode. Given
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the apparent generality of the above condition, it is natural to
wonder whether this staccato decay can be found in higher
spatial dimensions as well.
In the present work we study the decay mechanisms of

oscillons when the number of spatial dimensions is
increased above one. In Sec. II we introduce the essential
concepts and explain the choice of the initial configuration
(the core of a so-called quasibreather configuration [18])
for the time evolution. In Sec. III we present and discuss the
numerical methods used to construct the initial configura-
tion and to compute the time evolution. In Sec. IV we
present the results of our numerical investigations, starting
with a validation of our methods by reproducing dynamics
in three spatial dimensions and the proceeding to the case
of interest. Finally we present our conclusions in Sec. V.

II. PRELIMINARIES

We consider relativistic classical field theories of a single
scalar field in D spatial dimensions, defined by the action

S ¼
Z

dDþ1xL; ð2:1Þ

with the Lagrangian density

L ¼ 1

2

�∂ϕ
∂t

�
2

−
1

2
ð∇ϕÞ2 − VðϕÞ: ð2:2Þ

The Euler-Lagrange equation of motion for the field ϕ is
given by

∂2ϕ

∂t2 − Δϕ ¼ −V 0ðϕÞ: ð2:3Þ

We assume that the potential has a minimum at ϕ ¼ 0 and
denote the mass of elementary excitations by m2 ¼ V 00ð0Þ.
Oscillons are spatially localized, almost exactly time-
periodic solutions admitted by Eq. (2.3), which can only
exist when the frequency ω of their quasiperiodic motion
satisfies ω < m.
In the following we restrict ourselves to spherically

symmetric field configurations, for which the equation of
motion can be simplified as

∂2ϕ

∂t2 −
∂2ϕ

∂r2 −
D − 1

r
∂ϕ
∂r ¼ −V 0ðϕÞ: ð2:4Þ

Note that spherical symmetry allows treating the spatial
dimension D as a continuous parameter, which we use to
our advantage below.
The canonical energy density of a spherically symmetric

field configuration is given by

E ¼ 1

2

�∂ϕ
∂t

�
2

þ 1

2

�∂ϕ
∂r

�
2

þ VðϕÞ; ð2:5Þ

and the energy contained in a sphere of radius R can be
computed as

EðRÞ ¼ 2πD=2

ΓðD=2Þ
Z

R

0

drrD−1E: ð2:6Þ

It is also possible to define the effective radius of a field
configuration

Reff ¼
R
R
0 drrDER
R
0 drrD−1E

: ð2:7Þ

which characterizes the spatial localization of the energy
density.
In general, oscillons are not exactly time periodic, but

lose energy via radiation into modes of the scalar field
which can be considered free waves at spatial infinity; this
results in the increase of the frequency of the oscillon core.
A closely related concept to oscillons is that of quasi-
breathers [18], which are exactly periodic configurations
with a standing wave tail of radiation which compensates
for the energy loss. The price of stabilizing the solutions is
that the standing wave tail, albeit of small amplitude,
nevertheless results in infinite total energy; therefore a
quasibreather configuration is, strictly speaking, nonphysi-
cal. However, they are extremely useful objects to study, as
the time evolution of the oscillon core can be well
represented as adiabatic time evolution through different
frequency quasibreathers.
It is possible to find oscillon configurations starting a time

evolution from essentially any well-localized scalar field
configuration, e.g., a simple Gaussian profile. However, in
general these configurations quickly radiate a part of their
energy away before settling down into the eventual oscillon
configuration, which also means that their initial amplitude
and frequency are generally not under control. To avoid these
issues, it is much better to construct a quasibreather solution
first, and start with its core obtained by discarding the
standing wave tail. This leads to a substantially cleaner
evolution as well as enabling a much better control of the
initial amplitude and frequency. There exists a number of
numerical methods for the construction of quasibreathers
[4,5,18,19], all of which have their pros and cons; here we
use a systematical approach which allows finding quasi-
breathers in a wide range of frequencies below the mass
threshold for any spatial dimensions D.

III. NUMERICAL METHODS

In this section we present our numerical methods for
finding the quasibreather profile for a given frequency ω in
dimension D, and then time evolving this quasibreather
initial configuration. The concrete numerical computations
are carried out in a deformed sine-Gordon model (moti-
vated by [17]), where the potential is [20]
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Vðϕ; λÞ ¼ ð1 − λÞð1 − cosϕÞ þ λ

8π2
ϕ2ðϕ − 2πÞ2; ð3:1Þ

which for D ¼ 1 and λ ¼ 0 permits an exactly periodic
solution for ω ∈ ð0; 1Þ, the sine-Gordon breather

ϕsGðt; xÞ ¼ 4 arctan
�

ϵ cosωt
ω cosh ϵx

�
; ð3:2Þ

where the parameter ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
is essentially the ampli-

tude of the breather.
We note here, that the fact that we assume spherical

symmetry implies that D is just a parameter in Eq. (2.4),
and therefore can be any real number, and doesn’t neces-
sarily need to be an integer.

A. Constructing the quasibreather profile

Our method is based on [19] with minor modifications;
here we only describe the essential points. A quasibreather
is a spatially localized, exactly time-periodic solution of
Eq. (2.4) which oscillates coherently around the ϕ ¼ 0
vacuum; therefore we look for a solution of the form

ϕðt; rÞ ¼
XN
m¼1

ϕmðrÞ cosðmωtÞ; ð3:3Þ

where the expansion into higher harmonics is truncated at
level N. Substituting the above ansatz into Eq. (2.4) gives

XN
m¼1

�
m2ω2 þ ∂2

∂r2 þ
D − 1

r
∂
∂r

�
ϕmðrÞ cosðmωtÞ

¼ V 0
�XN

m¼1

ϕmðrÞ cosðmωtÞ
�
; ð3:4Þ

which after Fourier transformation can be cast into the form

�
n2ω2þ ∂2

∂r2þ
D−1

r
∂
∂r

�
ϕnðrÞ

¼ω

π

Z
2π=ω

0

V0
�XN

m¼1

ϕmðrÞcosðmωtÞ
�
cosðnωtÞ; ð3:5Þ

for n ¼ 1; 2;…; N. This is a system of coupled differential
equations which can be solved numerically upon specifying
the boundary conditions. We require the solution to be
nonsingular in the origin, and to be spatially localized, so
we set the following boundary conditions,

d
dr

ϕnðrÞ
���
r¼0

¼ 0; lim
r→∞

ϕnðrÞ ¼ 0: ð3:6Þ

In the asymptotic region where ϕ is small, the modes of
Eq. (3.3) decouple, and the large distance asymptotics of
the modes of a field obeying Eq. (2.4) are

ϕnðrÞ ∼ r
1−D
2 expð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2ω2

p
· rÞ

for nω < 1; localizedmodes;

ϕnðrÞ ∼ r
1−D
2 sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ω2 − 1

p
· rþ φnÞ

for nω > 1; radiationmodes: ð3:7Þ

The solution can be constructed by finding appropriate
initial conditions, ϕnðr ¼ 0Þ, at the origin such that
together with the other initial condition for the derivative,
the asymptotic boundary condition at r → ∞ is satisfied.
Since the cases we consider have λ ≪ 1, a good starting
position for the ϕnðr ¼ 0Þ for D ¼ 1 is provided by the
sine-Gordon breather Eq. (3.2)

ϕnð0Þ ≈ ϕsG
n ð0Þ ¼ ω

π

Z
2π=ω

0

dt cosðnωtÞϕsGðt; 0Þ: ð3:8Þ

The next step is finding a value for ϕ1ð0Þ, for which ϕ1—
which always decays in the considered frequency range, i.e.,
below the mass threshold—obeys Eq. (3.7), while keeping
all ϕnðr ¼ 0Þ with n > 1 fixed. It is argued in [19], that such
ϕ1ð0Þ is atypical in the sense that ϕ1 usually converges to
either a negative or a positive value in the limit r → ∞;
nevertheless, it is relatively easy to converge to a value ϕ1ð0Þ
for which Eq. (3.7) holds by the bisection method. The next
step is to find a value for ϕ2ð0Þ; however, this requires
readjusting the value of ϕ1ð0Þ as well. It is possible to
proceed by progressively including more and more modes,
but in practice the procedure becomes exponentially slower
with increasing number of modes, and so in our simulations
we always stopped at two or three modes.
For the case λ ¼ 0, parity implies that even modes in

Eq. (3.3) vanish [5,11], which results in a considerable gain
in computing time. In addition, for the case λ ≪ 1 it is often
enough to compute only the oddmodes (due to the even ones
being negligible) because it still gives a suitably good
approximation of the quasibreather solution. It is argued
in [19], that the oscillatory tail modes always oscillate
around ϕ ¼ 0 according to Eq. (3.7), but in many cases
the quasibreather solution can be improved further by
adjusting ϕnð0Þ to minimize the amplitude to obtain a better
quasibreather profile if necessary.
Once we have a quasibreather of frequency ω in dimen-

sionD, we can find a quasibreather of the same frequency in
a slightly higher dimension,Dþ δD, starting from the initial
guess

ϕDþδD
n ð0Þ ¼ ϕD

n ð0Þ; ð3:9Þ

and we adjust these values in the way described above.
One last subtlety is that the quasibreathers must be

truncated at some spatial coordinate to obtain a localized,
finite-energy initial configuration for numerical simulations
of oscillon time evolution. For localized modes this is easy
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as they decay quickly enough; regarding the radiation
modes, we enforce exponential decay in the asymptotic
region (with a scale corresponding to the wave number of
the given mode), i.e., we multiply the asymptotic behavior
in Eq. (3.7) by

expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ω2 − 1

p
· ðr − r0ÞÞ ð3:10Þ

for the radiation modes, where r0 is an arbitrarily chosen
truncation coordinate outside the core region. Our numerical
studies show that the choice of r0 for this exponential
suppressiononlynegligibly influences the temporal dynamics.
For the considerations of Sec. IV, the crucial issue is to

have control over the initial frequency of the evolving
oscillon, and so the quality of the initial conditions obtained
by the above procedure can be independently established
by verifying that the time evolution of the oscillon starts
suitably close to the frequency for which the quasibreather
solution was constructed, providing an independent justi-
fication for our numerical procedure.
An example of a quasibreather solution obtained by the

above method is shown in Fig. 1.

B. Time evolution of oscillons

Time evolution is computed using a method described in
[11,18], with some modifications. The original spatial
coordinate r ∈ ½0;∞Þ is mapped to the domain R ∈
½0; 1Þ by

r ¼ 2R
κð1 − R2Þ ; ð3:11Þ

which helps in treating the boundary conditions and
avoiding associated numerical instabilities. The parameter

κ controls the number of grid points in the core and in the
radiation region; in our simulations we used κ ¼ 0.05.
Under this change of the variables Eq. (2.4) becomes

∂2ϕ

∂t2 ¼ κ2ð1 − R2Þ3
2ð1þ R2Þ

� ð1 − R2Þ
2ð1þ R2Þ

∂2ϕ

∂R2

−
Rð3þ R2Þ
ð1þ R2Þ2

∂ϕ
∂RþD − 1

2R
∂ϕ
∂R

�
− V 0ðϕÞ: ð3:12Þ

Introducing the new variables

ϕt ¼
∂ϕ
∂t ; ϕR ¼ ∂ϕ

∂R ; ð3:13Þ

results in the following system of coupled differential
equations

∂ϕ
∂t ¼ ϕt;

∂ϕt

∂t ¼ κ2ð1 − R2Þ3
2ð1þ R2Þ

� ð1 − R2Þ
2ð1þ R2Þ

∂ϕR

∂R
−
Rð3þ R2Þ
ð1þ R2Þ2 ϕR þ d − 1

2R
ϕR

�
− V 0ðϕÞ;

∂ϕR

∂t ¼ ∂ϕt

∂R : ð3:14Þ

Upon specifying the initial configuration ϕð0; RÞ as the
numerically obtained quasibreathers at time t ¼ 0, the
system of Eqs. (3.14) can be solved for ϕðt; RÞ i.e.,
ϕðt; rÞ. For the temporal direction we chose a discretization
with Δt ¼ ΔR, and used a fourth-order Runge-Kutta
method combined with the method of lines.

0 5 10 15 20
r

-2

0

2

4

6

n

The 
n
 modes of the quasi-breather

n=1
n=3
n=5

0 5 10 15 20
r

-0.1

-0.05

0

0.05

0.1

n

The 
n
 modes of the quasi-breather

n=1
n=3
n=5

FIG. 1. The quasibreather for ω ¼ 0.3, D ¼ 1, λ ¼ 0, for N ¼ 5, including the exponential suppression factor (3.10) with r0 ¼
10=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
(note that even modes are missing due to parity).
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For numerical stability it is necessary to suppress the
short-wavelength modes which can be achieved by includ-
ing dissipative terms [21]

D ¼ Kð∂6
RΦÞðΔRÞ5; ð3:15Þ

in each equation in the system (3.14), which only intro-
duces numerical deviation at fifth order which is one higher
than the order of the Runge-Kutta method used.
To satisfy the boundary conditions in Eq. (3.6) and to

further increase stability, the system (3.14) was solved in an
extended region R ∈ ½−1 − ϵ; 1þ ϵ�, with ϕ, ϕt and ϕR set
to zero for jRj ≥ 1, and the fields were symmetrized after
each time step

ϕðRÞ → ϕðRÞ þ ϕð−RÞ
2

;

ϕtðRÞ →
ϕtðRÞ þ ϕtð−RÞ

2
;

ϕRðRÞ →
ϕRðRÞ − ϕRð−RÞ

2
: ð3:16Þ

The energy and the effective radius can be calculated from
Eqs. (2.6) and (2.7). The time sequence characterizing the
evolution of the frequency is determined from the time
points t0i when the field vanishes at the origin
ϕðR ¼ 0; t0i Þ ¼ 0; the frequency ωi at any given t0i is
defined from the time elapsed between the two adjoining
time points

ωi ¼
2π

t0iþ1 − t0i−1
: ð3:17Þ

IV. RESULTS

In this section we present our results. First we consider
the case of high frequency oscillons, where we investigated
the collapse instabilities, and then the low frequency ones,
where we studied the staccato decay mechanism.

A. High-frequency regime

For this investigation we constructed quasibreather
profiles for ω ∈ ½0.9; 1Þ, and calculated their energy func-
tion EðωÞ for the sine-Gordon model (λ ¼ 0) in different
dimensions, according to the definition of the energy
described in Appendix A. This energy curve has already
been investigated previously [4,18], but systematic study of
its dependence on D has not been carried out yet. The
energy-frequency curves for different values of the dimen-
sion D were normalized to Eðω ¼ 0.9Þ ¼ 1 to allow better
comparison and are shown in Fig. 2.
The sudden collapse of oscillons for D ¼ 3 is due to the

existence of a minimum of the EðωÞ function at some
frequency ωc < 1. The radiating oscillon loses energy by a

continuous radiation while the frequency is gradually
increasing towards the threshold ω ¼ 1. However, gradual
emission of radiation cannot increase the frequency
beyond ωc, while the dissolution of the oscillon eventually
implies its decay to radiation modes with frequencies
ω ≥ 1. As a result, the final decay of the oscillon
eventually proceeds by a sudden collapse instead of
gradual emission of radiation, which can be clearly
identified in the frequency curves shown in Fig. 3. The
dependence of the critical frequency on D is shown in
Table I; the position of the minimum is obtained from a
second-order polynomial fit around the minimal point of
the curves for D > 2.
It is also clear from Fig. 2 that for D ≤ 2 the minimum

ceases to exist, and the EðωÞ curve becomes monotonically
decreasing. In D ≤ 2 the oscillon then continues to radiate
away indefinitely without displaying any sudden collapse
instability. This behavior was already suggested in [14]
from the small amplitude expansion of the ϕ4 model, but
here we numerically obtained the curves also in the sine-
Gordon model.
We remark that for D ¼ 1, EðωÞ is known analytically

for the breather of the sine-Gordon model

EðωÞ ¼ 16ϵ ¼ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
; ð4:1Þ

which fits perfectly with our numerically obtained data.
From the curves in Fig. 3. it is also apparent that the time

evolution of the frequency starts at the value set for the
quasibreather solution, which shows that the numerical
solution for the quasi-breather is of sufficiently high
precision so that there is virtually no initial transient phase
in the evolution corresponding to the system settling down
in an oscillon configuration. Upon reaching the above

0.9 0.92 0.94 0.96 0.98 1
0

0.5

1

1.5

2

E
(

)

Energy of the quasi-breather

D=3
D=2.25
D=2
D=1.75
D=1

FIG. 2. Quasibreather energy as a function of its frequency ω
for different dimensionsD. The curves obtained forD > 2 have a
well-defined minimum, while the ones corresponding to D ≤ 2
are monotonically decreasing.
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obtained critical frequencies, the oscillons collapse (except
in D ¼ 2.25, where the oscillon radiates so slowly that it
was not possible to simulate long enough to reach the
collapse).
In Fig. 3, one can also see small oscillations in the time

dependence of the frequency. These correspond to imper-
fections of our quasibreather solution and can be sup-
pressed by including more harmonics when constructing
the quasibreather, and also by minimizing the tail amplitude
of the first radiation mode. These improvements can also
increase the lifetime of the given oscillon until the collapse,
but only by a small amount.

When the time evolution is started from a quasibreather
solution with a frequency ω > ωc (i.e., above the critical
frequency), the oscillon is in an unstable phase and in
which it has two decay modes [11,18,22]. The resulting
evolution is shown in Fig. 4. It is possible to fine tune the
initial data to have the oscillon decay through a preselected
mode, but we do not pursue this here.
We stress that an important outcome of these computa-

tions is that we could construct an accurate quasibreather
solution, which is especially shown by the fact that the
gradual evolution of frequency starts very close to the value
for which the quasibreather was constructed.

B. Low-frequency regime: Staccato decays

In this section we present our results for low-frequency
quasibreathers, i.e., ones with frequency ω < m=2. Our aim
is to study the staccato decay recently discovered in D ¼ 1
[17], in higher spatial dimensions D > 1.
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FIG. 3. Time evolution of the frequency of quasibreathers from ω ¼ 0.9,N ¼ 3 in different dimensions. Note the different time scales.

TABLE I. Frequency of the minimum of the energy curve in
different dimensions.

D 2.25 2.50 2.75 3.00

ωc 0.9591 0.9429 0.9381 0.9395
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The reason for the staccato decay is that the time
evolving frequency ωðtÞ crosses a threshold value 1=n
with n a positive integer, corresponding to the sudden
release of the energy stored in the nth harmonic into
radiation. This manifests in short outbursts of radiation that
can be measured by the amplitude of the field at a position
far from the core, as well as in quick jumps in frequency
due to the sudden energy loss and also in a temporary
increase of the effective radius corresponding to the out-
flow of energy from the core. These signals can be seen in
Fig. 5, where we used λ ≠ 0 in order to have both odd and
even harmonics, and therefore the corresponding staccato
bursts, present in the time evolution.
Since the mechanism described above seems generic

enough, staccato decays are expected to occur in higher
dimensions as well; however it turned out that our
simulations showed no trace of them for D≳ 1.5. To

investigate closer, we constructed quasibreather profiles
with ω ¼ 0.3, 0.27, 0.22, for different λ’s for spatial
dimensions D ∈ ½1; 1.20�, and simulated their time evo-
lution. It turns out that staccato steps can indeed be seen
for low enough values of D, as shown in Fig. 6 for
λ ¼ 0.0025. For this simulation we used only odd har-
monics in the ansatz (3.3), even though for λ ≠ 0 the
potential is not even. This resulted in gains in computing
time; however, due to the less accurate quasibreather
profiles now we can see that the time evolution of the
oscillon starts from a frequency higher than the one for
which the quasibreather was constructed. It is apparent
that with increasing D the dynamics accelerate, with the
staccato steps moving to earlier times until they eventually
fade into the transient region that takes place at the early
stages of the time evolution when the initial profile relaxes
to the nearest oscillon profile.
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FIG. 4. The envelope and the frequency of the field for (a) D ¼ 2.25, (b) D ¼ 2.50, and ω ¼ 0.965, N ¼ 5.
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For a more detailed understanding we determined the
time it takes until the appearance of the staccato step
corresponding to the nth harmonic, for three different
initial quasibreather frequencies and values of λ, as a
function of the number of spatial dimensions D. The
results, summarized in Fig. 7 show that the time intervals
shrink fast when D is increased, and very soon drop below
the period of the quasibreather itself, which means that
they happen in such a quick succession that they cease to
make sense, since the change of frequency cannot be
defined on time scales shorter than the period of the
oscillon itself. What happens is that the staccato steps
become indistinguishable from the short transient period
at the start of the time evolution of the oscillon itself.

We remark that the acceleration of the oscillon decay
dynamics with increasing number of spatial dimensions is
also consistent with the behavior observed in the high
frequency regime, c.f. the results shown in Fig. 3.

V. CONCLUSIONS

In the present work we studied the dependence of
oscillon decay on the number of spatial dimensions.
Using an improvement of a previous method we con-
structed accurate quasibreather solutions to use them as
initial conditions for time evolution in the (Dþ 1)-dimen-
sional sine-Gordon theory. The method turned out to work
especially well in the high-frequency regime, where we
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dependence of the effective radius, the orange curve is its value averaged over a (time-dependent) period of oscillation. The sudden
changes in (b) at frequencies 1=n (indicated by the red dashed lines, with the black dashed line showing the frequency of the initial
quasibreather), and the bursts of radiation amplitude in (c) correspond to staccato steps signalling the start of the decay of a new
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computed the energy-frequency curve of quasibreathers
and demonstrated the existence of a minimum at some
critical frequency ωc < 1, previously inferred using the

small-amplitude expansion. By computing the time evolu-
tion we demonstrated that this critical frequency is exactly
the value which determines the condition of the sudden
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collapse of the oscillon. We also demonstrated that this
minimum of the energy-frequency curve disappears for
D ≤ 2, again in accordance with arguments from the small-
amplitude expansion.
In the second part of our investigations we considered

the time evolution of low frequency quasibreathers in the
sine-Gordon model and its deformation by a ϕ4 interaction,
to investigate whether the staccato decay mechanism
observed in [17] exists in dimensions D > 1. Staccato
decay is a robust feature in one spatial dimension, and also
appears in other theories such as ϕ6 and hyperbolic ϕ4

models [17], even when the time evolution does not start
from a finely tuned quasibreather, but instead from an

oscillon which emerges from a kink-antikink scattering. In
our study, we found that the staccato steps accelerate with
increasingD, and in fact already at D ¼ 1.2 all the staccato
steps take place so fast that their characteristic signals are
no longer discernible from the transients of the early
dynamics. As a result, staccato bursts are not observable
in physically relevant (integer) number of spatial of
dimensions larger than one, at least for the potentials
considered here.
One possible way out is to find a fine-tuned field

theoretical potential for which the oscillon decay is slow
enough so that the time interval between staccato bursts are
longer than the oscillon period. Indeed it is possible to find
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period. Below this line, there is no chance of seeing the traces of staccato decay, as they fade into the transients of the early time
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“islands of longevity” by fine-tuning potentials [8]; how-
ever all known cases have frequencies ω > m=2 for which
staccato decay does not exist.
Moreover, we suspect that such fine tuning is extremely

difficult, if not outright impossible, based on the following
intuitive argument. The decay of oscillons can be viewed
as a feature resulting from the nonintegrability of theory.
For integrable theories such as the D ¼ 1 sine-Gordon
model the localized periodic solutions are exactly stable,
corresponding to the breathers [23]. Increasing the dimen-
sionD introduces another source of integrability breaking,
which is present even in the absence of an explicit
integrability breaking coupling. Our numerics indicates
that this additional breaking of integrability leads to the
swift acceleration and disappearance of staccato decay for
D≳ 1, not only for the sine-Gordon deformed with ϕ4

considered in [17], but even for the pure sine-Gordon case
which for D ¼ 1 is integrable. Starting from a (numeri-
cally constructed) quasibreather configuration helps
observing the staccato steps by suppressing the initial
transient responsible for the sudden frequency increase at
the beginning of the time evolution, but even so the steps
become indistinct well before reaching D ¼ 2.
To sum up, the fascinating staccato decay of oscillons is

likely to be confined to one spatial dimension, at least for
simple potentials like the ones we considered in this work.
For more complex potentials, the lifetimes and the decay
rates can have very complicated dependence on the
parameters, so the possibility of staccato decay in higher
dimensions cannot be excluded with certainty, and deserves
further investigation.
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APPENDIX: ENERGY OF A QUASIBREATHER

To evaluate the energy density (2.5), it is necessary to
calculate the time and spatial derivatives of the quasi-
breather given by (3.3)

∂ϕ
∂t ¼

XN
m¼1

ϕmðrÞð−mωÞ sinðmωtÞ;

∂ϕ
∂r ¼

XN
m¼1

∂ϕmðrÞ
∂r cosðmωtÞ: ðA1Þ

Due to the truncation at some finite N, the quasibreather
constructed from the ansatz (3.3) is not an exact solution of
the equation of motion (2.4), and therefore the energy
functional evaluated with the quasibreather ansatz (3.3)
oscillates in time. This can be eliminated by averaging over
a period as follows:

h _ϕ2i ¼ ω

2π

Z
2π=ω

0

dt

�∂ϕ
∂t

�
2

;

hϕ02i ¼ ω

2π

Z
2π=ω

0

dt

�∂ϕ
∂r

�
2

;

hVi ¼ ω

2π

Z
2π=ω

0

dtVðϕÞ: ðA2Þ

Using Eqs. (A1) and (A2), the energy of the quasibreather
can be defined as the time average

EQB ¼ hEi

¼ 2π
D
2

ΓðD
2
Þ
Z

R

0

drrD−1
�
1

2
h _ϕ2i þ 1

2
hϕ02i þ hVi

�
; ðA3Þ

where R is some cutoff coordinate that must be chosen
outside the core region of the quasibreather. Its precise
value is unimportant due to the small energy density of the
quasi-breather configuration at large values of r.
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