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Massive quarks in NLO dipole factorization for DIS: Longitudinal photon
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In this work, we will present the first complete calculation of the one-loop longitudinal photon-to-quark-
antiquark light cone wave function, with massive quarks. The quark masses are renormalized in the pole
mass scheme. The result is used to calculate the next-to-leading order correction to the high energy deep
inelastic scattering longitudinal structure function on a dense target in the dipole factorization framework.
For massless quarks the next-to-leading order correction was already known to be sizeable, and our result
makes it possible to evaluate it also for massive quarks.
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I. INTRODUCTION

There are strong indications that high energy hadronic
and nuclear collisions at present and future collider experi-
ments can reach the regime of gluon saturation. This means
that nonlinear interactions and unitarity play an important
role even at short distance scales where the QCD coupling
constant is small. Such effects are expected to become
increasingly important at higher energies, when the addi-
tional phase space available for radiation leads to a growth
of the gluon density. This is typically parametrized in terms
of the saturation scale Q4(x), where for resolution scales
Q? ~ Q2, gluon saturation is important. The growth of the
gluon density as the energy increases (i.e., as x — 0) leads
to a growth of Q.. In the high energy limit, a convenient
way to quantitatively analyze scattering in the saturation
regime is provided by the color glass condensate (CGC)
effective theory formulation of high energy QCD [1]. In the
CGC framework, one can understand the scattering of a
dilute probe with the target hadron or nucleus in a picture of
eikonal scattering [2]. Here the gluonic structure of the
target is parametrized in terms of Wilson lines, which are
eikonal amplitudes for the scattering of the bare partonic
constituents of the probe off the color field of the target.

Deep inelastic scattering (DIS) provides a clean and
precise way to measure the partonic structure of a hadron or
a nucleus. Here the eikonal limit corresponds to the dipole
picture of DIS [3-7], where the virtual photon first splits to
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partonic constituents, which then eikonally interact with the
target. Several fits combining the leading order dipole
picture with the BK [8-10] evolution equation for the
target, have achieved a good description of total small-x
inclusive cross sections at measured at Hadron-Electron
Ring Accelerator (HERA) [11,12]. Noting that also calcu-
lations assuming collinear factorization start showing some
tension with the data at the smallest values of x probed at
HERA [13], it seems that total cross section measurements
at HERA have provided some hints for gluon saturation,
but the picture based on these results remains inconclusive.

Fortunately, there are many avenues to improve our
understanding of the QCD description of DIS in the high
energy limit. One of these is to go to higher orders in
perturbation theory. For the DIS process with light quarks,
the dipole picture for inclusive scattering has been extended
to next-to-leading order (NLO) accuracy in a series of
works in recent years [14—19]. Combined with the next-to-
leading order (NLO) BK evolution equation [20-32] these
enable a fully NLO calculation of the total light quark DIS
cross section. The NLO impact factor for DIS with
massless quarks, combined with approximate NLO evolu-
tion, has recently been shown to give a good description of
inclusive HERA data [33]. Another avenue is to simulta-
neously study more exclusive processes.

Indeed, a good description of HERA data in the NLO
dipole picture has recently been demonstrated in Ref. [33].
Diffractive or exclusive DIS cross sections can provide a
valuable separate experimental constraint for LO calcula-
tions [34-37], and calculations for diffractive DIS proc-
esses are now also advancing to NLO accuracy [38-41].
Another important process, and the one that we will focus
on here, is inclusive scattering with heavy quarks. The cross
section for light quarks gets a significant contribution from
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“aligned jet” configurations of large dipoles [42]. In spite of
gluon saturation, this brings in a systematical uncertainty to
light quark inclusive cross sections in the dipole picture.
The aligned jet contributions are, however, cut off by a
finite quark mass. Thus inclusive heavy quark DIS cross
sections can be more reliably perturbative probes of gluon
saturation. In LO fits with BK (or JIMWLK) evolution it
has not been obvious [37,43] how to achieve a good
simultaneous description of the final combined heavy
and light quark data from HERA [44-47]. It is therefore
important to extend also the calculations of heavy quark
inclusive DIS cross sections in the dipole picture to next-to-
leading order accuracy in the QCD coupling. Doing so is
our purpose here.

The calculational tool of choice for this situation is light
cone perturbation theory (LCPT) [2,48-50]. While LCPT
can be used to understand the partonic structure of the
proton (see [51-53] for recent advances in this direction), in
our case we use it to quantize the virtual photon of DIS, a
perturbatively controllable object. In an LCPT calculation
one follows a set of diagrammatic rules to calculate the
coefficients of the expansion of an interacting theory Fock
state in terms of the bare Fock states. These coefficients are
known as light cone wave functions (LCWFs). Recent
work [16,17,19,30,54,55] has led to important technical
advances in performing LCPT calculations at loop level.
However, the introduction of quark masses introduces some
additional issues that must be dealt with.

The typical way of regularizing these recent LCPT loop
calculations has been to use a cutoff for longitudinal and
dimensional regularization for transverse momentum inte-
grals. It has long been known [56-59] that using such a
cutoff procedure causes a problem for the fermion' mass
renormalization. At a fundamental level the problem is
associated with the well-known fact that the regularization
procedure should respect the symmetries of the underlying
theory. In the case of LCPT, the fermion mass appears in
two different places in the Hamiltonian that one quantizes.
Firstly there is the free fermion term, where the “kinetic”
mass determines the relation between the energy and
momentum of a free fermion. There is also a quark mass
in the quark-gluon interaction term, where the quark-gauge
boson vertex consists of two parts. Out of these two the
light cone helicity conserving part is independent of the
quark mass. The light cone helicity flip term, on the other
hand, is proportional to the “vertex mass” of the fermion.
The equality of the kinetic and vertex masses is due to the
rotational invariance of the underlying theory at the
Lagrangian level. In LCPT, however, one first derives from
the Lagrangian the Hamiltonian formulation of the theory
and only then starts to quantize it. If this quantization uses a

1 . . . .

Gauge boson mass renormalization and thus gauge invariance
is also affected, but this is not an issue for the process we are
calculating here.

regularization procedure that breaks (three-dimensional)
rotational invariance, it can happen that one needs to
separately renormalize the two masses at each order in
perturbation theory with an additional renormalization
condition restoring rotational invariance [60]. Both this
conceptual issue, and the more complicated structure of the
basic quark-gluon vertex due to the light cone helicity [61]
flip term, make the calculation of the DIS cross section for
massive quarks more involved than the corresponding one
for massless quarks [16,17,19]. The factorization of high
energy divergences into BK evolution of the target, on the
other hand, is rather orthogonal to these additional com-
plications from the quark masses. Thus, the high energy
factorization aspect of the calculation is quite similar to the
massless case, and will only be discussed briefly in this
work, although it of course needs to be treated carefully in
order to eventually compare the calculations to experimen-
tal data.

This is the first in a set of papers, where we will fully
analyze the calculation of the DIS cross section in the
dipole picture to NLO accuracy with massive quarks. In
this first paper we will concentrate on the case of a
longitudinal virtual photon. For the longitudinal polariza-
tion the numerator algebra is simpler, making the calcu-
lation slightly less lengthy. More importantly, only the
relatively simple “propagator correction” diagrams lead to a
renormalization of the quark (kinetic) mass. Therefore, the
mass renormalization in a pole scheme can be performed in
a relatively straightforward way, without encountering the
intricacies discussed above. Transverse photons will be
addressed in a separate paper. There the helicity and
polarization algebra is somewhat more complicated, and
also the renormalization of both the kinetic and vertex mass
needs to be addressed. Separately from these calculations,
we plan to address more formal aspects of mass renorm-
alization in LCPT, its relation to the regularization pro-
cedure and the treatment of so called “self-induced inertia”
or “seagull” diagrams [50,62,63] in more detail in separate
future work.

The rest of the paper is structured as follows: First, in
Sec. II, in order to keep the paper self-contained, we give
some basic background notions of light cone perturbation
theory and explain the regularization approach used in this
paper, although relatively briefly since this is very similar to
the previous calculations in Refs. [16,17,19]. In Sec. III we
recall how the DIS cross section is, in the dipole picture,
factorized into light cone wave functions encoding the Fock
state of the virtual photon, and Wilson line operators
describing the interactions of these states with the target.
We then derive in Sec. IV the leading order virtual photon-
to-quark-antiquark light cone wave function in D spacetime
dimensions as a warmup. In Sec. V we calculate the (mass
renormalized) one-loop corrections to this wave function in
momentum space, which are then transformed into mixed
transverse coordinate-longitudinal momentum space in

056032-2



MASSIVE QUARKS IN NLO DIPOLE FACTORIZATION FOR ...

PHYS. REV. D 104, 056032 (2021)

Sec. VI. The tree-level gluon emission diagrams needed for
the real corrections to the cross section are calculated in
Sec. VII. We then derive in Sec. VIII the cross section from
these light cone wave functions, including the subtractions
needed to cancel divergences between the real and virtual
contributions. Finally we summarize our result for the cross
section in Sec. IX and briefly discuss future steps in Sec. X.
Many technical details on the calculations are explained in
the Appendixes.

II. PRELIMINARIES: NOTATION AND
REGULARIZATION

A. Light cone coordinates and conventions

This section will be rather brief, as our notations are a
combination of the conventions used in Refs. [16,17,19].
We refer the reader there for a more thorough explanation.
For an arbitrary Minkowskian four-vector x* = (x°, X) with
¥ = (x',x2, x*) we define the light cone coordinates as

X = (xT,x7,x), (1)

where x7 is the light cone time along which the states are
evolved, x~ is the longitudinal coordinate, and x = (x!, x?)
is the transverse position with x> = |x|*> = x - x. In this
paper, the spatial (in the light cone sense) three-vectors are
denoted by & = (x*, x). The components x* and x~ are
related to the Minkowski coordinates by

= (0 £ ), 2)

V2

The inner product of two four-vectors is
xoy=xty a7yt —x-y, (3)

from which one sees that x* = x. The canonical con-
jugate of the longitudinal coordinate x~ is the longitudinal
momentum p*, and the evolution in light cone time x™ is
generated by the light cone energy p~. With the form of the
metric in Eq. (3), the on-shell light cone energy becomes

p2 +m? (4)
2pt

B. Regularization

In loop calculations one needs to integrate over internal
(on-shell) momenta. Here (contrary to e.g., the review [50])
we use conventional relativistic field theory conventions for
the normalization. Thus, the momentum space integral
measure is given by

/ dk = / % (20)0(K)5(K? — m?)
 [dkre(kY) [ &k
- [t | e )

In the evaluation of loop or final state phase space integrals
over longitudinal and transverse momenta, we encounter
divergences which have to be properly regularized. In this
work, following the same procedure as the one described in
Refs. [16,17,19], we regularize the ultraviolet (UV) diver-
gent (k — oo0) transverse momentum integrals via dimen-
sional regularization by evaluating them in (D —2)
transverse dimensions and regularize (if needed) the soft
divergences (k™ — 0) with a cutoff. We consider two
variants of dimensional regularization and present our
results in both schemes, checking explicitly that the final
result for the cross section is scheme independent. These
variants are the conventional dimensional regularization
(CDR) scheme [64] that was used in [16,17], and the four-
dimensional helicity (FDH) scheme [65,66] that was used
in Ref. [19]. The precise implementation of these schemes
is carefully explained in [19]. Thus, in here, we only give an
small overview of these two approaches.

Both regularization schemes involve continuing space-
time from four to D dimensions, but differ in the way they
treat the momenta and the polarization vectors of unob-
served and observed particles. Here, the unobserved par-
ticles are either virtual ones which circulate in internal
loops or particles which are external but soft or collinear
with other external particles. All the rest are observed
particles. The following rules listed below will be used to
compute the LCWF’s in D dimensions.

(i) In the CDR scheme, the momenta and polarization
vectors of the observed and the unobserved particles
are continued to D spacetime dimensions.

(i) In the FDH scheme, the momenta and polarization
vectors of observed particles are kept in four
dimensions (i.e., observed gluons have two helicity
states) and the momenta of unobserved particles are
continued to D > 4. The helicities (spinor struc-
tures) of unobserved internal states are treated as
D,-dimensional, where D; > D at all intermediate
steps in the calculation. Once all the helicity (Dirac)
and Lorentz algebra is done, one sets D, =4 and
analytically continues to D < 4 dimensions.

In order to perform intermediate computations for both
schemes at the same time, we will use the following rules:

(i) Any factor of spacetime dimension arising from the
Dirac and Lorentz algebra for spin or polarization
vectors should be labeled as D and should be distinct
from the dimension of the momentum vectors D.

(ii) The vertices are proportional to (D, — 2)-dimensional
gluon polarization vectors €', and summing over
the helicity states of gluons yields
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Ze e = 5” (6)

where by 5( p,) We denote a Kronecker delta in

(D — 2)-dimensional transverse space.

(iii) The tensoral structures resulting from transverse
momentum integrals are kept in (D — 2) dimensions.
For example, if the integrand in the transverse
momentum integral is proportional to k'k/, then
the value of the dimensionally regulated integral is
proportional to a (D — 2)-dimensional Kronecker

ij
delta 5( D)

(iv) Since D, > D, we have

bosii oy ijosij

6 80 =Dy =2. &6 = D=2,

ij ij ij ojk gk
)0y =D =2 8p,8(p) = - (7)

(v) Since both D > 4 and D, > 4 when the algebra is
done, contractions of Kronecker deltas with fixed
momentum p or polarization vectors € of external
particles preserve these vectors

ij i
8(p, P’ = 8py P’ = 1",

5&)“)81 = 62’1))82 = b (8)

(vi) Only after the spin and tensor algebra is done, one
can analytically continue the obtained result to
D < 4 and take the limit D; — 4 in the FDH scheme
or D; — D in the CDR scheme. If the calculation
was done only in one of the two schemes, we would
not need the notation D, at any intermediate step;
this could be replaced by 4 or D. Here we will,
|

l75(2.0%)i = V/Z, [non—QCD Fock states +

however, present the results in both schemes simul-
taneously, and for this it is necessary to keep D,
general.

II1. DIPOLE FACTORIZATION FOR DIS:
CROSS SECTION AT NLO

We use here the standard procedure where the DIS cross
section is expressed in terms of the cross section of a virtual
photon scattering on the hadronic target. The virtual photon
cross section can be obtained by the optical theorem as
twice the real part of the forward elastic scattering
amplitude

¢} = 2Rel(—i)MD4]. (9)
where the forward elastic amplitude M‘;Wd 4. is defined in
light cone quantization from the S- matrix element as [2]

{r3(@. 07)|(Sk

-1)r;(g.0%);
= 24+ (22)5(¢'"* — ¢ )iM

fw (10)

At high energy (or, equivalently, at small Bjorken x) the
interactions with the target described by the operator S are
eikonal interactions with a classical color field. These
interactions are represented by Wilson lines, which are the
scattering matrix elements of bare partonic states in mixed
space: transverse position—longitudinal momentum. Thus in
order to calculate the amplitude we need to develop the
incoming virtual photon state in terms of these bare states.

The state |y} (g, Q%)), is the physical one-photon state in
the interaction picture. We start by its perturbative Fock
state decomposition in momentum space, which is given by

Z Wi 4| g ko, ho, a0)q (ki hys )

qq F. states

+ Z \p}/j—>qt‘zg|q(]20,h0,a0)q(]%1,hl,al)g(lAcz,a,a»+..., (11)

qqgF. states

where § = (¢q7,

q), Q, and 4 are the spatial three momentum, virtuality, and polarization of the virtual photon, respectively.

The explicit phase space sum over the quark-antiquark (¢g) and the quark-antiquark-gluon (ggg) Fock states are defined in

D dimensions as

qu states ho iy (z =0 /

“'0 al

(T

qqgF. states

dk;©(

aoala

1
s(qt =S &t
2kF 2;:)) " <q 2k

SO (a5 o) o

-3 k),

J=0

J=0
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From now on we will leave the helicity A, h,, polarization
o, 4, and color a1, a;, a indices as well as the quark flavor
implicit, summed over when appropriate. While the lead-
ing-order cross section is of order a,,,, for NLO accuracy in
this context we want to calculate the cross section to
order” a,,0. This requires the knowledge of the quark-
antiquark wave function ¥7:~% to one loop order, and that
of the quark-antiquark-gluon one W274%9 at tree level. The
non-QCD Fock states containing electromagnetic inter-
actions via photons or leptons, higher order Fock states

vi(g". 0*)i = /Z, [Non—QCD Fock states +

(represented by the dots), and the photon wave function
renormalization constant Z,- = 1 + O(a,,,) can be ignored
since they do not contribute at the order considered in the
present calculation.

In the dipole factorization picture with eikonal scattering,
we need to switch from the full momentum space repre-
sentation to mixed space, in which the kinematics of a
particle is described by its light cone longitudinal momen-
tum and transverse position. In this case, the Fock state
expansion in Eq. (11) reduces to the following form:

> Wk X0, ho @) g (K Xy By ay)

qq F. states

+ Z Wrim489 (kg Xo. ho. a0) (k] . Xy by ay ) g(ks . X, 0.a)) + -+ (13)

qqgF. states

in terms of the mixed space states defined as transverse Fourier transforms

dP-?2k

(k™. %, h,a)) =

e ®X|g(kT, Kk, h,a)) (14)

and so forth. The phase space sums over the mixed space gg and ggg Fock states are

qq F. states

qqgF. states

(I (e
5 (1o

I
_ijf) /dD—ZXO/dD—le
=0
2
—ij) /dD‘zxo/dD‘le/dD‘zxz. (15)
=0

The Fourier transforms to the mixed space wave functions W7:~9% and W7: 7999 are defined as

D-2 D-2
li”/z-njqz/d ko/d k, eik0~x0+ikl-x|(2”)D—26(D—2)(q_kO

(2ﬂ)D—2 (277;)D—2

— k) Wi, (16)

B P2k, [dP2k, [dP Pk, . . .. . i
PrL—999 — iko-xo+ik; x| +ik, X, 2 D_25(D_2) —ks—k. — k \Py*L_yqqg‘ 17
/ (271,)0_2 / (27[)1)_2 / (2”>D_2 e ( 7[) (q 0 1 2) ( )

It is convenient to factorize out the dependence on the
“center of mass™ coordinate and the color structure of the
partonic system out from the LCWFs as

Privad =5, e

pr; 449 — sa
P, = Igm €

ia/q") (kg Xotkyx0) g ~4d
i(a/q") (ko thixithyxa)gri=aqg - (18)

The reduced LCWFs {47:~%9 and {72 ~999 are independent
of the photon transverse momentum ¢ and cannot depend
on the absolute transverse positions of the Fock state

*Here a,,, = €*/(4z) and a; = ¢*/(4r) are the QED and
QCD coupling constants, respectively.

In LCPT the “mass” that serves as a weight in this linear
combination is the longitudinal momentum.

|
partons, just on their differences. The color structures
Sqp and tg,; are the only invariant SU(N,) color ten-
sors available for the ¢gg and the ¢gg Fock states,
respectively.

Using these notations, the total NLO cross section for a
virtual photon scattering from a classical gluon field takes
the following general form:

= | S
oy = 2N, E 2—+|l//7" 9°Re[l — Spy]
qq F. states

~ 1 s
+2NCr Y o 5737999 PRe[1 = Soa]
qqgF. states

+ O(ana3), (19)
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where we have introduced the notation®

So1 = NLTr(UF(XO)UTF(Xl))7

C

Soir = Tr(thF(XO)taU;(xl))UA(X2>ba (20)

NCCF

for the quark-antiquark (Sy;) and quark-antiquark-gluon
(So12) amplitudes. Here, the fundamental (F) and the
adjoint (A) Wilson lines are defined as lightlike path
ordered exponentials for a classical gluon target

Up(x) =P exp {—ig/dx*t“A;(x*,O,X)],
Ua(x) = P exp {—ig/dx*T“A;(x*,O,x)], (21)

where 1* and 7 are the generators of the fundamental and
adjoint representations, respectively.

IV. LEADING-ORDER LONGITUDINAL
PHOTON WAVE FUNCTION

We now recall the well-known leading order light cone
wave function for the longitudinal virtual photon splitting
into a quark antiquark dipole. The labeling of the kinemat-
ics for this process is shown in Fig. 1. Using the light cone
perturbation theory rules as presented in [16,19], the
leading order y; — gg light cone wave function can be
written as

.- .
vi=49q _ Oy (,11—4d
lPLLO - EDL]O Vhﬁ;hl : (22)
Here, the function
Vit _ oo © a0yl 23
e, = teey qw( Jriu(l) (23)

is an effective QED photon splitting vertex into a ¢g pair. In
the physical DIS process with a longitudinal photon this is
strictly speaking a part of an instantaneous interaction
vertex with the lepton. However, as discussed in
Refs. [14,16], it can in practice be treated as a separate
vertex. As a remnant of this nature as a part of an
instantaneous interaction, the longitudinal photon does
not couple to instantanous quarks. Following Ref. [16],
we use a condensed notation (kg hy) = i(0), v(k;, hy) =
v(1) etc., to shorten the expressions. In Eq. (23) the
parameter e, is the fractional charge of quark flavor f
and e is the QED coupling constant. In the LO diagram,
there is only one intermediate state, which is the ¢g

4Here, N, is the number of colors, and the color factor
Cr = (N = 1)/(2N,).

07h07a0

1,hy, 0

EDq 0

FIG. 1. Time ordered light cone diagram (momenta flows from
left to right) contributing to the longitudinal virtual photon wave
function at leading order. Here, the quark (antiquark) helicity and
color index are denoted as h(h,) and ay(a, ), respectively. In the

vertex, the momentum is conserved ¢ = ky + k|, where the
spatial three momentum vectors are denoted as ¢ = (¢%,q),

ko = (kg ko), and k; = (ki . k),

state.” The corresponding light cone energy denominator
ED, o appearing in Eq. (22) is given by the differences of
the light cone energies of the states

Following the discussion of [16], it is possible to
generalize the notation of LCWF to the case of an off-
shell (virtual) photon by assigning the off-shell value

qQ+4°
2q"

with ¢>=-0*<0  (25)

to the light cone energy of the photon. The virtuality of the
photon in LCPT actually corresponds to the light cone
energy difference between the incoming electron and the
outgoing electron + photon state. The off-shell value of g~
is then used in each light cone energy denominator
appearing in the perturbative expansion of the LCWF
The quarks energies are given by the mass shell relation

_k%)er2

i _k%+m2
O 2k

ki = ——F—, 26
where m is the quark mass. Thus, using Egs. (25) and (26),

the energy denominator given in Eq. (24) can be written as

2 2 2 2 2 2
q -0 ki+m” ki+m .
EDo = - 5
Lo =gt [2kg |
q* [( ky >2 L 2} ,
=—— 1 |(ke="Cq) +m>+20"L 02| 5.
2kiki I\ " (¢")

(27)

SRecall that in the case of a LCWF computation the state at the
final end of the diagram is an intermediate state with its energy
denominator. It is the state that interacts with the shockwave of
the target and thus not an actual external final state.
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At this stage, it is convenient to introduce the relative
transverse momentum P and the normalized photon vir-
tuality squared Q? as

+ +

k k _ k*k+
szo—q—iqz—kﬁq—iq, 0=

Ty
02 =(1-2)0%  (28)

P=Kk,-zq=-k;+(1-2)q,

where, in the second line, the variables P and Q? are
expressed in terms of the longitudinal momentum fraction
z =k /q" with z € [0, 1]. Using these notations, the LO
energy denominator becomes

ED,, = P2+ Q>+ m?],  (29)

(—2¢7)z(1 = z)

where we have dropped the factor i6 since we only consider
the case Q? > 0 in which the energy denominator is strictly
negative.

For the DIS cross section [given in Eq. (19)], we need to
Fourier transform the momentum space expression of
LCWEF into mixed space. Using the leading order expres-
sion in Eq. (22), we find for the reduced LCWF [see
Eq. (18)] in mixed space the following expression:

dD—ZP eiP~X0]
(30)

Pio ™= (24201 -2Vi " [

Here we have introduced the notation xy; = X — X;.
Performing the remaining (D — 2)-dimensional transverse
integral by using the result in Eq. (D8) yields

1L 7_266’@1(1 —2)a(0)y* (1) VO
Lo 2 27T|X01|

XKg—2(|X01|\/ Q%+ m?), (31)

where the function K, (z) is the modified Bessel function of
the second kind. Setting D = 4, and calculating explicitly

(see e.g., [67]) the matrix element &(0)y* v(1) one recovers
the conventional result for the wave function [3].

V. NLO CORRECTIONS TO THE 7; - 4§
WAVE FUNCTION

A. Spinor structures and energy denominators

In the longitudinal photon case, at NLO accuracy in
QCD, one finds that the initial-state LCWF for y; — ¢qg
can be written as a linear combination of two spinor
structures. Using a convenient choice of basis for that
space of spinor structures, one can write

N 1) 0 a,C
Pl T, {u 0)y*o(1 <1+ —=FyL >
NLO EDLO fq+ ( ) ( ) o0
(") o : a,Cr
Pima(0)y piv(1) [ Z=E)st Y, (32

where the NLO form factors V' and S* are the light cone
helicity nonflip (h.nf.) and helicity flip (h.f.) contributions,
respectively. Note that while the transverse photon wave
function has both light cone helicity flip and nonflip terms
already at LO, for the longitudinal photon the flip term only
appears at NLO. This term is related to the quark Pauli form
factor, or the quark anomalous magnetic moment, and is
discussed in more detail in Appendix H.

The LCPT diagrams relevant for the calculation of the
77 — qq LCWF at NLO with massive quarks are shown in
Figs. 2—4. There are two “propagator correction” diagrams,
(a) and (b) in Fig. 2, with a gluon loop attached to the quark
or the antiquark. Then, in Fig. 3, there are two “vertex
correction” diagrams (c¢) and (d), corresponding to two
different kinematical possibilities, with longitudinal
momentum (which is always positive) flowing either up
from the antiquark to the quark or vice versa. Finally, in
Fig. 4, there is an instantaneous gluon exchange (e) between
the quark and the antiquark, in which the gluon momentum
can either flow upwards into the quark or downwards into
the antiquark. It is convenient to split up the contribution
from this diagram into terms contributing to one or the
other of the diagrams in Fig. 3 according to the direction of

FIG. 2. Time ordered (momenta flows from left to right) one-gluon-loop quark self-energy diagrams (a) and (b) contributing to the
longitudinal virtual photon wave function at NLO. In diagram (a) imposing the spatial three momentum conservation at each vertex

glVeS q = ko” + kl’ ko” = ko’ + k and kof + k = kO
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FIG. 3.

ED, ED,

ED10

Time ordered (momenta flows from left to right) one-gluon-loop vertex diagrams (c) and (d) contributing to the longitudinal

virtual photon wave function at NLO. In diagram (c) imposing the spatial three momentum conservation at each vertex gives

@:]%0/ +I}1’, ]20/+]}:]20, and ]’%1/ :]}4—]}1

U
|
ED, EDLo

FIG. 4. Time ordered (momenta flows from left to right) one-
gluon-loop instantaneous diagram (e) contributing to the longi-
tudinal virtual photon wave function at NLO. In diagram
(e) imposing the spatial three momentum conservation gives
§ = ky + ky. For the case, in which the gluon momentum flows
to the quark, the spatial three momentum conservation also gives

120/:]%-1—/20 and IA{I’:]ACI_IACO

the momentum flow. Due to the symmetry of the kinemat-
ics by exchange of the quark and the antiquark between the
two classes of graphs, only the calculation of half of
the diagrams is necessary; in this case we will calculate
the ones labeled (a), (c) and the part of (e) where the
momentum flows to the quark as in (c). Note that since the
longitudinal photon is really fundamentally a part of an
instantaneous interaction, there is no diagram with an
instantaneous quark line.

In order to set the stage for our NLO (one-loop)
computation, we start by writing down all the energy
denominators appearing in the first class diagrams. In
diagram (a), there are two energy denominators EDjg
and ED,. Following the notation in Fig. 2(a) and imposing
the plus and transverse momentum conservation, it is
straightforward to show that

2 2 2 2 2 2 2
_ _ _ _ q _Q k0/+m k k1+m
ED,=q — kg +k +ki] = - —
=0l TR k] =T 2k 2k 2k
_k(J)r k+ 2 k+(kar _ k+)q+ _ k+(q+ _ k+)
=-— YV | [k==—Kk - V0 =1 )p2 2 0\ ™ T2 33
s | (k) G (P e o

and the LO energy denominator ED; g is given by Eq. (27).

In diagram (c), there are three distinct energy denominators ED,, ED,, and ED; 5. Again, following the notation in
Fig. 3(c) and imposing the momentum conservation, we obtain

2 2 2 2 2 2
_ _ 9 -0 ki +m°  Ki+m
ED fry —_— , = —_—
v=a =yt 2q* [ 2k} 2k},
—q" " 2 (kg kKK
= k-—k L , 34
2(k3—k*)(k++k1+){<( ko 0>+ ) - ko ki o G4

where the notation L =—(k; —k™)P/k hasbeen introduced.
Finally, for the instantaneous diagram (e), in which the
gluon momentum flows to the quark, there are two distinct
energy denominators, ED, and EDy g.
For all three diagrams, it is convenient to change
variables from the momentum of the gluon k and £t to

|
the relative transverse momentum K and the longitudinal
momentum fraction & of the gluon with respect to the
final state quark. These are the natural variables of the
gluon emission and absorption vertices in diagram (a)
and the gluon absorption vertex in diagram (c). They are
defined as

056032-8
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K—k—ﬂk =k -¢k ; + + _5(]_5) 2 A2 2 2.2
= 0= o with kT =¢&zqg™. (35) A= [P* + Q% + m?*| + &m?,
k¢ (1-2)
A2:(1—§)(1+ 2 )Q2+m2. (37)
(1-2)

In these notations, the energy denominators in Egs. (33)
and (34) can be cast into the following form: In the following subsections, we present the detailed
computation of the NLO form factors V¥ and S* coming
from the one-loop self-energy, vertex, and instantaneous
1 diagrams.

ED, = ———[K?>+ A,
(24 )18 !
1 B. One-loop quark self-energy
ED, = 20 2(1 — (1 — 2(1 — [(K+1L)>+4,, We start by computing the contribution to the y; — gg
(=2¢7)z(1 = &)(1 - 2(1 - ¢)) \ .
LCWEF in Eq. (32) from the one-loop massive one-loop
L =-(1-¢pP, (36) quark self-energy diagrams shown in Figs. 2(a) and 2(b).

Applying the diagrammatic LCPT rules formulated in
momentum space yields the following expression for

where the coefficients A; and A, are given by | Fig. 2(a):
i [ N
Pl — /dk/dlE//dlE 0 (27) P16 (ke 4 k — ko) (22)P 18PV (kyy — oy — k) mm e
(@) 0 o (27) (ko + 0)(27) (ko — ko )EDa(EDLO)Z
. _ L
L / G ___ di / a2k N (38)
167 Jo kTk{ (kg —k*) ) (27)P~2ED,(EDp)?’

where the energy denominators are written down in Eqs. (27) and (33). The product of light cone vertices (the summation is
implicit over the internal helicities, gluon polarization, and color) is given by the numerator

N, = Hefffﬁ?’(’%t?“)“‘ (7(0)¢/,,(k)u(0)][(0")e /2 ()0 [a (0 )y ol ). (39)

We make the change of variables (k, k") — (K, &) as defined in Eq. (35) and regulate the small k™ — 0 (or & — 0)
divergences by an explicit cutoff kT > ag™ (or ¢ > a/z) with the dimensionless parameter a > 0. Using Eq. (36) together
with Eq. (37), we can simplify the expression in Eq. (38) to

= L
grien 1 / tdg fd7?K NG (40)
" 81" (ED1o)’ Jur 2 J (2m)P2[K? + 4]
The detailed calculation of the numerator in Eq. (39) is performed in Appendix B and gives
2¢°Cr g (D, —4)
N%tl) = 52(1 _ é) 50!00!1 V};lo;hqu{ [1 + (1 - 5)2]K2 + m2'§4 + T{Ez[Kz + mZé:Z] . (41)

We remind the reader that from this expression one obtains both the FDH scheme result by taking the limit D, — 4, and the
CDR one by setting D, = D.
At this point, it is convenient to define the UV divergent one-loop scalar integral as

dP2K 1
(27)P~2 [K* + Ay

Ao(A,) = da (2P / (42)

where p? is the scale introduced by transverse dimensional regularization. Note that in the framework of transverse
dimensional regularization
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dP?K

47[(,“2>2_D/2/(2ﬂ)0—2 [K2 +A1] =

Under these simplifications Eq. (40) reduces to

ri—~aa _ gyri—aa (% Cr dé _
Yo =Y < o ){ L/z [T+ (1= &) Ay(A)) —

:
- [Mazeanan .

where the result for the integral .4y(A

2-D

1) can be written as [16]

(-9

We note that this result is the same for any variant of

dimensional regularization.

C. Quark mass renormalization

From the expression (45) for the integral Ay(4A,), it is
clear that the one-loop quark self-energy diagram (a) is UV
divergent. UV divergences have been already found for
that diagram and for the other ones in the massless quark
case [16,17,19]. In that case, the UV divergences cancel
each other at the cross section level. UV divergences with
such a behavior are expected to occur as well in the
massive quark case studied in the present paper. However,
since the expression for the longitudinal photon wave
function (and thus the one for the longitudinal photon cross
section) involves the quark mass already at LO, NLO
corrections are expected to also include UV divergences
associated with quark mass renormalization. Hence, one
expect two types of UV divergences, which need to be
disentangled.

In the LO expression (22) for the longitudinal photon
wave function, the quark mass appears in the energy
denominator ED; o, Eq. (29), but not in the numerator
(23). In the bare perturbation theory approach, one uses the
bare mass m, when writing the expression of the diagrams
from the Feynman rules in light-front perturbation theory,
in particular in the energy denominators. Then, the bare
mass is rewritten as m3 = m*> — ém? in the result, and a
Taylor expansion at small mass shift sm? is performed,
assuming m? ~ a,. Mass renormalization then amounts to
imposing an extra condition in order to determine &m?.
When following such a bare perturbation theory approach
for the longitudinal photon wave function, the energy
denominator ED; o becomes

2
= A1 Ay(Ay). (43)
2(1—z)m
P2+ 0% +mY / deAp(A
(44)
;F<3 —§> log (2 ) +0O(D-4). (45)
|
! — 1 0n12EDLO( ) S )2
EDyo(m2)  EDyo(n?) | EDLg(m)? 0" T OLOM)Y)
1 Sm?  om? 1
~ebry || <2ka+2k1+>EDmW>}

By contrast, in the renormalized perturbation approach, one
uses the renormalized mass m when writing down the
diagrams, and instead includes mass counterterms in the
light-front Hamiltonian, corresponding to additional two-
point vertices. In that context, the contributions &m?/ 2kg
and 6m?/2k| in Eq. (46) are reinterpreted as coming from
the NLO diagrams obtained by inserting such a mass
counterterm on the quark or antiquark line respectively in
the LO diagram in Fig. 1. The important point to note is the
doubling of the energy denominator for these terms. Hence,
these terms are enhanced in the limit ED; o — 0, corre-
sponding to the on-shell limit for the quark-antiquark Fock
state. In the bare perturbation theory approach, the dou-
bling of the energy denominator comes naturally from the
Taylor expansion. In the renormalized perturbation theory
approach, on the other hand, it comes from the fact that one
should include an energy denominator both before and after
the insertion of the mass counterterm. Only NLO correc-
tions coming with an extra copy of the energy denominator
ED; can thus be absorbed into the quark mass in the
energy denominator, via mass renormalization.

In the massless quark case, the extra copy of the energy
denominator ED;  disappears in the course of the evalu-
ation of diagram (a) (see for example Sec. IV in Ref. [16]),
showing that no quark mass can be radiatively generated by
such a self-energy diagram, and that the UV divergences
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encountered in the massless case have nothing to do with
the renormalization of the quark mass in the energy
denominator.

Let us now come back to the expression (44) for the
quark self-energy diagram (a). Remember that one copy of
the energy denominator EDy g is already included in the
LO wave function, and that ED;g is proportional to

NI el L] aCe\ [ 2(1 - z)m?
“ o\ 2z P2+ 0% + m?|

1 ) o [1de
/0d5A0(5m> /“5[1+

[Ag(A) = Ay (&m?)] _ (D;—4)

(P> + 0% + m?) [see Eq. (29)]. One finds that only the
second term of (44) exhibits a doubling of the energy
denominator and can thus be associated with mass renorm-
alization. Note also from Eq. (37) that A; depends on
ED; o, and that A, — &m? in the on-shell limit
(P> + 0®> + m?) - 0. We now add and subtract a term
with A; = &m? to rewrite Eq. (44) as

(1= &) Ao(Ay)

—-2(1 —z)m2AI dé

where now only the first term can contribute to mass
renormalization. By contrast, the UV divergence in the
second term is one that should cancel at the cross section
level, like in the massless case. The terms on the second line
in (47) are UV finite.

Other contributions to mass renormalization in the energy
denominators come from the “self-induced inertia” or
“seagull” diagrams [50,62,63]. These diagrams, which
correspond to instantaneous self-energy loops, are highly
sensitive to the details of the UV regularization procedure.
They bring a pure extra power of the energy denominator
ED; o, and can thus be entirely absorbed into the quark mass
in the energy denominator, via mass renormalization. We
plan to present a complete analysis of mass renormalization
in light-front perturbation theory at one loop in a separate

|

[PZ + Q2 +m2]

7 [ azeanan . (47

I
future work, with a special emphasis on UV regularization
issues and on self-induced inertia contributions.

Here, in order to avoid entering further into these issues,
we choose the on-shell scheme for mass renormalization.
In the context of the present calculation, this scheme is
defined by imposing a strict cancellation between all the
enhanced contributions in the on-shell limit ED; 5 — 0, or
equivalently (P> + Q% + m?) —» 0.° Hence, the quark mass
counterterm is chosen in order to cancel exactly the self-
induced inertia insertions on the quark line and the first
term in Eq. (47) from the diagram (a). Adding the self-
induced inertia contributions and the quark counterterm to
the diagram (a) and choosing the on-shell scheme for mass
renormalization thus simply leads to a result where the first
term of Eq. (47) is absent

W = <asCF) {— /1 Ch+ -4

271’ /z 5

[Ao(A)) — Ao(‘fzmz)]

(Ds _4)

-2(1 —z)mz/l d¢
0

We keep calling this expression the (mass renormalized)
contribution of diagram (a), by a slight abuse of language.
The same treatment is done on the antiquark line, with
diagram (b).

In the case of the transverse photon wave function, which
we will study in a future publication, the quark mass also
appears in the numerator in the LO expression, in the
transverse photon to quark-antiquark vertex. Hence, at
NLO, one has to deal with mass renormalization in the
numerator as well. This involves vertex correction diagrams

®Note that the total energy of the quark-antiquark state is
positive. This means that the renormalization condition is
determined at a timelike virtuality for the photon Q% < 0, away
from the physical (spacelike) region for the DIS process.

[P? + Q% + m?]

-2 [Mazeaan . (48)

[
analog to diagrams (c) and (d), and another quark mass
counterterm which is a three-point vertex. In light-front
perturbation theory, mass renormalization corrections in
either the denominator or the numerator thus occur in a very
different pattern. In principle, the final result for the mass
shift should be the same in both case, but this property is
typically lost if the UV regularization procedure does not
preserve the full Poincaré symmetry [56,58-60,68].

The expression (48) for the mass renormalized contribu-
tion from the self-energy diagram (a) can now be written as

*—>qq *>qq C
Wi =i <a;ﬂp> Vio: (49)

Using Eq. (45), the form factor V(Lu) can be evaluated as
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= w9 ({720 -3) roe(G07) el

=
—log2<g>——+3+%(( ))

In the above expression, the factor (D; — 4)/2(D — 4) is the regularization scheme dependent coefficient coming from the
following integral:

+Iy,,(zP) + O(D - 4). (50)

B2 [ aeean(an) - %H+ O(D, - 4). G

and the function Zy,  is defined as

_p2 A ooy [TAE] 2log(E) (149 1 3 1
Ivy (2 P) = (P"+ 0 +m)£ é{ (-9 2 [\P+o+m P2+ 02+ m? + i m? ) >

This integral is £ — O finite and we could in principle perform the integration over £ analytically. However, it turns out that it is
more convenient to Fourier transform first and then perform the remaining integral numerically.

The mass renormalized LCWF for the quark self-energy diagram in diagram (b) shown in Fig. 2 can be now easily
obtained by using the symmetry between the diagrams (a) and (b), i.e., by making the substitution z +> 1 — z and P > —P
in Eq. (49) simultaneously. This yields

* 07 N C
Wi — e (0’2 F) VE . (53)
where
2—2 2 2 A2 2
b = - r(3-2 N (Rt
v = [ 2w ﬂ{zg>G )~ m) ()}
2, 1(D,-4)
—log? (1 —z) T3t D=4 + 1y, (z.P)+ O(D - 4) (54)
and
(P2 D2 o2 1%[_210g(§) (1‘1‘5)}{ 1 B 1 }
IV(b)(Z,P)— (P°+ Q" +m )A £ (1-¢ + 2 TS P2+Q2+m2_|_(lz_f§)m2 . (55)

Summing the expressions in Egs. (49) and (53), we obtain for the full contribution of the one-loop quark self-energy to
the y; — qg LCWF the result

Y1799 \gyi—9 a,Cg
Yo = Yio ( = )VL (b (56)

where the NLO form factor Vfa) +(p) CAN be written as

VL

3 (4m)>2 D u? P2+ Q%+ m?
=2 e () e () (T (- 2) i) e ()

+ [log(z) + log(1 - 2)] <§+2log(a)> —41log(z)log(1 —z)—log2<j> log? ( a )

1-z2

27° (Ds—4)
3 Ty

+Iy,(z.P)+ Iy, (z.P)+O(D-4). (57)
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D. Vertex and instantaneous contributions

We now proceed to calculate the one-loop vertex correction diagram (c) shown in Fig. 3 and the instantaneous diagram
(e) shown in Fig. 4. For diagram (c), the momentum space expression of the LCWF can be written as

i / dk / dky / dEy (22)P-160-0 (hy + & = o) (22)P-160-D Ry — k — &)

L
N

ED,ED,ED, o

~

NL

& (58)

1 /ko* dit /dD-Zk
Cl6r )y kT(k§ —kP)(kT+ k7)) (27)P-2ED,ED,ED(’

where the light cone energy denominators ED,, ED,, and ED;  are given in Egs. (34), (33), and (27), respectively. The
numerator (again the summation is implicit over the internal helicities, gluon polarization, and color) is given by

NL _ _eefngéaOal CF
(c) q

- [@(0)e/ 5 (k)u(0)][@(0")y v (1] [5(1")e/5(k)v(1)). (59)

Applying again the change of variables (k, k") — (K, &), we obtain

* 500 1 Z 1
wrot = — = [ de(l - /
() 47EDy o Jo/: §1-9)

dP-2K NY

© (60)

27)P2 K2+ A (K + L)* + 4]

where the detailed calculation of the numerator in Eq. (59) is found in Appendix C, and gives

(1= -z(1-¢) _

(Ds _4)

1 ~qd 1[(1-2)
_ Yi—=43, o

N(LC> = 26000, Vo, (g CF){E_Q [ p + Z
eerQ

+ 2040, — 2

with f(p) = 1+ (D, —4)/2.

At tree level, the longitudinal photon to quark-antiquark
splitting Eq. (31) is proportional to the light cone helicity
conserving Dirac structure #(0)y " v(1) ~ &, _,. At one-
loop level, the helicity structure is more complicated, since
in addition to a correction to the light cone helicity
conserving structure, the result also contains a light cone
helicity flip term ~&;, . However, to calculate the NLO
cross section the one-loop wave function in the amplitude
will be convoluted with the tree-level one in the conjugate
amplitude. Since also the eikonal interactions with the
target conserve light cone helicity, the two different helicity
structures do not interfere. Thus, in fact, the light cone
helicity flip term does not contribute to the cross section at
this order in perturbation theory. At NNLO the square of
this term would contribute to the cross section. It will
therefore be convenient to separate out the two helicity
structures at this point in the calculation. To do this, we split
the result Eq. (60) into two parts

Y1799 \li—49d a,Cr 7149
i et (i e

pe (QZCF)mL_‘(O)J’+7iU(1)% { {i -1-

2lsk Ki[ K+ ¢ Pt + & mf
2 () -2 "oy

& ; ¢ i
IZ—_Zf(DS)}K —5[1+1Z—_Zf(D.Y)]P} (61)

where the NLO form factor V(LC), which factorizes from the
LO contribution, is given by

1
Vh = / / dg(1 - &)7t, (63)

d2K 1
(27)42 [K2 + A][(K+L)2+ A,]

X{<1_Z) {1+<1—5><1+ « >_<Ds—4) z:z]

TL — 47[(/«t2>2_d/2

£ -z 21—z
; i ¢ &
X 5(1133)1( (Kk +1—_ZPk +1—_Zm2f(DS) . (64)

The second term in Eq. (62) is the light cone helicity flip
term that appears only in the massive quark case, and it
contributes to the form factor S” in Eq. (32). This term can
be simplified to
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7,499 eeyr o _ i a;Cp 1 L;i
Fitie) = Oapar ﬁmqtm”(o)}’ﬂ’ v(1) <—2ﬂ ; dé(1 =975 (65)
with
. d-2K 1 z z& » z& ;
TLi (2 2—4/2/ —-1- K —&|1+-—— P 5. (66
o) = (K’ 20 K AR L 18] | |1=2 1_Zf(D.x) i1+ I _Zf(DS) (66)

It turns out that the most efficient way to compute the integrals 7 (LC ) and Z ﬁ_;f’:_(c) is to rewrite them as a linear combination of
tensor and scalar integrals.” This procedure, in both regularization (FDH and CDR) schemes, gives

1 zE (D;—4) 282 1 ((1=72) o
z@>_5{1+(1—@(1+1_z>— . 1_%]{ & Aoly) + PIB(81, 85, L)
242
—[(1=&)[P* + Q>+ m?] + &(1 - Z)mz]Bo(AlyAz,L)} + lz_ézmzf(Ds)Bo(Al, A, L) (67)
and
Tite = LZ_Z— 1 —lz_if(D.y)] B'(A1. A, L) —5[1 +1Z_§Zf(z),.)} P'By(Ay, Ay, L), (68)

where the one-loop vector integral Bi(A,, A,, L) = L'B;(A,,A,,L) and the scalar integrals B, and B, are given in
Ref. [16]. The integrals B, and B’ in Egs. (67) and (68) are both UV finite, and therefore all the UV divergences are carried
by the scalar integral Ay(A,), where the coefficient A, [defined in Eq. (37)] is independent of P. This is particularly
convenient, since we have to later Fourier transform the P-dependence of the LCWF in Eq. (62). In addition, since only the
integral A, is UV divergent, the scheme dependent part comes from the term proportional to 7 (LC) ~(Ds—4)Ap(A,) in
Eq. (67), and in the other terms we can set Dy =4 and fp ) = 1.

Since the vector integral B'(A;, A,, L) is proportional to P’, the helicity flip contribution can be written as

Y1749 68f g aSCF Pi — S+ I
Fitse) = Omay EDi o q" < 20 ) 2z(1 - z2) mi(O)r 7 o1, (69)
with
" 1 P/B/
Sy =22 A dé(1-¢)q[2z—1- Zéf(D;)]?—'— (2= 1—=25f(p,))EBo ¢ (70)

The (UV and IR finite) light cone helicity flip contribution (69) will not contribute to the cross section at NLO, since it
cannot interfere with the LO LFWF which is helicity nonflip. Hence, we will from here on concentrate only on the helicity
conserving part that does contribute to the cross section at NLO. The helicity flip term can be used, as discussed in
Appendix H, to rederive the known result for the one-loop Pauli form factor of a massive quark, serving as an additional
cross check of our result.

To proceed with the helicity conserving part, we first write the expression in Eq. (63) as a sum of two terms

L __ )L L
Vi = Viola+ Vg

B (71)

where the first and the second term on the right-hand side of Eq. (71) are the UV divergent and the UV finite pieces of V.,
respectively. Following the notation of Eq. (67), these two terms can be written as

1 — _ 2
Vlo==0-2) [ a2 i a-p (1452 ) - B E ey ™)

"Here, we follow the notation and discussion presented in Ref. [16], see Appendix D.
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22 _ —
V(LC)|Bl;dé{—%szo(Al,Ag,L)—l—(l56) {1+(1—§)<1+1Z—_§Z>}{—PiB"(AI,Az,L)
#1002+ ]+ 6(1 = (41,8, 1) | (73)

At this stage, we could carry on and evaluate explicitly the UV divergent term above, but it turns out to be convenient to

first add a contribution coming from the instantaneous diagram (e). Using the notation shown in Fig. 4, the contribution of
the instantaneous diagram (e) to the LCWF is given by

. _ L

grima _ L [ dkg / d?ky N (74)
(€) 87 Jo ky(qm—ki).) (27)*2EDED o’

where the numerator can be simplified to

1 ~4d dky(q*" = k)
rL49 0 0
N(Le) = _50’00!1 Vho;h1 (gch) W (75)
o~ %o
As discussed in [16,19] (but now in the massive quark case), the LCWF can be split up into two UV divergent contributions

according to the direction of the momentum flow along the instantaneous gluon line. It is straightforward to show that these
two contributions take the following form [16]:

17499 1449 aSCF
¥y " =Yio w( By )%h la Vi, L4, (76)

where, in the first term (e),, the light cone momentum of the gluon line is flowing upwards into the quark line and in the
second term (e), in the opposite direction. The UV divergent coefficient corresponding to the first term simplifies to

L Rk kR (k= k) B (18 &
v(€)1|A_2A q_+[(£+)12+ i _1]A0(A2)_2(1—Z)L/Zd§ 2 [1+(]_Z)}AO(A2). (77)

The coefficient V(Le)z, where the light cone momentum of the gluon line is flowing downwards into the antiquark line, is
obtained by making the substitution z > 1 — z in Eq. (77).

We can now calculate the sum of diagrams (c) and (e) in momentum space. First, summing the UV divergent pieces of the
vertex correction diagram in Eqs. (72) and the (e), part of the instantaneous diagram in (77) together we obtain

VE Vi l= | a8 1 o) + P [Mac - gana) (78)

Here, the unphysical term d&/&* cancels out between the Ay(A,) terms in the diagrams (c) and (), and the remaining
integrals in Eq. (78) can be performed analytically. Using the expression in Eq. (45) for Ag(A,), we can rewrite the
expression above as

[V(Lc) + V(Le)IHA = {—1 + % —log (g)} (4ﬂ)2_gr<3 - 2) z(Ds —4)

2-D 2) 2(D-4)

+/lede§(1 25) (1+z&) {—bg(%ﬂ +O(D - 4).

For the remaining £ integral it is convenient to first factorize the P independent coefficient A, with respect to £ as

(79)

A, = ( iz) Q* (£ —E)(E—E).

(80)
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where the zeroes in £ are given by

1 .
27 2z 0 2 22" with =\ [T+ o ®1)

The square root in Eq. (81) is associated with the threshold for massive quark pair creation if we were interested in the
timelike photon case. In the spacelike case of interest note that £y > 1 and §_) < 0 (which can become equalities for
massless quarks) so that both zeros of A, sit outside of the integration range in £. Utilizing these observations, we find the
result

z a\] (47)22 D\ z(D,—4)
[V(LC) +V(L€)1]|A: [_1 +§_10g (E)] (2_%) F(3_3> _5 (D—4) +I§;1 _I§;2_Z(I§;3 _IE;Z) +O(D_4)’ (82)

where closed analytical expressions for the integrals Z..;, Z;,, and Z:3 are given in Appendix F [see Egs. (F1), (F2),
and (F3)].

The computation of the UV finite part of the coefficient in Eq. (73) is a bit more tricky. It is possible to directly compute
the B, and B' integrals, but the result would be too complicated for further analytical integration, in particular over the
required Fourier transform. Instead, we Feynman parametrize the denominator appearing in the B, and B’ as

{g?] :Aldx[—xlu] [x(l—x)L2+(11—x)A1+xA2]’ (83)

where the denominator can be rewritten as

x(1=x)L2 + (1= x)A; +xAy = (1= &)[(1 = )P + 0 + m?] [’C“ BRLRNT EZJ

+ Em? {5(1 —x) +x<1 —Z((ll__f))ﬂ. (84)

Now, from Egs. (83) and (84), we find®

P (1= + 0+ = [ ZOE S

z(1=¢)
— 1. —437112/l dx G (l_z)) . (85)
(1-9¢) 0 [x(l—§)+ﬁ}[x(l—x)L2—l—(l—x)A1 + xA,]
in which the integral 7, is defined as
7o [far U tog() e (1201~ ) (36)
o [x(1=¢)+ 7=
Substituting the expression in Eq. (85) into Eq. (73) yields
1d
V{‘C)‘B = L/Z?é |:1 + (1 - 6) (1 +1i—cfz)>}1+ +IV(()<Z’ P), (87)

where we have defined the function Z,, | as

¥Here, we have condensed the notation of By(A,, A,, L) and B(A,, A,, L) to simply B, and B'.
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e /1 cL
IV«-)(Z’ P)=m A de 0 dx[x(l —x)L2 + (1 =x)A; + xA,] )

with the coefficient

2(1-¢)

Cin = (1-72)

1+ (1= +(lz—§z))]}‘ (89)

—2 4 (] —
{““ LT

The first term on the right-hand side of Eq. (87) is the same integral appearing in the massless case [16]. This integral can be
done analytically and it contains both single and double logs in a, but no dependence on P (thus this contribution factors out
of the Fourier transform). The second term on the right-hand side of Eq. (87) is an additional UV and & — O finite
contribution coming from the massive quarks. In Eq. (88) we could in principle perform the integration over the £ and the
Feynman parameter x analytically, but it is more convenient to Fourier transform first and then perform the remaining
integrals numerically.

Collecting now the contributions from Egs. (82) and (87) together, we obtain the result

Y1797 \gVi—9d a,Cg L Y199
e, = ¥io (z >V<> (e T ¥nto) (90)

where the NLO form factor Vfc) (e), Can be simplified to

z a\] (47)22 D z (DS 4)
V%C)Jr(e)l = |:—1 +§—10g<z):| (2_D)F 3—5 2 (D 4) +I§1 If;z—Z(If;:; —15;2) - =

1—
+ log? (g) +

2
Here, the function Li,(z) is the dilogarithm function, defined as

3Z10g(1—z)—210g(1—Z)log(%) 2L12<—IL>+ZV( P)+ O —4). (91)

Liz(z) = - / gloga _9). (92)

The final result for the full NLO vertex and instantaneous contribution in the momentum space can be obtained by first
computing the contribution from the diagrams (d)-(e),, and then adding the obtained result together with the contribution
in Eq. (90). The first part of the given task is most easily obtained by using the symmetry between diagrams (c)+(e), and
(d)+(e),, i.e., by making the substitution z — 1 — z and P — —P simultaneously in Eq. (90). This yields

Y194 v —aqq [ AsCr Y.—~499
Yo, = Yo (2 >V(L> 0, T Phitaay (93)

where the NLO form factor V(L D)+(e), €40 be written as

-1 -9 52

2

1 a
itz T T log® <1——z>

log(z) — 2 log(z) log (%’Z) 2L, (— 1%) + Iy, (2 P)+OD—4).  (94)

+Ze1 = Teo — 2(Tea — L))

Here, the function 7y, is given by

Ch
Iy (ZP —m/d.f/dx (I_X)AI—FXAQ]’ (95)
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where the coefficients A, A,, and CL reduce to

- 1 -
=509

[P2—|— Q2+m2] _|_§2m27
A, =(1 —5)(1 +@> 0% +m?, (96)

and

e _ (1=220 —5){_52”(1_5) {1+(1—§>(1+@)]}. o)

Z (1 -¢) +9

All in all, the final result for the full NLO vertex and instantaneous contribution in the momentum space is obtained by
summing Eqs. (90) and (93) together. After some amount of algebra, we obtain

¥;—aqq  wli—ad a;Ce\ . ¥;—4qq
¥y ayro = Fio < o >V(d>+<d>+<e> + ko)) (98)
where the NLO form factor V(L D)+(d)+(e) AN be written as

3 a a 47)>2 D u?
i =) e () (G2t (0-3) < )

—5 5(1)7—_4) — [log(z) +log(1 — z)] <% + 2log(a)> +4log(1 — z) log(z) + log? <g>

1-—
+ log? <L> —2Li, <—L> —2Li, (— —Z> + L(y;2)
1-z -z z

+Qu(r;2) + Iy, (2. P) + Iy, (2. P) + O(D - 4). (99)

Here, we have again used a compact notation by introducing the functions Qy,(y;z) and L(y;z), which are given by

utri2) = g os(1 =2+ rtoa (T ) | g g ot + 1o 55|

1 0> +m? m? 0> +m?

and

L(y;z) =Li, (%) +Li, <%> + Li (%) +Li, (m> (101)

with

(102)

In the massless limit (i.e., y — 1), the coefficient Q,, integrals 7, o Ay > and the light cone helicity flip term vanish, and
the function L satisfies

L(l;z)=%2+Liz(—li> +Liz<—5>, (103)

—Z Z
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where the sum of two dilogarithm functions can be
simplified by using the following identity:

(104)

Using these observations one sees that in the massless limit
Eq. (98) simplifies to the result obtained in [16,19].

o) o) (2
+

VI. THE 7; — q§ WAVE FUNCTION IN
COORDINATE SPACE

A. Result in momentum space

Having all these results at hand, we can now write down
the final result for the mass renormalized one-loop cor-
rected y; = gg LCWF in momentum space. Adding all the
contributions in Eq. (56) and Eq. (98) together, we obtain
the final result

Wil

— C —
NLO ‘PYL 9 <a2 F)VL+‘PYL . (105)

where the full form factor V& at NLO simplifies to

D 12 P>+ Q> +m’
(3_2> +lo‘g<Q2+mz) _Zlog( 0?1 >}

5 1(D;—-4) = z
—+= — +log?( —— Qy(y; L(y; Iy(z,P) + O(D — 4 106
o (150) + (i) + Lirs2) + Ty(aP) + O - 4) (106
|
with where the reduced NLO LCWF in mixed space
simplifies to
IV(Z’P):IV@H ( P)+IV +(1)( P) (107)
i = 222 1= a0y o() (SEE) v (109
Here, the functions Zy,, , and Iy = are given by the NLO 2 r 2

sum of integral expressions in Egs. (52), (55) and Eqs. (88),
(95), respectively. In the massless quark limit m = O the
functions Zy, . Zy, ., and Qy(y;z) vanish. Using the
massless limit of L(y;z) in Eq. (103) it is then easy to see
that the LCWF reduces to the known result of Ref. [16,19].

For clarity, here we do not show explicitly the light cone

helicity flip term ‘Pﬁf;qq, since this contribution vanishes at
the cross section level.

B. Fourier transformation to mixed space

We now Fourier transform the full NLO result of y; —
qgq LCWF in Eq. (105) into mixed space by first using the
explicit expression Eq. (22) for the leading order LCWF in
the factorized form of the NLO result (90). We then factor
out the exponential dependence on the center-of-mass
coordinate of the dipole and the momentum of the photon
as in Eq. (18). This yields

i—q+~(k0+x0+k;rx1)li/yz—>qz/

Y144 T =499
lPNLO = Oy, €7 NLO Wil

,  (108)
|

V= {BJrlog(j) +1Og(l iZﬂ {((‘;”)2; (

=2 7\ 52 _
X (M) Ko ([xo1| vV Q* +m?)

27X |

and the Fourier transformed form factor V" is given by

- dD—ZP eiP»x(,]
Vi=an (27)P72P* + Q% + m?

Before writing down the final result for Eq. (110), we need
to clarify some important points. Firstly, the UV finite
terms appearing in Eq. (106) can be Fourier transformed in
four dimensions and only the UV regularization dependent
terms (including the D — 4 pole term) need to be Fourier
transformed in D dimensions. Secondly, most of the NLO
correction terms appearing in Eq. (106) are independent of
the transverse momentum P and thus factor out from the
Fourier transform. In these cases, Eq. (110) reduces to the
LO Fourier transform Eq. (D8) given in Appendix D.
Thirdly, in the NLO correction Eq. (106), there are only
three different types of P dependent terms. All the
corresponding transverse Fourier integrals needed for these
terms are given in Egs. (D9), (D10), and (D11).

Putting these points together, we find the following
result:

x VE.

(110)

3_12)> +log< 0 ) +27’E} +;((ll))s—_j))}

2 5 _ 5
+ {1082 (&) _%+§+ Qy(r:z) + L(y; Z)}Ko(|X01| VO +m?) +1y(z,%1) + O(D—4), (111)
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where 7 is the Euler’s constant and Z, is the Fourier transformed version of the integral Z,, in Eq. (107) given by the
following expression:

Iv(z.x01) = Iy, (2 X01) + Ly, (2 X01) (112)
with
Ty (250) = /1df[ 210g(5) ( {2K0 (%01 | VO £ 72)
—KO |x01|\/Q2 ;"t 2>—K0<|X01\/Q2+m2+lz—_§§m2>}, (113)
and

= ) [! ! ) 2 0> +m?
Ty o) = [ [ x| Kollxal VO 5 %) = Ko (xoy £ 4 0

Ch
(1= 91 =9l(1 = &) + gl Fg +o

=) 2
+ {K0(|X01| vV O+ m?) - K, (|X01| Qi"”dﬂ

X

1—x

CL
" 0% +m? ' (114)
(1 =81 =x)x(1-¢) +§][%+K’]}

Here the coefficients C% and CL are defined in Egs. (89) and (97), and « and «’ are defined as

G —f[mu O+ -0 ex(1-25)|

. e yaxfa (17908
‘(1—:)(1—x>[x<1—¢>+§1[5“ ”(1 : ﬂ (115)

Interestingly, the expression for 7 Vi (z, X ) can be simplified by performing the following chain of changes of variables:
x> y=E+(1=-8x, E>n=¢E/y, and finally n — y = z(1 — 7). One then arrives at

= _ ¢ dy 1 Vo2, Qe=y(z—x) y(z=2)
Iy((_)(Z,X()l) B mz/) (1=y) [m*+x(1 —)()Qz]l dy{y * (1 —72) Z(1 = Z):|

x{Ko<|xOl|¢Q2+m2>—Ko(|xO1|\/Q2+m2+%[m2+x<l—x)QZ])}. (116)

The corresponding expression is obtained by the replacement z <> (1 — z), accompanied for convenience by the change of
variable y <> (1 — y). This leads to

- e [ ! L2 =) Qz=DA=p(z=x) _yz-x)°
Iy, (z,X01) = /Z )QZ]A dy{ + }

X m? +x(1—y y Z(1-2) z(1-72)

x {m(MW)—Ko(|xOl|¢Q2+m2+(lfzm[m I ra)
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This concludes our calculation of the one-loop longitudinal photon to quark-antiquark LCWF for massive quarks, needed
for the virtual correction to the DIS cross section. We will now proceed to the quark-antiquark-gluon final state needed for
the radiative corrections.

VII. TREE-LEVEL GLUON EMISSION
WAVE FUNCTION

We then move to the tree-level wave functions for gluon emission from a longitudinal photon state, which are needed for
the full cross section at NLO. As in the massless case [17,19], we need to calculate two gluon emission diagrams shown
in Fig. 5.

Applying the diagrammatic LCPT rules, we obtain for the diagram with gluon emission from the quark, diagram (f), the
following expression in momentum space:

[@(0)e/5(ka)u(0)]ee, (Q/q ) [a(0)yv(1)]

g ~ - ~ ~ [
\P}’L—HMQ _ /dkOI(ZJZ)D_15(D_1)(k0/ _ k2 _ ko) g Ay
) Equ/?Jl ED(qogz)@l
_ rees 0ty (0)e/3(ky)u(0)a(0)y o(1) s
2q+(k(—)~_ + k;) Equ/?IlED((Iogz)@l
where the energy denominators appearing in Eq. (118) can be written as
2 2 2 2 2 2 + + \2
Q-0 kg +m k1+m> —q K k| ) . 2}
ED,, , = — + = k,—— + + m=|, 119
Wi T gt ( 2k, 2ky 2 (kg + k) [\ g 0 (119)
ED K % (k%—l—m2 k3 + m? k%)
(9092)1 2q" 2k§ 2k1+ 2k2+
_k(j)L ky 4k ki \? 72 2 2
s | (o) e (- i) wah ] 0
and the coefficients introduced in the denominators are defined as
_ k+<q+ _ k+) k+k+
02, =" 1202 Ay =12 121
(f) (q+)2 (f) q+kar (121)
Similarly, for the diagram with emission from the antiquark (g), we find
< ap ~ - o aoogtd L Tu(0)y (1 Nw(1)e/k(k 1
TJ(’;) q499 — /dkll(zﬂ_)D_lé(D_])(kl/ _kz_kl)g 0 1[”( )y U( )]eef(Q/q )[U( )8/ ( 2)”( )}
ED%@]/EDKIO(yth)
| —eesQgttye, @(O)r (V)31 )e/5(k)o(1) 1)
2q"(k{ +k3)  EDyq,EDy (59 ’
07 h07 Qo
2,0,a
, 17 h17 Q
EDQQQI/ ED(Io(gzgl)

FIG.5. Tree-level gluon emission diagrams (f) and (g) contributing to the quark-antiquark-gluon component of the transverse virtual
photon wave function at NLO. Imposing light cone three momentum conservation at each vertex gives for the diagram (f) ky = ko + k»

and § = ko + k; + k,. Similarly for diagram(g), k;y = k; + k, and § = ko + k; + k.
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where the energy denominators in Eq. (122) are given by

2 2 2 2 2 2 T + \2
qQ- -0 ki +m ki +m —q kg = 5
ED, ., = - = ky—— , 123
Wi =g < ok T2k g+ ) [\ Tgr ) Pl 123)
ED. . . :qz—Qz_ k(2)—|—m2 k%—i—mz_'_k%
90(9241) 2q+ Zkar 2kfr Zk;
_k1+ k+ 2 q+k+ k+ 2 _
- |k 2 k T 20 (ky--2% 2 24 Qaym? b, 124
e (i) e (R gha) s @ e siont ] 2
and the coefficients
- ki(q* k*) kT kT
02 =01 “Rolgr g, =0 (125)
(9) (6] ) (9) q+kfr

We can extract the transverse momentum dependence from the spinor and polarization vector structures in Egs. (118) and
(122) by using the spinor matrix element decompositions given in Eq. (A2). This procedure gives

u(0)e/5(k )M(O’)ZL 1+£ s a(0)ytu(0) — o a(0)y* [y, y/]u(0)) i_ﬂki
o\ I (k¢ + k) 2k )" 4k ’ kO
k+ 2
<k+> u(0)y* Y’u(O’)} (126)
0
and
s(U)e/s ko) = LT s s0u) + (X2 ) s )| [~ 2
T (K k) 2k ) )" e vy o
k+ 2 ) .
-2 () st fer. (127)
1
Inserting the expressions above into Eqgs. (118) and (122), we find for the sum of the diagrams (f) and (g) the result
a +( 1+ +\ 7 J
lp72—>qq924eef'%9;aoal{ _ ky (k + k3 )a(0 )M (1 ) i
(@7 e =2 a)" + 02 + m[(ks = ko) + g (kg = ha) + O+ mi® + Agpym?}]

K (K + k;m(owfg)v( )

o 3 _ Kt 2 + kt 2 = }
[(ko—q—‘l(I) +Q%g)+m2][(k2_ﬁkl) +Z§—k% (ko—q—‘lq) —I—Q%g)-i-mz—{—/l(g)mz}]

&), (128)

where the Dirac structures M( f and M{ g are defined as

Jj 1 k+ k+ J ki k;kl
My =1 [ 3 )30 = g U7 [}~ ke

m

2 \kg
. k+ . k+ kT m
Jo_ 2 i) J P22 i | =2
sty = q[(1 o2+ ()] - -5

A. Fourier transform to coordinate space

EA R

The Fourier transform to mixed space of the y; — ggg LCWF was defined by the expression (17). To simplify the
Fourier transformation, we first make the following change of variables (k;,k,) — (P, K) for the contribution coming
from the diagram (f) in Eq. (128):
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i
P=-k, +—q,
1 g
ky ki ki
K=k, e (ko + ky) = (ﬁ) [kz ki ko] (130)

and correspondingly the following change of variables (kg, k,) — (P, K) for the contribution coming from the diagram
(g) in Eq. (128):

k+
P=k,-—2q,
0 P
kK ki Kkt
K=k,——2 (kK +ky))=——) |k, — 2k 131

Next, performing the integration in Eq. (17) over the delta function of transverse momenta, we obtain the expression

- Xo+k X X, dD_ZP dD_ZK ] . 5 0
‘Iﬂ(/’“) q49 _ eq (k otk |+k )ﬂz_%/(zﬂ_)D_z/(zﬂ,)D—2 elP~Xo+2;1etK~Xzo\Iﬂ(’JL£) 499 (132)
and
D=2 D-2
Gri=ads _ Sk xotk xikix,) o p [ 7P [ dPTK ik gri—ade
P omer TR 2/(2ﬂ)0 2/(2ﬂ)1)—2e wrze e (133)

where the LCWF’s in Eq. (128) are written in terms of the new variables P and K and the following compact notation is
introduced:

k;’l"X}’l + k;‘:’—lxn’l
Sms =X = () 3
with X, = X,, — X,,,.
Making these simplifications, we can write the full Fourier transformed quark-antiquark-gluon LCWF as
e — g e Tk X0tk X+ 2%2) g ~qag, (135)

where the reduced wave function reads

. koki f_ k3N aij ks \iioi i
l//y" 999 — 4eeng(qT)2 M(O) 1 + ﬁ 5( A) m [}, ) 7/]] U(I)I<f)
0
- T k+ ij k+ J i
—a(0)y*|( 1+ 2k+ Sipy+ 4k+ v/l |v (1)I<g)

ml( kg k3 \? kf K\ 1. _ y
_2{<k§+k§) <kg T - ERENCIAG Iy |a(0)r r/o(1) pes. (136)

In the above expression, we have introduced the D-dimensional Fourier integrals of the type Z' and Z, which are defined in
Egs. (E1) and (E2), respectively, in Appendix E. For these integrals, the following compact notation has also been
introduced:

Il(f) = Ii(X0+2;1’ X205, Q%f)? w(f)7l(f)>7 I(f) = Z(X0+2;17 X120, Q?f)? w(f)’l(f))’
Tiy = T'(Xo12: %21, 00 ), 09 Ag): Ty = T(Xous2: Xar Qfy 0 A(g) (137)

with the coefficients
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q" ko ks q ki ks

Wy =—T 07 @y = —a L2 (138)
D=k (kg + k)2 @7 kS (ki + k)?

We now have the full expressions for the gluon emission wave functions with the massive quarks. In addition, it is
straightforward to check that in the massless quark limit the expression in Eq. (136) reduces to the massless quark result
obtained in Refs. [17,19].

VIII. THE DIS CROSS SECTION AT NLO

We now use the wave functions to compute the DIS cross section at NLO in the dipole factorization framework.

A. Quark-antiquark contribution

Let us first write down the gg contribution to the DIS cross section at NLO. Applying the formula for the cross section in
Eq. (19), we find the following expression:

dkl kb 2n8(qt P e
%l = ZNZ/M 2 /2k1*(2n) /d /d %1 ) _|#i 97 Re[l = ol

ho.hy

= dz D-2¢ D-2¢ 77149 —
‘<2n>4<q+>2;/0 g/ 20/ 477, Dl PRl — ol (139)

ho.hy

At the accuracy we are working in here, i.e., up to terms O(a.n@?), the wave function {7727 should be taken as z;/NLLqu,

neglecting the a? contribution from the square of the loop corrections. Using the expressions for the LCWFs in Egs. (31)
and (109), it is straightforward to obtain

2 2 _
Sl = 4 fQ 4(q* ﬂz(l—z)P(E) Kpa(IXon |V Q* +m%)

hohy 27|x |
2 & 2 %—2
[(—W) sl V) + (BN 4 O 140

where V" is given by Eq. (111). Adding everything together, the ¢g contribution to the total cross section can be written as

27|X o1 |

2
Ll = o0 / defz(1 - 2) /[ ( 0 +m> Kpa([xor| V' O* + %)
/)2 5-2
% [(M) KQ_2 |Xo1|\/m— ( s F)VL]RS[I — So1] + O(a,,,0?). (141)

27|X o1 |

Here, and in the following sections, we use the following the notation to denote (D — 2) and two-dimensional transverse

K0] Xl Xo /X

B. Quark-antiquark-gluon contribution

The ggg contribution to the DIS cross section at NLO is given by the second term in Eq. (19). This simplifies to

dkg o dkf o dkj 2x8(qT —k§ —ki —k3)
0L|qqg_2NCF / ¥ / T / e e
Z 2k (27) Jo 2kF(27) Jo 23 (27) 24

x/dD_zxo/dD‘le/dD‘zxzzz |7 =9992Re[1 — Sy1a). (143)

o hy,hy
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Using the expression in Eq. (136) for the gluon emission LCWF in mixed space, we obtain for the LCWF squared the result

2
S0 S = a4 Q) 22K (2L + Olama). (144)
o hyhy

where we have defined the function ICMy as

= (k)[4 (k5 + &) + (D, = 2) (k3 I P + (kg I4k7 (K + K3) + (D = 2)( PIIZ, P
— 2k k2K (kg + k) + 2k (kT +k5) = (D, — 4)(k5 )*Re(T!, T17)

q(]

ki k¢ ki ki .
+ m*(D; —2)(k3)* {(lﬁ(—?ﬁ)z' )P ﬁ| 2 -2 G k;())(kr e Re(Z(pT7,)|.  (145)

The computation of individual terms in Eq. (145) follows closely the detailed derivation presented in the case of massless
quarks. Therefore, for a detailed discussion, we refer the reader to our previous work [17,19].
Finally, inserting the result in Eq. (144) into Eq. (143), we obtain

c 40% (27) = dkj 5 K -k
0 |z = 4Naem(a F)Zf 9 () / dk*/ dk*/ q+ 2)

<[ KRell =Sl + Ol (146

C. UV subtraction

Since the UV renormalization of the coupling g is not relevant at the accuracy of the present calculation, the remaining
UV divergences have to cancel between the virtual gg and the real ggg contributions on the cross section level. Due to the
complicated analytical structure of the gluon emission contribution in Eq. (146),” the UV divergent phase-space integrals
cannot be performed analytically for arbitrary dimension D. Hence, it is desirable to understand the cancellation of UV
divergences at the integrand level.

In the expression Eq. (145), the first and the second term are UV divergent when x, — X, and X, — X/, respectively. All
the other terms are UV finite and we can immediately take the limit D = 4 at the integrand level. In order to subtract the UV
divergences, we will follow the same steps as presented in [17,19]. The general idea used in these works to subtract the UV
divergences rely on the following property of Wilson lines at coincident transverse coordinate points:

}(i_r};[thUF(y)]UA(X)ha = [Ur(y)t’], (147)
which implies that
lim 8012 = hm 8012 = SO] (148)
X, —X(

Thus, the UV divergences in Eq. (146) are subtracted by replacing the first and the second term with
|:Z’.Ef)|2Re[1 = Soin] {|Zélf)|2Re[1 = Soin] - |Iélf)UV|2Re[l = Soil} + |Ié_f)Uv|2Re[1 = Soil, (149)
|Il@|2Re[1 = Sonn] {|Iég)|2Re[1 = Soin] - |Ifg)uv|2Re[1 = Soil} + |ng)uv|2Re[1 = Soil, (150)
where the subtraction terms are given in terms of a single function Zi}:

Il(.f)UV = Iﬁv(xm, X720, Q%f), @D(f)» l(f)),
IEg)UV = Tiyv(Xo1. Xa1, Q%g), w(g),/l(g)). (151)

9 .. .
This is also true in the massless case.
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Now the function Zi5, has to be a good UV approximation of the full integral, i.e., it must satisfy

lim 7! = lim I{N (152)
X;—X( X=X
from which it follows that
lim Z¢,, = lim Z¢ ,
Rl 1) e R V10
xll—l}}(lI(J - XEI—I}}KIIU')UV' (153)

It is important to note that there is no unique choice for the UV divergent subtraction in Eq. (152). The only requirement for
the subtraction is that the UV divergence between virtual and real parts needs to cancel. Thus, it is sufficient for the
subtraction to approximate the original integrals by any function that has the same value in the UV coordinate limits (for
any D). Because of this cancellation, the integrals of the expressions inside the curly brackets in Eqgs. (149) and (150) are
finite, and one can safely take the limit D, = D = 4 under the x, integral.

In an arbitrary dimension D, the integral Z' [see Eq. (E5)] is given by

l'MZ—D/2

Ii(b, r, Q2, 607/1) = W

ri/oo duul_D/ze_”[Q2+”’2]e_z_z«2/u/w dirDI2g=win =5 (154)
0 0
It is straightforward to see that to get the leading behavior in the limit |r|*> = 0 we can set 1 = 0. This leads us to

_ ) o 2P e\ D2 [ ) . /D 2
Il(b,r,Qz,w)rzzozl(i[)D_gl"CZl) A duul_D/ze_”[Qermz]e_g_uF(z—Lljuw), (155)

where we have suppressed the dependence on the variable A in the notation.
Now there are several possible ways of performing the UV subtraction. Using the exponential subtraction procedure
introduced in [19], we approximate the incomplete gamma function with

D 2 D e

where the exponential is independent of u allowing for an analytical calculation of the u integral. This replacement has the
correct behavior in the UV limit [r|> — 0, but also is regular in the IR limit of large |r|> — co. Another option would be to
follow the polynomial subtraction scheme used in [17] (see also discussion in Appendix E of [19]). Here the subtraction
function is polynomial in r. This, however, introduces a new IR divergence, which must be compensated with another
subtraction. For the massive quark case, we present the derivation in the polynomial subtraction scheme in Appendix G.

Proceeding with the exponential subtraction scheme we substitute Eq. (156) into Eq. (155). This gives an explicit
expression for the UV approximation of the full integral

‘ B . 2-D/2 D RN, 7\ 32 _
Ziy(b,r, 0% w) = e r’(|r|2)"D/2F<§— l)e 2P eTE <M> K§_2(|b|\/ Q% +m?). (157)

47012 27|b|

In Egs. (149) and (150) we will need the square of the UV approximation Zi,, which must be integrated over r in D — 2
dimensions. This integral can be performed using the following result:

2\2-21(D _ )2 s 2-2 2,2
) 152 ) /dD—Zr(|r|2)3—De BRE _i{(‘lﬂ) : F(3 _2) +10g<7|xml d > + 2y + O(D —4)}. (158)

T 2 12-9 2 4
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D. UV subtracted results
Following the calculations in Sec. VIII C, we then obtain for the UV subtraction terms

)I5 a;Ck 40° VO +m?
|qquV = 4Ncaem< pn )Zf:% (q+)5 ]
1

- N2 2\12
V2 eV )

< e - H-bg< 2 (62 (3-3) o) -2
1(D,

D 4

(159)
and

4 2 2 _
|qqg|UV - 4Ncaem( ) e Q / / ( 2Q o ) %— (|X01| \% Q2 + m2)]2
[xo] /[xi] 7|Xo1|
vz e |3 K3 min (4m)>2 D x3,u?
X/o dkj (kg ) (g™ ko){[ 2 log( ké’)] [(2_%)1“ 3 > + log 4 +2yg
D, —-4)

- %((Di_é‘-)}Re[l - 801} + 0<D - 4)

(160)

Next, introducing the same parametrization as in the ¢g contribution k; = zg™, k{ = (1 —2z)g

sk = *,and k5 . = aqg", and
changing the variables from (k{, kj) > z, the sum of Egs. (159) and (160) yields an expression for the UV divergent ggg
subtraction contribution

2,min
PP 2 a,C VO +m? =
o |Iq(£; ovH@lov _ —4N,a,,40% | 2=E ef/ / K2—2(|X01| VvV O* +m?)]?
T [xo] J[x1] 27T|X01| :

x /01 dz[z(1 —z)]2{ B—i—log( ) +log< “ Z)] [(éﬂ_ZSFG —%) +10g<ﬂ> +2y4

+%%}Re[l — Syl +O(D-4). (161)

This expression precisely cancels the scheme dependent UV-divergent part in the gg contribution in Eq. (109). The
remaining terms in Eq. (141) are UV finite and regularization scheme independent

In the case of the exponential subtraction scheme, the sum of two UV finite terms in Egs. (149) and (150) (inside the curly
brackets) can be simplified to

C o dky 8( kit
= 4N, a,,40? (_a; F) > e / / / / dkg; / dkt / ki)
f X X

|| fm ‘fm —

)5

{7 2Lk 05+ ) + (457

|x 2 : e~ 1%/ ([x01 *e'E) -
X{—§Z| G5 PRl = Syl = [Ko(lsorly /O + m?)PRell = S
+ (kg )?[2k7 (K] + &5) + (3 )?]

x21* | H(1:2)7 e~ xarl?/(IxorPer®)

Re[l —Soia] = ———— Re[l = Spi] pp. (162
P G0 PRelt = Sl - S Kollnl O, mPRelt - Sl (162
Here we have introduced the notation:
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nym o d —ulO m? x42:1 2 u/w dl oo
G = e e [ e (163)
' o 0o "
and
0 A2 2 X0:] 4+ 2 u/w o
gEn):m) — / d_ue_u[QEq)er ]e_%/ /) ge—t[w(g)l(g)mz]e—# (164)
g 0 u A o

|
for the integrals that appear. These integrals could be seen =~ at NLO with massive quarks. This cross section can be
as generalizations of the integral representation of Bessel ~ written as a sum of two UV finite terms
functions that appear in the massless case. They could
doubtlessly be transformed in many ways, but since these
integrals are very rapidly converging at both small and large
values of the integration variable, they should be well suited 2 = O—L ;‘;bt +o ;‘;}; + O(a,,,a? ) (165)
for numerical evaluation as is. The corresponding result in
the case of the polynomial subtraction scheme is written
down in Appendix G.

where the first term in Eq. (165) is the mass renormalized
IX. LONGITUDINAL PHOTON CROSS SECTION and the UV subtracted gg contribution, which is obtained
by adding the UV subtraction term in Eq. (161) into

We can now gather here the main result of our paper, oo
Eq. (141). This gives

which is the longitudinal virtual photon total cross section
|

o [subt — 4Naem4QZZef/ dz[z(1 = 2)] //H (aSCF>{§—%2+IOg2<IL_Z>—l—Qv(J’;Z)-l-L(V;Z)H

x[Ko<|xO1|¢Q2+m2>]2+(“‘ F)KOUXOleum Tz xOo}Reu—sm] (166)

where the functions Q),(y;z), L(y;z), and Z,(z.X,;) are explicitly written down in Eqs. (100), (101), and (112),
respectively. The first term, not proportional to ay, is explicitly the known leading order cross section for massive quarks
(see e.g., [34]).

The second term in Eq. (165) is the UV finite ggg contribution, which is obtained by replacing the first two terms in
Eq. (146) with the subtraction term derived in Eq. (162). This can be simplified to

sub 2 (%Cr 2 dk+ oki)
o) [0 = AN 1, 40 ( . )zf:ef/ / / / dk*/ dk*/ +)5
X, JX,

{2k + )+ G
X0 |2 . e~ X200/ ([xo1[*e'E)
| P G0 PRelt = Sl - S Kol [, + P )PRell - S0}
+ (kg 267 (K7 + &) + (k)]
X 2 . e_‘x2] |2/(‘X01 ‘ZEVE) —
| Pl g pRelt - Sl - Kol /5, ) PRel = S0}
64 X2 ‘
ko ki +(pt + +(pt + (1:2)11(1:2)
0 [k (kg + k3 ) + kg (ki =+ k3)] (%20 - X21)[G ) ][G,) IRe[1 = Spuo]
m? K g ko o]
+E(kz+)4 [M[gm - m[g” @ Re[l—sz]} (167)
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involving the generalized Bessel function integrals from
Eqgs. (163) and (164). As discussed in more detail in
Secs. VIA and VII A, in the limit of zero quark mass
these expressions reduce to the known results in
Refs. [16,17,19].

X. CONCLUSIONS

In conclusion, we have here calculated, we believe for
the first time in the literature, the one-loop light cone wave
function for a longitudinal photon splitting into a quark-
antiquark pair including quark masses. Such a wave
function is a central ingredient in any NLO calculation
in the small-x dipole factorization formulation for proc-
esses involving heavy quarks. In particular, while we
concentrated here on the total cross section, this also
includes many possible diffractive or exclusive cross
sections that will be important parts of the physics program
at future DIS facilities.

Our result includes a renormalization of the quark mass
in a pole mass or on-shell scheme. The peculiarity of the
longitudinal photon polarization state is that vertex cor-
rection type diagrams do not contribute to mass renorm-
alization, since at tree level the longitudinal photon vertex
does not have a term proportional to the quark mass. This
issue will be different for the transverse polarization which
we intend to return to in future work. There, one will have
to address the issue of the consistency in the mass
renormalization between the propagator and vertex correc-
tion diagrams. We plan to revisit the issue of quark mass
renormalization in LCPT much more thoroughly in a
separate paper.

After obtaining the one-loop LCWF we also Fourier
transformed our result to mixed transverse coordinate—
longitudinal momentum space. Combined with the tree-
level wave function for a quark-antiquark-gluon state this
enabled us to obtain an explicit expression for the total
longitudinal photon cross section in the dipole picture. The
obtained cross section still has, just like the one for
massless quarks, a high energy divergence when the
longitudinal momentum of the gluon becomes small.
This divergence (or large logarithm) needs to be further
absorbed into a BK or JIMWLK evolution of the Wilson
lines describing the target. This factorization procedure,
together with NLO renormalization group evolution,
will need to be developed in a consistent way to confront
our calculations with experimental data. We have not
elaborated on this issue here, since this will proceed
similarly (and have similar problematic issues) as for the
case of massless quarks, discussed in previous works
[17,18,24,33].

The case of the transverse photon (virtual or real) is even
more important for phenomenology, but much more com-
plicated algebraically. It will be addressed in a forthcoming
separate publication, where we will calculate the light cone
wave function and the DIS cross section for transverse

virtual photons. The combination of the two results will
enable one to calculate a variety of DIS process cross
sections in the dipole picture at NLO with massive quarks.
In particular, this includes the heavy quark structure
function F¢§, which could be expected to be a crucial
observable for the physics of gluon saturation at the future
Electron-Ion Collider (EIC) [69,70].
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APPENDIX A: HELICITY DECOMPOSITION
FOR LIGHT CONE VERTICES WITH
MASSIVE QUARKS

In this Appendix, we describe how to express QED/QCD
emission vertices in the helicity basis by decomposing the
spinor structure of a given vertex to the light cone helicity
nonflip and flip components.

Following the discussion presented in [19], the decom-
position for the light cone vertex (without coupling and
color structure) in the LC gauge can be expressed as'”

;z<1>e/ﬁ<q>w<o>:%ﬂum(m—ea;zmyfw(ox (A1)

where y and  can be either positive or negative massive
spinors, i.e., u or v. Note that we are now dealing with on-
shell momenta and polarization vectors in the light cone
gauge. We also use three-momentum conservation, with the
appropriate signs depending on whether y and @ are
negative or positive energy spinors. The photon here is
an incoming one with polarization vector ¢;(g); the
corresponding expressions for an outgoing photon can
be obtained by complex conjugation. To be explicit,
momentum conservation means that § = k, + k, for pair
production y(1) = v(1), w(0) =u(0) or y(1)=u(l),
®(0) = v(0). But for gauge boson absorption by a quark,
x(1) =u(1), »(0) =u(0) and momentum conservation
means ¢ + lAco = IAcl. Vice versa, for gauge boson absorption
by an antiquark, y(1) = »(1) and @(0) = »(0) momentum
conservation means § + lAcl = lAco.

"Here we again suppress the notation and write y(k;, h;) =
(1) and w(ky, hy) = w(0).
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Using the Dirac equation and Clifford algebra, it is straightforward to show that Eq. (A1) can be decomposed into three
independent spinor structures

}eﬁzu)y* . 7w(0)
+el {— S A7 (F m)l0) + %)’((1)(4: m)Vij(O)} ’ (A2)

where terms appearing in the first line are the light cone helicity nonflip components and terms appearing in the second line
are the helicity flip components. The (F) sign of the mass term is determined from

(=m)u(0)
(+m)(0)

<1

—

§
N—

e = {7, (a3

(7 mo(0) = {
Here, the obtained result in Eq. (A2) is valid in arbitrary spacetime dimensions, but we emphasize that it relies on plus and
transverse momentum conservation.

APPENDIX B: NUMERATOR FOR THE QUARK SELF-ENERGY DIAGRAM (a)

In this Appendix, we present some details for the calculation of the quark self-energy diagram (a). The numerator for the
vertex correction diagram (c) is discussed in the following section.

The numerator for the diagram (a), where sum over the internal helicities, gluon polarization, and color is implicit, can be
written as

Nt — ngq# (7(0)e/ , (k)u(0)][7(0")e/2 () 070" )y +o(1)]. (B1)

Using the decompostion in Eq. (A2) with kinematical variables as in Fig. 2(a), we can express the spinor structures inside
the square brackets in the helicity basis as

a(0)e/ (u(©) = m{[(l it )0 O 00 + (o )0 )|
+5 (i) a0 o) e (82)
and
u<0’>e/z<k>u<o">=m{[<l—%)ak’ 0 u0) = ()10 @)
-5 () w0 ruton ez (B3

where the variable K is defined in Eq. (35). Using the completeness relation for the spinors

Zu (0)a(0') = k/i + m, Zu (0Ma(0") =k/g + m, (B4)

'

and noting that y*(k/{ +m)y™ =2(kg —k*)y" and y*(k/{j + m)y" = 2k y*, we obtain
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dee ;08 CF{K k+>2 y Kkt :
NL =T Zraa B (2 ) s s g(0)yte(l) — (— (O)y 1l E o (1) | KTKE
“ ¢ (1 -1) 2k5 ) PP 4kg

m2 T\ 4 y .
-2 () O o)l (B)
0

In Eq. (BS) the terms linear in the transverse integration variable K vanish due to rotational symmetry. The remaining tensor
contractions are evaluated as follows: First, the tensor product of transverse momentum variable K is replaced with
K'KF — 6’&))K2 /(D = 2), which is true under the integration over the (D — 2)-dimensional transverse momentum integral

dP2K KKk N 5’(/2)) dP2K K2
CnP2KZ+4A,  (D-2)) Qo)P2KZ+A,

(B6)

The gluon polarization vectors and the transverse gamma matrices appearing in Eq. (B5) are kept in (D, — 2) dimension
with D, > D. Thus, summing over the helicity states of the gluon and performing the remaining tensor contractions yield

T o CIIN{[ (RS ROTARIES S S

kg K

Finally, using the parametrization k*/k; = & and definition of the leading order QED photon splitting vertex in Eq. (23)
gives

292 Cr

N@>_gal—g)dan%Z?{PI+(1—§Vﬂéﬁ+nﬂ&—kgﬁiiﬁ

e el . (BS)
APPENDIX C: NUMERATOR FOR THE VERTEX CORRECTION DIAGRAM (c¢)
The numerator for the diagram (c), where again sum over the internal helicities, gluon polarization, and color is implicit,

can be written as

—eepqg Qtaoao ayay

Ny = e [(0)¢/ o (k)u(0")][@(0")y "o (1')][p(1")e/5(k)v(1)]. (C1)

Using the decomposition in Eq. (A2) with the kinematical variables as in Fig. 3(c), we find

(0)e/()u(0) = ﬁ{[(l 7 ) 100 ) + (G )0 b o)

m k+ 2 . 3
+5(k—+> ﬁ(O)yW’u(O’)}e{f (C2)
0
and
B(1)e/3(K)(1) = %{[(H “)5“ o1 >y+v<1>+(ﬁ)m'ww,y’]v(l)}w
k() (1+5) 2k )Py 4kt
k+
2 () swran ez, ()
2 \k;
where we have introduced the variable
tgt
R=K+—P. C4
W (C4)
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Substituting Eqgs. (C2) and (C3) into (C1) and following the same steps as in Appendix B, we obtain the following result:

* 50a . . k+q+ (k+)2 (D _4)
= v a9 ik i k s
Ny = =2 Vi (QZCF){G(MS(D,\.)K (K" e > R |1 4=

eesQ . i q" i k' i
+ 250:001 q% (gch)mu(O)}/+7 U(l)ﬁ {b(c)K - EC(C)P ’ (CS)

where we have defined the coefficients a (), b, and c(.) as

Kk (G kDK kD (D, - 4)

Ae) = (k)2 )2 -
et @] e
Finally, using the parametrization k = zq ™, k{ = (1 —z)q", and k™ = &k gives
N(Lc) = 26,4, VZEZ?E’(QZCF){;Z [(1 ;Z) 4 (1-90 ;Z(l -9) _ (Dsz_ 4) 52}
x oy, K <Kk + lg—sz> + (fi) mzf(D,.)}
#2800, “LE @omaOyr o) |51 K e[ P e

where f(py =1+ (Ds—4)/2.

APPENDIX D: FOURIER TRANSFORM INTEGRALS FOR THE QUARK-ANTIQUARK FOCK STATE

In this Appendix, we present the relevant integrals that are needed to calculate the Fourier transformed y; — gg LCWFs
in mixed space up to NLO. To begin with, let us first consider the following general integral:

dD—2P eiP‘xm DI
/ (27)P2 [P* + A7)’ (b1

where Xy, = Xy — x; and P? + A? > 0. The standard technique to compute these types of integrals is to first introduce a
Schwinger parametrization for each denominator,

11 /oo
—=— [ A ler, A B>0. D2
AP T Jo p (D2)

Applying this to the general integral in Eq. (D1), we obtain

dD—2P iP-xq; dD—2P ) 0 ,
papr il = | e [ dre P (D3)
(27)P~= [P~ + A7) (27) 0

The expression above appears in a simple Gaussian form in P, and hence, we can perform an integral over the (D — 2)-
dimensional transverse momentum space by using the Gaussian integral

d"y d d 1 1
—J — VY byl =,)/— “(a V). .b:b. D4
/(2ﬂ)nexp|: iizlaljyzyj:| |:; Iyl:| (4ﬂ)"detanp{4(a )1/ i j:|’ ( )
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wherey = (y1,¥2.....¥n), b = (b1, b, ..., b,) and a;; is a symmetric, nonsingular, and positive defined n x n matrix. This
leads to the result

dD—ZP eiP-xm b 2 ol 2
= (47)1—2 der! =38 o0, D5
/ e S I (D3)

Finally, the remaining one-dimensional integral can be performed by using the general formula
B\ #/2
/ ditP~le Aot =2 1 K_;(2VAB), A,B >0, (D6)
0

where K_;(x) is the modified Bessel function of the second kind. Note that for positive x values K;(x) is an analytic
function of #. In addition, K4(x) is even in f, i.e., K4(x) = K_g(x). This gives the result

|

dP2p P 1 A D o
( ) Ko ([xor[). (D7)

@o)P2 [P+ A% 27 \2afxq1]
Note also that if the general integral in Eq. (D1) contains a logarithmic function, one can first use the relation log(A) =
lim,_ 0,A* and then apply the Schwinger parametrization formula in Eq. (D2). B

Let us then use these results by considering first the general integral in Eq. (D7) with A = Q? + m?. In this case, the
result reads

dD—ZP iP-xq; 1 N2 2 g—Z _
/ = (V) KealxaVE ) (DS)

27)P=2 P2 + Q0% +m?]  (2n) 27|Xo1 |

For the NLO contribution, we also need [in addition to the result in Eqgs. (D8)] the following set of transverse Fourier
integrals in D = 4:

dP-2p oiPXo P24 0%+ m? 1 (VO +m? 52 - .
D2Tp2 L A2 57log =2 2 = Kp_5(|Xo1|v/ Q% + m?)
(27)P72 [P> + Q* + m?] Q>+ m (27) \ 2z[xq| ’

« {-%m(W) +‘I’0(1)+O(D—4)}, (DY)

/ d2P iP-x, 1 1
e 1 — —
(27)? PO om0 o+ A

~ | Kol V& ) —K0(|x01|\/Q2 e+ S (D10

/ dZP esz0]
(27:)2 P2 + 0% + m?][x(1 — x)L2 + (1 — x)A; + xA,]

{Ko (%01 v/ Q% + m?) - K0(|X01 Q2+mz+’<>}[ ( (1_5)_1(1;52;12) : (D11)

I=x x(1 = (o]l

~(2n)

Here, the coefficient Wy(1) = —y; (Euler’s constant) and the variables (& z,x) €[0,1], A;,A; >0, and
L2 = (1 — &)?P? > 0. The coefficient « is defined as

— gm? oy 21=9
<1—5><1—x>[x<1—5>+(@)][f“ )+ (l (1_Z>)} (D12)
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APPENDIX E: FOURIER TRANSFORM INTEGRALS FOR THE QUARK-ANTIQUARK-GLUON
FOCK STATE

For the gluon emission diagrams from a longitudinal photon state, we need to calculate the following two Fourier
integrals:

dD—ZP dD—ZK KieiP-beiK»r

Ti(b,r, 0% w, 1) = 2—0/2/ = = El
( r Q @ ) H (27[)D—2 (2”)D—2 [P2+ Q2+m2][K2 +a)(P2+Q2+m2+/1m2)} ( )
and
Z(b,r, 0% w,A) = HZ—D/Z/ dP-2p / dP2K ) oiPb KT ] | )
(27)P2 ) (27)P72 [P2 + Q% + m?|[K? + o(P? + Q% + m? + Am?))

First, using the Schwinger parametrization, Eq. (D2), for the denominators appearing in Eqs. (E1) and (E2), and then
performing the remaining transverse momentum integrals by using the (D — 2)-dimensional Gaussian integral Eq. (D4)
yields

) _ i2~D/2 oo 2 [ d _ b2
i e i — —twim? -2 S —(s+tw)[0*+m?| ,~ T
Tib.5. 00 =gt | Tt [T e me et e
and
— 2-D/2 © )y 2 [ ds ) A2, o b2
I(b’ r, sz w, /1) = (4”)D—2/) d”l_D/ze_"Mm e A W e_(“Jr"“)[Q +m ]e A+iw) | (E4)

By making the change of variables u = s + f@ and then changing the order of integration leads to the result

. - e _ 2 fu/w 2
Zi(b,r, Q* @, 1) = I 5 r’/ duu!~P/2 110 +n] =57 derPI2 1o’ o= (E5)
2(47‘[) 0 0
and
B 2-D/2 0 S, b2 u/w s
Z(b,r,0* w,1) = W% duu!=P/2e=ul@+m] o=3- | dee!=D/2gtwim” p=3r (E6)

In an arbitrary dimension D, the integral over t would then give a dependent of incomplete Gamma function, preventing
us from expressing the final result in terms of familiar special functions, e.g., the modified Bessel functions. These forms,
however, serve as a sufficient starting point for deducing the appropriate UV subtractions in Sec. VIII C.

APPENDIX F: USEFUL INTEGRALS

In this Appendix, we present the results of the integrals Z .|, Z,, and Z .3, appearing in the calculation of Eq. (82). These
integrals are given by

1d A 0? 2 1 1
o= [ oe()] = we(E) e(55) i) ()

1 A, Q2+m2> 1 < 1+y > 1 <Q2—|—m2)
Len = dé|=log|—= )| ==log| —— | +2——ylog| ———— | ——(y—=1)log| ——— ), (F2
2 LZ 5[ g(ﬁ;)] g< e o\ 5 2Z(7/ ) log e (F2)

and
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I A, 1 Q2+m2> 31 1( 1) ( 1+y )
Loy = déé|—log| = || =—zlog| —F5— | +5———-— l1——|ylog| —————
5’3 /1/1 65{ g<M2>] 2 g( ? 2 2z z 2z o8 1+y-2z
1 1 02 + m? "2 02 + m?
1—— -1 I - 1 X F
2z< 22) (r=1) og( m? ) 2207 2\ 2 (F3)

In the above expressions, we have used the notation y = /1 + 4m?/Q?, introduced in Eq. (81).

APPENDIX G: DETAILED DERIVATION OF THE SUBSTRACTION TERMS IN THE POLYNOMIAL
SUBTRACTION SCHEME

Following the subtraction procedure introduced in [17], the correct UV behavior of Eq. (155) could also obtained by
simply replacing the incomplete gamma function with

r(?—l,“iiw) I—>F<§—l>. (G1)

This leads to the UV approximation

2y2-D/2

Zin (b, 07) = U e ey 2er (3 -1) (V) KeaV@T0D) (@)

of Eq. (155). This approximation has a Coulomb tail at large distances in r, leading to an IR divergence which is absent
when using the original expression from Eq. (155). Hence, in [17], an extra IR subtraction has been included, in order to
turn the Coulomb tail into a dipole tail, thus avoiding the appearance of the unphysical IR divergence.

All in all, in this scheme, the UV subtraction procedure can be written as

|Iéf)‘2Re[1 - Sona| & {|Ii |2Re[1 = Soi2]
= [IZv (x01. %20, 0 >| = Re(Zjy (Xo1. X20. Q ) v(Xo1. Xo1. Q%f)))]Re[l — Soil}
+ (I Z4v (o1 X20. Q7)) I = Re(Z{iy (Xo1. X20. Q) Ly (Xo1. Xa1. OF)))IRe[1 — Sy, (G3)
‘Ifg)FRe[l = Son = {|Ii *Re[l = Spp]
= [IZ4v (xo1. %21, OF >| — Re(Zjy (Xo1. X20. Q ) v(Xo1. Xa1. Q%@))]Re[l — Soil}
+ [IZ4v (Xo1. X2, Q( ))| — Re(Zy (Xo1. X20. Q%g))IUV(XOIv X215 Q(Zg)))]Re[l = Soil- (G4)

In the case of the polynomial subtraction scheme, we hence obtain

B+ (R, a,C  dk; d( o ki)
L|qt1tjf = c em4Q2( F>Z / l l / dk+/ dk+/ )5 :

(K0 P1285 O+ k8) + )71 P2 g PRl - )

X X X =
- |x2200|2 ' (|x2200|2 - |x2211|2) [Ko([Xo1] Q%f) +m?)’Re[l — 501]}
2
X .
(126 (k) + <k;>21{ 21 (G2 PRl - o)
X X X =
i (e S0l e - o

while all of the other contributions to the cross section are the same as in the exponential subtraction scheme.
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APPENDIX H: S© AND THE PAULI
FORM FACTOR

In this Appendix, a cross-check of our results is
provided, by comparison with the literature. The usual
parametrization of the ye~e™ or yqg vertex function in
QED and/or QCD (based on Lorentz and gauge invariance,
and discrete symmetries such as parity) can be written as

[*(q) = Fp(q*/m)y" + Fp(q?/m?) i (HI)

with the Dirac and Pauli form factors, and
o = (i/2)[y",y"]. The relation (H1) relies on energy
and momentum conservation at the vertex, and requires
the two external fermion lines to be on mass shell. The

|

photon virtuality g is thus the only scale, apart from the
fermion mass m and QCD nonperturbative scales.

In the case of a y; — qg splitting, only the y =+
component contributes in light cone gauge, due to the
longitudinal polarization vector. Including the spinors for
the outgoing quark of momentum k, and antiquark of
momentum k;, one obtains

@(0)* (q)v(1) = Fp(g*/m*)u(0)y v(1)

+ ol ) a0l (1),
()

Using momentum conservation kf + k} = ¢#, one can
rewrite Eq. (H2) after some algebra as

+\2 + ot J J
O (@)0(1) = [P/ + = Fola? ) o) + Pt /) BB B a0
2 mZ - . .
= [Fota oty + ZEELD a0y o) + Futar o). 2wty ), 1)

using the same notations P and z as in the rest of the present article [see Eq. (28)]. Moreover, using momentum conservation
ki + ki = g* and the on-shell conditions k3 = k3 = m?, the photon virtuality ¢ can be expressed in terms of P and z as

g% =2m?* + 2kpky, =

P2 + m?

—Z(l ey (H4)

On the other hand, in Sec. V, the initial state LCWF for y; — ¢g as been calculated at NLO accuracy in QCD. It has the

general form

vi—aq eey QO [_
Yo = aoalmqt{”(o)7+v(l)[1+

with VE and S collecting the helicity nonflip and helicity
flip contributions respectively. One recognizes the same
two Dirac structures in Eqs. (H3) and (HS5). Apart from the
normalization, there is however a major difference between
the vertex function (H3) and the LFWF (HS): only the +
and transverse components of the momentum is conserved
in the splitting in the LFWFE. Due to the absence of the
conservation of the — component of the momentum, the
relation (H4) is not valid for the LFWF, so that VX and St
a priori depend on ¢, P?, and z independently. Indeed, the
relation (H4) is equivalent to P? 4+ m? 4+ Q% = 0, meaning
(EDpo) = 0.

For that reason, the two coefficients V- and St con-
tain more information than the Dirac and Pauli form
factors, and can be related to them only when impos-
ing the relation (H4). In such a way, one obtains the
constraints

A CF

T +)2 a
VE +2(Zglzl+ ijﬁ(O)y+ij(1)[ ;ﬂSL} (H5)
_a;?] (2?711) LPZ T (q%/m?). (HO)
a,Cg L m> St
{ 2 ] [V 2z(1-2)(2z - 1) } P =0
= Fp(q*/m*) = 1, (H7)

which can be used to cross-check our results for the y; —
gq LCWF at NLO with massive quarks. Note that V- and
S* depend on ¢?, P?, and z independently (and m?), and we
are then imposing one single relation between them,
whereas the form factors depend only ¢?/m?, so that the
z dependence has to drop. Due to this observation, the
relations Eqgs. (H6) and (H7) impose very strong constraints
on YVt and St.
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The form factor S receives contributions only from the two noninstantaneous vertex correction diagrams Figs. 3(c) and
3(d), and by symmetry one has

St =S8t +8(, =S — (2 (1-2)). (H8)

From the explicit calculation of diagram (c) (see Sec. V D), one gets

i BJ

P/B
sty =2 [z -o{pe-1-28 5

+[z—-1- zé}éb’o} +O(D —4). (H9)

Note that the expression Eq. (H9) for S(LC ) is fully finite, both in the UV and at & = 0, which is expected since S* is absent at

tree level.
Using the Feynman parametrization, one can write B, and 53/ as

[i?] - [) | dx{—lef} (1 =)L + <11 —X)A| +x8,]° (H10)

Furthermore, using the change of variable x > y = £+ (1 — £)x, these expressions can be simplified into

By 1 ! 1 1
| =——= [ d = —. HI11
["15 ] g —5>/§ y[o _5)} T S 1 g T ey w1 R
Inserting Eq. (H11) into Eq. (H9) and changing the order of integrations one finds
{2z-1-z2(y &) + [z -1 -z£]¢}
=2 d = —+O0(D—-4
Z/ y/ P Ot -+ 0+ ) + -9} P Y

_ {[z—l—zny]+z(1— )} ~

where in the second line we have again performed the change of variable £ — 5 = 5

Up to this p01nt we have considered S<L) in the general kinematics relevant for the LCWF. Let us now impose
—Q? — m? in order to study the correspondence with the Pauli form factor. In that case, the integral over y becomes
polynom1a1 and one obtains

L B 1 {2(2z=1) =3z} B
S(c)|P2=—Q2_m2 = ZA d’7 {m2 _ Z(l _ )[1 _ Z(l _”)]qz} + O(D 4)

e {z—2+3} _
= [ g OO
1

! 1
B EA dx{nﬂ — (0 =10)¢*} {(z2=2+430)0(z—x) +(z+1=37)0(xy -1+ 2)} +O(D-4)  (HI3)

using the change of variable n — y = z(1 — ), and then symmetrizing the result with respect to y <> 1 —y.
Including the contribution of the diagram (d) as prescribed by Eq. (H8), one finally gets

(2z—1)

1
St I G / dy + O(D —4), H14
=0 2 Jo THAm =x(1-20)q’} (P-4 )
and hence from Eq. (H6)
C 1 m>
F 2m2_[“s F}/d +0(D-4). H15
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In order to have an expression valid also in the timelike case, one can restore the i0 by looking at the relative sign of ¢ and
i0 in the energy denominators at the beginning of the calculation. Then,

2

Fp(q*/m?) = h?] /01 dy e —x(lni;()qZ o " o(D —4).

(H16)

This is indeed the known result for the Pauli form factor at one loop in QCD, which is identical to the QED result [71,72] up

to the replacement a,C <> a,e7.
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