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We have explored the multicomponent structure of electrical conductivity of relativistic Fermionic and
bosonic fluid in the presence of a magnetic field by using the Kubo approach. This is done by explicitly
evaluating the thermomagnetic vector current spectral functions using the real time formalism of finite
temperature field theory and the Schwinger proper time formalism. In the absence of a magnetic field, the
one-loop diagramatic representation of the Kubo expression of any transport coefficients is exactly the
same with a relaxation time approximation (RTA)-based expression, but this equality does not hold for a
finite magnetic field picture due to a lack of proper implementation of quantum effect in a latter approach.
We have shown this discrepancy for a particular transport coefficient—electrical conductivity, whose
starting point in the Kubo approach will be an electromagnetic current-current correlator and its one-loop
skeleton diagram carrying two scalar/Dirac propagators for a scalar/Dirac fluid. Through a numerical
comparison between RTA and Kubo expressions of conductivity components (parallel and perpendicular),
we have attempted to interpret a detailed quantum field theoretical effect, contained by the Kubo expression
but not by the RTA expression. In a classical RTA expression we get a magnetic field independent parallel
conductivity due to zero Lorentz force but in the field theoretical Kubo expression, it decreases and
increases with the magnetic field for a scalar and Dirac medium, respectively, due to the Landau
quantization effect. This parallel component of conductivity can be interpreted as a zero momentum limit of
quantum fluctuation with the same Landau level internal lines, while for a perpendicular component of
conductivity, fluctuation with Landau level differences �1 are noticed, which might be a new realization
of transportation in a field theoretical sector.

DOI: 10.1103/PhysRevD.104.056030

I. INTRODUCTION

Research on quark gluon plasma (QGP), which can be
produced in heavy ion collision (HIC) experiment facilities
is a mature branch of high energy physics, where a broad
band of basic physics from classical mechanics to quantum
mechanics to statistical mechanics to quantum field theory
are largely cultivated. As interesting as it is, the creation of
very strong magnetic fields of the order 1019–1020 G
during noncentral or asymmetric HICs has thrown a
plethora of questions requiring a careful study. Novel
phenomena such as the chiral magnetic effect [1], magnetic

catalysis [2], and inverse magnetic catalysis [3–5] ask for a
deep understanding of the underlying theoretical aspects of
QGP. An extensive discussion of the effects of a magnetic
field on hot quantum chromodynamics (QCD) matter was
discussed in Ref. [6]. In nature, strong magnetic fields of
the order 1012–1013 G in neutron stars and an even higher
magnitude of 1015–1016 G in magnetars are known to exist
[7,8]. These values are smaller as compared to values of the
magnetic fields created at the Large Hadron Collider (LHC)
and the Relativistic Heavy Ion Collider (RHIC). Therefore
HIC provides us with a unique opportunity to investigate
properties of hot QCD matter under the influence of
magnetic fields.
Being an important quantity, transport coefficients of

QGP is also suspected to be modified due to a strong
magnetic field. Their microscopic estimations become
quite important as they enter as input of evolving QGP.
Based on that interest, microscopic calculations of transport
coefficients like shear viscosity [9–17], bulk viscosity
[18–22], and electrical conductivity [12,23–35] for the
relativistic systems in the presence of a magnetic field
have bee rigorously studied recently. Relaxation time
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approximation (RTA) of kinetic theory and Kubo formal-
ism are two frequently used approaches for microscopic
calculation of transport coefficients.
In the absence of a magnetic field, RTA and Kubo both

come to the same expression on conductivity, when we
establish the inverse relation (τc ¼ 1=Γ) between the
relaxation time τc of RTA and thermal width Γ of Kubo.
Interestingly, the electrical conductivity is realized as a one-
loop diagram of an electromagnetic current-current corre-
lator in the Kubo framework, while the same is realized as
kinetic flow in a relaxation time scale due to an applied
electric field in the RTA framework. In the presence of a
magnetic field, multicomponent structures in transport
coefficients are found and an anisotropic transportation
will be observed. Using the RTA formalism [10–12,17,
35–37], it has been seen that the transport coefficients
become anisotropic with a structure of seven viscosity
components and three conductivity components. Along
with relaxation time τc, the cyclotron timescale τB, which is
completely present at a finite magnetic field, creates
different effective relaxation timescales for different com-
ponents. When one attempts to calculate those multi-
component transport coefficients in the Kubo framework,
instead of getting τB, Landau quantization in propagation
amplitude basically appears. For viscosity, the detailed field
theoretical multicomponent structures were first revealed
by Ref. [38], and the present article aims for the corre-
sponding Kubo structure for electrical conductivity.
Although Refs. [23,24,34] attempted to explore the
Kubo structure of electrical conductivity, our calculations
have found some additional information, which will be
discussed in detail in the result section. In short, the
present work has discovered quite new information on
perpendicular components of electrical conductivity, which
were absent in earlier Refs. [23,24,34]. In our work, we
adopt the Kubo formlism equipped with Schwinger’s
proper time formalism [38–40] to calculate electrical
conductivity in the presence of an external magnetic field
which involves the evaluation of correlation functions [41].
The article is organized as follows. In Sec. II, we study

the spectral functions of complex scalar and Dirac theory
and obtain their derivatives in the static limit. The results
are then used to calculate conductivity in the absence of an
external magnetic field. The results of this section are used
for the subsequent sections. In Sec. III, we compute the
spectral functions of complex scalar theory and Dirac
theory in the presence of a magnetic field using
Schwinger’s proper time formalism. Here we use the
propagators obtained from Schwinger’s proper time for-
malism which basically shows that the analytic structure of
the propagator contains a magnetic field which has been
obtained from the Lagrangian. The Landau levels are
present in the propagator as summed up indices. In
Sec. IV, the conductivity is calculated in the presence
and absence of an external magnetic field making use of the

Kubo formula [41,42] and employing projections [43] thus
calculating transport coefficients along several directions
relative to the magnetic field. Various calculations used in
the paper are given in the appendixes. Throughout this
paper we use the natural system of units with ℏ ¼ c ¼ 1
and the metric tensor gμν in flat space given by the
signature ðþ;−;−;−Þ.

II. THE SPECTRAL FUNCTION OF THE
VECTOR CURRENTS

In the Kubo formalism, the key microscopic quantity
required for the calculation of the electrical conductivity
tensor (σμν) is the retarded vector current correlator
hJμðxÞJνð0iR using which the in-medium spectral function
ρμνðqÞ can be defined as

ρμνðqÞ ¼ Imi
Z

d4xeiq·xhJμðxÞJνð0iR: ð1Þ

Since the calculations are being done at finite temperature,
we have taken an ensemble average h…iR of the retarded
two-point correlation function. The spectral function can
alternatively be expressed in terms of the time-ordered
correlation function as

ρμνðqÞ ¼ tanh

�
q0

2T

�
Imi

Z
d4xeiq·xhT cJμðxÞJνð0Þi11; ð2Þ

where T c is the time-ordering operator performed on the
Schwinger-Keldysh type contour C on the complex time
plane, as shown in Fig. (1); the subscript 11 corresponds to
the two points being on the real horizontal segment “(1)” of
the contour C.
In this work, we will mainly consider two systems: (i) a

system of charged scalar Bosons (spin-0) described by the
complex scalar field ϕðxÞ, and (ii) a system of charged
Dirac Fermions (spin-1

2
) described by the Fermion field

ψðxÞ. The are respectively described by the following
Lagrangian (densities):

LScalar ¼ ∂μϕ
�∂μϕ −m2ϕ�ϕ; ð3Þ

FIG. 1. The symmetric Schwinger-Keldysh contour C in the
complex time plane used in the real time formalism (RTF) with
t0 → ∞ and β ¼ 1=T. The two horizontal segments of the
contour are referred to as “(1)” and “(2)” respectively.
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LDirac ¼ ψ̄ðiγμ∂μ −mÞψ ; ð4Þ

where m is mass of the particles. The corresponding vector
currents [Noether’s current for a Uð1Þ global gauge trans-
formation] are given by

JμScalar ¼ ie½ϕ�ð∂μϕÞ − ϕ�ð∂μϕÞ�; ð5Þ

JμDirac ¼ eψ̄γμψ : ð6Þ

Using Eqs. (5) and (6) the correlation functions of the
vector currents hT cJμðxÞJνð0Þi for the respective type of
fields considered can be calculated (see Appendix A) and
we get from Eqs. (A6) and (A15),

hT cJ
μ
ScalarðxÞJνScalarð0Þi11 ¼ −

Z Z
d4p
ð2πÞ4

d4k
ð2πÞ4 e

−ix·ðp−kÞD11ðp;mÞD11ðk;mÞN μν
Scalarðk; pÞ; ð7Þ

hT cJ
μ
DiracðxÞJνDiracð0Þi11 ¼ −

Z Z
d4p
ð2πÞ4

d4k
ð2πÞ4 e

−ix·ðp−kÞD̃11ðp;mÞD̃11ðk;mÞN μν
Diracðk; pÞ; ð8Þ

where D11ðk;mÞ, D̃11ðk;mÞ, andN μν
Scalar;Diracðk; pÞ are respectively given in Eqs. (A5), (A13), (A7), and (A16). Evaluating

the d4x integral in the spectral function of Eq. (2) using Eqs. (7) and (8) produces a Dirac delta function δð4Þðq − pþ kÞ
which is then used to perform the d4p integral finally giving us the spectral function as

ρμνScalarðqÞ ¼ − tanh

�
q0

2T

�
Imi

Z
d4k
ð2πÞ4D11ðk;mÞD11ðp ¼ qþ k;mÞN μν

Scalarðk; pÞ; ð9Þ

ρμνDiracðqÞ ¼ − tanh

�
q0

2T

�
Imi

Z
d4k
ð2πÞ4 D̃11ðk;mÞD̃11ðp ¼ qþ k;mÞN μν

Diracðk; pÞ: ð10Þ

After substituting the expressions of D11ðk;mÞ and D̃11ðk;mÞ from Eqs. (A5) and (A13) in Eqs. (9) and (10), we go to
performing the dk0 integral

ρμνðqÞ ¼ tanh

�
q0

2T

�
π

Z
d3k
ð2πÞ3

1

4ωkωp
½f1þ afaðωkÞ þ afaðωpÞ þ 2faðωkÞfaðωpÞgfNμνðk0 ¼ ωkÞδðq0 − ωk − ωpÞ

þ Nμνðk0 ¼ −ωkÞδðq0 þ ωk þ ωpÞg þ fafaðωkÞ þ afaðωpÞ þ 2faðωkÞfaðωpÞg
× fNμνðk0 ¼ −ωkÞδðq0 − ωk þ ωpÞ þ Nμνðk0 ¼ ωkÞδðq0 þ ωk − ωpÞg�; ð11Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
, ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
and faðωkÞ is the thermal distribution function given by faðωkÞ ¼ ½eωk=T − a�−1

and a ¼ �1 for scalar and Fermion particles, respectively. Here we see that Eq. (11) carries four Dirac-delta functions
which belong to four different kinematic regions of the energy spectrum. They are nonzero in the kinematic regions:
(i)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þ 4m2

p
< q0 < þ∞ called unitary-I cut, (ii) −∞ < q0 < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þ 4m2

p
called unitary-II cut, (iii) jq0j < jq⃗j called

Landau-II cut, and (iv) jq0j < jq⃗j called Landau-I cut as they appear in Eq. (11). For the calculation of the electrical
conductivity, we will take the long wavelength limit or the static limit q⃗ ¼ 0⃗; q0 → 0 of the spectral function for which case
only the Landau cuts contribute. Thus, taking the contributions from Landau cuts only, we obtain

ρμνðq0; q⃗ ¼ 0⃗Þ ¼ tanh

�
q0

2T

�
π

Z
d3k
ð2πÞ3 δðq0Þ

1

2ω2
k

faðωkÞfaþ faðωkÞgfN μνðk0 ¼ ωkÞ þN μνðk0 ¼ −ωkÞg ð12Þ

¼ lim
Γ→0

tanh

�
q0

2T

�Z
d3k
ð2πÞ3

Γ
q20 þ Γ2

1

2ω2
k

faðωkÞfaþ faðωkÞgfN μνðk0 ¼ ωkÞ þN μνðk0 ¼ −ωkÞg ð13Þ

by making use of the Breit-Wigner representation of the Dirac-delta function. The conductivity tensor σμν is obtained using
the Kubo formalism by taking the zero-momentum limit of ρμν=q0 or alternatively differentiating Eq. (13) with respect to q0
and taking the static limit q0 → 0 by means of L’Hospital’s rule as

σμν ¼
�∂ρμν
∂q0

�
q⃗¼0⃗;q0→0

¼ lim
Γ→0

1

T

Z
d3k
ð2πÞ3

1

4ω2
kΓ

faðωkÞfaþ faðωkÞg½N μνðk; kÞjk0¼ωk
þN μνðk; kÞjk0¼−ωk

�; ð14Þ
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where, the expressions of N μν
Scalar;Diracðk; kÞ can be read off

respectively from Eqs. (A8) and (A17) as

N μν
Scalarðk; kÞ ¼ 4e2kμkν; ð15Þ

N μν
Diracðk; kÞ ¼ −4e2½2kμkν − gμνðk2 −m2Þ�: ð16Þ

In Eq. (13), we have introduced a parameter Γ to get a finite
value of ρμνðqÞ in the q⃗; q0 → 0 limit. Here Γ stands for the
thermal width which basically tells us that interactions are
present in the medium and this causes dissipation. From
Eq. (14) it is seen that transport coefficients are inversely
proportional to Γ.

III. VECTORCURRENT SPECTRAL FUNCTION IN
THE PRESENCE OF A MAGNETIC FIELD

In the presence of an external magnetic field B⃗ charac-
terized by the four-potential Aμ

extðxÞ, the corresponding
Lagrangians for the scalar and Dirac field are modified to

LScalar ¼ D�μϕ†Dμϕ −m2ϕ†ϕ; ð17Þ

LDirac ¼ ψ̄ðiγμDμ −mÞψ ; ð18Þ

where Dμ ¼ ∂μ þ ieAμ
ext is the covariant derivative and

e > 0 being the electric charge of the particle. The vector
currents in the presence of a magnetic field are then
given by

JμScalar ¼ ie½ϕ†ðDμϕÞ − ðD�μϕ†Þϕ�; ð19Þ

JμDirac ¼ eψ̄γμψ : ð20Þ

Considering the external magnetic field B⃗ in the ẑ direction,
we calculate the vector current correlation function
hT CJμðxÞJνð0ÞiB11 for both the scalar and Dirac cases
(see Appendix B) and we get from Eqs. (B11) and (B26)

hT cJ
μ
ScalarðxÞJνScalarð0ÞiB11 ¼ −

Z Z
d4p
ð2πÞ4

d4k
ð2πÞ4 e

−ix·ðp−kÞ X∞
l¼0

X∞
n¼0

D11ðp11;mnÞD11ðk11;mlÞN μν
ln;Scalarðk; pÞ; ð21Þ

hT cJ
μ
DiracðxÞJνDiracð0ÞiB11 ¼ −

Z Z
d4p
ð2πÞ4

d4k
ð2πÞ4 e

−ix·ðp−kÞ X∞
l¼0

X∞
n¼0

D̃11ðp11;mnÞD̃11ðk11;mlÞN μν
ln;Diracðk; pÞ; ð22Þ

where D11, D̃11, and N μν
ln;Scalar;Dirac can be read off from

Eqs. (A5), (A13), (B12), and (B19) respectively. In the
above equation,

ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2lþ 1 − 2sÞeB

q
; ð23Þ

which are the “effective Landau level dependent”masses in
the presence of an external magnetic field and s corre-
sponds to the spin of the particle being considered:

s ¼
�
0 for scalar boson;

1=2 for Dirac fermion:

Proceeding in the same manner as we did in the absence
of a magnetic field, we calculate the vector current spectral
function by performing the d4x integral of Eq. (2) after
substituting Eqs. (21) and (22) into it and obtain a Dirac
delta function δ4ðq − pþ kÞ. The d4p integral is then
performed using the delta function yielding

ρμνScalarðqÞ ¼ − tanh

�
q0

2T

�
Imi

Z
d4k
ð2πÞ4

X∞
n¼0

X∞
l¼0

D11ðkk;mlÞD11ðpk ¼ qk þ kk;mnÞN μν
ln;Scalarðk; p ¼ qþ kÞ; ð24Þ

ρμνDiracðqÞ ¼ − tanh

�
q0

2T

�
Imi

Z
d4k
ð2πÞ4

X∞
n¼0

X∞
l¼0

D̃11ðkk;mlÞD̃11ðpk ¼ qk þ kk;mnÞN μν
ln;Diracðk; p ¼ qþ kÞ: ð25Þ

Using the expressions of D11 and D̃11 from Eqs. (A5) and (A13) and performing the dk0 integral, we get

ρμνðqÞ ¼ tanh

�
q0

2T

�
π
X∞
l¼0

X∞
n¼0

Z
d3k
ð2πÞ3

1

4ωklωpn
½f1þ afaðωklÞ þ afaðωpnÞ þ 2faðωklÞfaðωpnÞg

× fN μν
ln ðk0 ¼ −ωklÞδðq0 þ ωkl þ ωpnÞ þN μν

ln ðk0 ¼ ωklÞδðq0 − ωkl − ωpnÞg
þ fafaðωklÞ þ afaðωpnÞ þ 2faðωklÞfaðωpnÞg
× fN μν

ln ðk0 ¼ −ωklÞδðq0 − ωkl þ ωpnÞ þN μν
ln ðk0 ¼ ωklÞδðq0 þ ωkl − ωpnÞg�; ð26Þ
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whereωkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þm2

l

q
andωpn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz þ qzÞ2 þm2

n

p
. Wewill now take the long wavelength limit of Eq. (26) so that only

the Landau cuts contribute and we are left with

ρμνðq0; q⃗ ¼ 0⃗Þ ¼ tanh

�
q0

2T

�
π
X∞
l¼0

X∞
n¼0

Z
d3k
ð2πÞ3

1

4ωklωkn
fafaðωklÞ þ afaðωknÞ þ 2faðωklÞfaðωknÞg

× fN μν
ln ðk0 ¼ −ωklÞδðq0 − ωkl þ ωknÞ þN μν

ln ðk0 ¼ ωklÞδðq0 þ ωkl − ωknÞg

¼ lim
Γ→0

tanh

�
q0

2T

�X∞
l¼0

X∞
n¼0

Z
d3k
ð2πÞ3

1

4ωklωkn
fafaðωklÞ þ afaðωknÞ þ 2faðωklÞfaðωknÞg

×
�
N μν

ln ðk0 ¼ −ωklÞ
Γ

Γ2 þ ðq0 − ωkl þ ωknÞ2
þN μν

ln ðk0 ¼ ωklÞ
Γ

Γ2 þ ðq0 þ ωkl − ωknÞ2
�
; ð27Þ

where we have again introduced the Breit-Wigner form of the Dirac-delta function. Proceeding in the same manner as the
zero magnetic field case, we differentiate Eq. (27) with respect to q0 and take the limit q0 → 0 to obtain the conductivity
tensor at B ≠ 0 as

σμνB ¼ ∂ρμν
∂q0

����
q⃗→0⃗;q0¼0

¼ lim
Γ→0

X∞
l¼0

X∞
n¼0

1

2T

Z
d3k
ð2πÞ3

1

4ωklωkn

Γ
Γ2 þ ðωkl − ωknÞ2

× fafaðωklÞ þ afaðωknÞ þ 2faðωklÞfaðωknÞg½N μν
ln ðk; kÞjk0¼ωkl

þN μν
ln ðk; kÞjk0¼−ωkl

�; ð28Þ

where the explicit expressions of N μν
ln;Scalar;Diracðk; kÞ are given in Eqs. (B13) and (B26) as

N μν
ln;Scalarðk; kÞ ¼ 16e2Alnðk2⊥Þkμkν; ð29Þ

N μν
ln;Diracðk; kÞ ¼ −8e2½8ð2kμ⊥kν⊥ − k2⊥gμνÞBlnðk2⊥Þ þ f2kμkkνk − gμνk ðk2k −m2ÞgClnðk2⊥Þ

þ gμν⊥ ðk2k −m2ÞDlnðk2⊥Þ þ 2ðkνkkμ⊥ þ kμkk
ν⊥ÞElnðk2⊥Þ�; ð30Þ

where the functions Alnðk2⊥Þ;Blnðk2⊥Þ┘ln;… involving
the Laguerre polynomials provided in Eqs. (B14) and
(B22)–(B25).

IV. ELECTRICAL CONDUCTIVITY FROM
SPECTRAL FUNCTION IN KUBO FORMALISM

The electrical conductivity (σ) for a relativistic fluid can
be calculated from the in-medium vector current spectral
functions using the Kubo relation [24]. Starting with the
B ¼ 0 case, the isotropic electrical conductivity σ is related
to the conductivity tensor σμν via

σ ¼ Pμνσ
μν; ð31Þ

where the projector

Pμν ¼ −
1

3
gαβΔαμΔβν; ð32Þ

in which Δμν ¼ gμν − uμuν. Substituting Eq. (14) into
Eq. (31), we arrive at the following expression of electrical
conductivity in the absence of an external magnetic field

σ ¼ 1

T

Z
d3k
ð2πÞ3

1

4ω2
kΓ

faðωkÞfaþ faðωkÞgN Scalar;Diracðk⃗Þ;

ð33Þ

where

N ðk⃗Þ¼ 1

2
PμνfN μνðk;kÞjk0¼ωk

þN μνðk;kÞjk0¼−ωk
g: ð34Þ

On substitution of Eqs. (15), (16), and (32) into Eq. (34)
and a bit of simplification yields,

N Scalar ¼
4

3
e2k⃗2 and N Dirac ¼ −

8

3
e2k⃗2: ð35Þ

Using Eq. (35) into Eq. (33), we obtain the following
well-known expression of conductivities at B ¼ 0:

σScalar ¼
2e2

3T

Z
d3k
ð2πÞ3

k⃗2

ω2
kΓ

fþðωkÞf1þ fþðωkÞg; ð36Þ

σDirac ¼
4e2

3T

Z
d3k
ð2πÞ3

k⃗2

ω2
kΓ

f−ðωkÞf1 − f−ðωkÞg: ð37Þ
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In the presence of an external magnetic field, σμνB is not
symmetric as in the B ¼ 0 case. Thus the different
components of conductivity are obtained by application
of the corresponding projectors on the conductivity tensor
σμν. In RTA [12,17], it is found that electrical conductivity
breaks up into multiple components with respect to the
direction of the external magnetic field. In our Kubo
formalism, the different components of conductivities are
obtained from

συ ¼ Pυ
μνσ

μν
B ; υ ∈ fk;⊥;×g; ð38Þ

where, the projectors Pυ
μν are given by

Pk
μν ¼ bαbβΔαμΔβν; ð39Þ

P⊥
μν ¼ −

1

2
ΞαβΔαμΔβν; ð40Þ

P×
μν ¼

1

2
bαβΔαμΔβν; ð41Þ

where bμ ¼ 1
2B ε

μναβFναuβ, Fμν ¼ ð∂μAν;ext − ∂νAμ;extÞ is
the field strength tensor, antisymmetric in Lorentz indices,

bμν ¼ εμναβbαuβ and Ξμν ¼ Δμν þ bμbν. In the local rest
frame (LRF) of the bath, bμLRF ¼ ð0; 0; 0; 1Þ points in the
direction of the external magnetic field.
Substituting Eqs. (39)–(41) into Eq. (38), we can

explicitly express the conductivity coefficients σk;⊥;× in
terms of the different components of conductivity tensors as

σ⊥ ¼ 1

2
ðσ11 þ σ22Þ; ð42Þ

σk ¼ σ33; ð43Þ

σ× ¼ 1

2
ðσ12 − σ21Þ: ð44Þ

From Eqs. (42)–(44), we can identify σ⊥ ¼ σ11 ¼ σ0 as the
transverse conductivity, σk ¼ σ33 ¼ σ0 þ σ2 as the longi-
tudinal conductivity, and σ× ¼ σ12 ¼ σ1 as the Hall con-
ductivity, where σ0, σ1, and σ2 are the notations used in
Refs. [14,35,44].
In the presence of an external magnetic field, the

different conductivity components are obtained by sub-
stituting Eq. (28) into Eq. (38) as

συB ¼ 1

T

X∞
n¼0

X∞
l¼0

Z
d3k
ð2πÞ3

1

4ωklωkn

Γ
ðωkl − ωknÞ2 þ Γ2

fafaðωklÞ þ afaðωknÞ þ 2faðωklÞfaðωknÞgN υ
lnðk⃗Þ; ð45Þ

where

N υ
ln ¼

1

2
Pυ

μνfN μν
ln ðk; kÞjk0¼ωkl

þN μν
ln ðk; kÞjk0¼−ωkl

g: ð46Þ

Let us now substitute Eqs. (29), (30), and (39)–(41) into
Eq. (46) to get

N k
ln;Scalarðk⃗Þ ¼ 16e2Alnðk2⊥Þk2z ; ð47Þ

N ⊥
ln;Scalarðk⃗Þ ¼ −8e2Alnðk2⊥Þk2⊥; ð48Þ

N k
ln;Diracðk⃗Þ¼−8e2f8k2⊥Blnðk2⊥Þþðk2zþω2

kl−m2ÞClnðk2⊥Þg;
ð49Þ

N ⊥
ln;Diracðk⃗Þ ¼ −8e2fk2z þm2 − ω2

klgDlnðk2⊥Þ; ð50Þ

N ×
ln;Scalarðk⃗Þ ¼ N ×

ln;Diracðk⃗Þ ¼ 0: ð51Þ
During the entire calculation, we have introduced the

thermal width Γ as a parameter, although it can be calculated
microscopically from the interaction Lagrangian. In most
general cases, Γ will depend on temperature (T), magnetic
field (B) as well as momentum k⃗, i.e., Γ ¼ ΓðT; B; k⃗Þ.
However, taking appropriate momentum average we can
approximate Γ to be independent of momentum and thus
take it outside the d2k⊥ integral of Eq. (45). This will enable
us to perform the analytic d2k⊥ integral of Eq. (45) and we
get the following simplified expressions of the electrical
conductivities in the presence of a constant external mag-
netic field:

συB ¼ 1

T

X∞
n¼0

X∞
l¼0

Z þ∞

−∞

dkz
2π

1

4ωklωkn

Γ
ðωkl − ωknÞ2 þ Γ2

fafaðωklÞ þ afaðωknÞ þ 2faðωklÞfaðωknÞgÑ υ
lnðkzÞ; ð52Þ
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where

Ñ υ
lnðkzÞ ¼

Z
d2k⊥
ð2πÞ2N

υ
lnðk⃗Þ: ð53Þ

Using Eqs. (47)–(50) in Eq. (53) we get

Ñ k
ln;ScalarðkzÞ ¼ 16e2k2zA

ð0Þ
ln ; ð54Þ

Ñ ⊥
ln;ScalarðkzÞ ¼ −8e2Að2Þ

ln ; ð55Þ

Ñ k
ln;DiracðkzÞ ¼ −8e2½8Bð2Þ

ln þ Cð0Þln ðω2
kl þ k2z −m2Þ�; ð56Þ

Ñ ⊥
ln;DiracðkzÞ ¼ −8e2Dð0Þ

ln ðk2z þm2 − ω2
klÞ; ð57Þ

Ñ ×
ln;ScalarðkzÞ ¼ Ñ ×

ln;DiracðkzÞ ¼ 0; ð58Þ

where

AðjÞ
ln ¼

Z
d2k⊥
ð2πÞ2Alnðk2⊥Þðk2⊥Þj=2; ð59Þ

BðjÞ
ln ¼

Z
d2k⊥
ð2πÞ2 Blnðk2⊥Þðk2⊥Þj=2; ð60Þ

CðjÞln ¼
Z

d2k⊥
ð2πÞ2 Clnðk

2⊥Þðk2⊥Þj=2; ð61Þ

DðjÞ
ln ¼

Z
d2k⊥
ð2πÞ2Dlnðk2⊥Þðk2⊥Þj=2: ð62Þ

Making use of the orthogonality of the Laguerre poly-
nomials present in the functions Alnðk2⊥Þ, Blnðk2⊥Þ, � � �,
Dlnðk2⊥Þ, the d2k⊥ integrals of Eqs. (59)–(62) can now be
performed and the analytic expressions of the quantities

AðjÞ
ln , B

ðjÞ
ln , � � �, DðjÞ

ln are provided in Appendix C. Equa-
tions (C4)–(C8) carry very important information, which
will be discussed in the result section. The Kronecker delta
functions will impose restrictions on Landau levels of
propagators, which finally fix the allowed (quantum)
fluctuations for electric charge transportation.

V. NUMERICAL RESULTS AND DISCUSSIONS

Here, we will explore the numerical results of Kubo
expressions, where we will eventually notice rich informa-
tion on quantum field theoretical transport properties of a
relativistic fluid in the presence of a magnetic field. To
realize the field theoretical modification part, we will revisit
quickly kinetic theory-based expressions and then we will
outline step by step changes.
In the absence of a magnetic field, kinetic theory-based

expression of conductivity becomes exactly the same as the
one-loop Kubo expression, obtained in Eqs. (36) and (37)

for scalar and Dirac particles, respectively. Relaxation time
approximation of kinetic theory provides the form of
conductivity in terms of relaxation time τc as [12,17,35,37]

σscalar;Dirac ¼
ge2

3T

Z
d3k
ð2πÞ3

k⃗2τc
ω2
k

faðωkÞf1þafaðωkÞg: ð63Þ

Realizing an inverse relation between thermal width (Γ)
and relaxation time (τc) as τc ¼ 1=Γ and spin degeneracy
factor g ¼ 2, 4 for charged scalar and Dirac particles, one
can see that RTA expressions (63) and Kubo expressions
(36), (37) are exactly the same.
Now in the presence of a magnetic field, the expression

of electrical conductivity components in kinetic theory
approach are addressed in Refs. [11–14,33,35,37]:

συ ¼ ge2

3T

Z
d3k
ð2πÞ3

k⃗2

ω2
k

τυfaðωkÞf1þ afaðωkÞg; ð64Þ

where effective relaxation time τυ can be expressed in terms
of (collisional) relaxation time τc and an inverse timescale
of cyclotron frequency τB ¼ ω−1

B ¼ ωk
eB as

τk ¼ τc;

τ⊥ ¼ τc
1þ ðτcτBÞ2

;

τ× ¼
τcðτcτBÞ

1þ ðτcτBÞ2
: ð65Þ

A few comments on Hall conductivity are in order here.
If we analyze the RTA-based Hall expression, then effective
relaxation times τ× for a particle and antiparticle will be
opposite in sign, which represents opposite Hall current
directions of them. So, in RTA, a finite Hall conductivity is
expected. However, in one-loop Kubo formalism, the Hall
conductivity becomes zero as we explain in the following.
From Eq. (44), we see that a nonzero value of σ× is possible
if and only if σμν has some antisymmetric term. In Eqs. (29)
and (30), we see N μν

ln are symmetric in the Lorentz indices
and so the electromagnetic spectral function in Eq. (28) is
σμν ¼ σνμ. Thus, in the one-loop Kubo formalism, the Hall
conductivity becomes zero. The symmetry of σμν can be
explained in a more general fashion as follows. The
electromagnetic spectral functions for the system of
charged scalar (Dirac) particles defined in Eq. (1) can
alternatively be thought of as the imaginary part of the one-
loop photon self-energy in scalar QED. In Ref. [45], it was
shown that the photon self-energy can have an antisym-
metric term if and only if the P or CP-odd effects are
present in the Lagrangian or in the background medium.
The vanishing of Hall type transport coefficients is also
observed in earlier calculations for shear viscosity
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[38,46,47]. Therefore, our focal components are parallel
and perpendicular conductivity for numerical discussion.
Now if we impose Landau quantization in the final

expression (64) then we can get their quantum version

expressions. The main modification will occur in the
dispersion relation of energy ωk and phase space

R
d3k

by the following replacements:

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

q
→ ωkl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þm2 þ ð2lþ 1 − 2sÞeB

q
ð66Þ

g
Z

d3k
ð2πÞ3 →

(P∞
l¼0 2

jejB
2π

Rþ∞
−∞

dkz
2π ðfor scalar particlesÞ;P∞

l¼0 2gl
jejB
2π

Rþ∞
−∞

dkz
2π ðfor Dirac particlesÞ;

ð67Þ

with gl ¼ ð2 − δl;0Þ being the Landau level dependent spin degeneracy (implying that the lowest Landau level is spin
nondegenerate). The momentum quantization in the perpendicular direction can be assumed roughly as

k2x ≈ k2y ≈
1

2
ðk2x þ k2yÞ ¼

� ðlþ 1=2ÞeB ðfor scalar particlesÞ;
leB ðfor Dirac particlesÞ: ð68Þ

Imposing the above quantization in Eq. (64), we get

σ⊥Scalar ¼
2e2

T

X∞
l¼0

jejB
2π

Zþ∞

−∞

dkz
2π

ðlþ 1
2
ÞjejB

ω2
l

τ⊥fþðωklÞf1þ fþðωklÞg; ð69Þ

σ⊥Dirac ¼
2e2

T

X∞
l¼0

gl
jejB
2π

Zþ∞

−∞

dkz
2π

ljejB
ω2
l

τ⊥f−ðωklÞf1 − f−ðωklÞg; ð70Þ

σkScalar ¼
2e2

T

X∞
l¼0

jejB
2π

Zþ∞

−∞

dkz
2π

k2z
ω2
l

τkfþðωklÞf1þ fþðωklÞg; ð71Þ

σkDirac ¼
2e2

T

X∞
l¼0

gl
jejB
2π

Zþ∞

−∞

dkz
2π

k2z
ω2
l

τkf−ðωklÞf1 − f−ðωklÞg: ð72Þ

For our convenience, let us call σk;⊥ from Eq. (64) as

classical mechanical (CM) expressions (say σk;⊥CM); from
Eqs. (69)–(72) as quantum mechanical (QM) expressions

(say σk;⊥QM); and from Eq. (52) as quantum field theoretical

(QFT) expressions (say σk;⊥QFT). We should accept that their
naming is a little bit misleading, e.g., CM expressions carry
Fermi-Dirac or Bose-Einstein distributions (quantum as-
pects of statistical mechanics), but they might be allowed
for description purposes. Similarly in QM expressions, we
have used Landau quantization but it carries classical
information of cyclotron motion with time period τB.
Due to Landau quantization of energy, we can assume a
different quantized circular orbit. This QM picture might be
compared with Bohr’s semiclassical quantized orbital
motion of an electron in a hydrogen atom, which lacks a

detailed probabilistic picture of the electron, obtained
after solving its Schrödinger equation. We believe that
our QFT expressions carry that detailed quantum mechani-
cal probabilistic picture as well as proper relativistic
impositions. Generating curves of CM, QM, and QFT
expressions, we have discussed below and tried to interpret
them one by one.
Before discussing the various numerical graphs and

results, we first specify here the methods for the numerical
calculations. The final expression of σk and σ⊥ contain the
sum over Landau levels and the integral over momentum.
The numerical integration was performed using the
CQUAD routine of GSL library [48] in Cþþ. The sum
is performed using the standard Cþþ library. For all the
results presented here, we have taken up to 10,000 Landau
levels. Figures 2 and 3 show the variation of σ⊥ of scalar
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bosons and Dirac fermions with B and T. We have
considered dimensionless quantity σð⊥Þ=ðτcT2Þ as in the
absence of a magnetic field, we get almost temperature
independent value of σ=ðτcT2Þ. So, being a T, B indepen-
dent dimensionless quantity for a field-free picture, its
variation with T and B for a finite magnetic field picture
probably provides us with a good visualization. That is why
we have chosen this dimensionless quantity.
Let us first see the CM curve (red solid line, violet

dash-dotted line) of σ⊥ as a function of T and B, shown in
Figs. 2(a) and 2(b), respectively. If we notice the RTA
expression of Eq. (63), then one can identify the extra

factor/fraction 1=ð1þ τ2c
τ2B
Þ, for which the normalized con-

ductivity component σð⊥Þ=ðτcT2Þ gets an additional T, B
dependence. It can be checked by imposing a B → 0 limit,
where the factor/fraction will be merged to unity. Hence, T,

B dependence of 1=ð1þ τ2c
τ2B
Þ ≈ 1=ð1þ e2B2τ2c

9T2 Þ (considering

average τB ¼ hωi
eB ≃ 3T

eB since hωi ≃ 3T in accordance with
the law of equipartition of energy for massless particles) is
basically reflected in the CM curves, drawn in Figs. 2(a)

and 2(b). Hence, by analyzing that factor, one can get the
mathematical reason for increasing and decreasing trends
of σð⊥Þ=ðτcT2Þ in T and B axes, respectively. The physical
reason may be qualitatively understood in the following
way. Increasing temperature means increasing randomness
or disorders while the magnetic field is responsible for the
alignment of a system, meaning less randomness or more
orders. This opposite effect of T and B on a many body
system may be considered as the hidden physics, for which
opposite trends of σð⊥Þ=ðτcT2Þ in T and B axes are noticed.
It is the RTA-based Boltzmann transport equation in kinetic
theory framework which carries these opposite roles of T
and B through its detailed mathematical anatomy. Now,
when we go to the QM curves—blue short-dash and pink
double dash-dotted lines—then an additional Landau level
summation effect will come into the picture, whose effect
appears to be very mild because the CM and QM curves are
approximately merged with each other. In a closeup view,
one can find a mild noticeable difference between them.
For getting an actual quantum effect, we should trust

QFT curves more (green dotted and black long dash lines)
because QM curves contain a mixture of quantum (Landau
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FIG. 2. Normalized values of perpendicular conductivity for CM, QM, and QFTexpressions of a medium with charged scalar particles
are plotted as a function of (a) temperature and (b) magnetic field, where Γ−1 ¼ 1 fm is considered.
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quantization) and classical (cyclotron motion) information.
If we compare the RTA expressions of B ¼ 0 and B ≠ 0,
given in Eqs. (63) and (64), respectively, then we get the

main (anisotropic) factor 1=ð1þ τ2c
τ2B
Þ in σð⊥Þ

Scalar=Dirac, for

which entire changes in the CM expressions and major
changes in the QM expressions occurred. In the QFT
expression, given in Eq. (52), one can identify a similar
kind of factor but in a different form: Γ

Γ2þðωkl−ωknÞ2. Using the
standard relation between the relaxation time (τc) and
thermal width Γ as τc ¼ 1

Γ and imposing an equivalence
between Landau level transition (ωkl − ωkn) and cyclotron
frequency 1=τB ¼ eB

ω as ωkl − ωkn ≡ 1
τB
, we may build a

connection Γ
Γ2þðωkl−ωknÞ2 ≈

τc

1þτ2c
τ2
B

. Although this is not exactly

straightforward mapping as it is written. Its more delicate
mapping is hidden in different Kronecker deltas, which will
be discussed next. This interesting transformation from a
classical to a quantum picture has also been explored in
Ref. [38] for viscosity of a relativistic fluid in the presence
of a magnetic field. If we collectively consider the present
work on conductivity and Ref. [38] on viscosity, then we
notice a beautiful (common) physics in transportation,
which reveals a transformation from the cyclotron fre-
quency in the CM picture to the transition between Landau
levels in the QFT picture.
Nowwe find that the QFT curves are quite larger than the

QM and CM curves. The reason might be understood if we
analyze all terms of Kronecker deltas in Að2Þ

ln , given in
Eq. (C5). They are basically restricting the values of l and
n, which might be compared with the selection rules in the
hydrogen atom problem. The δln, δl;nþ1 and δl;n−1 will fix
l ¼ n, l ¼ nþ 1, and l ¼ n − 1 options, which means that
two virtual scalar particles of a current-current correlator
can have three possible modes of transportation with
different Landau levels Δln ¼ 0, þ1, −1 respectively.
Interestingly, the first term with the same Landau levels
option will give us the QM expression σQM⊥ , given in
Eq. (72) but excluding the anisotropic fraction/factor
1=½1þ ðτcτBÞ2�. Now, the second and third terms have factors

Γ
Γ2þðωkðnþ1Þ−ωknÞ2 and

Γ
Γ2þðωkðn−1Þ−ωknÞ2, which might be equiv-

alent to the anisotropic factor τc=½1þ ðτcτBÞ2� of the CM
expressions if we trust the equivalence:
ðωkðn−1Þ − ωknÞ2 ≡ ðωkðnþ1Þ − ωknÞ2 ≡ 1=τ2B. Since this
equivalence works dimensionally but not exactly, in one
direction we may be happy with this equivalence realiza-
tion but in another direction, we should deal with exact
mathematical anatomy by accepting the transformations
from the CM to QM to QFT.
Next in Figs. 3(a) and 3(b), σð⊥Þ=ðτcT2Þ for a medium

with Dirac spin-1=2 particles are plotted as a function os T
and B, respectively. Similar to a scalar particle medium, the

CM (red solid and violet dash-dotted lines) and the QM
(blue short-dash and pink dash-double-dotted lines) curves
are mainly controlled by the anisotropic factor
τc=½1þ ðτcτBÞ2�, for which a mild enhancement with T and
a noticeable reduction with B are observed. Now when we
look at the QFT curve, a sudden enhancement is observed.
Similar to the scalar case, to realize this enhancement of
the QFT version of conduction, we have to focus on the

Kronecker deltas in Dð0Þ
ln , given in Eq. (C8). The Dð0Þ

ln
contains δl;nþ1 and δl;n−1, which fix l ¼ nþ 1 and l ¼
n − 1 options and they mean that two virtual Dirac particles
ofa current-current correlator can have two possible modes
of transportation with differences of Landau levels
Δln ¼ þ1 and −1, respectively. Unlike the scalar case,
the Dirac case is not carrying any δln, which can be
equal to its QM expression of Eq. (72) but excluding the
anisotropic fraction/factor 1=½1þ ðτcτBÞ2�. Another interest-
ing point is that with respect to the conductivity at B ¼ 0,
the QFT version of perpendicular conductivity for scalar
and Dirac cases are going lower and higher directions,
respectively.
In Figs. 4(a)–4(d), we have shown the variation of the

quantity σjj=τcT2 as a function of T and eB for scalar and
Dirac cases. The CM curve of normalized parallel
conductivity σjj=τcT2 is independent of T and B, which
will be a very interesting reference point for the quantum
version. We know that the Lorentz force remains handi-
capped along the direction of B, that is why parallel
conductivity becomes B independent. The red horizontal
lines in the upper panels (for the scalar case) and the
lower panel (for the Dirac case) reveal this fact. Now it is
because of Landau quantization in the quantum picture
that this component gets some B dependent structure as
well as the deviation from T2 dependence. The interesting
result of Fig. 4 is that the QM and QFT plots are the sam,

i.e., σkQFT ¼ σkQM, which has been explicitly shown in
Appendix D. With respect to the B ¼ 0 result, parallel
conduction of the scalar and Dirac medium becomes
respectively smaller and larger at finite B. The origin of
this deviation from the B ¼ 0 value of parallel conduc-
tivity is completely quantum in nature. By looking
closely at the B axis, one can find a lower value of B,
beyond which this deviation is started.
It is to be noted that, in this work, we have considered

only finite temperature whereas the chemical potential
μ ¼ 0. We find that, at μ ¼ 0, the de Haas-Van Alphen
(dHVA) oscillation [49–52] is missing in the Fermionic
spectral function. However, we have also checked that at
high μ and low T, the spectral function possesses
dHVA oscillation. It will be interesting to analyze the
μ dependence of the conductivities at low temperature
and high magnetic field, relevant for magnetars which can
be an immediate extension of the current work.
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VI. SUMMARY AND CONCLUSIONS

In summary, we have explored the field theoretical
calculation of conductivity for a relativistic fluid in the
presence of a magnetic field. With the help of the rich
anatomy of the propagators of a scalar and Fermion at finite
temperature and a magnetic field, the detailed calculation
of conductivity components for a scalar and Fermionic
medium have been done. Owing to the famous Kubo
relation, electrical conductivity can be connected with a
zero momentum limit of a current-current correlator. In the
absence of a magnetic field, the expression of the Kubo
approach is exactly equal to the expression, based on the
relaxation time approximation method. If we analyze their
final expressions, then we can identify two parts: phases
space factor with Fermi-Dirac or Bose-Einstein distribution
function and the dissipation/interaction part. The latter part
in RTA is taken care of by relaxation time τc, which
measures the timescale of the medium for approaching
from equilibrium to nonequilibrium. In the Kubo approach,
this part is taken care of by spectral representation
ð Γ
ðωq;k−ωkÞ2þΓ2Þ of two virtual scalar or Fermion particles

(quantum fluctuation at finite temperature), whose zero
(external) momentum limit (q → 0) give us 1

Γ ¼ τc, which

reveals the equivalence role by thermal width or scattering
probability Γ of medium constituents in the Kubo frame-
work as played by τc in RTA. Now, in the presence of a
magnetic field, the conductivity tensor become anisotropic,
which means that perpendicular and parallel components of
conductivity with respect to an applied external magnetic
field will be different (which were the same in the absence
of a magnetic field). An interesting point in the finite B
picture is that the RTA and Kubo expressions of conduc-
tivity components do not remain the same. To understand
this discrepancy in terms of physical interpretation, we
have marked RTA as a CM expression and Kubo as a QFT
expression as Landau quantization is missing in the former.
By incorporating Landau quantization in RTA, we build an
intermediate expression, by naming the QM expression.
Interestingly the QM and QFT expressions become the
same for the parallel component but this is not true for the
perpendicular component. Probably our imposing Landau
quantization in RTA for the perpendicular component still
remains semiclassical in nature, as it is till carrying the
classical quantity τB. The QFT expressions provide us with
a full quantum description, where the classical information
of τB is transformed to the (inverse of) energy difference
between the two Landau levels.
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FIG. 4. (a) T and (b) eB dependence of (normalized) parallel conductivity for the CM, QM, and QFT expressions of medium with
scalar particles. (c) T and (d) eB dependence of (normalized) parallel conductivity for the CM, QM, and QFT expressions of medium
with Dirac particles. In all the plots, Γ−1 ¼ 1 fm is considered.

KUBO ESTIMATION OF THE ELECTRICAL CONDUCTIVITY … PHYS. REV. D 104, 056030 (2021)

056030-11



Similar to the selection rule in the hydrogen atom
problem, here we get three possible Landau level
differences: Δn;l ¼ 0, þ1, −1, imposed through
Kronecker deltas in final expressions. They are possible
due to the orthogonal properties of Laggure polynomials,
representing quantum mechanical probabilistic existences
of two virtual particles. Our calculations basically expose
the different modes of quantum fluctuations at finite temper-
ature and magnetic field, where those modes are fixed by
the orthogonal properties of their quantum probabilistic
(Laggure polynomials) functions. Via quantum field theory,
our outcome of parallel and perpendicular components of a
scalar and Dirac medium can be written as follows:

(i) Parallel component of conductivity for a scalar
medium comes from quantum fluctuation at finite
T and B with the same Landau level (l ¼ n) internal
lines (i.e., Δn;l ¼ 0) and effective relaxation time
scale τc ¼ 1=Γ.

(ii) Parallel component of conductivity for a Dirac
medium comes from quantum fluctuation at finite
T and B with the same Landau level internal lines
(i.e., Δn;l ¼ 0) and effective relaxation time scale
τc ¼ 1=Γ. Here the same Landau level restriction
comes through two Kronecker deltas δl;n and
δl−1;n−1, whose combination helps beautifully to
build a spin degeneracy factor gn ¼ 2 − δn;0 for
nth Landau level.

(iii) Perpendicular component of conductivity for a
scalar medium comes from quantum fluctuation at
finite T and Bwith two internal lines, having Landau
level differences Δn;l ¼ 0, þ1, and −1 and effective
relaxation time scale τc ¼ 1=Γ, Γ

Γ2þðωkðnþ1Þ−ωknÞ2
and Γ

Γ2þðωkðn−1Þ−ωknÞ2, respectively [where ωkn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ ð2nþ 1ÞeB

p
].

(iv) Perpendicular component of conductivity for a Dirac
medium comes from quantum fluctuation at finite T
and B with two internal lines, having Landau level
differencesΔn;l ¼ þ1 and−1 and effective relaxation
time scale τc ¼ Γ

Γ2þðωkðnþ1Þ−ωknÞ2 and Γ
Γ2þðωkðn−1Þ−ωknÞ2,

respectively (where ωkn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ 2neB

p
).

At the end, our investigation might have a lot of scope for
future studies to get a more mature understanding and
exploration. Our immediate future plan is to use these field
theoretical expressions of parallel and perpendicular com-
ponent conductivity to the RHIC or LHC matter, which can
face a strong magnetic field. Since we have taken a general
massless relativistic fermionic system, we could not
directly compare our results of Sec. V with lattice QCD.
Now, considering a two-flavor quark matter, if we multiply
the spectral function by Nc

P
f Q

2
f ¼ 5

3
, then we get T ≃

250 MeV (at high temperature, quarks may be treated as
massless), the electrical conductivity σ ≃ 5.3τ MeV=fm.
Considering τ∼ few fm (which is realistic for a hot QCD
medium), the magnitude of the conductivity comes out to
be in agreement with the lattice QCD estimate of Ref. [53],
although the relaxation time τ (inverse of thermal width Γ)
in our calculation is a parameter put by hand. It will be
interesting to calculate the electrical conductivity in a QGP
medium using the Kubo formalism by considering the
effect of a realistic “strong” interaction in Γ (or τ) in the
near future.
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APPENDIX A: CALCULATION OF THE
VECTOR CURRENT CORRELATORS

In this appendix, we explicitly evaluate the two-point
vector current correlation function hJμðxÞJνðyÞi11 for scalar
as well as Dirac theory. Let us first consider the Bosonic
case. From Eq. (5) we get

hT cJ
μ
ScalarðxÞJνScalarðyÞi11 ¼ −e2hT cðϕ†ðxÞ∂μϕðxÞ − ∂μϕ†ðxÞϕðxÞÞðϕ†ðyÞ∂νϕðyÞ − ∂νϕ†ðyÞϕðyÞÞi11; ðA1Þ

which when applying Wick’s theorem yields the following expression:

ðA2Þ

Simplifying the above equation, we arrive at

SATAPATHY, GHOSH, and GHOSH PHYS. REV. D 104, 056030 (2021)

056030-12



hT cJ
μ
ScalarðxÞJνScalarðyÞi11 ¼ −e2½∂μ

xD11ðx; yÞ∂ν
yD11ðy; xÞ − ∂μ

x∂ν
yD11ðx; yÞD11ðy; xÞ

−D11ðx; yÞ∂μ
x∂ν

yD11ðy; xÞ þ ∂ν
yD11ðx; yÞ∂μ

xD11ðy; xÞ�; ðA3Þ

where ∂μ
x ≡ ∂

∂xμ, ∂μ
y ≡ ∂

∂yμ etc., and denotes the 11-component of the coordinate space thermal
scalar propagator in RTF. Owing to the translation invariance of the propagator D11ðx; yÞ ¼ D11ðx − yÞ, it can be Fourier
transformed to momentum space as

D11ðx; yÞ ¼ D11ðx − yÞ ¼
Z

d4k
ð2πÞ4 e

−ik·ðx−yÞð−iD11ðk;mÞÞ; ðA4Þ

in which D11ðk;mÞ denotes the corresponding 11-component of the free thermal scalar propagator in momentum space
whose explicit form reads [54,55]

D11ðk;mÞ ¼ −1
k2 −m2 þ iϵ

þ ξþðk:uÞ2πiδðk2 −m2Þ: ðA5Þ

In the above equation, uμ is the four-velocity of the thermal bath which becomes uμLRF ≡ ð1; 0⃗Þ in the local rest frame of the
bath, ξþðxÞ ¼ ΘðxÞfþðxÞ þ Θð−xÞfþð−xÞ, and fðxÞ ¼ ½ex=T − 1�−1 denotes the Bose-Einstein thermal distribution
function. Making use of Eq. (A4) into Eq. (A3), we get

hT cJ
μ
ScalarðxÞJνScalarðyÞi11 ¼ −

Z Z
d4p
ð2πÞ4

d4k
ð2πÞ4 e

−iðx−yÞ·ðp−kÞD11ðp;mÞD11ðk;mÞN μν
Scalarðk; pÞ ðA6Þ

where

N μν
Scalarðk; pÞ ¼ e2ðpμkν þ kμpν þ pμpν þ kμkνÞ: ðA7Þ

For the calculation of the electrical conductivity tensor, we need the expression of N μν
Scalarðk; kÞ which is obtained from the

above equation as

N μν
Scalarðk; kÞ ¼ 4e2kμkν: ðA8Þ

Following a similar procedure, we can now calculate the corresponding two-point vector current correlation function
hT cJ

μ
DiracðxÞJνDiracðyÞi11 for the Dirac case. From Eq. (5) we get

hT cJ
μ
DiracðxÞJνDiracðyÞi11 ¼ e2hT cψ̄ðxÞγμψðxÞψ̄ðyÞγνψðyÞi11; ðA9Þ

which by applying Wick’s theorem gives

ðA10Þ

In Eq. (A10), denotes the 11-component of the coordinate space thermal Dirac propagator in

RTF. It is interesting to note that, the above expression remains valid even if the Fermion field ψ is a multiplet. In that case,
the traces have to be taken over all the spaces belonging to the multiplet along with the Dirac space. As the thermal Dirac
propagator S11ðx; yÞ ¼ S11ðx − yÞ is translationally invariant, it can be Fourier transformed to momentum space as

S11ðx; yÞ ¼ S11ðx − yÞ ¼
Z

d4p
ð2πÞ4 e

−ip·ðx−yÞð−iS11ðp;mÞÞ; ðA11Þ

where, S11ðp;mÞ denotes the corresponding 11-component of the free thermal Dirac propagator in momentum space,
explicitly given by the following expression [54,55]:
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S11ðp;mÞ ¼ ðpþmÞD̃11ðp;mÞ ðA12Þ

with

D̃11ðp;mÞ ¼
�

−1
p2 −m2 þ iϵ

− ξ−ðp:uÞ2πiδðp2 −m2Þ
�
: ðA13Þ

In the above equation, ξ−ðxÞ ¼ ΘðxÞf−ðxÞ þ Θð−xÞf−ð−xÞ and f−ðxÞ ¼ ½ex=T þ 1�−1 denotes the Fermi-Dirac thermal
distribution function. On substituting Eq. (A11) into Eq. (A10), we obtain

hT cJ
μ
DiracðxÞJνDiracðyÞi11 ¼ e2

Z Z
d4p
ð2πÞ4

d4k
ð2πÞ4 e

−iðx−yÞ·ðp−kÞTrfγμS11ðp;mÞγνS11ðk;mÞg ðA14Þ

¼ −
Z Z

d4p
ð2πÞ4

d4k
ð2πÞ4 e

−iðx−yÞ·ðp−kÞD̃11ðp;mÞD̃11ðk;mÞN μν
Diracðk; pÞ ðA15Þ

where

N μν
Diracðk; pÞ ¼ −e2TrfγμðpþmÞγνð=kþmÞg

¼ −4e2½pμkν þ kμpν − gμνfðk · pÞ2 −m2g�: ðA16Þ

For the calculation of the electrical conductivity tensor, we need the expression of N μν
Diracðk; kÞ which is obtained from the

above equation as

N μν
Diracðk; kÞ ¼ −4e2½2kμkν − gμνðk2 −m2Þ�: ðA17Þ

APPENDIX B: CALCULATION OF THE VECTOR CURRENT CORRELATORS IN THE
PRESENCE OF AN EXTERNAL MAGNETIC FIELD

Here, we give the calculation of the two-point vector current correlation function hT cJμðxÞJνðyÞiB11 in the presence of an
external magnetic field. For this, we will proceed along the same lines as the B ¼ 0 case so that in the presence of a
magnetic field, Eq. (A3) for the scalar field becomes

hT cJ
μ
ScalarðxÞJνScalarðyÞi11 ¼ −e2½Dμ

xD11ðx; yÞDν
yD11ðy; xÞ −Dμ

xD�ν
y D11ðx; yÞD11ðy; xÞ

−D11ðx; yÞD�μ
x Dν

yD11ðy; xÞ þD�ν
y D11ðx; yÞD�μ

x D11ðy; xÞ�; ðB1Þ

where Dμ
x ≡ ∂μ

x þ ieAμ
extðxÞ, D�μ

x ≡ ∂μ
x − ieAμ

extðxÞ etc., and denotes the 11-component of the

coordinate space free thermomagnetic scalar propagator in RTF. Unlike the B ¼ 0 case, the thermomagnetic propagator is
not translationally invariantDB

11ðx; yÞ ¼ Φðx; yÞDB
11ðx − yÞ as it contains the gauge dependent phase factorΦðx; yÞwhich is

responsible for explicitly breaking the translational invariance. The translationally invariant piece DB
11ðx − yÞ of the

propagator can be Fourier transformed to the momentum space as

DB
11ðx − yÞ ¼

Z
d4k
ð2πÞ4 e

−ik·ðx−yÞð−iDB
11ðk;mÞÞ; ðB2Þ

where DB
11ðk;mÞ is the corresponding 11-component of the momentum space free thermomagnetic scalar propagator in

RTF whose explicit form is [56]

DB
11ðk;mÞ ¼

X∞
l¼0

2ð−1Þle−αkLlð2αkÞD11ðkk; mlÞ: ðB3Þ

SATAPATHY, GHOSH, and GHOSH PHYS. REV. D 104, 056030 (2021)

056030-14



In the above equation, l is the Landau level index,

αk ¼ − k2⊥
eB ≥ 0, ml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2lþ 1ÞeB

p
is the “Landau

level dependent effective mass,” and D11 is given in
Eq. (A5). As we have considered the external magnetic
field to be in the ẑ direction, we decompose any four-vector
kμ as k ¼ ðkk þ k⊥Þ where kμk ¼ gμνk kν and kμ⊥ ¼ gμν⊥ kν in
which the corresponding decomposition of the metric
tensor is gμν ¼ ðgμνk þ gμν⊥ Þ with gμνk ¼ diagð1; 0; 0;−1Þ
and gμν⊥ ¼ diagð0;−1;−1; 0Þ. It is to be noted that, in
our convention, kμ⊥ is a spacelike vector with k2⊥ ¼
−ðk2x þ k2yÞ < 0 contrary to the convention used in
Ref. [56].
Although the thermomagnetic propagator contains

the phase factor Φðx; yÞ (which breaks the translational
invariance), the two-point correlation function
hT cJ

μ
ScalarðxÞJνScalarðyÞiB11 comes out to be translationally

invariant. To see this, we take the following explicit form of
the phase factor [56]

Φðx; yÞ ¼ exp

�
ie
Z

y

x
dx0μA

μ
extðx0Þ

�
ðB4Þ

and differentiate it separately with respect to x and y using
the Leibniz rule to obtain

∂μ
xΦðx; yÞ ¼ Φðx; yÞf−ieAμ

extðxÞg; ðB5Þ

∂μ
yΦðx; yÞ ¼ Φðx; yÞfieAμ

extðxÞg; ðB6Þ

which in turn yields the following result:

Dμ
xΦðx; yÞ ¼ D�μ

y Φðx; yÞ ¼ 0: ðB7Þ

From Eq. (B7), we obtain

Dμ
xDB

11ðx; yÞ ¼ Dμ
x½Φðx; yÞDB

11ðx − yÞ�
¼ Φðx; yÞ∂μ

xDB
11ðx − yÞ; ðB8Þ

D�μ
y DB

11ðx; yÞ ¼ D�μ
y ½Φðx; yÞDB

11ðx − yÞ�
¼ Φðx; yÞ∂μ

yDB
11ðx − yÞ: ðB9Þ

We now use Eqs. (B8) and (B9) in order to simplify
Eq. (B1) and get

hT cJ
μ
ScalarðxÞJνScalarðyÞi11 ¼ −e2Φðx; yÞΦðy; xÞ½∂μ

xD11ðx − yÞ∂ν
yD11ðy − xÞ − ∂μ

x∂ν
yD11ðx − yÞD11ðy − xÞ

−D11ðx − yÞ∂μ
x∂ν

yD11ðy − xÞ þ ∂ν
yD11ðx − yÞ∂μ

xD11ðy − xÞ�: ðB10Þ

It is easy to see that the phase factor in Eq. (B4) satisfiesΦðx; yÞΦðy; xÞ ¼ 1, so that the correlator hT cJ
μ
ScalarðxÞJνScalarðyÞi11

of the above equation is translationally invariant and gauge independent. The cancellation of the phase factor for the one-
loop diagrams containing equally charged particles is well known [56–58]. Comparing Eq. (B10) with Eq. (A3), we notice
that the expression of the vector current correlator at B ≠ 0 is identical to the same at B ¼ 0, except the thermal propagator
has been replaced by the translationally invariant piece of the thermomagnetic propagator.
Substituting Eq. (B2) into Eq. (B10) and simplifying, we arrive at

hT cJ
μ
ScalarðxÞJνScalarðyÞi11 ¼ −

X∞
l¼0

X∞
n¼0

Z Z
d4p
ð2πÞ4

d4k
ð2πÞ4 e

−iðx−yÞ·ðp−kÞD11ðkk;mlÞD11ðpk; mnÞN μν
ln;Scalarðk; pÞ; ðB11Þ

where

N μν
ln;Scalarðk; pÞ ¼ 4ð−1Þlþne−αk−αpLlð2αkÞLnð2αpÞN μν

Scalarðk; pÞ ðB12Þ

with N μν
Scalarðk; pÞ given in Eq. (A7).

In the calculation of the electrical conductivity tensor, we need the expression of N μν
ln;Scalarðk; kÞ which is obtained from

the above equation as

N μν
ln;Scalarðk; kÞ ¼ 16e2Alnðk2⊥Þkμkν; ðB13Þ

in which

Alnðk2⊥Þ ¼ ð−1Þlþne−2αkLlð2αkÞLnð2αkÞ: ðB14Þ

The calculation of the vector current correlator hT CJ
μ
DiracðxÞJνDiracðyÞiB11 for the Dirac case at B ≠ 0 can be done in a

similar way to the scalar case. Here, Eq. (A14) at B ≠ 0 becomes
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hT CJ
μ
DiracðxÞJνDiracðyÞiB11 ¼ e2

Z Z
d4p
ð2πÞ4

d4k
ð2πÞ4 e

−iðx−yÞ·ðp−kÞTrfγμSB11ðp;mÞγνSB11ðk;mÞg; ðB15Þ

where SB11ðpÞ is the 11-component of the momentum space free thermomagnetic Dirac propagator in RTF, explicitly given
by [39,59]

SB11ðp;mÞ ¼
X∞
l¼0

ð−1Þle−αpDlðpÞD̃11ðpk; mlÞ; ðB16Þ

in which ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2lþ 1 − 2sÞeB

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2leB

p
(for the Dirac case, s ¼ 1=2), D̃11 is given in Eq. (A13) and

DlðpÞ is

DlðpÞ ¼ ðpk þmÞ½ð1þ iγ1γ2ÞLlð2αpÞ − ð1 − iγ1γ2ÞLl−1ð2αpÞ� − 4p⊥L1
l−1ð2αpÞ ðB17Þ

with the convention L−1ðzÞ ¼ L1
−1ðzÞ ¼ 0.

Substituting Eq. (B16) into Eq. (B15) and simplifying, we get

hT CJ
μ
DiracðxÞJνDiracðyÞiB11 ¼ −

X∞
l¼0

X∞
n¼0

Z Z
d4p
ð2πÞ4

d4k
ð2πÞ4 e

−iðx−yÞ·ðp−kÞD̃11ðpk;mnÞD̃11ðkk;mlÞN μν
ln;Diracðk; pÞ; ðB18Þ

where

N μν
ln;Diracðk; pÞ ¼ −e2ð−1Þlþne−αk−αpTrfγμDnðpÞγνDlðkÞg: ðB19Þ

In the calculation of the electrical conductivity tensor, we need the expression of N μν
ln;Diracðk; kÞ which is obtained from

the above equation as

N μν
ln;Diracðk; kÞ ¼ −e2ð−1Þlþne−2αkT μν

ln ðkÞ; ðB20Þ

where

T μν
ln ðkÞ ¼ ð−1Þlþne−2αkTr½γμDnðkÞγνDlðkÞ�

¼ 8½8ð2kμ⊥kν⊥ − k2⊥gμνÞBlnðk2⊥Þ þ f2kμkkνk − gμνk ðk2k −m2ÞgClnðk2⊥Þ
þ ðk2k −m2Þgμν⊥Dlnðk2⊥Þ þ 2ðkμkkν⊥ þ kμ⊥kνkÞElnðk2⊥Þ�; ðB21Þ

in which,

Blnðk2⊥Þ ¼ ð−1Þlþne−2αkL1
l−1ð2αkÞL1

n−1ð2αkÞ; ðB22Þ

Clnðk2⊥Þ ¼ ð−1Þlþne−2αkfLl−1ð2αkÞLn−1ð2αkÞ þ Llð2αkÞLnð2αkÞg; ðB23Þ

Dlnðk2⊥Þ ¼ ð−1Þlþne−2αkfLlð2αkÞLn−1ð2αkÞ þ Ll−1ð2αkÞLnð2αkÞg; ðB24Þ

Elnðk2⊥Þ ¼ ð−1Þlþne−2αkfLl−1ð2αkÞL1
n−1ð2αkÞ − Llð2αkÞL1

n−1ð2αkÞ
þ L1

l−1ð2αkÞLn−1ð2αkÞ − L1
l−1ð2αkÞLnð2αkÞg: ðB25Þ

Substitution of Eq. (B21) into Eq. (B20) yields after some simplifications,

N μν
ln;Diracðk; kÞ ¼ −8e2½8ð2kμ⊥kν⊥ − k2⊥gμνÞBlnðk2⊥Þ þ f2kμkkνk − gμνk ðk2k −m2ÞgClnðk2⊥Þ

þ gμν⊥ ðk2k −m2ÞDlnðk2⊥Þ þ 2ðkνkkμ⊥ þ kμkk
ν⊥ÞElnðk2⊥Þ�: ðB26Þ
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APPENDIX C: ANALYTIC EXPRESSIONS OF AðjÞ
ln , B

ðjÞ
ln , C

ðjÞ
ln , D

ðjÞ
ln , AND EðjÞ

ln

Using the orthogonality of the Laguerre polynomials, one can first derive the following integral identities:

Z
d2k⊥
ð2πÞ2 e

−2αkL1
l−1ð2αkÞL1

n−1ð2αkÞk2⊥ ¼ −
ðeBÞ2
16π

nδn−1l−1 ; ðC1Þ

Z
d2k⊥
ð2πÞ2 e

−2αkLlð2αkÞLnð2αkÞk2⊥ ¼ −
ðeBÞ2
16π

fð2nþ 1Þδnl − ðnþ 1Þδnþ1
l − nδn−1l g; ðC2Þ

Z
d2k⊥
ð2πÞ2 e

−2αkLlð2αkÞLnð2αkÞ ¼
eB
8π

δnl : ðC3Þ

Using the above equations, we perform the d2k⊥
integrals of Eqs. (C1)–(C3) and get

Að0Þ
ln ¼ eB

8π
δnl ; ðC4Þ

Að2Þ
ln ¼−

ðeBÞ2
16π

fð2nþ1Þδnl þðnþ1Þδnþ1
l þnδn−1l g; ðC5Þ

Bð2Þ
ln ¼ −

ðeBÞ2
16π

nδn−1l−1 ; ðC6Þ

Cð0Þln ¼ eB
8π

ðδnl þ δn−1l−1 Þ; ðC7Þ

Dð0Þ
ln ¼ −

eB
8π

ðδn−1l þ δnl−1Þ: ðC8Þ

We also note that the Kronecker delta function with a
negative index is zero (i.e., δ−1−1 ¼ 0). This follows from
the convention of the Laguerre polynomials L−1ðzÞ ¼
L1
−1ðzÞ ¼ 0 used in Eq. (B17).

APPENDIX D: EQUITY OF σkQFT AND σkQM

Substituting Eqs. (C4), (C6), and (C7) into Eqs. (47) and
(49), we get

Ñ k
ln;ScalarðkzÞ ¼ 4e2

�
eB
2π

�
k2zδnl ; ðD1Þ

Ñ k
ln;DiracðkzÞ

¼ −4e2
�
eB
2π

�
f−2leBδn−1l−1 þ ðk2z þ 2leBÞðδnl þ δn−1l−1 Þg:

ðD2Þ

Using the fact that δ1−1 ¼ 0, we have lðδnl þ δn−1l−1 Þ ¼ 2lδn−1l−1
and ðδnl þ δn−1l−1 Þ ¼ ð2 − δ0l Þδnl , so that Eq. (D2) can be
further simplified to

Ñ k
ln;DiracðkzÞ ¼ −4e2

�
eB
2π

�
k2zð2 − δl0Þδnl : ðD3Þ

Equations (D1) and (D3) can be generally expressed as

Ñ k
lnðkzÞ ¼ a2e2gl

�
eB
2π

�
k2zδnl ; ðD4Þ

where

gl ¼
�
2 for scalar

2ð2 − δl0Þ for Dirac
ðD5Þ

is the Landau level dependent degeneracy.
Substituting Eq. (D4) into Eq. (52), and evaluating one

of the double sums using the Kronecker delta function,
we get

σkQFT ¼ e2

T

�
eB
2π

�X∞
l¼0

gl

×
Z þ∞

−∞

dkz
2π

k2z
ðωklÞ2

1

Γ
faðωklÞf1þ afaðωklg; ðD6Þ

which is identical to the expression of σkQM of Eqs. (71)
and (72).
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