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Three-loop counterterms for the Standard Model (SM) revealed that the matrix of anomalous dimensions
(γ) of quarks is divergent in the d → 4 limit unless a carefully chosen non-Hermitian square-root of the Z
matrix is used in the textbook formula for γ. Here, an alternative prescription is given, which expresses γ

and β functions directly in terms of counterterms (instead of
ffiffiffiffi
Z

p
and conventional ‘bare couplings’) and

produces finite results. In the SM, this prescription reproduces results obtained previously by adjusting
ffiffiffiffi
Z

p
.
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I. INTRODUCTION

The dependence of renormalized correlation functions
on the renormalization scale μ, which may appear to a
newbie particle physicist as an additional parameter in
quantum version of a given classical model, provides a
powerful method of predicting terms in perturbation
expansion that have not been calculated yet [1]. Indeed,
apart from an extra parameter, the quantum theory pos-
sesses also an additional (purely quantum) symmetry
known as the (perturbative) renormalization group equation
(RGE). Unlike most of other global symmetries, RGE
mixes different orders of perturbation calculus, and thus
allows for extraction of (some of) the higher-order terms.
Moreover, RGE gives an important consistency check for
multi-loop calculations, as many of the terms in perturba-
tion expansion are fixed by lower-order RGE coefficients.
While RGE is by now a standard textbook material, it

may seem surprising at first that the standard formula for
the anomalous dimension, i.e.,

γF ¼ ð
ffiffiffiffiffiffi
ZF

p
Þ−1μ d

dμ

ffiffiffiffiffiffi
ZF

p
; ð1Þ

leads at three-loop order to γF matrices in the Standard
Model (SM), which still contain poles at d ¼ 4 in the MS
scheme of dimensional regularization (DimReg), if

ffiffiffiffiffiffi
ZF

p
is

the Hermitian square root of a matrix that renormalizes
kinetic terms [see Eq. (2) below] of Weyl fields that create/

annihilate quarks [2]. The same problem has been observed
in two Higgs doublet models (2HDMs) [3]. Moreover, as
factoring out

ffiffiffiffiffiffi
ZF

p
is a part of the standard definition of

‘bare couplings’, problems with anomalous dimensions
affect also the beta functions for Yukawa matrices of
quarks. It was shown in the original papers [2,3] that a
unitary matrix U can be found (which by itself also diverges
in the d → 4 limit) such that the replacement

ffiffiffiffiffiffi
ZF

p
↦

U
ffiffiffiffiffiffi
ZF

p
in Eq. (1), as well as in the definition of ‘bare

Yukawa matrices’, leads to finite anomalous dimensions
and finite beta functions for Yukawa matrices. It was also
emphasized in Ref. [3] that, even without the unitary
factors, the poles at d ¼ 4 only affect beta functions of
unphysical parameters, such as the Yukawa matrices, while
beta functions of flavor-invariant quantities in the quark
sector are finite. More recently, Ref. [4] proved that these
divergent anomalous dimensions and beta functions still
lead to a finite renormalization group (RG) flow of renor-
malized correlation functions. At the same time a generic
prescription for finite (‘flavor improved’) beta and gamma
functions is given in [4]; however these functions are defined
in terms of additional diagrams involving external fields.
Still, the RGE coefficients in a generic renormalizable

model are most easily expressible in terms of these
unphysical Yukawa matrices, and the like. Moreover, the
RGE is an intrinsic feature of renormalized correlation
functions, and as such has, in principle, nothing to do with
counterterms. Indeed, even in renormalization schemes
without divergent counterterms, the RGE controls terms
in perturbation expansion (see e.g., [5]). Thus, the necessity
to search for additional divergent unitary factors, or to
calculate extra diagrams of a spurion field, to get finite
RGE coefficients, seems unnatural (not to mention working
with divergent RGE coefficients). The purpose of the
present paper is therefore to provide a solution to the
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problem of divergences in RGE coefficients, which is more
natural and easier to use than approaches proposed so far in
the literature.
The RGE coefficients are usually calculated from coun-

terterms, rather than from renormalized correlation func-
tions, especially in dimensional regularization. This is,
however, not the cause of the problems discussed in this
paper, as RG invariance simply reflects regulator inde-
pendence of renormalized correlation functions which,
because of purely dimensional reasons, still remember that
the logarithmic divergences existed. But, unlike plain
counterterms, square-roots of ZF factors are completely
unnatural creatures from the point of view of perturbative
calculations. While such square roots allow for an intro-
duction of ‘bare fields’ and ‘bare couplings’, working with
the bare objects is usually inconvenient and unnecessarily
complicates the problems one is trying to solve. For
instance, the proof of renormalizability of non-Abelian
gauge theories in gauge-symmetry-preserving regulariza-
tions is simpler if one abandons bare fields altogether, as
then the nonrenormalization theorems for gauge fixing
terms in linear gauges have a more natural form [6,7]. In
fact, to the best of my knowledge, there is no regularization
that is at the same time consistent and automatically
preserving chiral gauge symmetries (see e.g., [8] and
references therein). Therefore, renormalization is always
an additive procedure, even in ‘multiplicatively renorma-
lizable’ theories, and there is really no obvious definition of
‘bare fields’ and ‘bare couplings’. One should keep this fact
in mind, even though practical multi-loop calculations (in
particular, the ones discussed here) are usually done in
DimReg with the chiral-gauge-symmetry-preserving naive
prescription for γ5, which requires verification that its
inconsistencies do not (yet) affect the result.
Despite their unnaturalness, the

ffiffiffiffiffiffi
ZF

p
factors play a

crucial role in a textbook derivation of RGE. Consider
the Lagrangian density that generates renormalized
one-particle-irreducible (1PI) correlation functions [i.e.,
includes all the relevant counterterms, summed up to
ðZFÞab, ðZSÞjk, Yjab etc.]

Ltree þ Lc:t: ¼ iðZFÞabχ̄aσ̄μ∂μχ
b þ 1

2
ðZSÞjkημν∂μϕ

j∂νϕ
k

−
1

2
ϕjðYjabχ

aχb þ Y�
jabχ̄

aχ̄bÞ þ…: ð2Þ

Here χb, b ¼ 1; 2;… are Weyl fermions with different
flavors/colors (spinor indices are supressed), ϕj are
Hermitian scalar fields, ðZFÞab ¼ δab þOðℏÞ is a
Hermitian matrix, while ðZSÞij ¼ δij þOðℏÞ is a real
symmetric matrix. The ellipsis represents all other oper-
ators in the Lagrangian, in particular the quartic scalar
couplings as well as interactions involving the gauge fields.

The coefficients Yjab are symmetric in a ↔ b indices, and
in DimReg; in d ¼ 4 − 2ϵ dimensions they read

Yjab ¼ μϵðYjab þYjabÞ; ð3Þ

where Yjab are renormalized Yukawa matrices, and Yjab ¼
OðℏÞ is the total counterterm for the χχϕ vertex. Once the
square roots of ZF;S matrices are factored out from Yjab to
define the conventional ‘bare couplings’ YB

jab, one sees that
the renormalized 1PI correlation functions depend on
renormalized couplings and μ only through the bare
couplings and the square roots of ZF;S matrices.
Moreover, factors Z−1

F;S from the propagators, cancel the
square roots of ZF;S from vertices connected by these
propagators; thus what remains is a single

ffiffiffiffiffiffiffiffiffi
ZF;S

p
factor for

each external line of a 1PI function. This observation is
enough to write the RGE for that function (see e.g., [7] for
the derivation of the Callan-Symanzik equation along
these lines).
As said, however, neither

ffiffiffiffiffiffiffiffiffi
ZF;S

p
nor YB

jab are natural
objects calculated in perturbation theory. In contrast, ZF;S

and Yjab naturally follow from Feynman diagrams. In fact,
one of the ancillary files [9] for Ref. [3] provides ZF;S and
Yjab (and their counterparts for some other vertices) at
three-loop order for the SM and 2HDMs as a ready to use
Mathematica package. It is therefore desirable to have a
prescription for RGE coefficients, as well as a derivation of
the RGE itself that operates on natural entities ZF;S,
Yjab, etc.
The remainder of the paper is organized as follows. First,

a natural prescription for the RGE coefficients β and γ is
given, and finiteness of the resulting β’s and γ’s is shown in
general, as well as in the special case of the three-loop
counterterms [3,9] for the SM. Next, a natural derivation of
the RGE, from which this prescription originates, is
provided.

II. PRESCRIPTION

Consider once again the Lagrangian density (2) which
generates renormalized 1PI correlation functions. Let fgCg
be the set of all independent renormalized parameters of a
model. In particular, among gC there are real and imaginary
parts of independent entries of renormalized Yukawa
matrices Yjab, as well as gauge couplings, quartic couplings
and mass(-square) parameters (in non-Landau gauges, the
gauge fixinig parameters must also be included in this set).
I want to stay as close as possible to perturbative calcu-
lations, and therefore prefer not to talk about running
couplings. Instead, I track only the explicit dependence of
correlation functions (and counterterms) on μ and the
renormalized parameters gC. In this approach, running
couplings are nothing more than solutions of the resulting
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RGE for renormalized 1PI correlation functions via the
method of characteristics.
Introducing a (yet to be found) beta function βC for each

independent parameter gC, one can define the differential
operator1

D ¼ μ
∂
∂μþ βC

∂
∂gC : ð4Þ

Beta functions and anomalous dimensions can now be
easily obtained by solving (in perturbation theory) the
following system of linear equations (flavor indices are
suppressed and matrix multiplication is used instead; Yk is
a matrix with matrix elements Ykab)

DZF ¼ ZFγF þ γ†FZF; ð5Þ

γ†F ¼ γF; ð6Þ

DZS ¼ ZSγS þ γTSZS; ð7Þ

γTS ¼ γS; ð8Þ

DYj ¼ YjγF þ γTFYj þ ðγSÞkjYk; ð9Þ

together with analogous equations for other vertices and
gauge fields. I have decided to separate out the Hermiticity
(symmetry) conditions for anomalous dimensions of Weyl
fermions (respectively, Hermitian scalars) as they serve a
different purpose than remaining equations. It will be
shown below that any beta functions and anomalous
dimensions that obey Eqs. (5), (7), and (9) (together with
their counterparts for remaining fields and vertices) guar-
antee that the renormalized 1PI generating functional
satisfies the RGE. In contrast, Hermiticity (symmetry)
conditions ensure that the resulting RGE coefficients have
finite limits when the regulator is removed. Before discus-
sing finiteness, one first has to realize that, since both sides
of Eqs. (5) [respectively (7)] are explicitly Hermitian
(respectively symmetric) and ZS;F ¼ 1þOðℏÞ, the
Hermitian (symmetric) part of γF (γS) is uniquely fixed
by these equations at every finite order of perturbative
expansion. To get the n-loop contribution to this Hermitian
(symmetric) part one needs only the n-loop contribution to
ZS;F and (n − 1)-loop contributions to beta functions.
Similarly, Eq. (9) determines in perturbation theory the
n-loop contribution to the beta function for a Yukawa
matrix ðYjÞab ¼ Yjab [cf. Eq. (3)]

βYj
≡ βC

∂
∂gC Yj; ð10Þ

provided that n-loop contributions to Yj and n-loop
contributions to γS;F are known. Thus, Eqs. (5)–(9) sup-
plemented by their counterparts for other field and vertices,
have a unique solution in perturbation theory. It should be
also stressed that (5)–(9) are valid not only in DimReg. In
particular, in DimReg ZS;F are strictly dimensionless and
therefore the partial μ-derivative in (4) does not contribute
to the left-hand side of Eqs. (5) and (9). By contrast, in
mass-independent schemes based on (some sort of) cutoff
regularization, ZS;F do depend explicitly on lnðΛ=μÞ. In
both classes of regularizations, γS;F ¼ OðℏÞ. Just like ZS;F,
the counterterm Yjab in Eq. (3) has no μ-dependence in
DimReg, but unlike γS;F beta functions in DimReg
(because of the factor μϵ) have nonzero tree-level contri-
butions that vanish only in the d → 4 limit.
To prove finiteness of the resulting β and γ coefficients, it

is now enough to realize that Eqs. (5), (7), and (9) are
structurally identical with the RGEs for the (form factors
of) corresponding renormalized 1PI correlation functions
of fermions and scalars. These form factors, just like ZS;F

and Yj, have the form 1þOðℏÞ and, respectively,
Yj þOðℏÞ. Therefore, one can uniquely express beta
and gamma functions in terms of renormalized (i.e., finite)
correlation functions provided the Hermiticity/symmetry
conditions (6) and (8) are imposed.
I have explicitly verified the correctness of the above

prescription using the three-loop SM counterterms from
Refs. [3,9]. Since these counterterms are available as
Mathematica files, solving Eqs. (5)–(9) is a simple exercise
in Mathematica programming.2 In Ref. [3] the tree-level
Lagrangian reads (I discuss here only the SM case)

Ld¼4
tree ¼ −ðQL Φ̃YðuÞuR þQLΦYðdÞdRÞ þ H:c:þ…;

with the quark SUð2Þ-doubletQL, quark SUð2Þ-singlets uR
and dR, as well as the Higgs doubletΦ and Φ̃≡ iτ2Φ� with
a Pauli matrix τ2. Expressing the components of Dirac
fields via the corresponding Weyl fields (uR ≃ χ̄u, dR ≃ χ̄d,
QL ≃ χ̄Q) one gets

Ld¼4
tree ¼ −ðχ̄QΦ̃YðuÞχ̄u þ χ̄QΦYðdÞχ̄dÞ þ H:c:þ…;

where flavor, color, and spinor indices are suppressed. In
particular, YðuÞ and YðdÞ correspond to certain submatrices
of Y�

j , cf. Eqs. (3) and (2). Ref. [9], in addition to
ZuR ¼ Z�

χu , ZdR ¼ Z�
χd , ZQL

¼ ZχQ , and ZΦ, also contains
matrices ZQuΦ and ZQdΦ that are submatrices of
Y�
jab þY�

jab, cf. Eq. (3), i.e.,1This operator could (but not necessarily should) be identified
with μ d

dμ, i.e., the total derivative with respect to μwith g
C treated

as a running coupling. I did such an identification in Eq. (1) to
conform to the standard notation used in the literature.

2A full version of calculations reported here can be found in a
supplementary Mathematica notebook [10].
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Ltree þ Lc:t: ⊃ −μϵðχ̄QΦ̃ZQuΦχ̄u þ χ̄QΦZQdΦχ̄dÞ þ H:c:

Because of (unbroken) SUð2Þ gauge symmetry, ZΦ is
effectively a single (real) parameter, and so is γΦ.
Eqs. (5)–(9) now read (q represents u or d)

γ†Q ¼ γQ; γ†q ¼ γq; ð11Þ

DZΦ ¼ 2γΦZΦ; ð12Þ

DZQL
¼ γQZQL

þ ZQL
γQ; ð13Þ

DZqR ¼ γ�qZqR þ ZqRγ
�
q; ð14Þ

ϵZQqΦ þDZQqΦ ¼ ZQqΦγ
�
q þ γQZQqΦ þ γΦZQqΦ: ð15Þ

The Hermiticity of anomalous dimensions has been used to
simplify the remaining equations. Note that in the above
equationsD acts only on dimensionless quantities, because
μϵ has been explicitly factored out from ZQqΦ, and there-
fore one can effectively set D ≃ βC ∂

∂gC. I have solved these

equations (together with their counterparts for SM leptons)
up to the termsOðℏ3Þ. In the first step, I compared only the
terms without the poles at ϵ ¼ 0 to get three-loop anoma-
lous dimensions of fermions (and the Higgs field), as well
as three-loop beta functions for Yukawa matrices. To that
end, I needed only the tree-level beta functions for the other
SM couplings. The so-obtained three-loop beta functions
are identical with the ones explicitly given in Ref. [9] which
relied on the adjustment of unitary factors. Moreover, the
resulting anomalous dimensions of fermions are indeed
Hermitian. Next, I have verified that these β’s and γ’s
ensure that the pole parts on both sides of Eqs. (12)–(15)
are the same, as expected. To check this, I needed also
(respectively, two-loop and one-loop) β functions for gauge
and quartic couplings (which are given in Ref. [9]),3 as well
as β functions for gauge-fixing parameters. The latter,
because of nonrenormalization theorems for gauge-fixing
terms in linear gauges [6,7], depend only on the anomalous
dimensions of the gauge bosons, and, analogously to (12),
can be easily obtained from the ZB;W;G factors listed in [9].
Finally, I compared the anomalous dimensions obtained by
the proposed prescription, with the ones that follow from
Eq. (1) after the replacement

ffiffiffiffiffiffi
ZF

p
↦ U

ffiffiffiffiffiffi
ZF

p
with unitary

factors U from Ref. [2], and both approaches gave the same
result.

III. DERIVATION OF RGE

It remains to show that Eqs. (5)–(9) indeed guarantee that
the renormalized 1PI generating functional Γ obeys the
RGE. To that end, I follow the approach originally used by
Zinn-Justin [6] to derive Slavnov-Taylor identities express-
ing the Becchi-Rouet-Stora-Tyutin (BRST) symmetry of Γ
functional in a gauge-symmetry-preserving regularization.
Let fgCg be the set of independent renormalized parameters
of a given theory, while fΨIg is the set of all (renormalized)
fields. Suppose that the coefficients βC and γIJ have been
found which guarantee that the action I that contains
counterterms (i.e., generates renormalized correlation func-
tions) obeys the equation

RI ¼ 0; ð16Þ

with the following differential operator4

R≡ μ
∂
∂μþ βC

∂
∂gC − γIJ

Z
ddxΨJðxÞ δ

δΨIðxÞ : ð17Þ

For vertices explicitly shown in Eq. (2), the identity (16)
reduces to Eqs. (5), (6), and (9). In particular, the existence
of such βC and γIJ functions follows from the arguments
given below Eq. (9), as their generalization to other vertices
is trivial once the well-known structure of counterterms of
non-Abelian gauge theories [6,7] in a gauge symmetry-
preserving regularization is taken into account.5

Note that R is a first-order partial differential operator
and, importantly, the coefficients that multiply derivatives
are at most linear in quantum (i.e., propagating) fields.
Thus, R belongs to the class of operators for which Zinn-
Justin’s trick [6,7] works, i.e., by putting Eq. (16) under the
path integral and integrating by parts one sees that the
generating functional

Z½J ; g; μ� ¼
Z

½DΨ� exp
�
iI þ i

Z
ddxJ IðxÞΨIðxÞ

�
;

obeys the following identity

RZ½J ; g; μ� ¼ Θ × Z½J ; g; μ�;

where

3In fact, those lower-order beta functions can be unambigu-
ously obtained by demanding that the pole terms on both sides of
(counterparts of) Eqs. (12)–(13) for the Higgs doublet, gauge
bosons, and lepton doublets indeed agree (see the supplementary
Mathematica notebook [10]).

4The set fΨIg contains both, Weyl fermions χ and their
conjugates χ̄. One can assume that anomalous dimensions of χ̄
are related by complex conjugation to those corresponding to χ.

5In fact, in [11] an inductive proof was given that, in a variant
of smooth cutoff regularization, the complete action (containing
counterterms restoring finiteness as well as counterterms restor-
ing BRST-invariance of correlation functions) also obeys
Eq. (16). Thus, the arguments given here are not really restricted
to gauge-symmetry-preserving regularizations.
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R≡ μ
∂
∂μþ βC

∂
∂gC þ γIJ

Z
ddxJ IðxÞ

δ

δJ JðxÞ
;

and

Θ ¼
X
I

ð∓ γIIÞ ×
Z

ddxδðdÞpositionð0Þ;

(upper/lower sign corresponds to bosonic/fermionic field

ΨI). Since δðdÞpositionð0Þ is a pure quartic divergence, it
vanishes in DimReg; in any case, Θ disappears from the
RGE satisfied by the functionalW that generates connected
Green’s functions provided it is defined by [11]

expðiW½J ; g; μ�Þ ¼ Z½J ; g; μ�
Z½0; g; μ� ;

and thus

RW½J ; g; μ� ¼ 0: ð18Þ

It should be stressed that Z and W generate renormalized
correlation functions because the action I already includes
the counterterms. Performing the Legendre transform of
W½J ; g; μ�, it is now easy to check that the functional
Γ½Ψ; g; μ� generating renormalized 1PI functions, obeys the
very same RGE as the action with counterterms, i.e.,

RΓ½Ψ; g; μ� ¼ 0; ð19Þ

with R defined in (17). In particular, as I have already
emphasized discussing finiteness of β and γ coefficients,
the RGEs for ‘bare vertices’ (5), (7), and (9) are structurally
identical with the RGEs for the corresponding renormalized
1PI correlation functions.

IV. CONCLUSIONS

The prescription given in the present paper allows for an
efficient extraction of finite RGE coefficients directly from
countertems calculated in perturbation theory with dia-
grams involving only the standard set of (quantum) fields in
a given model. It is based on solving a set of linear
equations that can be most easily obtained by extracting
independent vertices on the left-hand side of Eq. (16), and
requires no adjustment of extra unitary factors whatsoever.

In fact, there is even no need to calculate square roots of Z
matrices or conventional ‘bare couplings’, as everything is
naturally expressed in terms of entities directly accessible
in perturbation theory.
The Hermiticity/symmetry conditions (6)/(8) ensure that

the resulting system of linear equations has a unique
solution (which, importantly, is finite). One can rephrase
the arguments given above as follows. Since the equations
are linear, the unique solution is guaranteed by a non-
vanishing determinant of the coefficient matrix. Since the
determinant is a formal power series, it is nonvanishing
because the system of equations has a unique solution at the
tree-level.
Nonetheless, conditions (6)/(8) are dictated by natural-

ness and simplicity, and without them the remaining
equations have infinitely many solutions, reflecting the
ambiguities in the approach based on adjusting unitary
factors. In particular, I reproduced the original three-loop
beta functions of the SM because the unitary factors chosen
in Ref. [2] also lead to Hermitian anomalous dimensions of
quarks.
It is also worth noticing that, at the three-loop order,

flavor-improved RG coefficients used in Ref. [4] do not
obey Hermiticity/symmetry conditions,6 and therefore they
represent a different solution to the problem considered in
this paper, which is more suitable in certain situations (e.g.,
conformal field theories can be identified by vanishing of
flavor-improved betas [12]). Still, simplicity of conditions
(6)/(8) makes the RG coefficients obtained by imposing
them strong candidates for ‘the standard’ beta and gamma
functions.
I believe that the prescription given here can be useful for

high-loop calculation of RGE coefficients in a generic
renormalizable theory, and hope that it sheds some light on
problems appearing in a more traditional approach.
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