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In this paper we derived in QCD the Balitsky-Fadin-Kuraev-Lipatov (BFKL) linear, inhomogeneous
equation for the factorial moments of multiplicity distribution (Mk) from Le-Mueller-Munier equation. In
particular, the equation for the average multiplicity of the color-singlet dipoles (N) turns out to be the
homogeneous BFKL while Mk ∝ Nk at small x. Second, using the diffusion approximation for the BFKL
kernel we show that the factorial moments are equal toMk ¼ k!NðN − 1Þk−1 which leads to the multiplicity
distribution σn

σin
¼ 1

N ðN−1
N Þn−1. We also suggest a procedure for finding corrections to this multiplicity

distribution which will be useful for descriptions of the experimental data.
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I. INTRODUCTION

During the past several years a robust relation between
the principle features of high energy scattering and entan-
glement properties of the hadronic wave function have been
in focus of the high energy and nuclear physics commun-
ities [1–19]. In this paper, we continue to explore the
relation between the entropy in the parton approach
[20–23] and the entropy of entanglement in a proton wave
function [5]. In Ref. [5], it was proposed that parton
distributions can be defined in terms of the entropy of
entanglement between the spatial region probed by deep
inelastic scattering (DIS) and the rest of the proton. This
approach leads to a simple relation S ¼ lnN between the
average number of color-singlet dipoles and the entropy of
the produced hadronic state S. This simple relation shows
that a proton becomes a maximally entangled state in the
region of small Bjorken x. All these conclusions were made
from estimates in the simple, even naive model for QCD
cascade of color-singlet dipoles. However, it has been
demonstrated in Refs. [6,10,11,16,19] that these ideas are
in qualitative and, partly, in quantitative agreement with the
available experimental data. Actually, it is shown in Ref. [5]
that the simple cascade of color-singlet dipoles leads to the
multiplicity distribution:

σn
σin

¼ 1

N

�
N − 1

N

�
n−1

ð1Þ

where N is the average number of dipoles.
The goal of this paper is to study the multiplicity

distribution and the entanglement entropy in the effective
theory for QCD at high energies (see Ref. [24] for a general
review). We have approached this problem in Refs. [5,18]
and have demonstrated that Eq. (1) arises in QCD cascades.
In this paper we analyze the multiplicity distribution for
Balitsky-Kovchegov (BK) cascade [25] in which one
dipole at low energy generates a large number of color-
singlet dipoles at high energy. The equations for such a
cascade are known (see Refs. [24,26–28]) and the first try
to solve them have been undertaken in Ref. [18]. However,
in this paper we return to this problem and study the
multiplicity distribution using the new equation
[Le-Mueller-Munier (LMM) equation] for the probability
generating function that has been derived in Ref. [29].
In the next section we derive the LMM equation from the

equation for the BK parton cascade. In the rest of the paper
we discuss the equations for the factorial moments that
follow from the LMM equation. We show that every
factorial moment satisfies the linear but inhomogeneous
equation with the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
kernel [30,31]. We attempt to solve these equations and
demonstrate that in the diffusion approximation to the
BFKL kernel factorial moments are equal to

Mk ¼ k!NðN − 1Þk−1: ð2Þ

We show that Eq. (2) leads to Eq. (1).
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In Sec. VI we suggest an approach to go beyond diffusion approximation, which cannot give a reliable description of the
experimental data even in the leading order of perturbative QCD. In this approach we propose to solve exactly the equations
for the factorial moments and using the difference between the exact solution and Eq. (2) [ΔMk ¼ MkðexactÞ −Mk
(Eq. (2))] we develop the way to estimate the multiplicity distributions beyond diffusion approximation. In the conclusion
section we summarize our results.

II. GENERAL FEATURES OF THE CASCADE OF COLOR-SINGLET DIPOLES IN QCD

In QCD at large number of colors Nc (Nc ≫ 1) the color-singlet dipoles play the role of partons (see Ref. [24] for
review). As discussed in Refs. [24,26–28] for them we can write the following equations:

∂PnðY; r; b; r1; b1; r2; b2…ri; bi;…rn; bnÞ
∂Y ¼ −

Xn
i¼1

ωGðriÞPnðY; r; b; r1; b1; r2; b2…ri; bi;…rn; bnÞ

þ ᾱS
Xn−1
i¼1

ðri þ rnÞ2
ð2πÞr2i r2n

Pn−1ðY; r; b; r1; b1;…ðri þ rnÞ; bin;…rn−1; bnÞ ð3Þ

where PnðY; fri; bigÞ is the probability to have n dipoles of size ri, at impact parameter bi and at rapidity Y.
1 bin in Eq. (3) is

equal to bin ¼ bi þ 1
2
ri ¼ bn − 1

2
ri. ωGðrÞ is defined below in Eq. (8b).

Equation (3) is a typical cascade equation in which the first term describes the reduction of the probability to find n
dipoles due to the possibility that one of n dipoles can decay into two dipoles of arbitrary sizes, while the second term
describes the growth due to the splitting of (n − 1) dipoles into n dipoles.
The initial condition for the DIS scattering is

P1ðY ¼ 0; r; b; r1; b1Þ ¼ δð2Þðr − r1Þδð2Þðb − b1Þ; Pn>1ðY ¼ 0; frigÞ ¼ 0 ð4Þ

which corresponds to the fact that we are discussing a dipole of definite size which develops the parton cascade. Since
PnðY; frigÞ is the probability to find dipoles frig, we have the following sum rule:

X∞
n¼1

Z Yn
i¼1

d2rid2biPnðY; fribigÞ ¼ 1; ð5Þ

i.e., the sum of all probabilities is equal to 1.
This QCD cascade leads to the Balitsky-Kovchegov (BK) equation [24,25] for the amplitude and gives the theoretical

description of the DIS. We introduce the generating functional [26]

ZðY; r; b; ½ui�Þ ¼
X∞
n¼1

Z
PnðY; r; b; fribigÞ

Yn
i¼1

uðribiÞd2rid2bi ð6Þ

where uðribiÞ≡ ui is an arbitrary function. The initial conditions of Eq. (4) and the sum rules of Eq. (5) take the following
form for the functional Z:

ZðY ¼ 0; r; b; ½ui�Þ ¼ uðr; bÞ; ð7aÞ

ZðY; r; ½ui ¼ 1�Þ ¼ 1: ð7bÞ

Multiplying both parts of Eq. (3) by
Q

n
i¼1 uðribiÞ and integrating over ri and bi we obtain the following linear functional

equation [28];

∂ZðY; r; b; ½ui�Þ
∂y ¼

Z
d2r0Kðr0; r − r0jrÞ

�
−uðr; bÞ þ u

�
r0; bþ 1

2
ðr − r0Þ

�
u

�
r − r0; bþ 1

2
r0
��

δZ
δuðr; bÞ ; ð8aÞ

1In the lab frame rapidity Y is equal to Y ¼ ydipole r − ydipoles ri , where ydipole r is the rapidity of the incoming fast dipole and ydipole ri is
the rapidity of dipoles ri. Note that all rapidities of dipoles ri are the same in Eq. (3).
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Kðr0; r − r0jrÞ ¼ 1

2π

r2

r02ðr − r0Þ2 ; ωGðrÞ ¼
Z

d2r0Kðr0; r − r0jrÞ; ð8bÞ

where y ¼ ᾱSY.
Searching for the solution of the form Zð½uðri; bi; YÞ�Þ for the initial conditions of Eqs. (7a) and (8a) can be rewritten as

the nonlinear equation [26]:

∂ZðY; r; b; ½ui�Þ
∂y ¼

Z
d2r0Kðr0; r − r0jrÞ

�
Z

�
r0; bþ 1

2
ðr − r0Þ; ½ui�

�
Z

�
r − r0; bþ 1

2
r0; ½ui�

�
− ZðY; r; b; ½ui�Þ

�
: ð9Þ

Therefore, the QCD parton cascade of Eq. (3) takes into account nonlinear evolution.

III. DERIVATION OF THE LE-MUELLER-MUNIER EQUATION

In this section we derive the LMM equation which is proposed in Ref. [29]. First, we introduce the same notations as in
Ref. [29]:

w̃nðr; b; yÞ ¼
Z Yn

i¼1

d2rid2biPnðY; fribigÞ: ð10Þ

One can see that w̃nðr; b; yÞ is the probability that the dipole with size r produces n dipoles with all possible sizes.
Equation (7b) reads as

X∞
n¼1

w̃nðr; b; yÞ ¼ 1: ð11Þ

Taking all uiðri; biÞ ¼ λ one can see that we can rewrite Eq. (6) in the form:

ZðY; r; b; ½ui ¼ λ�Þ≡ w̃λðr; b; yÞ ¼
X∞
n¼1

λnw̃nðr; b; yÞ: ð12Þ

Plugging Eq. (17) into Eq. (9) we obtain the LMM equation in the form:

∂w̃λðr; b; yÞ
∂y ¼

Z
d2r0Kðr0; r − r0jrÞ

�
w̃λ

�
r0; bþ 1

2
ðr − r0Þ; y

�
w̃λ

�
r − r0; bþ 1

2
r0; y

�
− w̃λðr; b; yÞ

�
: ð13Þ

In addition, discussing multiplicity distribution Pn ¼ σn
σtot

, where σn is the cross section for production of n color-singlet
dipoles, we need to integrate wnðr; b; yÞ over b. In this case the initial condition for the dipole cascade takes the form

P1ðY ¼ 0; r; r1Þ ¼ δð2Þðr − r1Þ; Pn>1ðY ¼ 0; frigÞ ¼ 0 ð14Þ

which leads to the probabilities that do not depend on impact parameters. Since in Eq. (3) b enters as a parameter, PnðY; riÞ,
which does not depend on bi, is also a solution to Eq. (3), which satisfies Eq. (14).
Equation [29] reduces to

∂w̃λðr; yÞ
∂y ¼

Z
d2r0Kðr0; r − r0jrÞfw̃λðr0; yÞw̃λðr − r0; yÞ − w̃λðr; yÞg ð15Þ

Equation (15) is a particular case of the general equation that has been derived in Ref. [29]. In this paper instead of
Eq. (10) the more general form of this equation is proposed, viz.:

wnðr; b; y; y0Þ ¼
Z Yn

i¼1

ðd2rid2biSðri; bi; y0ÞÞPnðY; fribigÞ ð16Þ
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where Sðri; bi; y0Þ is the scattering S-matrix for elastic interaction of the dipole with size ri at rapidity Y0ðy0 ¼ ᾱSY0Þ and at
impact parameter bi with the target at Y ¼ 0. Since S is a unitarity matrix, wnðr; b; y; y0Þ is the probability that the dipole
with size r produces n dipoles with all possible sizes, which interact with the target. Bearing this in mind, we see that
Eq. (11) holds for wλðr; b; y; y0Þ, which is defined as

ZðY; r; b; ½ui ¼ λSðri; bi; y0Þ�Þ≡ wλðr; b; y; y0Þ ¼
X∞
n¼1

λnwnðr; b; y; y0Þ: ð17Þ

For the case of Pn which does not depend on bi, inserting in Eq. (9) uiðri; bi; Þ ¼ λSðri; bi; y0Þ we see that we obtain the
LMM equation in its original form (see Ref. [29]):

∂wλðr; b; y; y0Þ
∂y ¼

Z
d2r0Kðr0; r − r0jrÞfwλðr0; y; y0Þwλðr − r0; y; y0Þ − wλðr; y; y0Þg: ð18Þ

IV. AVERAGE NUMBER OF COLOR-SINGLET DIPOLES

The average number of dipoles can be calculated using the following formula:

Nðr; y; y0Þ ¼ hjnji ¼
X∞
n¼1

nwnðr; y; y0Þ ¼
∂wλðr; y; y0Þ

∂λ
����
λ¼1

: ð19Þ

Differentiating Eq. (13) with respect to λ we obtain that

∂Nðr; y; y0Þ
∂y ¼

Z
d2r0Kðr0; r − r0jrÞfNðr0; y; y0Þ þ Nðr − r0; y; y0Þ − Nðr; y; y0Þg: ð20Þ

Equation (20) shows that the average number of dipoles satisfies the linear BFKL [30,31] equation and increases in the
region of small x (large y). Therefore, we see that the general QCD cascade reproduces the main observation of Ref. [5]
which was made in the oversimplified model for the QCD cascade. In this model the dependence on the size of the dipoles
was neglected.
The general solution takes the following form:

Nðr; y; y0Þ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

eχðγÞyþγξninðγ; y0Þ ð21Þ

where ξ ¼ lnð 1r2Þ and χðγÞ is the BFKL kernel:

χðγÞ ¼ 2ψð1Þ− ψðγÞ− ψð1− γÞ ¼

8>><
>>:

1
γ for γ → 0 ← double log approximation ðDLAÞ;

4 ln2|ffl{zffl}
ω0

þ 14ζð3Þ|fflfflffl{zfflfflffl}
D

�
γ − 1

2

�
2

for γ → 1
2
← diffusion approximation ðDAÞ; ð22Þ

where ψðzÞ is the Euler ψ function (see Ref. [32] formula 8.36).
ninðγÞ has to be found from the initial condition Nðr; b; y ¼ 0; y0 ¼ 0Þ ¼ 1 [see Eqs. (4) and (7a)]. It gives

ninðγÞ ¼
1

γ
: ð23Þ

Introducing multiplicity in the momentum representation,

NðkT; yÞ ¼
Z

d2re−ikT ·r
Nðr; yÞ

r2
; ð24Þ

we can rewrite Eq. (20) in the form
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∂NðkT; y; y0Þ
∂y ¼

Z
d2kT
ð2πÞ2 KðkT; k

0
TÞNðk0T; y; y0Þ ð25Þ

where KðkT; k0TÞ is the BFKL kernel in momentum representation:

KðkT; k0TÞNðk0T; y; y0Þ ¼
1

ðkT − k0TÞ2
Nðk0T; y; y0Þ −

k2T
ðkT − k0TÞ2ððkT − k0TÞ2 þ k02TÞ

NðkT; y; y0Þ: ð26Þ

Solution to this equation has the same form of Eq. (21) but with the replacement of ξ → ξ0 ¼ ln k2T and

ninðγÞ ¼ χðγÞ=γ: ð27Þ

Equation (27) reproduces the value of NðkT; y ¼ 0; y0 ¼ 0Þ, since Eq. (24) at y ¼ 0 leads to NðkT; yÞ ¼ ln k2T þOð1=k2TÞ.
It is worth mentioning that (i) in the double log approximation ninðγÞ ¼ 1=γ2, which leads to NðkT; yÞ ¼ ln k2T and (ii) in
semiclassical approximation, which we will use below, we can neglect all corrections of the order of 1=k2T .

V. EQUATIONS FOR MOMENTS OF THE MULTIPLICITY DISTRIBUTION

A. The second moment

1. Equation

We start a derivation of the evolution equation for the moments of the multiplicity distributions considering the second
moment, which has the following form:

M2ðr; y; y0Þ ¼ hjnðn − 1Þji ¼
X∞
n¼1

nðn − 1Þwnðr; y; y0Þ ¼
∂2wλðr; y; y0Þ

∂λ2
����
λ¼1

: ð28Þ

Taking the second derivative with respect to λ from Eq. (18) we obtain the equation for M2ðr; y; y0Þ

∂M2ðr; y; y0Þ
∂y ¼

Z
d2r0Kðr0; r − r0jrÞfM2ðr0; y; y0Þ þM2ðr − r0; y; y0Þ

þ 2Nðr0; y; y0ÞNðr − r0; y; y0Þ −M2ðr; y; y0Þg: ð29Þ

Equation (29) is a linear but inhomogeneous equation with the inhomogeneous term, which is determined by the
multiplicity of the dipoles.
The initial condition [see Eqs. (4) and (7a)] for this equation is

M2ðr; y ¼ y0; y0Þ ¼ 0: ð30Þ

First, lets us start to solve Eq. (29) making the first iteration at small y ¼ Δy.
For y ¼ 0 Nðr; y ¼ 0Þ ¼ 1 and M2ðr; y ¼ 0Þ ¼ 0, and hence

Mð1Þ
2 ¼ 2ΔyωGðrÞ ð31Þ

where ω is given by Eq. (8b). The first iteration of Eq. (20) leads to Nð1Þ ¼ 1þ ΔyωGðrÞ. Comparing these two estimates
one can see that the first iteration can be written as the expansion of the solution M2ðr; yÞ ¼ 2ðN2ðr; yÞ − Nðr; yÞÞ with
respect to Δy. Hence, we see that at small Δy we obtain the simple expression forM2, which turns out to be the same as for
the multiplicity distribution of Eq. (1) for the simple toy model [5]. We will try to prove this equation below, but we have
succeeded only in the semiclassical approximation.
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2. General solution

The general solution to Eq. (29) we can obtain going to momentum representation:

m2ðkT; yÞ ¼
Z

d2r
ð2πÞ2 e

−ikT ·r
M2ðr; yÞ

r2
: ð32Þ

Equation (29) takes the form

∂m2ðkT; y; y0Þ
∂y ¼

Z
d2kT
ð2πÞ2KðkT; k0TÞm2ðk0T; y; y0Þ þ 2N2ðkT; y; y0Þ: ð33Þ

Taking the Mellin transform,

m2ðkT; y; y0Þ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

eγξ
0
m̃2ðγ; y; y0Þ where ξ0 ¼ ln k2T ð34Þ

from both parts of Eq. (33) we obtain

∂m̃2ðγ; y; y0Þ
∂y ¼ χðγÞm̃2ðγ; y; y0Þ þ 2 en2 ð35Þ

where χðγÞ is given by Eq. (8b) and en2 denotes the Mellin image of N2ðkT; b; y; y0Þ.
Equation (35) has the following solution which satisfies the initial condition of Eq. (30):

m̃2ðγ; y; y0Þ ¼ eχðγÞy
Z

y

0

dy0 2 en2e−χðγÞy0 þ m̃BFKL
2 ðγ; y; y0Þ ð36Þ

where m̃BFKL
2 ðγ; y; y0Þ is a solution to the homogeneous linear BFKL equation with the initial condition of Eq. (30). In the

following, we neglect the contribution of this term.

3. Semiclassical solution

For large y and ξ we can use the semiclassical approximation (SCA, see Refs. [24,33] and references therein) to take the
integral over y0 in Eq. (36). In this approximation we are searching for

N ¼ eSN ¼ eωðξ0;yÞyþγðy;ξ0Þξ0 ð37Þ

where ωðξ0; yÞ and γðy; ξ0Þ are smooth functions of y and ξ0: ∂ω0ðξ0; yÞ=∂y ≪ ω2ðξ0; yÞ, ∂ωðξ0; yÞ=∂ξ0 ≪ ωðξ0; yÞγðy; ξ0Þ,
∂γðξ0; yÞ=∂ξ0 ≪ γ2ðξ0; yÞ, ∂γðξ0; yÞ=∂ξ0 ≪ ωðξ0; yÞγðy; ξ0Þ. Such form of N stems from Eq. (21) if we use the method of
steepest descent for calculating the integral over γ. Indeed, using this method one can see that

ωðξ0; yÞ ¼ χðγSPÞ; γðξ0; yÞ ¼ γSP; equation for γSP∶
dχðγÞ
dγ

����
γ¼γSP

y ¼ ξ0; ð38Þ

In the SCA the Mellin image of N2 can be written as follows:

N2ðξ0; y; y0Þ ¼ e2SN ¼ e2ωðξ0;yÞyþ2γðy;ξ0Þξ0 ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

e2χð12γÞyþγξ0HðγÞ ð39Þ

Indeed, taking the integral by the method of steepest descent we obtain the following equation for the saddle point (γð2ÞSP):

2
dχð1

2
γÞ

dγ

����
γ¼γð2ÞSP

y ¼ ξ0; ð40Þ

with the solution γð2ÞSP ¼ 2γSP, where γSP is given by Eq. (38). Plugging this solution into Eq. (39) we see that
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N2ðξ0; y; y0Þ ¼ e2χð
1
2
γð2ÞSP Þyþγð2ÞSPξ

0
Z

ϵþi∞

ϵ−i∞

dΔγ
2πi

e
d2χð1

2
γ
ð2Þ
SP

Þ
dγ yðΔγÞ2Hðγð2ÞSPÞ

¼ e2χðγSPÞyþ2γSPξ
0
Z

ϵþi∞

ϵ−i∞

dΔγ
2πi

e
d2χðγSPÞ

dγ yðΔγÞ2Hð2γSPÞ: ð41Þ

The integral over Δγ leads to a smooth function, which in the SCA can be considered as a constant. Therefore, comparing
Eq. (39) and Eq. (41) one can see that Eq. (39) is correct. We can derive Eq. (39) using a more general consideration.
Actually, the expression for the Mellin transform of N2ðξ0; y; y0Þ is the convolution in γ of Mellin images of N, which has
the following form:

en2 ¼ Z
ϵþi∞

ϵ−i∞

dγ0

2πi
ninðγ0Þninðγ − γ0Þeðχðγ0Þþχðγ−γ0ÞÞy: ð42Þ

Taking the integral over γ0 using the method of steepest descent one can see that the equation for the saddle point has the
following form:

dχðγ − γ0Þ
dγ0

þ dχðγ0Þ
dγ0

¼ 0 ð43Þ

with the solution γ0SP ¼ 1
2
γ. Plugging this solution in Eq. (42) we reduce it to

en2 ¼ e2χð12γÞy
Z

ϵþi∞

ϵ−i∞

dΔγ0

2πi
n2in

�
1

2
γ

�
e
d2χðγ0

SP
Þ

dγ02
SP

yðΔγ0Þ2 ð44Þ

which reproduces the Mellin transform of Eq. (39).

Plugging in Eq. (36) en2 ¼ e2χð12γÞyHðγÞ we can take the integral over y0 and the solution has the form:

m̃2ðγ; y; y0Þ ¼ eχðγÞyHðγÞ
Z

y

0

dy02 en2e−χðγÞy0 ¼ 2

2χð1
2
γÞ − χðγÞ fe

2χð1
2
γÞyHðγÞ − eχðγÞyHðγÞg ð45Þ

Note, that in Eq. (45) we neglected the contribution of m̃BFKL
2 ðγ; y; y0Þ in Eq. (36).

Before fixing HðγÞ we need to go back to coordinate representation. Indeed, in this representation we have simple initial
conditions for M2 of Eq. (30). Since all solutions are solutions of the linear equations and γSP ≪ 1, we can replace
ξ0 ¼ ln k2T by ξ ¼ ln 1

r2. Bearing this in mind, we can reduce the solution to the form

M2ðξ; y; y0Þ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

2χðγÞ
2χð1

2
γÞ − χðγÞ fe

2χð1
2
γÞy − eχðγÞyg 1

γ
eγξ: ð46Þ

First, we note that taking by the integral over γ using the method of steepest descent, we reproduce Eq. (45) with the
particular choice of HðγÞ ¼ χðγÞ=γ, which has been discussed in Eq. (27). Second, one can see that at y → 0 this solution
coincides with Eq. (31).
In DLA this solution takes the form [see Eq. (22)]:

MDLA
2 ðξ0; y; y0Þ ¼

Z
ϵþi∞

ϵ−i∞

dγ
2πi

2

3
fe4

γy − e
1
γyg 1

γ
eγξ

0 ð47aÞ

¼ 2

3
fN2

SCAðr; y; y0Þ − NSCAðr; y; y0Þg ← with semiclassical accuracy: ð47bÞ

However, it turns out that Eq. (47a) reproduces at least two terms of the expansion at small values of y of the following
relation:
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M2½Eq: ð47aÞ� ¼ 2ðN2ðr; y; y0Þ − Nðr; y; y0ÞÞ

¼ 2yξþ 3

2
ðyξÞ2 þOððyξÞ3Þ: ð48Þ

Concluding, we see that Eq. (2) does not hold in the
DLA, but Eq. (48) gives us some hope to find an approach
in which it will be correct.

4. Diffusion approximation

Actually, the most adequate approach at high energies is
the diffusion one [see Eq. (22)]. Plugging in Eq. (46) the
BFKL kernel in the form χðγÞ ¼ ω0 þDðγ − 1

2
Þ2 and taking

the integral using the method of steepest descent we obtain
the saddle point

γSP ¼ 1

2
þ i

ξ

2Dy
; 2χ

�
1

2
γSP

�
¼ 2ω0 −

ξ2

2Dy
; χðγSPÞ ¼ ω0 −

ξ2

4Dy
; ð49Þ

Considering ξ
2Dy ≪ 1 we can neglect their contributions in the factor 2χðγÞ

2χð1
2
γÞ−χðγÞ reducing it to 2. Hence, Eq. (46) reads

MDA
2 ðr; y; y0Þ ¼ 2ðN2ðr; y; y0Þ − Nðr; y; y0ÞÞ: ð50Þ

We can obtain the solution of Eq. (50) directly from the equation forM2 [see Eq. (29)], if we note that the BFKL kernel
has maxima at r0 → 0 and jr − r0j → 0. In Fig. 1 we plot the term of Eq. (29), which is proportional to N2:

Z
d2r0Kðr0; r − r0jrÞ2Nðr0; y; y0ÞNðr − r0; y; y0Þ ∝

Z
d2r0Kðr0; r − r0jrÞððr02ðr − r0Þ2Þ12 ¼

Z
dr0I

�
τ ¼ r0

r

�
: ð51Þ

We can see from Fig. 1 that IðτÞ has a maximum at τ ¼ 1. Note that in Eq. (51) we introduce γ ¼ 1
2
, which corresponds to the

DA, to estimates the value of this contribution.
Bearing this observation in mind, we can rewrite Eq. (29) in the following form:

∂M2ðr; y; y0Þ
∂y ¼

Z
r0<r

d2r0Kðr0; r − r0jrÞM2ðr; y; y0Þ þ
Z
r0<r

d2r0Kðr0; r − r0jrÞM2ðr0; y; y0Þ

þ
Z
jr−r0j<r

d2r0Kðr0; r − r0jrÞM2ðr − r0; y; y0Þ þ
Z
jr−r0j<r

d2r0Kðr0; r − r0jrÞM2ðr; y; y0Þ

þ 2

Z
jr−r0j<r

d2r0Kðr0; r − r0jrÞNðr; y; y0ÞNðr − r0; y; y0Þ

þ 2

Z
r0<r

d2r0Kðr0; r − r0jrÞNðr; y; y0ÞNðr0; y; y0Þ −
Z

d2rKðr0; r − r0jrÞM2ðr; y; y0Þ: ð52Þ

One can see (i) that in Eq. (52) the terms, which are proportional to M2ðr; y; y0Þ, cancel each other out, and (ii) this
equation can be presented in the form

∂M2ðr; y; y0Þ
∂y ¼

Z
d2r0Kðr0; r − r0jrÞfM2ðr0; y; y0Þ þ 2Nðr; y; y0ÞNðr0; y; y0Þg: ð53Þ

FIG. 1. IðτÞ of Eq. (51) versus τ ¼ r0=r.
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Substituting Eq. (50) into Eq. (53) we reduce it in the SCA to the equation

∂2ðN2 − NÞ
∂y ¼ 2χðγSPÞð2N2 − NÞ ¼ 2ððχð2γSPÞ þ χðγSPÞÞN2 − χðγSPÞNÞ: ð54Þ

Hence, one can see that in the limit of small ξ
2Dy ≪ 1, χð2γSPÞ ¼ χðγSPÞ and Eq. (50) satisfies Eqs. (53) and (54).

It is worth noting that Eq. (48) follows from the multiplicity distribution, which is given by Eq. (1). We will concentrate
our efforts on DA in our presentation below.

B. The third moment

The third moment can be found from the generating function w̃λðr; b; y; y0Þ in the following way:

M3ðr; y; y0Þ ¼ hjnðn − 1Þðn − 2Þji ¼
X∞
n¼1

nðn − 1Þðn − 2Þwnðr; y; y0Þ ¼
∂3wλðr; y; y0Þ

∂λ3
����
λ¼1

: ð55Þ

Using Eq. (55) we obtain the equation for M3ðr; y; y0Þ from Eq. (18):

∂M3ðr; y; y0Þ
∂y ¼

Z
d2r0Kðr0; r − r0jrÞfM3ðr0; y; y0Þ þM3ðr − r0; y; y0Þ

þ 6M2ðr0; y; y0ÞNðr − r0; y; y0Þ −M3ðr; y; y0Þg:

Rewriting Eq. (56) in momentum representation [see Eq. (32)] we reduce this equation to the form

∂m3ðkT; y; y0Þ
∂y ¼

Z
d2k0T
ð2πÞ2KðkT; k0TÞm3ðk0T; y; y0Þ þ 6m2ðkT; y; y0ÞnðkT; y; y0Þ ð56Þ

where we use lowercase letters denoting the moments in the momentum representation.
The Mellin image of Eq. (56) has the form

∂m̃3ðγ; y; y0Þ
∂y ¼ χðγÞm̃3ðγ; y; y0Þ þ 6gn2n ð57Þ

where gn2n is the Mellin image of m2ðkT; y; y0ÞNðkT; y; y0Þ which has the general form

gn2nðγ; yÞ ¼ Z
ϵþi∞

ϵ−i∞

dγ0

2πi
en2ðγ0; yÞñðγ − γ0; yÞ ð58Þ

where en2ðγ; yÞ is determined by [see Eq. (46)]

en2 ¼ 2χðγÞ
2χð1

2
γÞ − χðγÞ fe

2χð1
2
γÞy − eχðγÞyg 1

γ
ð59Þ

Plugging Eqs. (21) and (59) into Eq. (58) one can see thatgn2nðγ; yÞ is a sum of two terms. Taking the integral over γ0 in each
of them in the saddle point approximation [see Eqs. (42)–(44)] we obtain two equations for the saddle points:

2
dχð1

2
γ0Þ

dγ0
þ dχðγ − γ0Þ

dγ0
¼ 0 with γ0SP ¼ 2

3
γ;

dχðγ − γ0Þ
dγ0

þ dχðγ0Þ
dγ0

¼ 0; with γ0SP ¼ 1

2
γ: ð60Þ
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Hence, gn2nðγ; yÞ takes the form

gn2nðγ; yÞ ¼ 2χðγÞ
2χð1

3
γÞ − χð1

2
γÞ fe

3χð1
3
γÞy − eχð12γÞygH2ðγÞ: ð61Þ

The solution does not depend on the form of H2ðγÞ, which we will specify below.
Plugging this equation in Eq. (57) we obtain the solution

m̃3ðγ; y; y0Þ ¼ 6

�
1

3χð1
3
γÞ − χðγÞ

��
2χðγÞ

2χð1
3
γÞ − χð1

2
γÞ
�
fe3χð13γÞy − eχðγÞyg

−
�

1

2χð1
3
γÞ − χð1

2
γÞ
��

2χðγÞ
2χð1

2
γÞ − χðγÞ

�
fe2χð12γÞy − eχðγÞygH2ðγÞ: ð62Þ

Going to the coordinate representation as was discussed above and choosingH2ðγÞ ¼ χðγÞ=γ, which reproduces the correct
initial conditions we obtain

M3ðξ; y; y0Þ ¼ 6

Z
ϵþi∞

ϵ−i∞

dγ
2πi

;

�
χðγÞ

3χð1
3
γÞ − χðγÞ

��
2χðγÞ

2χð1
3
γÞ − χð1

2
γÞ
�
fe3χð13γÞy − eχðγÞyg

−
�

χðγÞ
2χð1

3
γÞ − χð1

2
γÞ
��

2χðγÞ
2χð1

2
γÞ − χðγÞ

�
fe2χð12γÞy − eχðγÞyg 1

γ
eγξ: ð63Þ

Using the method of steepest descent and neglecting contributions of the order of ξ0
2Dy in all preexponential factors, we see

that

M3ðξ; y; y0Þ ¼ 6Nðξ; y; y0ÞðNðξ; y; y0Þ − 1Þ2; ð64Þ

which is the same as for the multiplicity distribution of Eq. (1).

C. General approach

The equation for a general moment

Mkðr; y; y0Þ ¼ hjnðn − 1Þ � � � ðn − kþ 1Þji ¼
X∞
n¼1

ðnðn − 1Þ � � � ðn − kþ 1ÞÞwnðr; y; y0Þ ¼
∂kwλðr; y; y0Þ

∂λk
����
λ¼1

ð65Þ

we can obtain by differentiating Eq. (18) with respect to λ. It has the simple form in the momentum representation [see
Eq. (32)]:

∂
∂ymkðkT; y; y0Þ ¼

Z
d2kT
ð2πÞ2KðkT; k0TÞmkðk0T; y; y0Þ þ

Xk−1
i¼1

k!
ðk − iÞ!i!mk−iðkT; y; y0ÞmiðkT; y; y0Þ: ð66Þ

As we have discussed, we can go back to coordinate representation in Eq. (66), since mk is the solution to the linear
equations, and, therefore, has the Mellin image

mkðkT; yÞ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

eωðγÞyþγξ0mk0ðγÞ with ξ0 ¼ ln k2T: ð67Þ

In coordinate representation we have

Mkðr; yÞ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

eωðγÞyþγξmk0ðγÞHkðγÞ with ξ ¼ ln

�
1

r2

�
: ð68Þ

The coordinate image of mk−iðkT; y; y0ÞmkðkT; y; y0Þ is
R
d2r0Kðr0; r − r0jrÞMk−iðr0; y; y0ÞMiðr − r0; y; y0Þ. On the other

hand, in SCA mk−iðkT; y; y0ÞmiðkT; y; y0Þ has the image in γ representation, which is equal to Const
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exp ðkχð1k γÞyÞmk−i;0ðγkÞmi;0ðγkÞH̃kðγÞ] see Eqs. (45) and (61)].2 Using this image, one can see that the coordinate
representation for mk−iðkT; y; y0ÞmkðkT; y; y0Þ can be reduced to

R
d2r0Kðr0; r − r0jrÞMk−iðr0; y; y0ÞMiðr0; y; y0Þ, which

means that H̃kðγÞ ¼ χðγÞ as we expect from Eqs. (46) and (63).
Finally we can rewrite Eq. (66) in the coordinate representation in the form

∂
∂yMkðr; y; y0Þ ¼

Z
d2r0Kðr0; r − r0jrÞ

�
Mkðr0; y; y0Þ þMkðr − r0; y; y0Þ −Mkðr; y; y0Þ

þ
Xk−1
i¼1

k!
ðk − iÞ!i!Mk−iðr0; y; y0ÞMiðr0; y; y0Þ

�
: ð69Þ

Assuming that for all i ≤ k − 1

Miðr; y; y0Þ ¼ i!Nðr; y; y0ÞðNðr; y; y0Þ − 1Þi−1; ð70Þ

which follows from Eq. (1), we will prove that for i ¼ k we have the same expression.
Plugging Eq. (70) in Eq. (69) we get the inhomogeneous term in the form k!ðk − 1ÞN2ðN − 1Þk−2. In the following we

will use the fact that the Mellin image of Niðr; y; y0Þ (eni) is equal to
eni ¼ eiχð1iγÞy

1

γ
¼

Z
ϵþi∞

ϵ−i∞

dω
2πi

eωy
1

ω − iχð1i γÞ
1

γ
; double Mellin image

eeni ¼ 1

ω − iχð1i γÞ
1

γ
; ð71Þ

which can be derived using the method of steepest descent in the estimates of the integrals over γ’s [see Eq. (42) for
example].
In the double Mellin transform Eq. (69) takes the form

ðω − χðγÞÞffMk ¼ k!ðk − 1ÞχðγÞ
Xk−2
l¼0

ð−1Þlðk − 2Þ!
ðk − 2 − lÞ!l!

1

ω − ðk − lÞχð 1
k−l γÞ

1

γ
ð72Þ

Hence from Eq. (72) we have

Mkðr; y; y0Þ ¼ k!ðk − 1Þ
Xk−2
l¼0

ð−1Þlðk − 2Þ!
ðk − 2 − lÞ!l!

×
Z

ϵþi∞

ϵ−i∞

dω
2πi

Z
ϵþi∞

ϵ−i∞

dγ
2πi

eωyþγξ0 χðγÞ
ðn − lÞχð 1

k−l γÞ − χðγÞ
�

1

ω − ðk − lÞχð 1
k−l γÞ

−
1

ω − χðγÞ
�
1

γ

¼ k!ðk − 1Þ
Xn−2
l¼0

ð−1Þlðk − 2Þ!
ðk − 2 − lÞ!l!

Z
ϵþi∞

ϵ−i∞

dγ
2πi

eγξ
0 χðγÞ
ðk − lÞχð 1

k−l γÞ − χðγÞ fe
ðk−lÞχð 1

k−1γÞy − eχðγÞyg 1
γ
: ð73Þ

In Eq. (73) we calculate the integrals over ω closing the contour of integration on poles. Taking the integral over γ using the
method of steepest descent in the diffusion approximation and neglecting the corrections of the order of ξ0=Dy (see
discussions above) we reduce Eq. (73) to the following expression:

Mkðr; y; y0Þ ¼ k!
Xk−2
l¼0

ð−1Þlðk − 1Þ!
ðk − 1 − lÞ!l! ðN

k−lðr; y; y0Þ − Nðr; b; y; y0ÞÞ

¼ k!
Xk−1
l¼0

ð−1Þlðk − 1Þ!
ðk − 1 − lÞ!l! N

k−lðr; y; y0Þ ¼ k!Nðr; y; y0ÞðNðr; y; y0Þ − 1Þk−1: ð74Þ

Since we have obtained Eq. (70) for i ¼ 2 and i ¼ 3, we prove this equation for any value of i.

2Actually, the γ image of mk is a sum of the terms with different k [see Eqs. (45) and (61)], but this does not change the conclusion.
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VI. FINDING CORRECTIONS AND COMPARISON
WITH EXPERIMENTS

Equation (70) generates the multiplicity distribution of
Eq. (1). However, several questions arise, when we wish to
compare this distribution with the experimental data, let us
say with DIS. The average multiplicity of the color-singlet
dipoles is equal to the sea quark structure function
xΣseaðx;Q2Þ [19]. On the other hand, in Eq. (70) the
multiplicity enters in the coordinate representation. In
diffraction approximation the momentum and coordinate
representations are related by the replacement
ln k2T → − ln r2. Therefore, my suggestion is to use
Eq. (1) with N ¼ xΣseaðx;Q2Þ but to calculate the correc-
tions to this distribution. The multiplicity distribution can
generally be written, using the cumulant generating func-
tion fðλÞ as follows [34,35]:

σn
σin

¼
I

dλ
2πi

efðλÞ

λnþ1
ð75Þ

where the contour of integration is the circle around the
point λ ¼ 0 and fðλÞ is the cumulant generating function,
which is defined as

fðλÞ ¼
X∞
n¼1

κn
n!

ðλ − 1Þn ð76Þ

where κn are cumulants. Generally speaking, we have the
following definition for the cumulants:

κ1 ¼ N; κ2 ¼M2 −N2; κ3 ¼M3 − 3M2N þ 2N3;

κ4 ¼M4 − 4M3N − 3M2
2 þ 12M2N2 − 6N4; ð77Þ

whereMk are the factorial moments, that we have discussed
above [see Eq. (70)].
In our case we can view fðλÞ as a sum of

fðλÞ ¼ fEq: ð1ÞðλÞ þ ΔfðλÞ. fEq: ð1ÞðλÞ generates the multi-
plicity distributions of Eq. (1), which includes the most
dominant contributions and, in particular, the average
number of color-singlet dipoles is taken into account
exactly. We suggest to introduce the function ΔfðλÞ in
the following way:

ΔfðλÞ ¼
X∞
n¼1

Δκn
n!

ðλ − 1Þn ð78Þ

with

Δκ1 ¼ 0; Δκ2 ¼ M2ðkT; yÞ − 2NðN − 1Þ;
Δκ3 ¼ M3ðkT; yÞ − 6NðN − 1Þ2 − 3Δκ2N; ð79Þ

where M2ðkT; yÞ and M3ðkT; yÞ are the exact solutions to
Eqs. (33) and (56), respectively.

Introducing two multiplicity distributions,

PnðNÞ ¼
I

dλ
2πi

ef
Eq:ð1ÞðλÞ

λnþ1
; P̃nðNÞ ¼

I
dλ
2πi

eΔfðλÞ

λnþ1
; ð80Þ

one can see that the resulting multiplicity distribution takes
the form

σn
σin

¼
Xn
k¼0

n!
ðn − kÞ!k!Pn−kðNÞP̃kðNÞ: ð81Þ

In the case of Δκ2 ≠ 0 but Δκn ¼ 0 for n > 2 the
distribution P̃nðNÞ has been found in Ref. [34] and it
has the following form in our notations:

P̃nðΔκ2Þ ¼ e
Δκ2
2

ð−i
ffiffiffiffiffiffi
Δκ2
2

q
Þn

n!
Hn

�
i

ffiffiffiffiffiffiffiffi
Δκ2
2

r �
ð82Þ

where Hn is the Hermite polynomial (see formula 8.95
in Ref. [32]).

VII. CONCLUSIONS

This paper has two main results. First, we derived the
BFKL linear, inhomogeneous equation for the factorial
moments of multiplicity distribution (Mk) from the LMM
equation. In particular, the equation for the average
multiplicity of the color-singlet (N) turns out to be the
homogeneous BFKL equation which leads to the powerlike
growth in the region of small x. From these equations it
follows that Mk ∝ Nk at small x.
Second, using the diffusion approximation for the BFKL

kernel, which is generally considered to be responsible for
the small x behavior, we show that the factorial moments
satisfy Eq. (2), which reproduces the multiplicity distribu-
tion of Eq. (1). This result is in agreement with the attempts
[18] to find solutions to the equations for the cascade of
color-singlet dipoles [see Eq. (3)].
We also suggest a procedure for finding corrections to

this multiplicity distribution, which, we believe, will be
useful for descriptions of the experimental data.
In general, the multiplicity distribution, that has been

discussed in the paper, confirms the result of Ref. [5], that
the entropy of color-singlet dipoles is equal to S ¼ lnN in
the region of small x, and gives the regular procedure to
estimate corrections to this formula.
It is worthwhile mentioning that both SCA and DA have

been developed before and many technical issues that matter
have been discussed3 (see, for example, Refs. [24,36–40] and
references therein).

3We thank our referee who drew our attention to Ref. [36],
where some technical details of our approach have been clarified.
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