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In this paper we derived in QCD the Balitsky-Fadin-Kuraev-Lipatov (BFKL) linear, inhomogeneous
equation for the factorial moments of multiplicity distribution (M) from Le-Mueller-Munier equation. In
particular, the equation for the average multiplicity of the color-singlet dipoles (N) turns out to be the

homogeneous BFKL while M, « N* at small x. Second, using the diffusion approximation for the BFKL

kernel we show that the factorial moments are equal to M = k!N (N — 1)¥~! which leads to the multiplicity
distribution 2+ = 1 (%=1)"=1. We also suggest a procedure for finding corrections to this multiplicity

distribution which will be useful for descriptions of the experimental data.
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I. INTRODUCTION

During the past several years a robust relation between
the principle features of high energy scattering and entan-
glement properties of the hadronic wave function have been
in focus of the high energy and nuclear physics commun-
ities [1-19]. In this paper, we continue to explore the
relation between the entropy in the parton approach
[20-23] and the entropy of entanglement in a proton wave
function [5]. In Ref. [5], it was proposed that parton
distributions can be defined in terms of the entropy of
entanglement between the spatial region probed by deep
inelastic scattering (DIS) and the rest of the proton. This
approach leads to a simple relation S = In N between the
average number of color-singlet dipoles and the entropy of
the produced hadronic state S. This simple relation shows
that a proton becomes a maximally entangled state in the
region of small Bjorken x. All these conclusions were made
from estimates in the simple, even naive model for QCD
cascade of color-singlet dipoles. However, it has been
demonstrated in Refs. [6,10,11,16,19] that these ideas are
in qualitative and, partly, in quantitative agreement with the
available experimental data. Actually, it is shown in Ref. [5]
that the simple cascade of color-singlet dipoles leads to the
multiplicity distribution:
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where N is the average number of dipoles.

The goal of this paper is to study the multiplicity
distribution and the entanglement entropy in the effective
theory for QCD at high energies (see Ref. [24] for a general
review). We have approached this problem in Refs. [5,18]
and have demonstrated that Eq. (1) arises in QCD cascades.
In this paper we analyze the multiplicity distribution for
Balitsky-Kovchegov (BK) cascade [25] in which one
dipole at low energy generates a large number of color-
singlet dipoles at high energy. The equations for such a
cascade are known (see Refs. [24,26-28]) and the first try
to solve them have been undertaken in Ref. [18]. However,
in this paper we return to this problem and study the
multiplicity ~ distribution using the new equation
[Le-Mueller-Munier (LMM) equation] for the probability
generating function that has been derived in Ref. [29].

In the next section we derive the LMM equation from the
equation for the BK parton cascade. In the rest of the paper
we discuss the equations for the factorial moments that
follow from the LMM equation. We show that every
factorial moment satisfies the linear but inhomogeneous
equation with the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
kernel [30,31]. We attempt to solve these equations and
demonstrate that in the diffusion approximation to the
BFKL kernel factorial moments are equal to

My = kIN(N — 1)1, (2)

We show that Eq. (2) leads to Eq. (1).
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In Sec. VI we suggest an approach to go beyond diffusion approximation, which cannot give a reliable description of the
experimental data even in the leading order of perturbative QCD. In this approach we propose to solve exactly the equations
for the factorial moments and using the difference between the exact solution and Eq. (2) [AM, = M (exact) — M,
(Eq. (2))] we develop the way to estimate the multiplicity distributions beyond diffusion approximation. In the conclusion
section we summarize our results.

II. GENERAL FEATURES OF THE CASCADE OF COLOR-SINGLET DIPOLES IN QCD

In QCD at large number of colors N. (N, > 1) the color-singlet dipoles play the role of partons (see Ref. [24] for
review). As discussed in Refs. [24,26-28] for them we can write the following equations:

OP,(Y,r,b;ri,b,,r>,b,...r;,b;, ...r,,
n( ke 62Y2 Lt Tn Vl 7_2(06 Yrbr],b],rz,bz r,,b,,.. n,b”)

1
Z 2,[),,1 r Pat(Vor by by 1) By i) (3)

=1

where P, (Y; {r;, b; }) is the probability to have n dipoles of size r;, at impact parameter b; and at rapidity ¥." b;, in Eq. (3) is
equal to b;, =b; +1r, = b, —1r,. wg(r) is defined below in Eq. (8b).

Equation (3) is a typical cascade equation in which the first term describes the reduction of the probability to find n
dipoles due to the possibility that one of n dipoles can decay into two dipoles of arbitrary sizes, while the second term
describes the growth due to the splitting of (n — 1) dipoles into n dipoles.

The initial condition for the DIS scattering is

Pi(Y =0,r.b:r.by) =52 (r—r )5 (b - b); Py (Y =0;{r;})=0 (4)

which corresponds to the fact that we are discussing a dipole of definite size which develops the parton cascade. Since
P,(Y;{r;}) is the probability to find dipoles {r;}, we have the following sum rule:

3 / [T rabip,(v: rb}) = 1. (5)

i.e., the sum of all probabilities is equal to 1.
This QCD cascade leads to the Balitsky-Kovchegov (BK) equation [24,25] for the amplitude and gives the theoretical
description of the DIS. We introduce the generating functional [26]

Z(Y.r.b;[u /P(Yrb{rb}Hurb Yd2r,d®b, (6)

where u(r;b;) = u; is an arbitrary function. The initial conditions of Eq. (4) and the sum rules of Eq. (5) take the following
form for the functional Z:

Z(Y =0,r,b;[u;]) = u(rb); (7a)
Z(Y,r u;=1]) = 1. (7b)

Multiplying both parts of Eq. (3) by [ [, u(r;b;) and integrating over r; and b; we obtain the following linear functional
equation [28];

Wg—yb /Jlr’Kﬂr—rJlr)(—u(rb)Jru(rb+ <r—f>)u(r—r%b+%r’))%; (8a)

'In the lab frame rapidity Y is equal t0 ¥ = Ygipole r — Ydipoles r,» WhETe Ygipole r 18 the rapidity of the incoming fast dipole and ygipore r, i
the rapidity of dipoles r;. Note that all rapidities of dipoles r; are the same in Eq. (3).
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r2

K(r',r—rir) = Eir’z(r —r) ;

wg(r) :/dzﬂK(r’,r—rJ|r); (8b)

where y = agY.
Searching for the solution of the form Z([u(r;, b;, Y)]) for the initial conditions of Egs. (7a) and (8a) can be rewritten as
the nonlinear equation [26]:

OZ(Y,r,b; u;])

o = /d2r'1<(r',r_r'|r){z<r',b +%(r—r’); [u,-])Z(r—r’,b—i—%r’; [ul-]> —Z(Y,r,b;[u,»})}. )

Therefore, the QCD parton cascade of Eq. (3) takes into account nonlinear evolution.

III. DERIVATION OF THE LE-MUELLER-MUNIER EQUATION

In this section we derive the LMM equation which is proposed in Ref. [29]. First, we introduce the same notations as in
Ref. [29]:

,(r, b, ) /Hdzrdsz (Y: {ribi)). (10)

One can see that w,(r, b,y) is the probability that the dipole with size r produces n dipoles with all possible sizes.
Equation (7b) reads as

> i(r.by) = 1. (11)
n=1
Taking all u;(r;, b;) = A one can see that we can rewrite Eq. (6) in the form:
Z(Y,r,b;[u; = ) =w,(r,b,y) = ZA” (r,b,y). (12)

Plugging Eq. (17) into Eq. (9) we obtain the LMM equation in the form:

Lwl(g,b,y) :/dzr’K(r/,r—r’|r){v~vﬁ<r’,b—l—%(r—r’),y)ﬂq (r—r’,b—i—%r’,y) —wﬁ(r,b,y)}. (13)
y

In addition, discussing multiplicity distribution P, = 2=, where 6, is the cross section for production of n color-singlet
dipoles, we need to integrate w,(r, b, y) over b. In this case the initial condition for the dipole cascade takes the form

PI(Y:0,r;r1):5(2>(r—r1), Py (Y=0:{r;})=0 (14)

which leads to the probabilities that do not depend on impact parameters. Since in Eq. (3) b enters as a parameter, P, (Y; r;),
which does not depend on b;, is also a solution to Eq. (3), which satisfies Eq. (14).
Equation [29] reduces to

3W,1( y)

dy /dzr/K(r/”_’/|’){V~V1(r’,y)%("—r’vy) =W (r,y)} (15)

Equation (15) is a particular case of the general equation that has been derived in Ref. [29]. In this paper instead of
Eq. (10) the more general form of this equation is proposed, viz.:

by = [ LI rdbstbiy) PV b)) (16)
i=1
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where S(r;, b;, yo) is the scattering S-matrix for elastic interaction of the dipole with size r; at rapidity Y,(yy = asY,) and at
impact parameter b; with the target at ¥ = 0. Since S is a unitarity matrix, w,,(r, b, y; yo) is the probability that the dipole
with size r produces n dipoles with all possible sizes, which interact with the target. Bearing this in mind, we see that
Eq. (11) holds for wy(r, b, y; y,), which is defined as

Z(Y,r,b; [u; = AS(ri, bi, o)]) = wi(r, b, yo) Zi" (r.b.y. o). (17)

For the case of P, which does not depend on b;, inserting in Eq. (9) u;(r;, b;, ) = AS(r;, b;, y) we see that we obtain the
LMM equation in its original form (see Ref. [29]):

awﬂ(rv bvyayo)

R = /er’K('ﬂr—r’lr){w(rﬁy,yo)w(r—'J,y,yo) —w,(r,y.y0)}- (18)

IV. AVERAGE NUMBER OF COLOR-SINGLET DIPOLES

The average number of dipoles can be calculated using the following formula:

- ow,(r,y,y
N(r,y, o) = (|n) Z a (7. Y. 30) 71(8/1 ol (19)
=1 I=1
Differentiating Eq. (13) with respect to 4 we obtain that
ON(r,y,y
(TO) = / ErE@.r=rn{N@F.y.y) + Nr—=r'.y.y) = N(r.y.yo)}. (20)

Equation (20) shows that the average number of dipoles satisfies the linear BFKL [30,31] equation and increases in the
region of small x (large y). Therefore, we see that the general QCD cascade reproduces the main observation of Ref. [5]
which was made in the oversimplified model for the QCD cascade. In this model the dependence on the size of the dipoles
was neglected.

The general solution takes the following form:

e+ico d}/
N0 = [ S e () e1)

where £ = In(%) and y(y) is the BFKL kernel:

% for y — 0 < double log approximation (DLA);
= - — — ) — 2
2) =2 (1) —w(y) -yl -r) = 41n2 + 14£(3) (y - %) for y — 1 « diffusion approximation (DA); (22)
M~
o
where y(z) is the Euler y function (see Ref. [32] formula 8.36).
n;,(y) has to be found from the initial condition N(r,b,y = 0,y, = 0) = 1 [see Eqs. (4) and (7a)]. It gives
()= (23)
Nip\y) = —-
14
Introducing multiplicity in the momentum representation,
_N(r.
N(kr,y) = /dzre_’kT"(%y), (24)
r

we can rewrite Eq. (20) in the form
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@ﬁﬂwﬁ=/dh(%%W%wm) (25)

dy (27)?
where K (kr, k%) is the BFKL kernel in momentum representation:

kr

(ky — k7)* (kg — k7)* + K'7)

K(ky, k)N (k7. v, y0) = N(k7.y.y0) = N(kz.y.y0). (26)

1
(ky —K7)?
Solution to this equation has the same form of Eq. (21) but with the replacement of & — & = In k% and

nin(r) = x(r)/7. (27)

Equation (27) reproduces the value of N (kz,y = 0,y = 0), since Eq. (24) at y = 0 leads to N (kr,y) = Ink3 + O(1/k3.).
It is worth mentioning that (i) in the double log approximation n;,(y) = 1/y?, which leads to N(ks,y) = Ink% and (ii) in
semiclassical approximation, which we will use below, we can neglect all corrections of the order of 1/k%.

V. EQUATIONS FOR MOMENTS OF THE MULTIPLICITY DISTRIBUTION
A. The second moment

1. Equation

We start a derivation of the evolution equation for the moments of the multiplicity distributions considering the second
moment, which has the following form:

= Pw(r,y,y
Mar.y.30) = (a(n = 1)) = 3 nln = 1, .y 30) = 20 20)| (28)
= 04" =
Taking the second derivative with respect to A from Eq. (18) we obtain the equation for M,(r,y, yo)
OM,(r,y,
PLOXI) [ @ rR(.r =) M 3030) + Mol =330
y
+2N(r', y,y0)N(r —r',y.y9) = Ma(r,y.yo) }- (29)

Equation (29) is a linear but inhomogeneous equation with the inhomogeneous term, which is determined by the
multiplicity of the dipoles.
The initial condition [see Eqs. (4) and (7a)] for this equation is

M;(r,y = yp.y9) = 0. (30)

First, lets us start to solve Eq. (29) making the first iteration at small y = Ay.
For y=0 N(r,y =0) =1 and M,(r,y = 0) = 0, and hence

Mg” = 2Aywg(r) (31)

where o is given by Eq. (8b). The first iteration of Eq. (20) leads to N(!) = 1 4+ Ayw(r). Comparing these two estimates
one can see that the first iteration can be written as the expansion of the solution M,(r,y) = 2(N*(r,y) — N(r,y)) with
respect to Ay. Hence, we see that at small Ay we obtain the simple expression for M,, which turns out to be the same as for
the multiplicity distribution of Eq. (1) for the simple toy model [5]. We will try to prove this equation below, but we have
succeeded only in the semiclassical approximation.
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2. General solution
The general solution to Eq. (29) we can obtain going to momentum representation:

Lr poikrr M;(r,y)

mZ(kT’y) = / (27[)2 > (32)

r

Equation (29) takes the form

allrs o n) [ Kby Kk n) + 2%y, 50) (33)
Taking the Mellin transform,
mz(kry,yo) = Lj:m;—meﬁmz(%%m) where &' = In k% (34)
from both parts of Eq. (33) we obtain
%’yy’m = 2Dy y. y0) + 20 (35)

where y(y) is given by Eq. (8b) and n? denotes the Mellin image of N*(kz,b,y, ).
Equation (35) has the following solution which satisfies the initial condition of Eq. (30):

y > ,
iy (y.y. yo) = X1 / dy' 2ne W 4+ mBHRL(y y, yy) (36)
0

where M58 (y, y, o) is a solution to the homogeneous linear BFKL equation with the initial condition of Eq. (30). In the

following, we neglect the contribution of this term.

3. Semiclassical solution

For large y and £ we can use the semiclassical approximation (SCA, see Refs. [24,33] and references therein) to take the
integral over y’ in Eq. (36). In this approximation we are searching for

N = &5v = @& yy+r(v.&)¢ (37)

where w(&,y) and y(y, &) are smooth functions of y and &: 0o’ (€,y)/0y < @*(&,y), 0w (&,y)/08 < w(&,y)r(y,&),
o (&,y)]08 < y*(€.,y), Or(€,y)]0& < w(&,y)y(y,&). Such form of N stems from Eq. (21) if we use the method of
steepest descent for calculating the integral over y. Indeed, using this method one can see that

. dy (v
(& y) = x(rse); (&, y) = rsp; equation for ygp: # y=¢&; (38)
7Y=7sp
In the SCA the Mellin image of N? can be written as follows:
! 1 £ etico d}/ 1 4
N2(E.,y,yy) = ¥V = 20 y)y+2y(v.£)e — / TeZX(zr)yﬂﬁ H(y) (39)
€—ico Tl

Indeed, taking the integral by the method of steepest descent we obtain the following equation for the saddle point (y(Ssz):

dy(57)
dy

2

=& (40)

2
r=rs

with the solution y(Szp) = 2ygsp, Where ygp is given by Eq. (38). Plugging this solution into Eq. (39) we see that
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0. [etio dAy Py
Nz('f',y,)’o)2621(%“213)-‘*7;’5 / z—ﬂ?e ' y(Ay)zH(V(szzb
€—100

. [etico dAy  dursp)
— eZZ(VSP)Y+27SP§ / A 2—ﬂ?e IdVrSP y(Ay>2H(2ySp). (41)
€—100

The integral over Ay leads to a smooth function, which in the SCA can be considered as a constant. Therefore, comparing
Eq. (39) and Eq. (41) one can see that Eq. (39) is correct. We can derive Eq. (39) using a more general consideration.
Actually, the expression for the Mellin transform of N?(&',y, y,) is the convolution in y of Mellin images of N, which has
the following form:

~ e+ico (Jy’ , ,
n? = / Y (i (y = 7 )22 =1y (42)

. Iin
—ico 2TTI

Taking the integral over y’ using the method of steepest descent one can see that the equation for the saddle point has the
following form:

dy(y—7) N dy(r')
dy dy’

=0 (43)

with the solution y§, = %7/. Plugging this solution in Eq. (42) we reduce it to

2y

~ ic0 ! ¥ y/SP) N2
n? = e2Grly / etico dAy n2 <l )/> e Vi (A7) (44)
€

- in
—ico 2ri 2

which reproduces the Mellin transform of Eq. (39).
Plugging in Eq. (36) n? = ¢%&YH(y) we can take the integral over y’ and the solution has the form:

2

T eGrhy — )y
207 —20) { H(y) H(y)} (45)

iy (y.y.y0) = e*(}’)yH(y) /y dy’zr?e—x(y)y’ —
0

Note, that in Eq. (45) we neglected the contribution of 5™k (y,y, yo) in Eq. (36).

Before fixing H(y) we need to go back to coordinate representation. Indeed, in this representation we have simple initial
conditions for M, of Eq. (30). Since all solutions are solutions of the linear equations and ysp << 1, we can replace
& = Inkj by & = In-L. Bearing this in mind, we can reduce the solution to the form

e+ioco d]/ 2)//(7/) 2 (b)y 1
My (Ev,v0) = L AT LGy — ex () Zeré, 46
267 30) l_im 2ﬂ12)((%r)—)((7){ }y “6)

First, we note that taking by the integral over y using the method of steepest descent, we reproduce Eq. (45) with the
particular choice of H(y) = y(y)/y, which has been discussed in Eq. (27). Second, one can see that at y — 0 this solution
coincides with Eq. (31).

In DLA this solution takes the form [see Eq. (22)]:

eticoo dy 2 4 FI R
MPAME Ly, yo) = / 243 er’ — e’y};eﬁ (47a)
€—I00
2. . o
=3 {N5ca(r,¥,¥0) = Nsca(r.y,yo)} < with semiclassical accuracy. (47b)

However, it turns out that Eq. (47a) reproduces at least two terms of the expansion at small values of y of the following
relation:
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12
M;[Eq. (47a)] = 2(N2(r,y,y0) —N(r,y,¥0))
3
10 = NE+S 0P+ O().  (48)
8 Concluding, we see that Eq. (2) does not hold in the
S DLA, but Eq. (48) gives us some hope to find an approach
in which it will be correct.
6
4. Diffusion approximation
4 Actually, the most adequate approach at high energies is
0.0 05 10 15 2.0 the diffusion one [see Eq. (22)]. Plugging in Eq. (46) the
' ' T ' ' BFKL kernel in the form y(y) = w, + D(y — 5)* and taking
the integral using the method of steepest descent we obtain
FIG. 1. I(z) of Eq. (51) versus 7 =r'/r. the saddle point
|
1. ¢ 1 & &

J’SPZE‘HEQ 2X<§7SP> :zwo—ﬁ; )((J’SP):CUO_W; (49)

2(r)
2% (3r)=x(r)

Considering %v < 1 we can neglect their contributions in the factor reducing it to 2. Hence, Eq. (46) reads

MBA(r,y. yo) = 2(N*(r, y,y0) = N(r, . %)) (50)

We can obtain the solution of Eq. (50) directly from the equation for M, [see Eq. (29)], if we note that the BFKL kernel
has maxima at 7 — 0 and |r —r/| = 0. In Fig. 1 we plot the term of Eq. (29), which is proportional to N:

r

/ K r =P r)2NT v, yo)N(r =1, y. ;) / PP r =) (P —r)?) = / dr’]<r:£/>. (51)

We can see from Fig. 1 that /(z) has a maximum at 7 = 1. Note that in Eq. (51) we introduce y = %, which corresponds to the
DA, to estimates the value of this contribution.
Bearing this observation in mind, we can rewrite Eq. (29) in the following form:

OM,(r,y, o)

5 —/ dzr’K(r’,r—r’|r)M2(r,y,y0)—|—/ d*rK(r,r=rr)M,y(r.,y,y)
y r'<r

<r

+/ dzr’K(r’,r—r’|r)M2(r—r/,y,y0)—l—/ YK, r=rr)M,y(r,y,y)
[r=r|<r [r=r|<r

+2/ YK, r=rr)N(r,y,yo)N(r—r.y.y,)
[r—=r'|<r

12 / PPK(E 1 =N v v )N, v, v0) — / PR =)Mo (r, v, vy). (52)

One can see (i) that in Eq. (52) the terms, which are proportional to M, (r,y, ), cancel each other out, and (ii) this
equation can be presented in the form

%’yy’yo):/JZ’/K("J—r’lr){Mz(r/,y,yo)+2N(r,y,yo)N(",y,yo)}- (53)
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Substituting Eq. (50) into Eq. (53) we reduce it in the SCA to the equation

%y_m = 2¢(rsp) 2N* = N) = 2((x (2rsp) + x(rsp))N* = x(vsp)N). (54)

Hence, one can see that in the limit of small ﬁ < 1, y(2ysp) = y(rsp) and Eq. (50) satisfies Egs. (53) and (54).
It is worth noting that Eq. (48) follows from the multiplicity distribution, which is given by Eq. (1). We will concentrate
our efforts on DA in our presentation below.

B. The third moment

The third moment can be found from the generating function w,(r, b, y, yo) in the following way:

My 30) = (n = 1)(n =2y = 3 nn = 1) =2, (v, ) = 2402220 (55)
n=1 =1

Using Eq. (55) we obtain the equation for M5(r,y,yy) from Eq. (18):

aM 9 9
w:/dzr’K("’,r—"/|"){M3("',y7)’0)+M3("_"/’y’y0)
y

+6M,(r',y, yo)N(r—7',y,y0) — Ms(r.y, o) }.

Rewriting Eq. (56) in momentum representation [see Eq. (32)] we reduce this equation to the form

oms(kr,y,y d*k!
0o 30) [ Kl ks 3,30) + Sl vy . 0) (56)

where we use lowercase letters denoting the moments in the momentum representation.
The Mellin image of Eq. (56) has the form

oms(y, y, . -
3(27;%) = x(y)im3(y.y. y0) + 6n*n (57)

where n’n is the Mellin image of m;(kr,y, )N (kz,y,yo) which has the general form

— €+ioco dy’ ~ B
n’n(y.y) =/ )l =7y) (58)

where n~2(y y) is determined by [see Eq. (46)]

,:2 — % {62;((%y)y — eﬂ((}’)}'}l (59)
2 Gr) —x(r) 4

Plugging Egs. (21) and (59) into Eq. (58) one can see that n’n(y, y) is a sum of two terms. Taking the integral over y’ in each
of them in the saddle point approximation [see Eqgs. (42)—(44)] we obtain two equations for the saddle points:

dy(37) N dy(y—7)
dy dy'

: 2 dy(r=v) | dx(y’ . 1
=0 with yg, = 30 (a’y’ ) + d(y’ ) =0; with yi,= 7 (60)

2
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Hence, n’n(y,y) takes the form

2n = ) Gy — px(3r)y
(7.) 27) —207) { FH, (7). (61)

The solution does not depend on the form of H,(y), which we will specify below.
Plugging this equation in Eq. (57) we obtain the solution

m = ! 4% Gy — or(r)y
(7. 30) 6(3;(@?) —x(ﬂ) (2)(@7) —x(éy)){ ;
- 1 2(r) ey — ox(n)y

(2)((%@ —x(%ﬂ) (2)((%7) —)((r)>{ V). (62)

Going to the coordinate representation as was discussed above and choosing H,(y) = y(7)/y, which reproduces the correct
initial conditions we obtain

_ etico ﬂ x() 2 (y) ey — px(r)y
M5 (&, ¥, o) 6[_,«, 27[1.,(31(% ) — 1(,,)) (2;(@;/)—)((%7)){ }

2) 2(7) ey — ox(r)y ley«f
(21(37) -2 )> <2)((27) )((7)>{ byer (63)

Using the method of steepest descent and neglecting contributions of the order of %y in all preexponential factors, we see
that

M3(&,y,y0) = 6N (&, y,0)(N(&, ¥, 0) — 1)2’ (64)

which is the same as for the multiplicity distribution of Eq. (1).

C. General approach

The equation for a general moment

- kw, (r
Mu(r3230) = (n(n= 1) (1= kD) = 3 (= 1) (= kot Do) = 45200 ges)

we can obtain by differentiating Eq. (18) with respect to A. It has the simple form in the momentum representation [see
Eq. 32)]:

0 d*k k'
8_ymk(kTvY7YO) = /ﬁ (k7. K7 )my (k7. y, YO)+Z o Miikr, v yo)mi (K. v, o). (66)

As we have discussed, we can go back to coordinate representation in Eq. (66), since m;, is the solution to the linear
equations, and, therefore, has the Mellin image

e+ico , .
mulkr.y) = / T ey (y) with & =1Ink. (67)

—ioco 2ri

In coordinate representation we have

etico . 1
Mitrn) = [ et win e=(%). (68)

—ioco 277:1

The coordinate image of my_;(kz.y, yo)my(kr,y.yo) is [d*F K .r =¥ |r)M;_;(r,y,yo)M;(r —r.y.y,). On the other
hand, in SCA my_;(ky,y,vo)mi(ky,y,yy) has the image in y representation, which is equal to Const
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exp (ky(Ly)y)my_io()m;o(F)H,(y)] see Egs. (45) and (61)].> Using this image, one can see that the coordinate
representation for my_;(kr,y,yo)my(kr.y,yo) can be reduced to [d*r'K(r,r —r|r)M;_i(r',y,yo)M(r, y.yo), which
means that H,(y) = y(y) as we expect from Egs. (46) and (63).

Finally we can rewrite Eq. (66) in the coordinate representation in the form

0
SoMi(riyy0) = [ @K —r/|r>{Mk<rcy,yo> M=y, 0) = My(r.y.50)

k=1
k!
+Z(k_l-),i'Mk—i(r,J”yO)Mi(r/’yJ’O)}' (69)

i=1

Assuming that for all i < k—1

M;(r.y.y0) = i'N(r,y,y0)(N(r.y.yo) — 1)"7", (70)

which follows from Eq. (1), we will prove that for i = k we have the same expression.
Plugging Eq. (70) in Eq. (69) we get the inhomogeneous term in the form k!(k — 1)N?(N — 1)*=2. In the following we

will use the fact that the Mellin image of Ni(r,y,v,) (n') is equal to

~, ) 1 +ico ] 1 1 = 1 1
i ity L /‘ R —=; double Mellin image n' = ———— (71)
Y emico 27 @ —ix(57)7 o—iy(;y)y

which can be derived using the method of steepest descent in the estimates of the integrals over y’s [see Eq. (42) for
example].
In the double Mellin transform Eq. (69) takes the form

2 (-1) (k=2)! 1 1
(@ —x(r ))Mk—k' 7); k 2Dl = (k= Dr(L7)y (72)

Hence from Eq. (72) we have

k2
1!k = 2)!
M(r.y.yo) = k!(k—1)
zz(;k 2D

/e-Hoo da [etico d}/ waryf’ )((}/) { 1 _ 1 }l
eivo 2700 Jooino 270" (n=Dx(y) —x() \lo— (k= Dx(y) o-x())r

)
B n—2 (_l)l(k_z)! etico (dy /e )((7)
_k!(k—U;(kT—l)!Hl—im i = Dldyr

, 1
{eW=Dilen)y _ gty y}; (73)

In Eq. (73) we calculate the integrals over w closing the contour of integration on poles. Taking the integral over y using the
method of steepest descent in the diffusion approximation and neglecting the corrections of the order of &/Dy (see
discussions above) we reduce Eq. (73) to the following expression:

».

-2

My(r,y, o) k'z((kl—l—lvzv (N*!(r.y.y0) = N(r.b,,¥))
=0
= S U= Dh ity 3) = 3 30) Vv 3) 1 74
— (k—l—l)'l' Y Yo Y Yo » V> Yo .

Since we have obtained Eq. (70) for i = 2 and i = 3, we prove this equation for any value of i.

Actually, the y image of m; is a sum of the terms with different k [see Egs. (45) and (61)], but this does not change the conclusion.
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VI. FINDING CORRECTIONS AND COMPARISON
WITH EXPERIMENTS

Equation (70) generates the multiplicity distribution of
Eq. (1). However, several questions arise, when we wish to
compare this distribution with the experimental data, let us
say with DIS. The average multiplicity of the color-singlet
dipoles is equal to the sea quark structure function
xZeea(x, %) [19]. On the other hand, in Eq. (70) the
multiplicity enters in the coordinate representation. In
diffraction approximation the momentum and coordinate
representations are related by the replacement
Ink3 - —Inr?. Therefore, my suggestion is to use
Eq. (1) with N = xZ,(x, Q%) but to calculate the correc-
tions to this distribution. The multiplicity distribution can
generally be written, using the cumulant generating func-
tion f(4) as follows [34,35]:

S()
2:7{ di e (75)

2_7”'/1n+1

where the contour of integration is the circle around the
point A = 0 and f(4) is the cumulant generating function,
which is defined as

0

f@) =3 -1y (76)

n=1

where k,, are cumulants. Generally speaking, we have the
following definition for the cumulants:

K1:N; K2:M2—N2; K3:M3—3M2N+2N3;
Ky = My —4M3N — 3M3 + 12M,N* — 6N*; (77)

where M. are the factorial moments, that we have discussed
above [see Eq. (70)].

In our case we can view f(4) as a sum of
f(2) = P W) + Af(A). 5 ((2) generates the multi-
plicity distributions of Eq. (1), which includes the most
dominant contributions and, in particular, the average
number of color-singlet dipoles is taken into account
exactly. We suggest to introduce the function Af(4) in
the following way:

2. Ak, ;
A =2 S G- 1) (78)
with
AK] :O, AKZIMz(kT,y)—zN(N—l),
Aky = M3 (kg y) — 6N(N — 1)> = 3Ax,N; (79)

where M, (ky,y) and M(kz,y) are the exact solutions to
Egs. (33) and (56), respectively.

Introducing two multiplicity distributions,

di e/ M@ . di &A@
P,(N) = f < B = 74 (80

2_7”' ntl 2_7Zl'/1”+] ’

one can see that the resulting multiplicity distribution takes
the form

On

n n! -

————— P, (N)P,(N). 81

ZD B LS NG

In the case of Ak, #0 but Ak, =0 for n > 2 the

distribution P,(N) has been found in Ref. [34] and it
has the following form in our notations:

P, (Aky) = e—ﬁH <i\/%> (82)

where H,, is the Hermite polynomial (see formula 8.95
in Ref. [32]).

VII. CONCLUSIONS

This paper has two main results. First, we derived the
BFKL linear, inhomogeneous equation for the factorial
moments of multiplicity distribution (M}) from the LMM
equation. In particular, the equation for the average
multiplicity of the color-singlet (N) turns out to be the
homogeneous BFKL equation which leads to the powerlike
growth in the region of small x. From these equations it
follows that M; o N* at small x.

Second, using the diffusion approximation for the BFKL
kernel, which is generally considered to be responsible for
the small x behavior, we show that the factorial moments
satisfy Eq. (2), which reproduces the multiplicity distribu-
tion of Eq. (1). This result is in agreement with the attempts
[18] to find solutions to the equations for the cascade of
color-singlet dipoles [see Eq. (3)].

We also suggest a procedure for finding corrections to
this multiplicity distribution, which, we believe, will be
useful for descriptions of the experimental data.

In general, the multiplicity distribution, that has been
discussed in the paper, confirms the result of Ref. [5], that
the entropy of color-singlet dipoles is equal to S = In N in
the region of small x, and gives the regular procedure to
estimate corrections to this formula.

It is worthwhile mentioning that both SCA and DA have
been developed before and many technical issues that matter
have been discussed’ (see, for example, Refs. [24,36—40] and
references therein).

3We thank our referee who drew our attention to Ref. [36],
where some technical details of our approach have been clarified.
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