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We discuss the phase diagram and properties of global vortices in the non-Hermitian parity-time-
symmetric relativistic model possessing two interacting scalar complex fields. The phase diagram contains
stable PT -symmetric regions and unstable PT -broken regions, which intertwine nontrivially with the
U(1)-symmetric and U(1)-broken phases, thus forming rich patterns in the space of parameters of the
model. The notion of the PT symmetry breaking is generalized to the interacting theory. At finite quartic
couplings, the non-Hermitian model possesses classical vortex solutions in the PT -symmetric regions
characterized by broken U(1) symmetry. In the long-range limit of two-component Bose-Einstein
condensates, the vortices from different condensates experience mutual dissipative dynamics unless their
cores overlap precisely. For comparison, we also consider a close Hermitian analog of the system and
demonstrate that the non-Hermitian two-component model possesses much richer dynamics than its
Hermitian counterpart.
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I. INTRODUCTION

Quantum-mechanical systems are traditionally described
by Hermitian Hamiltonians which ensure the real-valued-
ness of the full energy spectrum and, therefore, the unitary
evolution of the system as a whole. It turns out, however,
that the Hermitian description can be extended with a
large class of non-Hermitian terms which are invariant
under combined parity-time (PT ) transformations. The
PT -symmetric non-Hermitian systems are as meaningful
as the conventional Hermitian quantum mechanics in the
regions where the PT -symmetry is not broken sponta-
neously [1,2].
Mathematically, in thePT -symmetric systems the familiar

Hermiticity conditionH† ¼ H is replaced by the requirement
of the PT -symmetricity ðPT ÞHðPT Þ ¼ H, which is equiv-
alent to the commutation of the Hamiltonian with the
combined parity P and time-reversal inversion T operation
[2], ½PT ; H� ¼ 0. This combined symmetry leads to real-
valued energy spectrum that ensures the stability of the
system. One can show that all PT -symmetric non-Hermitian
Hamiltonians belong to the class of the so-called pseudo-
Hermitian Hamiltonians ηHη−1 ¼ H† where η is a Hermitian
linear automorphism [3]. The pseudo-Hermiticity is a

generalization of the PT -symmetry which, in turn, depends
crucially on the fact that the time-reversal transformation T is
an antilinear operation.
As it was shown in Ref. [4] and most recently empha-

sized in Ref. [5], it is the antilinearity property rather than
Hermiticity which is important for the self-consistent
description of stable quantum-mechanical systems. The
non-Hermitian PT -invariant quantum systems can be
mapped to their Hermitian counterparts via a nonunitary
transformation [6,7] (the existence of the map is not
guaranteed as there are known exceptions in quantum
mechanics [8]). These extensions broaden the class of
stable physical systems beyond the tight Hermiticity con-
straints and open new horizons for the research.
The non-Hermitian description has been extended to

interacting relativistic field theories, including the systems
of fundamental particle interactions. The PT -symmetric
interactions which explicitly break the non-Hermiticity of
the system can arise in fermionic theories [9], contribute to
the mass gap generation in the NJL model and affect the
phase structure of the model [10]. The non-Hermitian Dirac
fermions allow for the realization of an anomalous equi-
librium transport [11]. The ordinary Hermitian models can
generate a new, non-Hermitian ground state which could
potentially be formed, for example, in fireballs of quark-
gluon plasma created after heavy-ion collisions [12]. In the
context of the extensions of the Standard Model of particle
interactions, anti-Hermitian Yukawa interactions may lead
to an anomalous radiative mass-gap generation in a model
of the right-handed sterile neutrinos [13,14]. The concept of
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non-Hermitian quantum theory allows an extension via the
gauge-gravity duality well beyond the scope of the field-
theoretical models [15].
The PT -symmetric non-Hermitian Hamiltonians arise

in the description of various open quantum systems in
optics and solid state physics where this symmetry can be
interpreted as a result of a perfect balance between the
gains and losses as the system interacts with the external
environment [16,17]. The recent works also include the
studies of the effect of non-Hermitian terms in topological
superconductivity which leads to nonlocal anomalous
transport effects [18] as well as in the conventional
superconductivity which gives rise to the unusual first-
order phase transition between the phases [19]. The
possibility of non-Hermitian superfluidity with a com-
plex-valued, non-Hermitian interaction constant naturally
arises from inelastic scattering between fermions [20].
The associated non-Hermitian BCS-BEC crossover of
Dirac fermions in field-theoretical models of many-body
systems reveals a nontrivial phase diagram as a function of
the complex coupling [21].
In our paper, we work with vortex topological defects in

a bosonic non-Hermitian model which involves a pair of
scalar fields associated with interacting condensates. The
topological solutions in the multicomponent scalar models
are interesting because they appear in the models which
have applications from condensed matter to high energy
physics. Some of these models can serve as viable
extensions of the Standard model of fundamental particle
physics [22–25]. Similarly to the Grand Unification particle
models and their close counterparts, they host ’t Hooft–
Polyakov monopole configurations [26] along with com-
plex skyrmions [27] and kink/anti-kink solutions [28] with
real-valued energies. As in the Hermitian models, these
classical solutions are associated with the saddle points of
the corresponding partition functions.
At the condensed matter side, the many-condensate

systems possess richer dynamics than their one-condensate
counterparts. For example, the standard classification of
superconductivity into types I and II fails to describe the
phases of multiband condensates so that a proposal to adopt
a new terminology, a type-1.5 superconductivity, appeared in
the theoretical community [29]. Experimentally, the exist-
ence of the type-1.5 superconductivity has been demon-
strated shortly afterwards [30]. The semi-Meissner state of a
type-1.5 superconductor demonstrates non-pairwise inter-
action between the vortices which leads to formation of a
multitude of complicated vortex states [31]. We discuss the
non-Hermitian extension of the two-component model
possessing a global, rather than local, continuous symmetry,
appropriate for the two-component superfluidity. We con-
centrate on stability of the ground state, fate of the PT
symmetry in the interacting model, and the properties of the
vortex configurations. In a different context, the vortices in
the weakly interacting superfluid Bose-Einstein condensates

with complex-valued PT -symmetric potentials have been
investigated in Ref. [32]. As for the realistic model, one
could expect the model can apply to the non-Hermitian
version of two-component Bose-Einstein condensates in
different hyperfine spin states similarly to the Hermitian
analogues [33].
Non-Hermitian two-field models appear, for example, in

the description of two-component out-of-equilibrium con-
densates in a non-Hermitian system of electron-hole pairs
and photons in a semiconductor microcavity system. This
open quantum many-body system resides in steady-state
regimes characterized by a nontrivial phase diagram which
contains an exceptional point that marks an endpoint of the
first-order phase boundary [34] and exhibits anomalous
critical phenomena [35].
The plan of our paper is as follows. In Sec. II we briefly

overview the Lagrangian and its symmetries, and discuss the
ground state of the minimal non-Hermitian theory with two
scalar fields. The special attention is paid to the extension of
the analysis of the PT symmetries to the case of interacting
model. In particular, we discuss the fate of thePT symmetry
breaking in the presence of interactions. In Sec. III we
consider the vortex properties for condensates with frozen
radial degrees of freedom for which, in the absence of
vortices, the condensate density is approximately uniform
and the dynamics is encoded in the phase of the field. In
Sec. IV we describe the examples of the vortex solutions at
finite quartic couplings. The last section is devoted to our
conclusions.

II. (NON-)HERMITIAN SCALAR THEORY

A. Lagrangians

We consider a simplest example of a scalar non-
Hermitian theory which describes a PT -symmetric dynam-
ics of two complex scalar fields ϕ1 and ϕ2 conveniently
grouped into the single doublet field,

Φ ¼
�
ϕ1

ϕ2

�
: ð1Þ

The Lagrangian of the theory [7],

L ¼ ∂μΦ†∂μΦ −Φ†M̂2Φ − VðΦÞ; ð2Þ

includes the classical Hermitian self-interaction potential
for the scalar fields:

VðΦÞ≡ Vðϕ1;ϕ2Þ ¼ λ1jϕ1j4 þ λ2jϕ2j4: ð3Þ

The non-Hermiticity is encoded in the real-valued mass
matrix M̂2 of the Lagrangian (2):

M̂2 ¼ M̂2
NH ¼

�
m2

1 m2
5

−m2
5 m2

2

�
; ð4Þ

BEGUN, CHERNODUB, and MOLOCHKOV PHYS. REV. D 104, 056024 (2021)

056024-2



provided the off-diagonal element1 of this matrix is a
nonzero, m2

5 ≠ 0. To see how the non-Hermiticity enters
the theory, it is instructive to write the Lagrangian in terms
of the individual fields ϕ1 and ϕ2:

LNH ¼ ∂νϕ
�
1∂νϕ1 þ ∂νϕ

�
2∂νϕ2 −m2

1jϕ1j2 −m2
2jϕ2j2

−m2
5ðϕ�

1ϕ2 − ϕ�
2ϕ1Þ − λ1jϕ1j4 − λ2jϕ2j4: ð5Þ

The first term of the second line in Eq. (5) takes a purely
complex value: −2im2

5Imðϕ�
1ϕ2Þ if the off-diagonal com-

ponent of the mass matrix (4) is a real-valued nonzero
quantity. The complex valuedness of the Lagrangian (5)
is consistent with the non-Hermiticity of the mass matrix
in Eq. (2): M̂2;†

NH ≠ M̂2
NH. The off-diagonal mass with

m2
5 ≠ 0 sets up the non-Hermitian regime in (4), while the

point m2
5 ¼ 0 corresponds to a Hermitian theory (with

M̂2;†
NH ¼ M̂2

NH) which describes two noninteracting scalar
fields ϕ1 and ϕ2.
The model (2) describes two relativistic superfluids

which interact with each other via the off-diagonal non-
Hermitian coupling. We consider the potential (3) in the
form which explicitly breaks the Uð2Þ symmetry,Φ → ΩΦ
with the 2 × 2matrixΩ ∈ Uð2Þ, down to its Cartan ½Uð1Þ�2
subgroup since the Uð2Þ group is explicitly broken by the
mass matrix (4) anyway provided M̂2

NH∝1.
In order to highlight the features of non-Hermiticity, we

briefly discuss the Hermitian version of the model with the
following mass matrix in the Lagrangian (2):

M̂2
H ¼

 
m2

1 m2
5

m2
5 m2

2

!
ð6Þ

Notice that M̂2;†
H ¼ M̂2

H as expected and the Hermitian
Lagrangian is a real-valued expression for all values of the
parameter m5:

LH ¼ ∂νϕ
�
1∂νϕ1 þ ∂νϕ

�
2∂νϕ2 −m2

1jϕ1j2 −m2
2jϕ2j2

−m2
5ðϕ�

1ϕ2 þ ϕ�
2ϕ1Þ − λ1jϕ1j4 − λ2jϕ2j4: ð7Þ

As we discuss in Sec. III B 3, the Hermitian counterpart
(7) of the non-Hermitian system (5) has some parallels with
effective models of the QCD strings in high-density quark
matter, relevant to the physics of neutron stars, and the
global cosmological strings, which reveal itself in the
cosmological context [36–38].
Below, we will consider the classical equations of motion

concentrating on the non-Hermitian theory described by
Lagrangian (2). While we work with the classical solutions,
we would like to notice that on quantum level, the non-
Hermiticity propagates into the loops of perturbation theory.

The quantum corrections could, therefore, induce a complex
term in the interaction potential (3) and literally complexify
the phase diagram of the theory. Leaving aside the quantum
corrections, which were discussed in Ref. [24], in our paper
we concentrate on classical properties of the Lagrangian (2)
and compare it with the classical properties of its Hermitian
counterpart (7).

B. Symmetries

We consider the non-degenerate model (2) with a non-
zero off-diagonal massm5 ≠ 0 which possesses a couple of
continuous and discrete symmetries. Both Hermitian and
non-Hermitian versions of the model are invariant under the
global U(1) transformation

Uð1Þ∶ Φðt; xÞ → Φ0ðt; xÞ ¼ eiωΦðt; xÞ; ð8Þ

in which the single phase factor (with a real-valued
parameter ω) is shared by both complex scalar fields ϕ1

and ϕ2. If m5 ¼ 0, both components of the doublet field Φ
can be transformed independently so that the symmetry is
enlarged to the global ½Uð1Þ�2. We do not consider this
trivial case.
The non-Hermitian theory (4) is also invariant under a

discrete transformation corresponding to the product of the
parity inversion P and the time conjugation T operators,
respectively:

NH∶
�
P∶ Φðt; xÞ → Φ0ðt;−xÞ ¼ σ3Φðt; xÞ;
T ∶ Φðt; xÞ → Φ0ð−t; xÞ ¼ Φ�ðt; xÞ: ð9Þ

Due to the presence of the Pauli matrix σ3, the upper ϕ1

component transforms under the parity inversion P as a
genuine scalar while the lower component ϕ2 transforms as
a pseudoscalar field.
The P and T operations whose product leaves invariant

the Hermitian theory (6),

H∶
�
P∶ Φðt; xÞ → Φ0ðt;−xÞ ¼ Φðt; xÞ;
T ∶ Φðt; xÞ → Φ0ð−t; xÞ ¼ Φ�ðt; xÞ; ð10Þ

indicate that both fields ϕ1 and ϕ2 behave as true scalars
under the parity inversion.
The model (2), along with its extensions, possesses

interesting features of the Goldstone modes associated with
the spontaneous breaking of the continuous symmetry (8)
as well as the unusual properties of the conserved currents
[7,22,39]. Below we consider the ground state and the
vortex solutions of the model.

1We use the notation m5 which is also appropriate for the non-
Hermitian mass of a fermionic model [11].
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C. Ground states

1. Non-Hermitian ground state

The analysis of the ground state of the two-field model
(2) has already been done analytically in Ref. [39] for the
special case of the potential (3) in which one of the fields
was not self-interacting (λ1 ≠ 0 and λ2 ¼ 0). In our paper,
we complement this work with the numerical analysis of
the system in which both fields experience the self-
interaction, λ1;2 ≠ 0. We show that the simple extension
(or, better to say, completion) of the model makes the
analysis of the phase diagram very complicated.
Let us start from the simplest case when the quartic

interaction is absent: λ1 ¼ λ2 ¼ 0. The Hermitian (6) and
non-Hermitian (4) mass-squared matrices have the follow-
ing eigenvalues, respectively:

M2
H;� ¼ 1

2

�
m2

1 þm2
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 þ 4m4

5

q �
; ð11aÞ

M2
NH;� ¼ 1

2

�
m2

1 þm2
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 − 4m4

5

q �
: ð11bÞ

The vaccua in these models are stable provided the
eigenmasses have no imaginary parts. For the Hermitian
model with the mass matrix (6), this requirement implies
M2

H;− ≥ 0 or, naturally,

H∶
�
m2

1 þm2
2 > 0;

m2
1m

2
2 −m4

5 ≥ 0.
ð12Þ

These equations determine the region in the parameter
space were the instability due to a negative mode (or,
modes) at the trivial minimum, ϕ1 ¼ ϕ2 ¼ 0, does not
occur. In an interacting theory with λ1;2 ≠ 0, this instability
corresponds to the spontaneous symmetry breaking.
In the non-Hermitian model (4), the spectrum of the free

(i.e., with λ1 ¼ λ2 ¼ 0) theory does not contain complex
energy eigenvalues provided

NH∶

8>><
>>:

m2
1 þm2

2 > 0;

m2
1m

2
2 þm4

5 ≥ 0;

ðm2
1 −m2

2Þ2 − 4m4
5 ≥ 0;

ð13Þ

wherewe also took into account a possibility that the squared
masses m2

1 and m2
2 can take negative values. The first two

requirements in Eq. (13) correspond to the instability related
to the spontaneous symmetry breaking rather than to the
non-Hermiticity of the model. The last condition in Eq. (13)
highlights the region of the parameter space where the PT
symmetry is said to be unbroken [7,22,39]. Together, these
conditions guarantee the stability of the ground state.
The classical equations of motion of the model (2)

are obtained by the variation of the Lagrangian (5)

with respect to the independent fields ϕ�
1 and ϕ�

2,
respectively:

□ϕ1 þm2
1ϕ1 þm2

5ϕ2 þ
∂V
∂ϕ�

1

¼ 0; ð14aÞ

□ϕ2 þm2
2ϕ2 −m2

5ϕ1 þ
∂V
∂ϕ�

2

¼ 0: ð14bÞ

Avariation with respect to the fields ϕ1 and ϕ2 gives us an
inequivalent set of equations:

□ϕ�
1 þm2

1ϕ
�
1 −m2

5ϕ
�
2 þ

∂V
∂ϕ1

¼ 0; ð15aÞ

□ϕ�
2 þm2

2ϕ
�
2 þm2

5ϕ
�
1 þ

∂V
∂ϕ2

¼ 0; ð15bÞ

which differs from Eq. (14) by the sign flip of the off-
diagonal mass term, m2

5 → −m2
5.

The striking inconsistency of the two pairs of equations
of motion, (14) and (15), poses the natural question of
how to treat this non-Hermitian system at the classical
level. One of the earlier proposals [7] suggests to use only
one set of equations of motion, either (14) or (15), and
omit the complementary set. Indeed, the choice of the set
flips the sign of the off-diagonal mass, m2

5 → −m2
5, which

does not affect the physical spectrum neither in free model
(II C 1) nor in the interacting model, as we will see below.
Moreover, the non-Hermitian system must be open via
coupling to an external source which equilibrates non-
vanishing surface terms in the variation of the action.
When the off-diagonal mass vanishes, the system becomes
Hermitian, and the single set of equations is enough to
describe the solutions consistently.
The next proposal was to resolve the apparent problem

with the inconsistency of the classical equations of motion
was put forward in Ref. [39] where a similarity trans-
formation for the action has been used to achieve harmony
between the two sets of equations of motion. This elegant
idea initially required an extension of the field space using
two complex components (with four degrees of freedom)
for every original complex field (which hosts two degrees
of freedom).
The same mapping strategy has later been adapted and

extended to many-field theories in Ref. [22] where two real-
valued fields were used to represent one complex field.
However, this procedure, used for the mapping of the non-
Hermitian theory to the Hermitian one via the similarity
transformation, leads to the appearance of a negative kinetic
energy term for one of the fields. While it was argued that
this artifact does not change the signature of the appropriate
Hilbert space [39], the appearance of the negative kinetic
action leads to a negative contribution to the energy-
momentum tensor so that the energy of a classical
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configuration (which is not necessarily a classical solution)
would become unbounded from below. This pseudo-
Hermitian method can be adapted, in specifying the appro-
priate physical regions, to give the classical solutions for
non-Abelian monopoles in a spontaneously broken theory
[26] (we refer the Reader to Refs. [40,41] for complementary
discussions of a non-Hermitian non-Abelian gauge theory).
In our paper we follow the approach of Ref. [7] where

only one set of equations of motion—either (14) or (15),
but not the both of them—is considered. While this
approach may seem restrictive, it still gives the complete
description of classical and quantized theories [23]. In
addition to the invariance of the physical solutions with
respect to the flipm2

5 → −m2
5, the choice of the equations of

motion coincides with the choice of the Hamiltonian
operator in the quantum theory since both Ĥðm2

5Þ and
Ĥ†ðm2

5Þ ¼ Ĥð−m2
5Þ can be used to promote the time

evolution of the system. Moreover, the choice does not
affect the non-Hermitian physics: the �m2

5 versions of the
classical equations of motion give the physically equivalent
classical solutions of the theory and, in parallel, both
original and Hermitian-conjugated Hamiltonians determine
the very same evolution of the quantum theory [23].
The classical non-Hermitian theory becomes self-con-

sistent if one supplements the Hermitian conjugation with
the subsequent PT symmetric operation. Then the complex
conjugation along with the PT flip m2

5 → −m2
5 leaves the

classical equations intact [23]. The new combined oper-
ation is also important at the quantum level since the
Hermitian-conjugated conversion between the bra and ket
states should now be supplemented by the additional PT
invariance operation in order to maintain the orthonormal-
ity of the eigenvectors of the non-Hermitian Hamiltonian
[7]. Thus, the would-be apparent nonequivalence of the
original (14) and conjugated (15) equations does not lead to
an inconsistency of the non-Hermitian theory. It gives the
opposite: both formulations are consistent with each other
and lead to the same result both at classical and quantum
levels.
At a certain stage, we use a numerical method to find the

classical solutions using the criteria of the energy mini-
mization as a selection principle of the right, “minimal
energy” solution among all other available solutions. In our
approach, the energy of the classical configuration in the
non-Hermitian theory is bounded from below so that the
numerical approach is self-consistent in finding the correct
configuration. If we would otherwise employ the pseudo-
Hermitian procedure of mapping the non-Hermitian theory
to the Hermitian one, then the classical energy becomes
unbounded due to the negative sign in the kinetic terms, and
the numerical procedure fails to converge to a reasonable
solution.
In the ground state the condensates are coordinate-

independent quantities, and Eqs. (14) reduce to the non-
linear algebraic relations:

m2
1ϕ1 þm2

5ϕ2 þ 2λ1ϕ
2
1ϕ

�
1 ¼ 0; ð16aÞ

m2
2ϕ2 −m2

5ϕ1 þ 2λ2ϕ
2
2ϕ

�
2 ¼ 0: ð16bÞ

The use of the complementary set of equations (15) instead
of Eqs. (14) would lead to an equivalent physical solutions.
Indeed, the swap of equations leads to the sign flip in
Eq. (16) which corresponds to a simple swap of the fields
ϕ1 and ϕ2.
It is convenient to represent the fields ϕa in the radial

form ϕa ¼ vaeiθa for a ¼ 1, 2. Equations (16) can possess
nontrivial solutions provided the phases θa satisfy one of
the following relations:

θ1 ¼ θ2; θ1 ¼ θ2 þ π: ð17Þ

One can cover both these cases assuming θ1 ¼ θ2 and,
simultaneously, allowing the amplitudes va to take both
positive and negative values, va ∈ R. The classical equa-
tions (16) then determine the amplitudes:

m2
1v1 þm2

5v2 þ 2λ1v31 ¼ 0; ð18aÞ

m2
2v2 −m2

5v1 þ 2λ2v32 ¼ 0: ð18bÞ

The canonical energy-momentum of the model (2) can be
calculated by endowing the model with the gravitational
background gμν, considering the variation of the theory
action, S ¼ R d4L with respect to the metric,

Tμν ¼ −
2ffiffiffiffiffiffi−gp δS

δgμνðxÞ
; ð19Þ

and then setting the metric to its Minkowski values back
again, gμν → ημν ≡ diagðþ1;−1;−1;−1Þ. The energy den-
sity of the model (5) is given by the μ ¼ ν ¼ 0 component
of the energy-momentum tensor (19):

T00 ¼ ∂0ϕ
�
1∂0ϕ1 þ ∇ϕ�

1∇ϕ1 þ ∂0ϕ
�
2∂0ϕ2 þ ∇ϕ�

2∇ϕ2

þm2
1jϕ1j2 þm2

2jϕ2j2 þm2
5ðϕ�

1ϕ2 − ϕ�
2ϕ1Þ

þ λ1jϕ1j4 þ λ2jϕ2j4: ð20Þ

One gets the following simple expression for the energy
density of a uniform time-independent (ground) state:

ENH;0 ≡ T00 ¼ m2
1v

2
1 þm2

2v
2
2 þ λ1v41 þ λ2ϕ

4
2: ð21Þ

Both solutions (17) for the phases θa ≡ argϕa of the
condensates ϕa lead to the vanishing non-Hermitian term
δLNH ¼ −2im2

5Imðϕ�
1ϕ2Þ≡ −2im2

5v1v2 sinðθ1 − θ2Þ in the
energy density (21). Thus, the inconvenient imaginary
terms do not enter the ground state of the model (we will
see below that any solution of the single set of the classical
equations of motion (14) has a real-valued energy density).
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However, despite the non-Hermitian massm5 not explicitly
appearing in the vacuum energy (21), it affects the ground
state indirectly via the solutions of the equations of
motion (18).

2. Hermitian ground state

The equations of motion of the Hermitian model (7) take
the following form:

□ϕ1 þm2
1ϕ1 þm2

5ϕ2 þ
∂V
∂ϕ�

1

¼ 0; ð22aÞ

□ϕ2 þm2
2ϕ2 þm2

5ϕ1 þ
∂V
∂ϕ�

2

¼ 0; ð22bÞ

which differ from Eq. (14) of the non-Hermitian model (5)
as the both signs in front of the off-diagonal mass terms m2

5

are the same in the Hermitian case (22). This small
difference naturally propagates into the equations for the
amplitudes in the ground state,

m2
1v1 þm2

5v2 þ 2λ1v31 ¼ 0; ð23aÞ

m2
2v2 þm2

5v1 þ 2λ2v32 ¼ 0; ð23bÞ

as compared to its non-Hermitian analogue (18). However,
in the striking dissimilarity with non-Hermitian case, the
variations over the fields and their complex conjugates are
obviously consistent with each other in the Hermitian
model. Moreover, the energy density of the ground state
of the Hermitian model,

EH;0 ¼ m2
1v

2
1 þm2

2v
2
2 þ 2m2

5v1v2 þ λ1v41 þ λ2v42; ð24Þ

explicitly includes the m2
5 coupling between the amplitudes

of the different condensates. We remind that this coupling
does not enter the non-Hermitian energy density (21).

3. Hermitian model vs non-Hermitian model

In the Hermitian model, a negative diagonal mass can
trigger a natural spontaneous symmetry breaking of the
global U(1) symmetry (8) which leads to a nonzero
expectation value of the doublet field, Φ0 ≠ 0. The run-
away of the scalar field from the symmetric state is
balanced by quartic (self)-interactions so that the sym-
metry-broken ground state of the system is stable. In an
interacting model, the stability of the symmetric, Φ ¼ 0,
state is determined by Eq. (12).
The interacting non-Hermitian theory possesses two

types of instabilities. In addition to the mentioned sponta-
neous symmetry breaking stipulated by the first two
relations in Eq. (13), the symmetric ground state can also
experience the U(1) symmetry breaking which could be
caused, in turn, by the broken discrete PT symmetry. This

purely non-Hermitian effect is dictated by the third relation
in Eq. (13), the violation of which leads to the complex
mass spectrum and, consequently, to the instability. The
PT -induced instability could be well seen when both
diagonal masses are positive so that the first two relations
in Eq. (13) are satisfied. As in the purely Hermitian case,
the symmetry-broken ground state of the non-Hermitian
system is expected to be stabilized by the quartic (self)-
interactions.
In Fig. 1 we compare the U(1) symmetry breaking

patterns in the non-Hermitian model with m2
1 > 0 (the

upper panel) and m2
1 < 0 (the middle panel) as well as the

Hermitian model with m2
1 < 0 (the lower panel). We show

the total energy density E determined by Eqs. (21) and (24),
and the condensates v1 and v2. Notice that the non-
Hermitian (18) and Hermitian (23) equations on the ground
state imply that the relative sign of the condensates is
determined by the ground state while the overall sign is not
fixed. To remove this arbitrariness, we require the con-
densate v2 to be positive.
If both diagonal squared masses are positive, m2

1 > 0

and m2
2 > 0, and the off-diagonal mass is zero, m5 ¼ 0,

then the ground state resides in the symmetric phase with
vanishing condensates. As the off-diagonal mass increases
in its absolute value, the theory should experience the
PT -symmetric instability and we expect the appearance
of the condensates in the ðm2

1 > 0; m2
2 > 0Þ plane.

However, this does not happen, as one can see in
Figs. 1(b) and 1(c). The presence of the “PT -induced”
condensates is forbidden by the requirement of the
minimization of the energy density (21) as these con-
densates would have made the energy density positive
while the trivial ground state with v1 ¼ v2 ¼ 0 has zero
energy. This conclusion appears to be the consequence of
the fact that the expression for the non-Hermitian energy
density (21) does not contain a “compensating” m2

5 term
which is present, on the contrary, in the expression of the
Hermitian energy density (24). Therefore, the U(1) sym-
metric ground state with vanishing energy is preferred
over the U(1) broken state with the nonvanishing con-
densates. We will see below that some of these symmetric
states belong to the PT -broken phases of the interacting
model and, therefore, are physically meaningless.
In the symmetry-broken phase with m2

2 < 0 (while we
still keep m2

1 > 0), the conventional U(1) symmetry
breaking does occur. The upper panel of Fig. 1 shows
that the non-Hermitian mass influences the conventional
symmetry breaking in a somewhat controversial way: at
sufficiently large m4

5, the third requirement of Eq. (13) is
violated, the PT symmetry gets broken and the U(1)
symmetry gets restored because the ground-state con-
densates v1 and v2 vanish. In the symmetry-broken region,
the flip of the sign in the m2

5 mass flips the sign of the v1
condensate (we remind that we always keep the v2
condensate non-negative).
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A rather similar picture occurs when one of the diagonal
mass squared is taken to be negative, m2

1 < 0, as shown in
the middle panel of Fig. 1. The spontaneous symmetry
breaking occurs at both signs of the remaining mass
squared, m2

2, while the increase of the absolute value of
the off-diagonal massm2

5 leads to the restoration of the U(1)
symmetry. We would like to stress again that this particular
picture is enforced by the requirement of minimization of
the non-Hermitian energy density (21) which allows us to

choose the correct ground state from the multitude of the
solutions of the non-Hermitian equations of motion (18).
Finally, the ground state of the Hermitian two-scalar

model with m2
1 < 0 is shown in the lower panel of Fig. 1.

The condensates appear almost at every point of the phase
diagram except for the line m5 ¼ 0, where the conden-
sates decouple and the v2 condensate ceases to exist at
m2

2 > 0. At this semi-infinite line, the condensate v1 takes
its minimum.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. The upper panel: (a) the (minus) energy density (21) and the condensates (b) v1 and (c) v2 in the ground state of the non-
Hermitian model (5) are shown in the plane of the mass parameter squared m2

2 and the non-Hermitian mass squared m2
5. The mass

(squared) of the first field ϕ1 is taken positive, m2
1 > 0, and the quartic couplings for both scalar fields are fixed: λ1 ¼ λ2 ¼ 1. The

middle panel, with the plots (d), (e), and (f), corresponds to the same quantities obtained for the negative diagonal mass m2
1 < 0.

The lower panel, with the plots (g), (h), and (i), depicts the Hermitian case (7). All dimensionful quantities are shown in the units of the
absolute value of the first mass parameter, jm1j.
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4. Stability of the ground state and the PT symmetry in
the non-Hermitian model

Before proceeding to the discussion of the vortex
solutions, let us address the formal stability issues of
the ground state. Usually, the local stability of a classical
configuration is probed by expanding the scalar fields in
the vicinity of the configuration, ϕa ¼ va þ ϕ̂a with
jϕ̂aj ≪ jvaj. The configuration is unstable if the fluc-
tuation matrix corresponding to the variation of the action
with respect to the fluctuation of the fields contains
negative modes.
In the Hermitian theory, the global minimum in the total

energy of the solution corresponds to an absolutely stable
state. In the non-Hermitian theory, this criterion may not
work since even in the classical theory, the ground state is
determined by a single set of classical equations of motion
out of the existing two sets. Therefore, mathematically, one
could expect the emergence of negative directions in the
space of fields. This expectation is coherent with our
physical intuition since the non-Hermitian system resides
in the steady state which is generally not a thermodynamic
equilibrium. In the remaining part of this section, we argue
that the formal stability criteria can still be applied to the
interacting non-Hermitian systems. These criteria give us
the generalization of the PT -symmetric and PT -broken
regions for the interacting theory.
From the classical equations of motion (16), we obtain

that the field fluctuations around the condensates are
governed by the following equation:

□

0
BBB@

ϕ̂1

ϕ̂�
1

ϕ̂2

ϕ̂�
2

1
CCCAþM2

0
BBB@

ϕ̂1

ϕ̂�
1

ϕ̂2

ϕ̂�
2

1
CCCA ¼ 0; ð25Þ

where the fluctuation matrix M2
NH of the non-Hermitian

model is as follows:

M2
NH¼

0
BBBBB@
4λ1v21þm2

1 2v21λ1 m2
5 0

2v21λ1 4λ1v21þm2
1 0 m2

5

−m2
5 0 4λ2v22þm2

2 2v22λ2
0 −m2

5 2v22λ2 4λ2v22þm2
2

1
CCCCCA:

In the U(1) broken phase, this matrix has one zero
eigenvalue which corresponds to the Goldstone mode. In
the symmetric U(1) phase, all eigenvalues are generally
nonzero.
For the ground state to be stable, one expects that the all

eigenvalues of the fluctuation matrix are non-negative. In
the non-Hermitian model, this requirement is not always
satisfied. In Fig. 2 we show the (in)stability phases for
various quartic couplings λ1 and λ2.

The (in)stability phase diagram has a rather curious form.
One notices that the borderlines between the stable and
unstable areas involve both U(1) symmetric and broken
regions which possess, on the contrary, rather featureless,
smooth behavior of the condensates as shown in Fig. 1. In
order to understand the appearance of the negative modes, let
us consider any unstable point in the symmetry-restored
region with masses m2

1 > 0, m2
2 > 0 (these regions are

marked by the white color in the upper panel of Fig. 2).
Since the both condensates are zero and both diagonal masses
as well as the couplings are positive, the energy density (21)
takes an absolute minimum. On the other hand, in these
regions, the third criterion of Eq. (13) is not satisfied,
indicating that the symmetric state resides in the PT -broken
region and is thus unstable. The instability is not captured by
the minimization of the energy density (21) since this
particular expression is derived for the classical solutions
while the instability can drive the configuration out of the
classical subspace of configurations. The nonclassical con-
figuration can acquire even a complex value thus invalidating
the criterion of the energy minimization outside of the
classical subspace of field configurations.
Thus, we arrive to the conclusion that the ground state of

the non-Hermitian model is formally not stable in certain
regions of the parameter space. One can easily check that
these unstable regions become the PT -broken regions
when the quartic interaction couplings are set to zero,
λ1;2 → 0. Therefore, similarly to the free noninteracting
model, the unstable regions indicated in Fig. 2 can be
interpreted as the PT -broken regions in the interacting case
where the model cannot be used as a invalid prescription of
any steady state in a physical system. The PT -symmetric
regions, on the contrary, are valid stable zones where the
steady-state physics can be realized.
The stability, now associated with the PT -symmetric

regions, is thus determined by the standard requirement that
the quadratic fluctuation matrix,

M2
ab ¼

δ2SNH½χ�
δχaðxÞδχbðxÞ

; ð26Þ

does not possess negative eigenvalues. Here the vector χ⃗ ¼
ðϕ1;ϕ2;ϕ�

1;ϕ
�
2Þ denotes the original fields and their

conjugates.
For the sake of completeness, we show the fluctuation

matrix of the Hermitian model (7),

M2
H¼

0
BBBBB@
4λ1v21þm2

1 2v21λ1 m2
5 0

2v21λ1 4λ1v21þm2
1 0 m2

5

m2
5 0 4λ2v22þm2

2 2v22λ2
0 m2

5 2v22λ2 4λ2v22þm2
2

1
CCCCCA;
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which has only non-negative eigenmodes, as expected. The
Hermitian ground state does not have any ambiguities in
the stability criteria.

III. VORTICES IN FIXED-LENGTH
CONDENSATES

A. Vortices in one-component superfluids: Brief review

In this section, we consider in the bosonic condensates
with the fixed radial (amplitude) part jψ j of the scalar
condensate ψ ¼ jψ jeiθ when the entire dynamics of the
system is encoded in the condensate phase θ. We can
neglect the fluctuations of the amplitude in the long-range
limit for fluctuations with a wavelength longer than the
appropriate healing length ξ [42].
The healing length corresponds to the wavelength at

which the kinetic energy of the boson equals the chemical
potential. It determines the size of vortices and plays a role
similar to the one played by the correlation length in the
superconductivity. On the superconductivity side, a con-
densate with a fixed amplitude appears naturally in the
London limit which corresponds to the extreme type II
superconducting regime. In the London limit, the

penetration depth of the magnetic field is much longer
than the correlation length so that the latter can be
neglected in many physical situations. Equivalently, this
limit poses a constraint on the modulus of the super-
conducting condensate which can be considered as a
rigidly fixed, nonfluctuating quantity. The gauge invari-
ance implies that the phase of the superconducting
condensate is not constrained by this limit, thus sharing
an analogy with a superfluid. However, the phase is
absorbed by the electromagnetic gauge field, which
becomes—consistent with the Meissner effect—a massive
vector field via the Anderson-Higgs mechanism [43].
In the background of sufficiently strong magnetic field,

the type-II superconductors enter the mixed (Abrikosov)
phase where the magnetic flux penetrates the condensate in
a form of parallel vortices which form the regular
Abrikosov lattice. In the London limit, the vortex is
characterized by a singularity in the phase of the con-
densate which reflects itself in a singular behavior of the
gauge field close to the vortex core [44].
In our paper, we consider the model with the global,

rather than local/gauge, U(1) symmetry. In the global case,
the condensate is associated with the electrically neutral

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. The stable (PT -symmetric, marked by the green color) region and the unstable (spontaneously PT -broken, marked by the red
color) regions in the interacting non-Hermitian theory in the ðm2

5; m
2
2Þ plane. The mass squared of the first scalar field takes positive

values (m2
1 > 0) at the upper panel and negative values (m2

1 < 0) at the lower panel. The dark green and light green colors denote regions
with stable PT -symmetric ground states with nonvanishing and vanishing condensates, respectively. The dark red and light red areas are
unstable PT -broken regions with, respectively, nontrivial and vanishing solutions of the classical equations of motion (22).
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complex scalar field which corresponds to the phenomenon
of superfluidity rather than superconductivity. The
Anderson-Higgs mechanism is evidently absent and the
massless mode in the phase of the condensate appears to be
the Goldstone boson associated with the global U(1)
symmetry breaking. In the case of a nonrelativistic Bose
gas, one identifies the Goldstone mode with a phonon.
Instead of the Abrikosov strings with magnetic flux, the
superfluid condensates host the vortices characterized by
singularities in the phases of the condensate. These vortices
are also called the “global vortices” since they appear in
theories possessing a global symmetry. Below, we will
briefly review the theory of vortices for a nonrelativistic
one-component superfluid following Ref. [44] and then we
proceed to the generalization of our approach to the long-
range (“London”) limit of the relativistic non-Hermitian
two-field model.
Consider a superfluid condensate of a nonrelativistic

Bose gas of particles with the mass M. It is convenient to
describe by the wave function in the radial coordinates
ψ ¼ jψ jeiθ. The long-range limit corresponds to the fixed
radial degree of freedom jψ jwhich is a good approximation
at very low temperature. Then the energy of the fluctuations
in the superfluid can be written in the following form (we
work in units c ¼ ℏ ¼ 1):

E ¼
Z

d3x
ρs
2
v2s ≡ jψ j2

2M

Z
d3xð∇θÞ2; ð27Þ

where the radial part jψ j of the condensate determines the
superfluid density ρs ¼ Mjψ j2 while its phase θ provides
us with the velocity of the superfluid condensate,
vs ¼ ð∇θÞ=M. We neglected here qualitatively inessential
contributions coming from the inhomogeneity of the
radial part of the condensate. An extremization of the
energy (27) gives us the Poisson’s wave equation, Δθ ¼ 0
which corresponds to the incomprehensibility condition
of the superfluid, ∇ · vs ¼ 0.
The superfluid theory (27) also incorporates singular

configurations of the vortex fluid which correspond to
the superfluid currents that wind around a line (called the
vortex line) in three-dimensional space. Precisely at the
vortex line, the superfluid condensate vanishes, ϕ ¼ 0,
while the phase of the superfluid condensate is equal—in
the vicinity to the vortex core—to a geometrical angle
(times an integer) in the plane transverse to the vortex line.
The integer is a topological quantity which characterizes
the vortex winding number.
The vortices can be accounted in the model (27) despite

the fact that this model describes a long-range macroscopic
physics with a globally uniform, constant condensate.
Consider, for simplicity, a straight static vortex line along
the direction x3 located at the center x1 ¼ x2 ¼ 0 in the
transverse plane. The phase of the vortex is θðx1; x2Þ ¼ nφ
where n is the winding number of the vortex and

φ ¼ argðx1 þ ix2Þ is the azimuthal angle in the two-dimen-
sional ðx1; x2Þ plane. The velocity of the superfluid,

vs ¼
n
M

∇ argðx1 þ ix2Þ ¼
n
Mr

eφ; ð28Þ

is directed along the unit vector in the azimuthal eφ, so that
the fluid “winds” around the vortex center at x1 ¼ x2 ¼ 0.
Alternatively, the location of the vortex singularity corre-
sponds to the point in the two-dimensional plane, where the
derivatives do not commute,

ð∂1∂2 − ∂2∂1Þθðx1; x2Þ ¼ 2πnδðx1Þδðx2Þ: ð29Þ

The total energy (27) evaluated at this static straight
vortex configuration is:

E ¼ L
jψ j2n2
2M

2π

Z
R

ξ
rdr

1

r2
¼ L

πjψ j2n2
M

ln
R
ξ
; ð30Þ

where L is the length of the vortex. The infrared cutoff of
this integral is the size of the system R while the size ξ of
the vortex core—typically, of the interatomic distance—
serves as an ultraviolet cutoff. The important message of
Eq. (30) is that the vortex energy (mass) is proportional to
the length of the vortex L. One can show that the vortex
curvature provides a subleading correction. The energy
density per unit length is a finite quantity since the
logarithmic divergence in Eq. (30) is very mild.
Consider now the relativistic one-component model with

the action:

S ¼
Z

d4x∂μϕ
�∂μϕ≡ κ2

Z
d4x∂μθ∂μθ; ð31Þ

where we adopted the long-range limit with the constant
radial condensate κ ¼ jϕj. The variation of the action with
respect to the phase θ gives us the equation for the
propagation of the massless Goldstone particle, □θ ¼ 0,
where □ ¼ ∂2

t − ∇2 is the d’Alembert operator.
In the nonrelativistic limit, the model (31) possesses the

energy (27) for static vortex configurations. It is convenient
to parameterize the coordinates x̃μ ¼ x̃μðσ⃗Þ of the two-
dimensional vortex singularities by the two component
vector σ⃗ ¼ ðσ1; σ2Þ. We split the phase θ into the regular
and singular parts, θ ¼ θr þ θs. The regular part θr of the
phase corresponds to the perturbative fluctuations while the
singular part θs encodes the position of the vortex (29). In
the relativistic notations,

∂ ½μ;∂ν�θsðx; x̃Þ ¼ 2π ·
1

2
ϵμναβΣαβðx; x̃Þ; ð32Þ

where the singularity itself is given by the tensor current:
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Σαβðx; x̃Þ ¼
Z
Σ
d2σαβðx̃Þδð4Þ½x − x̃ðσ⃗Þ�; ð33Þ

which is expressed via the differential measure at the vortex
world sheet Σ:

d2σαβðx̃Þ ¼ ϵab
∂xα
∂σa

∂xβ
∂σb d

2σ: ð34Þ

Here ϵab is the fully antisymmetrized tensor in two
dimensions, ϵ12 ¼ −ϵ21 ¼ þ1 and ϵ11 ¼ ϵ22 ¼ 0. The
vortex tensor (33) is a two-dimensional delta-function at
the surface of the vortex, with the orientation at the vortex
world-sheet. For example, for a straight vortex mentioned
above, one uses the parametrization x̃0 ¼ σ1, x̃1 ¼ x̃2 ¼ 0,
x̃3 ¼ σ2, and obtains

ΣαβðxÞ ¼ nðδα;0δβ;3 − δα;3δβ;0Þδðx1Þδðx2Þ; ð35Þ

where n ∈ Z is the vorticity. Note that the regular part of
the phase does not contain any singularity by defini-
tion, ½∂μ; ∂ν�θr ≡ 0.
Integrating out or, equivalently, solving the equations of

motion for the regular component the phase, θr, allows us
to rewrite the action (31) in terms of the singular part of the
phase θs, which, in turn, depends only on the vortex world
sheet (33):

S½Σ� ¼ 4π2κ2
Z
Σ
d2σðx̃Þ

Z
Σ
d2σðx̃0ÞDðx̃ − x̃0Þ: ð36Þ

This action is a nonlocal functional which features two
integrals that are taken over the same vortex world sheet. In
the case of many vortices, the world sheet Σ includes all
their world sheets: Σμν ¼ Σ1;μν þ Σ2;μν þ � � �.
The nonlocal action (36) represents the self-interaction

of the vortex line as well as the interactions of the distinct
vortex segments via propagation of a massless Goldstone
particle between the vortex segments. In Eq. (36), this long-
range interaction is represented by the advanced Green’s
function DðxÞ of the d’Alembert operator:

□DðxÞ ¼ −δð4ÞðxÞ: ð37Þ

In the case of a static straight vortex line of large length
L, the action (36) calculated for the time interval δt gives us
S ¼ Eδt, where E is, up to parameter redefinitions, the
known vortex energy (30). In order to demonstrate this fact,
it is convenient to make a Wick transformation in the
integral (36) to the Euclidean spacetime. In the Euclidean
space, the massless propagator (37) is:

DðxÞ ¼
Z

d4p
ð2πÞ4

eipx

p2
¼ 1

8π2
1

jxj2 ; ð38Þ

where x is the 4-distance. For a single straight static vortex
with the surface (35), the longitudinal (along the vortex)
and temporal coordinates in the action (36) can be
integrated out, and we get the following formal expression
for the vortex energy:

E ¼ 4π2κ2LDð2dÞð0Þ; ð39Þ

where

Dð2dÞðρÞ ¼ −
1

2π
ln

ρ

ρ0
; ð40Þ

is the two-dimensional massless propagator [a solution of
Eq. (37) in two Euclidean dimensions] as the function of
the two-dimensional distance ρ. The parameter ρ0, which
has the dimension “length,” is introduced for the consis-
tency reasons. The argument “0” in Eq. (39) highlights the
fact that the formal expression for the energy in the long-
range limit is a logarithmically divergent quantity similarly
to the nonrelativistic expression (30). A more accurate
derivation in a finite cylindrical box of the radius R0 leads
us to

E ¼ 2πκ2L log
R0

ξ
; ð41Þ

where ξ is the size of the vortex core given by the healing
length which does not explicitly enter the model in the
long-wavelength limit.
The general expression (36) also gives us the interaction

energy of the two straight static vortices with the vorticities
n1 and n2 separated by the distance R:

VðRÞ ¼ 8π2κ2LDð2dÞðRÞ

≡ −4πn1n2κ2L log
R
ξ
: ð42Þ

The like-charged vortices repel each other while the
vortices with opposite vorticities attract to each other.
Finishing this section, we notice that in order to get

Eq. (42) it is sufficient to take in the action (36), instead of
the single-vortex current (35), the following expression:

ΣαβðxÞ ¼ ðδα;0δβ;3 − δα;3δβ;0Þδðx1Þ
× ½n1δðx2 − R=2Þ þ n2δðx2 − R=2Þ�: ð43Þ

B. Two-component superfluids in long-range limit

1. Lagrangians in the long-range limit

The long-range limit of both Hermitian (7) and non-
Hermitian (5) two-condensate models can be reached by
expressing the diagonal masses m2

a ¼ −2λaκ2a via the
condensate densities κ2a > 0 and a ¼ 1, 2 and then taking
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the limit of strong quartic interaction, λ1 ¼ λ2 → ∞. The
parameters κa > 0 fix the radial amplitudes for each field,
ϕa ¼ κaeiθa , while leaving the phases θa as the only
dynamical variables. In the long-range limit, the
Lagrangians for the Hermitian (7) and non-Hermitian
(5) models reduce, respectively, to the following expres-
sions.

LH ¼ κ21∂νθ1∂νθ1 þ κ22∂νθ2∂νθ2

− 2m2
5κ1κ2 cosðθ1 − θ2Þ; ð44Þ

LNH ¼ κ21∂νθ1∂νθ1 þ κ22∂νθ2∂νθ2

þ 2im2
5κ1κ2 sinðθ1 − θ2Þ: ð45Þ

The only difference between the Hermitian and non-
Hermitian cases appears in the interaction between the
phases of different condensates: instead of the cosine
function in the Hermitian model, its non-Hermitian model
has a sine function preceded by a purely imaginary
coupling.
According to the third criterion of Eq. (13), the non-

Hermitian theory in the long-range limit at κ1 ≠ κ2 would
correspond to the PT unbroken phase if the theory were
noninteracting. Below, we will see that in the interacting
theory this criterion, unsurprisingly, does not work. Still,
Eq. (45) represents a meaningful theory even if m5 ≠ 0.

2. Hermitian two-condensate model

The system described by the Hermitian Lagrangian (44)
corresponds to a long-range description of two coupled
condensates within the Gross-Pitaevskii formalism [42].
The condensates correspond to two different hyperfine spin
states of (for example, of 87Rb), which are driven by the
Rabi frequency Ω.
In the static limit, the energy functional of the system

(44) can be written in a suggestive nonrelativistic form:

E½θ1; θ1� ¼
Z

d3x

�
ℏ2

2m
½ρ1ð∇θ1Þ2 þ ρ2ð∇θ2Þ2�

− ℏΩ
ffiffiffiffiffiffiffiffiffi
ρ1ρ2

p
cosðθ1 − θ2Þ

�
ð46Þ

where ρa ≡ 2mκ2a is the density of the a ¼ 1; 2 condensate
and the interaction term Ω≡ −2m2

5κ1κ2 has the meaning of
the Rabi frequency (here we restored for a moment the
powers of ℏ). Below we continue to work in the notations
of Eq. (44).
From the classical equations of motion of the Hermitian

model,

κ1□θ1 −m2
5κ2 sinðθ1 − θ2Þ ¼ 0; ð47Þ

κ2□θ2 þm2
5κ1 sinðθ1 − θ2Þ ¼ 0; ð48Þ

one immediately determines the presence of the Goldstone
massless mode

χ ¼ θ1sin2β þ θ2cos2β; ð49Þ

and the massive excitation,

γ ¼ θ1 − θ2: ð50Þ

These degrees of freedom satisfy, respectively, the
following equations:

□χ ¼ 0; ð51Þ

□γ −M2 sin γ ¼ 0: ð52Þ

Here

M2 ¼ 2m2
5

sin 2β
≡ κ21 þ κ22

κ1κ2
m2

5; ð53Þ

is the mass of the mode (50),

tan β ¼ κ1
κ2

; ð54Þ

is the angle which determines the relative strength of the
condensates, and

κ2 ¼ κ21 þ κ22; ð55Þ

is the total condensate density given by the sum of the
densities of the individual components.
The mode χ corresponds to the gapless sound excitation

(the density wave) while mode γ is the spin density wave
which is always gapped provided the Rabi frequency is
nonzero, Ω ≠ 0 (or, in our notations, m5 ≠ 0) [45].
Since κa > 0, the mass (53) can always be chosen as a

positive quantity. The Hermitian Lagrangian (44) can
therefore be rewritten as a sum of independent contribu-
tions coming from massless (49) and massive (50) fields:

LH ¼ κ2∂νχ∂νχ þ LðMÞ
H ðγÞ: ð56Þ

The Goldstone mode χ corresponds to the massless
excitation of the one-component Bose gas superfluid (31).
The massive mode γ is described by the sine-Gordon
Lagrangian:

LðMÞ
NH ðγÞ ¼ κ̃2ð∂νγ∂νγ − 2M2 cos γÞ; ð57Þ

where the parameter

κ̃ ¼ κ sin 2β
2

; ð58Þ
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plays a role of the amplitude corresponding to the massive
condensate. In Eq. (57), the term cos γ appears naturally
instead of the usual γ2 mass term in agreement with the
γ → γ þ 2π periodicity coming from the symmetry of the
original fields θ1 and θ2. It is instructive to look at the limit
of large mass, Mξ ≫ 1, which reduces the fluctuations of
the field γ and makes the last term in the model (57)
quadratic. Then the integration over the field γ can be done
explicitly taking into account the vortex singularities.
Following the analogy of the one-component model, we

conclude the two-component model should contain two
types of superfluid vortices associated with singularities
(winding) in the phases of the fields θ1 and θ2. Using the
decompositions (49) and (50), we identity the massless Σð0Þ

and massive ΣðMÞ combinations of the vortex world sheets
which appear as the singularities in χ and γ fields,
respectively:

Σð0Þ
μν ¼ Σð1Þ

μν sin2β þ Σð2Þ
μν cos2β; ð59Þ

ΣðMÞ
μν ¼ Σð1Þ

μν − Σð2Þ
μν : ð60Þ

Here the individual phase windings are defined according
to Eq. (32):

∂ ½μ;∂ν�θsi ðx; x̃Þ ¼ 2π ·
1

2
ϵμναβΣ

ðiÞ
αβðx; x̃Þ; i ¼ 1; 2: ð61Þ

Therefore, the effective theory of vortices is written as
follows:

S½Σ� ¼ 4π2κ2
Z
Σð0Þ

d2σðx̃Þ
Z
Σð0Þ

d2σðx̃0ÞDðx̃− x̃0Þ

þ 4π2κ̃2
Z
ΣðMÞ

d2σðx̃Þ
Z
ΣðMÞ

d2σðx̃0ÞDMðx̃− x̃0Þ: ð62Þ

where DMðxÞ is the advanced Green’s function corre-
sponding to the propagator of the massive par-
ticle, ð□þM2ÞDMðxÞ ¼ −δð4ÞðxÞ.
Despite its cumbersome appearance, the physical sense of

the effective action (62) is relatively transparent: the vortex
world sheets interact with each other via the massless density
waves and the massive spin-wave exchanges in the combi-
nations Σð0Þ and ΣðMÞ. The interaction is given by combining
the attractive long-range (Coulomb-like) potential and the
short-range (Yukawa) interaction with the strength deter-
mined by the couplings κ and κ̃, and the angle β which
determines the relative strength of the condensates.
Let us consider what the consequence of the action (62)

for two static parallel straight vortices of the length L ≪ ξ
is. The Coulomb interaction of the first term in Eq. (62) is
given by the long-range logarithmic potential (42). The
short-range part which appears in the second term of

Eq. (62) corresponds to the interaction (we neglect the
energy of the single vortex):

VMðRÞ ¼ −4πn1n2κ2LK0

�
R
ξ

�
: ð63Þ

where K0 is the modified Bessel function of the second
kind. In the limit of zero Rabi frequency, Ω ¼ 0, the
coupling between the vortices in different condensates
disappears, m5 ¼ 0, the mass (53) vanishes, and the
massive spin-wave exchange (63) takes the logarithmic
form (42). However, since the action (62) is derived in the
limit of the massive spin-wave,Mξ ≪ 1, the last term leads
only to the short-range interactions. The logarithmic
potential dominates the large-distance physics leading to
the following potential between the vortices of the kinds a,
b ¼ 1; 2:

VabðRÞ¼−4πnanbαaαbκ2L log
�jxa−xbj

ξ

�
; ð64Þ

where α1 ¼ sin2 β and α2 ¼ cos2 β gives the amplitudes of,
respectively, the fields θ1 and θ2 in the massless density
wave (49). The expression (64) is a trivial generalization of
the vortex-vortex interaction in the case of a single
condensate (42).
The two-component model possesses, however, a new

object, the domain wall in the scalar condensates. [45,46]
This nontrivial topological structure has no analogue in the
one-component model. Technically, its appearance can be
seen from the last (cosine) term in the two-field Lagrangian
(44) which leads to a soliton in the massive field γ, Eq. (50).
The domain wall appears due to the couplingm5, which, as
we mentioned, corresponds to the Rabi frequency Ω that
couples the two spin states. The field γ changes by 2π
across the vortex, which guarantees the topological stability
of the wall within the model (44).
The boundary of a domain wall is necessarily a vortex

that carries an integer winding number. Since the domain
wall possesses a nonzero tension, the vortex cannot exist as
an isolated object because it would otherwise have infinite
energy due to the wall attached. Therefore, the vortices
from different condensates are bound by a linear potential
because the domain wall possesses a constant energy per
unit area. Such bounded vortex pairs are sometimes called
merons [33].
The existence of the domain wall provides us with yet

another exciting link with the physics of strong interactions
described by quantum chromodynamics (QCD). If the
domain wall in the mentioned vortex pair gets broken,
new vortices appear from the condensate. The created
vortices produce additional vortex pairs that are attached to
the broken ends of the domain wall [45,47]. The process is
a direct analog of the confining QCD string breaking,
which extends between the (anti)quarks and gets broken if a
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sufficiently long distance separates the quarks. Thus, the
appearance of the domain wall leads to a rather nontrivial
vortex-pair dynamics [47,48].
The confinement picture works only for a relatively

small intercondensate coupling given by the Rabi fre-
quency Ω (or, for small off-diagonal mass m5 in our
notations). At a high intercondensate coupling, the domain
wall becomes unstable, and the vortex pairs are no more
confined [45]. The intervortex potential is then given by the
long-range logarithmic potential (64) determined by the
density wave exchange.

3. Non-Hermitian two-condensate model

The energy of the non-Hermitian two-condensate model
(45) can also be rewritten as a formal expression similar to
its Hermitian counterpart (46). In the non-Hermitian case,
the meaning of the Rabi frequency Ω becomes rather
transparent: the Rabi coupling Ω should couple to the
different hyperfine spin components with a different sign.
Leaving aside the physical realization of such scenario, we
notice that the non-Hermitian case can be analyzed closely
paralleling the Hermitian case considered above. In par-
ticular, exactly the same field combinations (49) and (50)
can be used to rewrite the non-Hermitian theory (45) in
terms of the massless (density wave) and massive (spin
wave) phase combinations:

LNH ¼ κ2∂νχ∂νχ þ LðMÞ
NH ðγÞ: ð65Þ

This non-Hermitian model possesses the usual Hermitian
Goldstone mode χ which leads to the long-range inter-
actions between the combinations of the world sheets (59).
However, the would-be massive excitation γ exhibits a non-
Hermitian behavior described by the Lagrangian:

LðMÞ
NH ðγÞ ¼ κ̃2ð∂νγ∂νγ þ 2iM2 sin γÞ; ð66Þ

and therefore the interaction between the would-be massive
components of the vortex sheets (60) is not evident.
The model (66) is nothing but a non-Hermitian version

of the Sine-Gordon model in (3þ 1) dimensions. As a side
remark, we notice that the Lagrangian (66) appears as a
bosonic dual of the non-Hermitian massive Thirring model
in (1þ 1) dimensions [6]. According to Ref. [6], this model
with the purely imaginary coupling in front of the sine-term
resides in the PT -broken domain and, therefore, should be
characterized by complex energy dispersions which corre-
spond to dissipation or instability, or the both.
The second term in the Lagrangian (66) implies that the

γ ¼ 0 point is not a local extremum of the corresponding
action. The stable minima could appear around the values
γ� ¼ �π=2. Defining γ ¼ �π=2þ δγ, we get the follow-
ing equations of motion:

□δγ � iM2 sin δγ ¼ 0; ð67Þ

which differ from the classical equations of motion of the
Hermitian model (52) by the purely complex coefficient in
front of the sine term. For small fluctuations around the
minimum, δγ ¼ 0, the solutions of Eq. (67) give us the
dispersions for the energy: ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � iM2

p
. We find that

the particlelike, positive-energy solutions with Reω > 0
lead to an explosive behavior near the γ ¼ −π=2 minimum
which appears to be unstable. For example, the amplitude
of any zero-momentum solution (k ¼ 0) diverges with time
t as δγ ∼ expðΓtÞ where

Γ ¼ Mffiffiffi
2

p ≡ κ21 þ κ22
κ1κ2

m2
5ffiffiffi
2

p > 0: ð68Þ

In the language of a Hermitian theory, the point γ ¼ −π=2
would correspond to an extremum.
However, the minimum γ ¼ þπ=2 is stable so that all

particle excitations around it behave as dissipative solutions
δγ ∼ expð−ΓtÞ that approach the minimum point γ ¼ þπ=2
should the field γ deviate from it. Since the angle γ takes a
constant value in the stable minimum, it evidently means
that the field γ contains no vortex singularities in this
ground state. According to Eq. (60), the vortex singularities
in the both phases θ1 and θ2 should coincide with each

other: ΣðMÞ
μν ¼ Σð1Þ

μν − Σð2Þ
μν ¼ 0.

Thus, the vortices in the ϕ1 and ϕ2 condensate can only

exist provided they coincide with each other, Σð0Þ
μν ¼ Σð1Þ

μν ¼
Σð2Þ
μν thus forming a single double-vortex sheet Σð0Þ

μν accord-
ing to Eq. (59). Any fluctuation that separates the vortices
leads to the energy dissipation with the dissipation rate (68)
which returns the vortices back to their common stable
nondissipative minimum.
The common vortex line is described by action of the

vortex in the one-component condensate (36), where the
coupling κ is given in Eq. (55). The energy per unit length
of the joint vortex is thus given by Eq. (41). In this state, the
common vortex segments interact with other segments via a
long-range interaction mediated by massless particles. For
the straight static vortices separated by the distance R, the
interaction is given by Eq. (42).
As we mentioned earlier, the Hermitian counterpart (7)

of the non-Hermitian system (5) appears in various
physical contexts, including color superconductors in
high-density quark matter described by QCD, relevant
for the description of, for example, the interior of the
neutron stars [37,38], and the axion cosmic strings [36]. In
the field-theoretical context, both original U(1) degrees of
freedom, representing the phases of the scalar conden-
sates, mix up to form the Uð1ÞB (“baryon”) global
symmetry where both condensates transform with the
same phase and Uð1ÞA (“axial”) global symmetry which
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rotates the phases of the fields oppositely.2 In our models,
these global symmetries correspond to the Goldstone
massless mode (49) and the massive excitation (50),
respectively.
In particle physics, the axial symmetry is usually broken

either by the axial quantum anomaly [49] or explicitly, by
the (strange) quark mass, depending on the physical system
described by the model. This effect is important in the
cosmological context as it is responsible for the rapid decay
of axion cosmic strings [36]. These topological defects,
which are suggested to be formed in early moments of our
Universe, gets bounded to the QCD domain walls at the
QCD finite-temperature phase transition. The walls decay
rapidly after the QCD phase transition thus leaving no trace
of the cosmic strings in the present-day Universe [51]. We
will not pursue this topic further concentrating, instead, on
the properties of vortices themselves in the contexts of the
models. We notice that in model (7), the “axial” invariance
is explicitly violated by the nonzero coupling m5 ≠ 0
between the two fields in the scalar doublet which makes
the overall mechanism similar to the explicit breaking of
the axial symmetry in QCD.

4. Vortices in Hermitian and non-Hermitian models in
long-range limit: A brief comparison

It is worth comparing the properties of the vortices in
Hermitian and non-Hermitian versions of the two-field
model in the long-range limit. We have already seen that
outside the long-range limit, the phase diagram of the
Hermitian model (Sec. II C 2) has a much simpler structure
as compared to the rich and complicated diagram which
characterizes the phases of the non-Hermitian model
(Sec. II C 4). The properties of the corresponding vortices,
discussed in Secs. III B 2 and III B 3, respectively, differ
dramatically as well.
The Hermitian version of the model possesses two types

of stable vortices associated with the phases of both
condensates (61). The vortices interact with each other
via nonlocal action (62) which describes the massive and
massless interaction of the vortex world sheets via
exchanges of the massless (density wave) and massive
(spin wave) excitations. The model also possesses the
domain wall, a coherent structure in both condensates.
However, in the limit of the sizeable intercondensate
coupling (given by the Rabi coupling Ω or the off-diagonal
mass m5, in our notations), the domain wall becomes
unstable [45] and the long-range vortex dynamics is
determined by the repulsive logarithmic potential.

The long-range limit of the non-Hermitian model resides
in the PT -broken phase, which indicates, according to the
general arguments discussed earlier, instability. The insta-
bility indeed appears as a dissipation provided the vortex
cores of different types are not overlapping exactly.
Therefore, the separated vortices from different conden-
sates tend to attract each other until they form a tightly
bound pair that is perfectly stable.
Therefore, the behavior of the vortices in the Hermitian

and non-Hermitian cases are somewhat similar: both of
them tend to form pairs, albeit for different reasons.
However, one should notice that the similarity is not exact:
the binding of vortices in the Hermitian model appears due
to the domain wall, which exists at low intercondensate
coupling, while the dissipative vortex binding in the non-
Hermitian case is realized at the large values of this
coupling.

IV. VORTICES IN GENERAL CASE

The non-Hermitian two-field model possesses vortex
solutions not only in the London (long-range) limit, where
the amplitudes are fixed by the large quartic couplings λ1
and λ2 but also at finite values of the quartic couplings. The
general is particularly interesting for the properties of the
system at the scales of the order or smaller than the healing
length.
In this section, we consider examples of the static

straight vortex solutions of the classical equations of
motion (14) assuming the standard axial ansatz for the
scalar fields

ϕaðr; θÞ ¼ vafaðrÞeinθ; a ¼ 1; 2; ð69Þ

where r and θ are the radial coordinates in the ðx1; x2Þ plane
and n ∈ Z is the vorticity of the solution. These static and
straight field configurations do not depend on time and x3
coordinates. The vacuum values of the condensates, v1 and
v2, are the solutions of Eqs. (18).
The consistency of the coupled solutions at m5 ≠ 0

imply that the vortices in ϕ1 and ϕ2 condensates should be
superimposed on each other and they should have the same
winding numbers n1 ¼ n2 ¼ n in Eq. (69). Below we
concentrate on the non-Hermitian model which is the
subject of our paper (the analysis of the Hermitian
counterpart can also be performed in the same way).
The radial profiles of the vortices are described by the

functions fa with the following asymptotics:

lim
r→∞

faðrÞ ¼ 1; lim
r→0

faðrÞ ¼ 0; a ¼ 1; 2; ð70Þ

which guarantee that the total energy of the vortex solution
is converging both at the spatial infinity and at the origin,
respectively.

2The terms are taken from chiral physics of (massless) Dirac
fermions where the vector and chiral rotations in internal space
transform upper (right-handed) and lower (left-handed) Weyl
components with the same (opposite) phases which corresponds
to the vector (baryon) and axial rotations, respectively [50].
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The classical equations of motion (14) lead to the
following system of equations for the profile functions:

f001ðrÞ þ
f10ðrÞ
r

−
n2

r2
f1ðrÞ −m2

1f1ðrÞ −m2
5

v2
v1

f2ðrÞ

− 2λ1v21f
3
1 ¼ 0; ð71aÞ

f002ðrÞ þ
f20ðrÞ
r

−
n2

r2
f2ðrÞ −m2

2f2ðrÞ þm2
5

v1
v2

f1ðrÞ

− 2λ2v22f
3
2 ¼ 0; ð71bÞ

which, evidently, do not possess straightforward analytical
solutions.
Close to the origin, the last nonlinear terms in both

equations (71) can be neglected and the differential
equations can be linearized. The solutions can be repre-
sented in the form of the polynomials,

faðrÞ ¼
X∞
k¼0

Að2kÞ
a rnþ2k; ð72Þ

which involve only the positive even powers of the radius
starting from the power rn determined by the vorticity
number n ¼ 1; 2;…. The ansatz (72) is thus consistent with
the asymptotics (70). One gets for the first three coef-
ficients:

Að0Þ
1 ¼ A1; Að2Þ

1 ¼ A1v1m2
1 þ A2v2m2

5

4ðnþ 1Þv1
;

Að4Þ
1 ¼ A1v1ðm4

1 −m4
5Þ þ A2v2m2

5ðm2
1 þm2

2Þ
32ðnþ 1Þðnþ 2Þv1

; ð73aÞ

Að0Þ
2 ¼ A2; Að2Þ

2 ¼ A2v2m2
1 − A1v1m2

5

4ðnþ 1Þv2
;

Að4Þ
2 ¼ A2v2ðm4

1 −m4
5Þ − A1v1m2

5ðm2
1 þm2

2Þ
32ðnþ 1Þðnþ 2Þv2

; ð73bÞ

where A1 and A2 are free parameters of the solution which
cannot be fixed at this stage. The series (73) of the f1 and
f2 profile functions are related to each other by the flip of
the sign in front of the off-diagonal mass term m2

5.
In the large-distance region, r → ∞, the asymptotics

(70) imply fa ¼ 1 − ha where jhaj ≪ 1 at sufficiently large
distances. The linearized equations of motion,

h001ðrÞ þ
h01ðrÞ
r

−
n2

r2
h1ðrÞ −m2

1h1ðrÞ −m2
5

v2
v1

h2ðrÞ

− 6λ1v21h1ðrÞ ¼ 0; ð74Þ

h002ðrÞ þ
h02ðrÞ
r

−
n2

r2
h2ðrÞ −m2

2h2ðrÞ þm2
5

v1
v2

h1ðrÞ

− 6λ2v22h2ðrÞ ¼ 0; ð75Þ

suggest that their solutions can be represented in the
following form:

haðrÞ ¼ Bð0Þ
a rse−μr: ð76Þ

The self-consistency of the solutions provides us with the
power s ¼ −1=2 of the algebraic prefactor rs and also
imposes two simultaneous constraints:

μ2 −m2
1 −m2

5

Bð0Þ
2 v2

Bð0Þ
1 v1

− 6λ1v21 ¼ 0; ð77aÞ

μ2 −m2
2 þm2

5

Bð0Þ
1 v1

Bð0Þ
2 v2

− 6λ2v22 ¼ 0: ð77bÞ

These equations give us two possible solutions for the ratio

of the coefficients Bð0Þ
a from Eq. (76):

Bð0Þ
1

Bð0Þ
2

¼ v2
v1

ðα�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 1

p
Þ; ð78Þ

and also determines the common exponent:

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6λ1v21 þm2

1 þm2
5ðα�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 1

p
Þ

q
: ð79Þ

We denoted for brevity:

α ¼ 6ðλ2v22 − λ1v21Þ þm2
2 −m2

1

2m2
5

: ð80Þ

The next-order correction to Eq. (76) can also be easily
obtained,

haðrÞ ¼
�
Bð0Þ
a

r
1
2

þ Bð1Þ
a

r
3
2

þOðr−5
2Þ
�
e−μr; ð81Þ

where

Bð1Þ
a ¼ 1

2μ

�
n2 −

1

4

�
Bð0Þ
a : ð82Þ

If the off-diagonal mass vanishes, m2
5 ¼ 0, the non-

Hermitian two-scalar model reduces to two noninteracting
scalar models Lðϕ1;ϕ2Þ ¼ L1ðϕ1Þ þ L2ðϕ2Þ with

LaðϕaÞ ¼ ∂νϕ
�
a∂νϕa −m2

ajϕaj2 − λaϕ
4
a: ð83Þ
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This single-field model possesses the asymptotic solutions
of the form (we omit the index a for simplicity):

fðrÞ ¼ A

	
rn þ m2

4ðnþ 1Þ r
nþ2

þ m4

32ðnþ 1Þðnþ 2Þ r
nþ4 þOðrnþ6Þ



;

hðrÞ ¼ B

	
1ffiffiffi
r

p þ 1

2μr3=2

�
n2 −

1

4

�
þOðr−5=2Þ



e−μr; ð84Þ

where the asymptotic behavior is controlled by the mass of
the single scalar field:

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 6λv2

p
¼ 2

ffiffiffi
λ

p
v2: ð85Þ

In this limit, the two equations (77) decouple, and the mass
parameters reduce to Eq. (85) for each field. The asymp-
totics of the non-Hermitian solution (72), (73), (81), and
(82) are consistent with the single-field solution (84)
as well.
Our numerical analysis confirms the existence of the

stable vortex solutions in the regions of the phase diagram
with nonzero condensates. An example of the profile
functions for a set of coupling constants is shown in
Fig. 3. All the radial n ¼ 1 profiles of the vortices exhibit
the same qualitative features, the linear rise close to the
origin and the exponentially slow approach of the corre-
sponding vacuum expectation values at large distances.
These properties reveal the generic behavior of all solutions
that we have analyzed.
The energy density of the non-Hermitian vortex (calcu-

lated per unit vortex length),

ENH ¼ 2π

Z
∞

0

rdrðj∇ϕ1j2 þ j∇ϕ2j2

þm2
1ϕ

2
1 þm2

2ϕ
2
2 þ λ1ϕ

4
1 þ λ2ϕ

4
2Þ; ð86Þ

can be simplified with the use of the corresponding
equations of motion (14). It can be expressed via the
profile functions fa as follows:

E¼2π

Z
∞

0

rdrfλ1v41½1−f41ðrÞ�þλ2v42½1−f42ðrÞ�g; ð87Þ

where the energy is normalized in such a way that E ¼ 0 in
the absence of the vortex. The very same expression (87)
also gives us the energy of the vortex in the counterpart
Hermitian theory (7),

EH ¼ 2π

Z
∞

0

rdrðj∇ϕ1j2 þ j∇ϕ2j2 þm2
1ϕ

2
1 þm2

2ϕ
2
2

þ 2m2
5ϕ1ϕ2 þ λ1ϕ

4
1 þ λ2ϕ

4
2Þ; ð88Þ

after the use of the corresponding classical equations of
motion (22).
Finally, despite of the mundane similarity of the numeri-

cally obtained vortex configurations in various regions, one
notices rather unusual difference of the evolution of the

FIG. 3. The profile functions of the elementary n ¼ 1 vortex
solution at the mass parameters m2

2 ¼ jm2
1j and m2

5 ¼ 0.1jm2
1j

with m2
1 < 0 and the equal quartic couplings λ1 ¼ λ2 ¼ 1.

FIG. 4. Hermitian and non-Hermitian vortex energies vs the
off-diagonal mass squared m2

5 in different stability areas
(a) m2

2 ¼ −m2
1 > 0 corresponding to the border of the stable

and unstable regions and (b) m2
2 ¼ 2.5m2

1 < 0 residing within
the stable region, at λ1 ¼ λ2 ¼ 1, Fig. 2(g).
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vortex energy as the function of the off-diagonal mass
parameter m5 in Hermitian and non-Hermitian regions. We
show the examples of vortex energies in Hermitian and
non-Hermitian theories in different stability areas, with
m2

1 < 0 and m2
2 > 0 in Fig. 4(a) and with m2

1, m
2
2 < 0 in

Fig. 4(b) at the same values of quartic couplings. The vortex
energies in the Hermitian and non-Hermitian versions
trivially coincide at m5 ¼ 0 and then they tend to separate
as the off-diagonal mass m5 increases. One notices non-
monotonic behavior of energies in the completely broken
(m2

1, m
2
2 < 0) part of the phase diagram.

V. DISCUSSION AND CONCLUSION

Our paper discusses the phase diagram and reveals the
properties of linelike topological excitations and vortices in
the non-Hermitian relativistic model of two interacting scalar
complex fields. We concentrate on non-Hermitian parity-time
(PT ) symmetric realization of the model, which describes an
open system that communicates with an external environment
with precisely balanced gains and losses. The exact balance is
encoded in the PT symmetry of the model Lagrangian. This
symmetry ensures the stability of its steady ground state
provided that the PT -invariance of the model is not broken
spontaneously.
The model describes the properties of two scalar con-

densates that can exhibit the spontaneous breaking of the
discrete PT symmetry in addition to the spontaneous
breaking of the continuous global U(1) symmetry. Given
the presence of the two symmetries that can be either
broken or unbroken, the model thus contains four different
phases, which makes the phase structure of the model very
nontrivial.
The phase diagram of the non-Hermitian two-conden-

sate model is shown in Figs. 1 and 2. We compared the
non-Hermitian model with its Hermitian counterpart with
identical couplings (Fig. 1), and we have observed
the striking difference between the two cases. While
the Hermitian model hosts the stable U(1) broken phase
almost at every point of the phase diagram (except for a
thin line, where the condensates decouple), the non-
Hermitian diagram shows a wide variety of intertwined
stable and unstable phases with both broken and respected
U(1) symmetry. The richness of the phase diagram is
guaranteed by the nontrivial pattern of the spontaneous
PT –symmetry breaking, which is generalized, in our
paper, to the interacting theory.
On the practical level, the stability of the ground state can

be identified via the absence of the negative modes in
fluctuation matrix M2

NH that describes the quadratic
fluctuations of the fields (25) over the ground-state con-
densates. On the contrary, in the spontaneously PT -broken
regions, the quadratic fluctuation matrix contains at least a
single negative eigenvalue.

In addition to the phase diagram, we studied the basic
properties of global vortices in the non-Hermitian model in
various regimes.
First, we considered the model in the limit where the

lengths of the condensates are frozen and the analytical
analysis is feasible. To reveal the vortex properties, we used
a set of exact transformations of the field variables that did
not involve the explicit solution of the equations of motion.
Noticing that the model resides in the PT -broken phase
where the vortices are expected to be unstable, we show
that the superfluid vortices can propagate nondissipatively
if and only if the vortex singularities in different con-
densates have the same vorticity (winding number) and, in
addition, they overlap. In the case of the strong intercon-
densate coupling determined by the non-Hermitian mass
m5, the joint vortex segments interact via a long-ranged
exchange of a massless excitation, similarly to the vortices
in a Hermitian one-condensate model. The dissipation rate
of the individual (separated) vortex segments is controlled
by the off-diagonal massm5, which, in turn, determines the
interaction between the condensates.
The behavior of the vortices in the Hermitian and non-

Hermitian cases is qualitatively similar: both of them are
forming pairs. However, the similarity is not exact for two
reasons: In the Hermitian model, the binding of vortices
proceeds via a formation of the domain wall that emerges
between the vortices. In the non-Hermitian case, the binding
appears due to the dissipative dynamics of the vortices until
they overlap. Moreover, the confining domain walls exist at
low intercondensate coupling values contrary to the non-
Hermitian case in which the dissipative vortex binding is
realized at the large intercondensate coupling.
Second, we also studied the classical vortex configura-

tions at finite quartic couplings. In order to identify the
classical configurations, we used a single set of classical
equations of motion, which is obtained by the variation of
the action with respect to the original fields. We omitted the
equivalent but the incompatible, complimentary set of
equations that correspond to the action variation with respect
to the conjugated fields. This procedure, which follows
Refs. [7,40], seems appropriate for the open systems residing
in a steady-state regime, which does not necessarily coincide
with the (thermal) equilibrium. Moreover, in this approach,
the classical solutions possess a real-valued energy spectrum
bounded below. The latter property is essential on the
practical level as we search for the classical states using a
(numerical) procedure based on the energyminimization as a
criterion for the true (ground) state.
An alternative approach, based on the similarity trans-

formation, does not possess the incompatibility of the two
sets of equations of motion. This property makes the
analytical procedure of finding the classical solutions more
elegant [22,39]. However, the same approach makes the
kinetic term (of, at least, one of the fields) negatively
valued, leading to the emergence of a negative quadratic
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mode for the classical the solutions. Therefore, the men-
tioned class alternative solutions correspond to different,
sphaleron-type saddle-point configurations, which can be
significant for the thermal properties of the system.
We found that the PT -symmetric two-component

model admits the vortex solutions inside and at the border
of the PT -broken regions. These two-condensate vortex
solutions share similar behavior with the vortices in the
one-component relativistic superfluids. For consistency of
the classical solution, the vortices of different condensates
should have the same position in space-time and possess
the same vorticity (winding number).

Finally, we proposed that a non-Hermitian two-conden-
sate system can be realized in the Bose-Einstein conden-
sates of atoms in two hyperfine spin states with the
asymmetric Rabi couplingΩ, which couples to the different
spin components with a different sign.
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