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We analytically investigate hydrodynamic attractor solutions in both Müller-Israel-Stewart (MIS) and
kinetic theories in a viscous fluid system undergoing a Hubble expansion with a fixed expansion rate. We
show that the gradient expansion for the MIS theory and the Chapman-Enskog expansion for the
Boltzmann equation within the relaxation time approximation are factorially divergent. By resumming
those asymptotic divergent series exactly via the Borel resummation technique (without using any
approximations such as the Borel-Padé method), we obtain closed expressions for hydrodynamic attractor
solutions. In both theories, we find that the hydrodynamic attractor solutions are globally attractive and
only a single nonhydrodynamic mode exists. We also find that the hydrodynamic attractor solutions in the
two theories disagree with each other when gradients become large, and that the speed of the attraction is
different. Similarities and differences from hydrodynamic attractors in the Bjorken and Gubser flows are
also discussed. Our results push the idea of far-from-equilibrium hydrodynamics in systems undergoing a
Hubble expansion.
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I. INTRODUCTION

Hydrodynamics provides a fundamental framework to
describe fluid dynamics and has a wide range of applica-
tions across many branches of physics. For example, in
cosmology, hydrodynamics within the ideal approximation
has been widely used to model the matter contents of the
universe [1]. Integration of viscosities into hydrodynamics
has been argued to be important for understanding, e.g., the
inflationary phase of the early universe [2]. In astrophysics,
relativistic hydrodynamics and magnetohydrodynamics are
indispensable tools to simulate the dynamics of black hole
accretion, the explosion of supernovas, and the formation
of compact stars [3]. From the beginning days of heavy-ion
collision physics, theorists have been using hydrodynamic
models to predict, describe, and simulate the expansion of
the quark-gluon plasma (QGP) created in the collisions
[4–7]. Theoretical predictions for such as radial flow and
elliptic flow have gained supporting evidence from experi-
mental data; see Ref. [8] for a recent review.
Hydrodynamics is an effective theory for infrared modes

(hydrodynamic modes) that survive in the long-wavelength
and low-frequency limit. In the standard formulation,

hydrodynamics is defined as a low-order truncation of
the gradient expansion near equilibrium. For example, the
well-known Navier-Stokes (NS) theory, yielded by the
truncation at the first order, captures effects of shear and
bulk viscosities. However, the relativistic version of the NS
theory contains acausal modes, which lead to numerical
instability in practical use [9,10]. A minimal extension of
the NS theory that preserves relativistic causality is the
Müller-Israel-Stewart (MIS) theory [11,12], which we shall
study in Sec. III. Given that hydrodynamics is based on the
gradient expansion procedure, one may expect that it
applies only when higher-order gradients are smaller so
that the expansion series is convergent and that hydro-
dynamics is inapplicable in far-from-equilibrium situations
where gradients are large. On the contrary to those naive
expectations, substantial evidence has been accumulated
that the applicability of hydrodynamics is not necessarily
limited to systems with small gradients [7]. In particular,
the recent heavy-ion collision experiments have witnessed
“unreasonable” effectiveness of hydrodynamics in small
systems such as pp and pA collisions, where large gradients
arise [13–16]. Those findings motivated people to recon-
sider the applicability of hydrodynamics. It turned out that
the gradient expansion can be factorially divergent, imply-
ing that the naive formulation of hydrodynamics has zero
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radius of convergence and is ill defined [17,18]. Such a
divergence, however, does not ruin the notion of hydro-
dynamics, but suggests that one needs to systematically
resum higher-order gradient contributions to reformulate
hydrodynamics in a well-defined manner.
The Borel-resummation technique, developed by Écalle

in mathematics in the 1980s [19], is one of the possible
methods to carry out the resummation. This mathematical
technique has been successfully applied to a variety of
physics problems [20], including hydrodynamics [18,21–
28], quantum mechanics [29–31], and quantum field theory
[32–35]. In hydrodynamics, it was found that the Borel
resummation systematically includes not only higher-order
gradients near equilibrium but also nonperturbative and off-
equilibrium effects, coming from the so-called nonhydro-
dynamic modes [7,21–23]. The nonhydrodynamic modes
damp out in a characteristic time-/length scale set by the so-
called instanton action in the language of the Borel
resummation. In the infrared limit, only an attractor
solution, which is called hydrodynamic attractor, survives
and asymptotes the standard hydrodynamics obtained as a
low-order truncation of the gradient expansion. The hydro-
dynamic attractor can capture essential features of the
dynamical evolution of systems even with large gradients
and thus provides a possible explanation to the “unreason-
able” effectiveness of hydrodynamics observed in heavy-
ion collisions.
The Bjorken and Gubser flows, which are commonly

used to describe the anisotropic expansion of QGP in
heavy-ion collisions, are popular systems for the study of
hydrodynamic attractors [18,22,24–28,36–46]. Properties
of hydrodynamic attractors change depending on the flow
profile. For example, the Bjorken and Gubser flows have
different basins of attraction due to the difference in the
dimension of the phase space [27]. To deepen our under-
standing of hydrodynamic attractors, it is, therefore,
important to understand possible attractors in other flow
systems. Such a direction may also be important to push the
idea of far-from-equilibrium hydrodynamics not only in the
QGP fluid created in heavy-ion collisions, but also in other
fluid systems appearing in various physical problems.
In this paper, we will, for the first time, study possible

attractor solutions in a system undergoing Hubble expan-
sion, a standard model for isotropic expansion of the
universe in cosmology [1]. The hydrodynamic theory of
Hubble expansion may be applicable for the cosmic
quantum chromodynamics (QCD) fluid in the early uni-
verse [47]. Shortly after the Big Bang, the primordial QGP
at very high temperature and in a far-from-equilibrium state
may arise. The authors of Ref. [48] studied the entropy
production in the primordial QGP based on holographic
theory and found that the simple hydrodynamic gradient
expansion cannot describe the entropy production, meaning
that nonhydrodynamic modes are necessary to be included
via the resurgence procedure. In this paper, we will derive

explicitly the hydrodynamic attractors and nonhydrody-
namic modes of the viscous Hubble fluid system from both
MIS and kinetic theories.
While hydrodynamics describes the system macroscop-

ically, the kinetic theory focuses on the microscopic
process and provides a complete description of drifting,
collision, and streaming processes of particles in the fluid.
With such an advantage, the Boltzmann equation is often
used to describe far-from-equilibrium evolution of fluid
systems. In the context of Hubble flow, with the method of
moments [49], the exact solution to relativistic Boltzmann
equation was obtained [50] (with the covariant treatment)
and the nonlinear dynamics of a massless fluid is studied
with the method of moments [51]. In this paper, instead of
using the method of moments, we will adopt the Chapman-
Enskog (CE) method [52,53] to solve the Boltzmann
equation (with the contravariant treatment) for a Hubble
expansion and show that the CE expansion is divergent but
can be resummed via the resurgence procedure during
which the hydrodynamic attractor emerges.
The paper is organized as follows. In Sec. II, we give a

brief introduction to the Borel resummation technique. In
Sec. III and Sec. IV, we consider a viscous fluid system
under a Hubble expansion and explore its hydrodynamic
attractor solutions with the MIS and kinetic theories,
respectively. Our discussion and summary is given
in Sec. V.

II. REMINDER: BOREL RESUMMATION

In this section, we provide a brief reminder of the Borel
resummation technique, which we will use in the following
sections to obtain the hydrodynamic attractor solutions in a
Hubble-expanding system. For a detailed introduction to
the Borel resummation technique and the mathematical
theory of resurgence, we recommend Refs. [33,54].
Suppose we have a physical observable F ∈ R and

consider its formal perturbative expansion with respect
to some small real positive parameter 0 < ϵ ≪ 1 as

FðϵÞ ≃
X∞
k¼0

Fð0Þ
k ϵk ≕Fð0ÞðϵÞ; ð1Þ

with real-valued series coefficients Fð0Þ
k ’s.1 Note that we

used “≃,” instead of an equality, to denote that the
expansion (1) is formal. When the series coefficients are

factorially divergent at large k, Fð0Þ
k ∼ k! (i.e., Gevrey-1

type divergence [55]), the perturbative expansion Fð0Þ is ill
defined, since it has zero radius of convergence. The Borel
resummation is a specific technique to cure this problem,
which relates the ill-defined perturbative expansion Fð0Þ to

1For simplicity, we assume that the series expansion (1) does
not start with negative or fractional powers of ϵ because such a
case is not relevant in our problem as we will see later.
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some well-defined function that includes nonperturbative
information.
To carry out the Borel resummation, we introduce the

Borel transform of the perturbative expansion Fð0Þ as

B½Fð0Þ�ðsÞ ≔
X∞
k¼0

Fð0Þ
k

Γðkþ 1Þ s
k: ð2Þ

The Borel transform B½Fð0Þ� is convergent around s ∼ 0 and
can be analytically continued to the complex Borel plane (s
plane) from s ¼ 0 until it meets singularities such as poles
and branch cuts. It is typical that the Borel transform
B½Fð0Þ� has singularities on the real axis, which contain
nonperturbative information of the original observable F as
we will see later.
The Borel resummation is defined as the Laplace trans-

form of the Borel transform B½Fð0Þ�,

S½Fð0Þ�ðϵÞ ≔
Z

∞

0

ds
ϵ
e−s=ϵB½Fð0Þ�ðsÞ; ð3Þ

where we assume for the moment that the Borel transform
B½Fð0Þ� does not have any singularities on the positive real
axis. In such a case, the formal perturbative series Fð0Þ is
said to be Borel summable, and the Borel resummation (3)
gives a unique and well-defined function whose asymptotic
expansion around ϵ ∼ 0 is given by Fð0Þ. Note that the Borel
resummation recovers the original series when Fð0Þ is a
well-defined series having a finite radius of convergence
[for which case, the Laplace transform can be regarded as
an inverse operation of the Borel transform (2)].
Typically, the Borel transform B½Fð0Þ�ðsÞ has singular-

ities on the positive real axis, for which Fð0Þ is non-Borel
summable along the direction arg s ¼ 0. These singularities
render the naive Borel resummation (3) ill defined. To make
it well defined, one has to modify the integration contour to
avoid the singularities. We denote the contour turning
above (below) the real axis as the þð−Þ-contour, and
correspondingly the Laplace transform as

S�½Fð0Þ�ðϵÞ ≔
Z

∞�i0þ

0

ds
ϵ
e−s=ϵB½Fð0Þ�ðsÞ: ð4Þ

The two Borel resummations S�½Fð0Þ� (sometimes called
lateral Borel resummations) yield different results depend-
ing on the choice ofþ- and − contours due to contributions
from the singularities. The difference is purely imaginary
and is nonperturbative in terms of the expansion parameter
ϵ. For instance, if the Borel transform B½Fð0Þ� has a simple
pole on the positive real axis s ¼ s0 > 0, its contribution to
S�½Fð0Þ�ðϵÞ reads ∓ iπe−s0=ϵResB½Fð0Þ�ðs0Þ=ϵ ∈ iR. The
imaginary difference leads to problematic ambiguity for
“predicting” F because we neither have a preferential
choice between the integration contours � nor expect

any imaginary result for F, which is real valued. We note
that it is natural that the imaginary ambiguity is non-
perturbative because the original perturbative expansion
Fð0Þ does not include any nonperturbative terms and so it
can be inaccurate for them. This observation implies that
we need to systematically add nonperturbative terms to the
perturbative expansion Fð0Þ to resolve the imaginary
ambiguity. The trans-series ansatz introduced below is a
convenient way to achieve this aim.
A trans-series F̃ is an augmented perturbative series

with nonperturbative factors e−nA=ϵ included. Its general
form2 is

FðϵÞ ≃
X∞
n¼0

σn

ϵn
e−nA=ϵFðnÞðϵÞ≕ F̃ðϵ;A; σÞ: ð5Þ

The quantities A ∈ R is the so-called instanton action,
named after an analogy with the instanton calculus in
quantum mechanics [57], and σ ∈ C is a trans-series
parameter. A and σ can be fixed uniquely by requiring
that the lateral Borel resummations (4) are real valued and
free from the imaginary ambiguity and by initial/boundary
conditions for the observable F, as we explain below. FðnÞ’s
are formal perturbative expansions on top of the nontrivial
instanton backgrounds e−nA=ϵ and are parametrized in the
same manner as Fð0Þ as

FðnÞðϵÞ ≔
X∞
k¼0

FðnÞ
k ϵk: ð6Þ

With the trans-series ansatz (5), one can systematically
cancel the aforementioned imaginary ambiguity by suc-
cessively taking into account the instanton contributions
and construct a resummation scheme to obtain an unam-
biguous real-valued function for the original physical
observable F. We begin with taking into account the
one-instanton sector only and compute its lateral Borel
resummations,

S�½Fð0Þ þ σϵ−1e−A=ϵFð1Þ�
¼ ReS�½Fð0Þ� þ iImS�½Fð0Þ� þ σϵ−1e−A=ϵS�½Fð1Þ�: ð7Þ

The second term corresponds to the imaginary ambiguity.
One can wisely choose A and σ in such a way that the third
term cancels with the imaginary ambiguity and that the
lateral Borel resummations become real valued. Let us
write such A and σ as

A ¼ Ā; Imσ ¼ �σ̄I: ð8Þ

2In general, a trans-series can include logarithmic factors as
well [56]. For our purpose, such factors are not essential, so we
omit them for simplicity.
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Note that Reσ cannot be fixed by the above cancellation
and reality conditions; it is fixed by other conditions, i.e.,
initial/boundary conditions. One can uniquely fix the
values of Ā; σ̄I by examining the singularity structure of
the Borel transform B½Fð0Þ�. For example, let us consider a
Borel transform B½Fð0Þ� having a simple pole on the
positive real axis s ¼ s0 > 0, whose imaginary ambiguity
reads ImS�½Fð0Þ� ¼∓ πe−s0=ϵResB½Fð0Þ�ðs0Þ=ϵ. One can
cancel this imaginary ambiguity and make the Borel
resummations (7) real valued if and only if one identifies
Ā ¼ s0 and σ̄I ¼ πResB½Fð0Þ�ðs0Þ=ReS�½Fð1Þ�. If the third
term S�½Fð1Þ� is Borel summable, then the imaginary
ambiguity is completely removed just by taking into
account the one-instanton sector as above. In general,
however, the third term can be non-Borel summable, giving
rise to another imaginary ambiguity of the order of
Oðe−2Ā=ϵÞ. Such a higher-order ambiguity can be canceled
out precisely by including the n ¼ 2 instanton sector with
the same Ā and σ̄I , but it can again induce another
imaginary ambiguity of the order of Oðe−3Ā=ϵÞ. In general,
this loop continues indefinitely, but one can cancel out all
the imaginary ambiguities by successively incorporating all
the multi-instanton sectors, with the same Ā and σ̄I
determined in the one-instanton sector. This is because
multi-instanton sectors in the trans-series are connected
with one another, which is the main prediction of the
resurgence theory [33]. In this way, one can obtain a unique
real-valued function via the following median resummation
Smed defined by

Smed½F̃�≔S�½F̃ðϵ;Ā;Reσ∓ iσ̄IÞ�

¼S−½F̃ðϵ;Ā;Reσþ iσ̄IÞ�þSþ½F̃ðϵ;Ā;Reσ− iσ̄IÞ�
2

¼Re
S−½Fð0Þ�þSþ½Fð0Þ�

2
þOðe−Ā=ϵÞ: ð9Þ

The Oðe−Ā=ϵÞ correction is absent for Borel transforms
having only isolated poles on the real axis, for which case
the median resummation Smed exactly reduces to the
average of the two lateral Borel resummations (or taking
the Cauchy principle value). Note that Smed ¼ S if there are
no singularities on the real axis.
Having explained the basics of the Borel resummation

technique, we introduce several terminologies of hydro-
dynamics in terms of the Borel resummation. In hydro-
dynamics, an observable F is a bulk quantity such as energy
density and pressure, and the small parameter ϵ is identified
with gradient (e.g., in kinetic description, ϵ ¼ Kn with Kn
being the Knudsen number defined as the ratio of the
typical mean-free path of microscopic processes to the
typical macroscopic length scale over which bulk quantities
vary). Hydrodynamics is conventionally defined as a low-
order truncation of the gradient expansion near equilibrium,

where all the nonperturbative effects have been omitted [6].

Namely, Fð0Þ
0 corresponds to ideal hydrodynamics, gov-

erned by the Euler equation, and
P

κ
k¼0 F

ð0Þ
k (κ ≥ 1)

corresponds to the κth-order viscous hydrodynamics
(e.g., κ ¼ 1 is for Navier-Stokes hydrodynamics). The
(median) Borel resummation Smed½F̃� contains all the
kth-order gradients as well as nonperturbative effects
that cannot be captured within the naive perturbative
expansion without instantons. The nonperturbative effects
are included in nonzero n-instanton sectors of the
Borel resummation, i.e., the second term of Smed½F̃� ¼
Smed½Fð0Þ� þP∞

n¼1 σ
nϵ−ne−nA=ϵSmed½FðnÞ�, which we call

the nth-order nonhydrodynamic modes.3 The nonhydrody-
namic modes decay with typical time-/length scale set by
the instanton action A (times the number of instantons n). In
the long-wavelength/low-frequency limit, therefore, only
the first term Smed½Fð0Þ� survives and asymptotes the low-

order hydrodynamics such as Fð0Þ
0 and Fð0Þ

1 , and hence we
call Smed½Fð0Þ� the hydrodynamic attractor.4

III. HYDRODYNAMIC ANALYSIS

A. MIS theory under a Hubble expansion

We consider a Hubble expansion, i.e., a spatially
homogeneous and isotropic expansion in three dimensions.
The metric reads

ds2 ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ; ð10Þ

where aðtÞ is a dimensionless scale factor, controlling the
speed of the expansion, and we assumed for simplicity that
the curvature parameter is vanishing. We also assume that
the scale factor a has the following power-type dependence
on t, rather than being determined by the Einstein equation:

aðtÞ ¼ ðt=tinÞα; ð11Þ

with some initialization time tin. That is to say, our
expansion is manually controlled, and energy is continu-
ously injected into or extracted from the system. An
advantage of our assumption (11) is that the Borel
resummation can be carried out exactly and that one can

3“Nonhydrodynamic modes” and “transient modes” are sim-
ilar concepts in the sense that both describe the transient
dynamics towards an equilibrium. Strictly speaking, however,
they are not identical. Transient modes are usually defined as
(small) deviations from low-order hydrodynamics within the
linear response theory. In contrast, nonhydrodynamic modes are
defined as deviations (with arbitrary size) from a hydrodynamic
attractor.

4There exist two types of attractors, forward and pullback
attractors, which are attractive at late and early times, respec-
tively. In the present paper, we are interested in forward attractors.
For recent studies on pullback attractors in hydrodynamics, see
Refs. [39,58].
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obtain closed expressions for hydrodynamic attractor
solutions in the MIS theory as well as the kinetic theory
discussed in the next section. This situation is in contrast to
many of the previous studies on hydrodynamics and
resurgence, where the Borel resummation has been carried
out only approximately using, e.g., the Borel-Padé method.
We note that the power dependence of the scale factor a has
a close relation to cosmology. In fact, the Friedmann
equation for a flat universe of a single ingredient always
yields a scale factor a in the power-law type. In the
following, we will take the value of the exponent α in
Eq. (11) to be 2=3, which is inspired by the scale factor in a
matter-dominated universe [59]. Moreover, the manually
controlled expansion may be realized in cold atomic
systems where the expansion rate can be controlled by
tuning the trapping potential. In this case, the nonhydro-
dynamic modes may appear during the dynamical expan-
sion of the system [60,61].
We consider a viscous fluid whose dynamics is governed

by the MIS theory [11,12]. The MIS theory consists of the
energy-momentum conservation equation and a relaxation-
type equation for bulk stress. Unlike the NS theory,
the equations in the MIS theory restore the relativistic
causality and stability and fluid variables relax to the NS
results in the late-time limit. In the local rest frame of a
fluid under the Hubble expansion (10), the MIS equations
read

_Eþ 3
α

t
ðPþ Eþ ΠÞ ¼ 0; ð12aÞ

τΠ _Πþ Π ¼ −3ζ
α

t
; ð12bÞ

where the dot denotes the time derivative and we used
_a=a ¼ α=t for the manual expansion (11). The shear
viscous corrections are vanishing because of the spatial
isotropy of the system. E;P;Π; ζ, and τΠ are energy
density, pressure, bulk stress, bulk viscosity, and relaxation
time, respectively. Equations (12a) and (12b) form a closed
set when an equation of state P ¼ PðEÞ is specified. In this
paper, we use

P ¼ c2sE; ð13Þ

with cs being the speed of sound. We treat the transport
coefficients ζ; τΠ and the speed of sound cs as constants in
the following calculations.

B. Hydrodynamic attractor

To get a hydrodynamic attractor solution in the viscous
system under the manual Hubble expansion, we first
demonstrate how factorial divergences appear in the naive
perturbative expansion without instanton corrections of the
bulk stress Πð0Þ and the energy density Eð0Þ. The relaxation
time τΠ is the typical time for the damping of the bulk stress

towards the NS result. The time derivative term in Eq. (12b)
describes the deviation of the bulk stress from the corre-
sponding NS result. Therefore, the bulk stress keeps away
from the NS result for a longer time with larger τΠ, so we
treat the ratio τΠ=t as a perturbative parameter (which will
be simply called “gradient”). In this way, we will expand
hydrodynamic variables around the NS theory.5 To make
the perturbative expansion more tractable, we introduce a
dimensionless bookkeeping parameter ϵ, which will be
taken to be unity after the whole calculation is completed,
to the original Eq. (12b) as

ϵτΠ _Πþ Π ¼ −3ζ
α

t
: ð14Þ

We expand the bulk stress Πð0Þ and the energy density
Eð0Þ in terms of the bookkeeping parameter ϵ as

Eð0Þðt; ϵÞ ≔
X∞
k¼0

Eð0Þ
k ðtÞϵk; ð15aÞ

Πð0Þðt; ϵÞ ≔
X∞
k¼0

Πð0Þ
k ðtÞϵk: ð15bÞ

Substituting Eqs. (15) into Eqs. (12), we find

Πð0Þ
k ¼ −3ζ

α

t
Γðkþ 1Þ

�
τΠ
t

�
k
; ð16aÞ

Eð0Þ
k ¼ −3ζ

α

t
3αΓðkþ 1Þ
kþ 1 −Q

�
τΠ
t

�
k
; ð16bÞ

where k ≥ 0 and

Q ≔ 3αðc2s þ 1Þ: ð17Þ

We assume 1 −Q < 0 [which in turn sets a lower limit on
the expansion rate α as α > ð3ðc2s þ 1ÞÞ−1], so that the
energy density Eð0Þ is positive on the first order.6 It is
evident that the coefficients in the perturbative solution (16)
diverge factorially.
Let us apply the Borel resummation to the perturbative

solution (16) to obtain a hydrodynamic attractor. We
first look into the bulk stress Πð0Þ, whose Borel transform
reads

5One can adopt an alternative assignment to expand around the
ideal fluid hydrodynamics by treating both τΠ and ζ as pertur-
bation, but the results only differ by one order of ϵ.

6When Eq. (12a) is considered as an inhomogeneous differ-
ential equation for E, E ¼ const × t−Q is its complementary
solution. This part is irrelevant to the perturbation program, and
as we will see in Sec. III B, it will show up in the first
nonhydrodynamic mode after resummation.
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B½Πð0Þ�ðsÞ ¼ −3ζ
α

t
1

1 − s τΠ
t

: ð18Þ

The Borel transform of Πð0Þ has a simple pole at s ¼ t=τΠ
on the real axis, and it gives rise to a nonperturbative
imaginary ambiguity through the lateral Borel resummation
(4) as

ðSþ − S−Þ½Πð0Þ� ¼ −6πiζ
α

t
t
τΠ

e−
t
τΠ ; ð19Þ

where and hereafter we take ϵ ¼ 1 and suppress ϵ unless it
is needed. Note that there are no higher-order imaginary
ambiguities [i.e., no higher-order instanton effects
Oðe−nt=τΠÞ; n ≥ 2], implying the absence of nth-order
nonhydrodynamic modes with n ≥ 2. This point will be
discussed in more detail in Sec. III D. One can remove the
imaginary ambiguity by taking the median resummation, as
we have explained in Sec. II, and obtain a hydrodynamic
attractor solution for the bulk stress Π as

Smed½Πð0Þ� ¼ −3ζ
α

t
t
τΠ

e−
t
τΠEi

�
t
τΠ

�
; ð20Þ

where Ei denotes the exponential integral function. The
attractor solution (20) contains all-order gradients ðτΠ=tÞk
and behaves in the limit of small gradient τΠ → 0 (or late-
times t → ∞) as

Smed½Πð0Þ� ¼ −3ζ
α

t

�
1þ τΠ

t
þ 2

�
τΠ
t

�
2

þO
��

τΠ
t

�
3
��

;

ð21Þ

which is in full agreement with the perturbative solution
(16a), i.e., the hydrodynamic attractor (20) reduces to the
standard low-order hydrodynamics at late times. Note that
at early times the hydrodynamic attractor (20) is logarithmi-
cally divergent as

Smed½Πð0Þ� ¼ −3ζ
α

τΠ

�
ln

t
τΠ

þ γE þO
�

t
τΠ

��
; ð22Þ

where γE ¼ 0.57721… is the Euler constant. We also note
that the hydrodynamic attractor (20) is a solution to theMIS
equation (12) with a special initial condition. General
solutions for arbitrary initial conditions can be constructed
with adding nonhydrodynamic modes that we will derive in
Sec. III D.
Next, we turn to resum the energy density Eð0Þ. The

Borel transform is given in terms of a hypergeometric
function 2F1 as

B½Eð0Þ�ðsÞ ¼ −3ζ
α

t
3α

1 −Q 2F1

�
1 −Q; 1

2 −Q
;
sτΠ
t

�
; ð23Þ

which has a branch cut extending from s ¼ t=τΠ to the
positive infinity. It leads to a nonperturbative imaginary
ambiguity,

ðSþ − S−Þ½Eð0Þ�¼ −18απiζ
α

t

�
t
τΠ

�
1−Q

Γ
�
Q;

t
τΠ

�

¼ −18απiζ
α

t
e−

t
τΠ

�
1þO

�
τΠ
t

��
;

ð24Þ

where Γðx; tÞ is the incomplete Gamma function. Note that,
similar to the bulk stress (19), we have no instanton
contributions of the order Oðe−2t=τΠÞ to the energy density
E. With the median resummation, one can kill the imagi-
nary ambiguity and obtain a hydrodynamic attractor
solution for the energy density E,

Smed½Eð0Þ� ¼ −3ζ
α

t
3πα

sinðπQÞ
t
τΠ

�
G2;1

2;3

�
t
τΠ

���� 0; 1 −Q

0; 0;−Q

�

− cosðπQÞ
�

t
τΠ

�
−Q

Γ
�
Q;

t
τΠ

��
: ð25Þ

where G is Meijer’s G function. One can confirm that the
attractor solution (25) correctly asymptotes the standard low-
order hydrodynamics, or the perturbative solution (16b), at
late times as

Smed½Eð0Þ� ¼ −3ζ
α

t

�
3α

1 −Q
þ 3α

2 −Q
τΠ
t

þ 6α

3 −Q

�
τΠ
t

�
2

þO
��

τΠ
t

�
3
��

: ð26Þ

Note that, similarly to the bulk stress (20), the attractor
solution (25) is a special solution to theMIS equation (12) and
one can construct general solutions by adding nonhydrody-
namic modes that we will derive in Sec. III D.
Figure 1 shows the hydrodynamic attractor solutions for

the bulk stress (20) and the energy density (25).7 As a
comparison, we also plotted the perturbative solutions (16),
i.e., the low-order hydrodynamics, and numerical solutions
of the MIS theory (12) for a fixed value of Ein but various
initial bulk stress Πin. As is shown in Fig. 1, the numerical
solutions with different initial conditions universally con-
verge to the hydrodynamic attractor solutions well before
the low-order hydrodynamics’work at late times, where the
gradient becomes small. Such a convergent behavior
appears because the information of the initial conditions

7One may express the hydrodynamic attractor solutions for the
bulk stress (20) and the energy density (25) as a locus in the two-
dimensional phase space, in the same manner as the Bjorken flow
[58]. It is interesting to investigate the hydrodynamic attractor
solutions from a phase-space picture point of view. This is,
however, beyond the scope of this work.
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is basically taken into account by nonhydrodynamic
modes, which we discuss in the subsequent subsection.
The nonhydrodynamic modes are short lived and decay
with a typical timescale t ∼ τΠ, after which the dynamical
evolution of the system is universally described by the
hydrodynamic attractor solutions.
We comment that both attractor solutions forΠ and E are

globally attractive. To see this, let us make variations
δΠ; δE around the hydrodynamic attractor solutions (20)
and (25). We remark that δΠ and δE are nonhydrodynamic
by definition, since they are the deviation from the hydro-
dynamic attractor solutions. Noticing that the hydro-
dynamic attractor solutions satisfy the MIS equation (12),
we find

d
dt

δEþ 1

t
ðQδEþ 3αδΠÞ ¼ 0; ð27aÞ

τΠ
d
dt

δΠþ δΠ ¼ 0: ð27bÞ

Imposing the initial conditions

δΠðtinÞ≕ δΠin;

δEðtinÞ≕ δEin;

the solutions read

δΠðtÞ ¼ δΠine
−t−tin

τΠ ; ð28aÞ

δEðtÞ ¼ −3α
�
τΠ
t

�
Q
e
tin
τΠ

�
Γ
�
Q;

tin
τΠ

�
− Γ

�
Q;

t
τΠ

��
δΠin

þ
�
tin
t

�
Q
δEin: ð28bÞ

From Eq. (28), one may observe that E approaches the
attractor solution slowly at a rate of the power law [see
Eq. (39) for how the power dependence emerges via the
Borel resummation], while the deviation in Π decays
exponentially and thus it is rapid. This observation is
consistent with Fig. 1, in which the numerical solutions for
Π converge faster than the ones for E with the same set of
initial values. Note that δE decays faster with increasingQ,
i.e., larger expansion rate α, while the decay speed is
controlled only by τΠ for the bulk stress δΠ. It is worth
stressing that since there are no restrictions on the values of
δΠin and δEin, the attractor solutions we obtained are
globally attractive.

C. Resummed viscosity coefficient

The hydrodynamic attractor solution of the bulk stress
(20) may be reshaped into the form of a Navier-Stokes
constitutive relation [i.e., τΠ → 0 limit of Eq. (12b)] with an
effective viscosity coefficient ζB:

Smed½Πð0Þ�≕ − 3ζB
α

t
: ð29Þ

From the explicit form of the hydrodynamic attractor
solution (20), one finds that the effective viscosity ζB is
given as a function of the gradient strength τΠ=t as

ζB
ζ

¼ t
τΠ

e−
t
τΠEi

�
t
τΠ

�
: ð30Þ

Therefore, ζB includes higher-order gradient effects and
asymptotes the original bare viscosity ζ at late times, where
the gradient becomes small, as

FIG. 1. The hydrodynamic attractor solutions (black lines) for the bulk stress (20) (left panel) and the energy density (25) (right panel)
as functions of time t=τΠ. As a comparison, we also plot numerical solutions to the MIS theory (12) with various initial conditions (gray
lines) and the low-order hydrodynamics (16) of the zeroth (red line), first (blue line), and second order (green line). The parameters are
set as α ¼ 2=3 and c2s ¼ 1=3. The initial conditions for the numerical solutions are set at tin=τΠ ¼ 1 as tinΠðtinÞ=ζ ¼ −7þm and
tinEðtinÞ=ζ ¼ 4 with m ¼ 1; 2;…; 14.
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ζB
ζ

¼ 1þ τΠ
t
þO

��
τΠ
t

�
2
�
: ð31Þ

Figure 2 shows the effective viscosity ζB (30) plotted
against time, or the inverse of the gradient strength t=τΠ. In
the late-time limit or small gradient t=τΠ → ∞, high-order
gradient corrections to the bulk viscosity are strongly
suppressed and only the Navier-Stokes viscosity coefficient
revives, as anticipated in Eq. (31). For intermediate values
of t=τΠ, high-order gradient corrections manifest them-
selves as the enhancement of ζB with a peak reached at
t=τΠ ∼ 3. The extremum of the effective viscosity in this
parameter regime appears also in resummed Baier-
Romatschke-Son-Starinets-Stephanov (rBRSSS) hydrody-
namics [62] under the Bjorken flow [25]. In the early stage
of the expansion when t=τΠ ≲ 1 is small, one can observe
that the effective bulk viscosity is much lowered than the
bare value ζ. This tendency is similar to the effective shear
viscosity of rBRSSS hydrodynamics and the kinetic theory
under the Bjorken flow [25,63,64] and indicates that
dissipative effects may be suppressed under nonequilibrium
situations [65,66]. While the effective bulk viscosity stays
positive in a large regime of gradients, it can be negative at
the very early times t=τΠ < 0.373, where the gradient is
extremely large and hydrodynamic picture may not be
applicable. Negative effective bulk viscosity indicates a
positive modification on pressure and decrease in entropy,
and so energy needs to be injected into the system for
keeping the manual expansion process.

D. Nonhydrodynamic mode

We discuss nonhydrodynamic contributions to E and Π
using the trans-series ansatz. We present exact expressions
for the first nonhydrodynamic modes. We also show the
absence of higher-order nonhydrodynamic modes in our
manual Hubble-expanding system within the language of
the Borel resummation technique, as is anticipated from the
linearity of the first-order differential equation (27) that
perturbations on top of the hydrodynamic attractor solu-
tions obey.

We begin with assuming the trans-series ansatz:

Π̃ðt; ϵ; σÞ ≔
X∞
n¼0

σnϵ−ne−n
t

ϵτΠΠðnÞðt; ϵÞ; ð32aÞ

Ẽðt; ϵ; σÞ ≔
X∞
n¼0

σnϵ−ne−n
t

ϵτΠEðnÞðt; ϵÞ; ð32bÞ

where we have recovered the bookkeeping parameter ϵ for
clarity and identified the instanton action with t=ϵτΠ from
the magnitude of the imaginary ambiguities (19) and (24).
The perturbative expansions around n-instanton back-
ground ΠðnÞ and EðnÞ are defined as

EðnÞðt; ϵÞ ≔
X∞
k¼0

EðnÞ
k ðtÞϵk; ð33aÞ

ΠðnÞðt; ϵÞ ≔
X∞
k¼0

ΠðnÞ
k ðtÞϵk: ð33bÞ

Substituting the trans-series ansatz (32) into the equations
of motion (12), one obtains recursive relations for the

coefficients ΠðnÞ
k and EðnÞ

k as

0 ¼ ð1 − nÞΠðnÞ
0 ; ð34aÞ

0 ¼ ð1 − nÞΠðnÞ
kþ1 þ τΠ _ΠðnÞ

k ; ð34bÞ

and

0 ¼ nEðnÞ
0 ; ð35aÞ

0 ¼ nEðnÞ
kþ1 − τΠ

�
_EðnÞ
k þQ

t
EðnÞ
k þ 3

α

t
ΠðnÞ

k

�
; ð35bÞ

where n ≥ 1 and k ≥ 0.
From Eq. (34), one may observe that all the ΠðnÞ

k ’s have

to vanish except for Πð1Þ
k ’s, i.e., only the first nonhydro-

dynamic mode can contribute to Π. Furthermore, one can
show that

0 ¼ Πð1Þ
k for k ≥ 1; ð36Þ

and only Πð1Þ
0 can be nonvanishing. To see this, we remind

that the bookkeeping parameter ϵ is introduced via the

replacement τΠ → ϵτΠ, so that Π
ð1Þ
k must contain k folds of

τΠ’s. Also, putting aside the bulk viscous constant ζ, which
can enter in Πð1Þ just as an overall factor, we only have two
dimensionful quantities t and τΠ, out of which we can
have only one dimensionless combination τΠ=t. Those

observations imply Πð1Þ
k ¼ CkðτΠ=tÞk, with Ck being some

FIG. 2. The effective viscosity coefficient ζB (30) versus time.
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time-independent constant. On the other hand, the recursive

relation (34b) tells us that 0 ¼ _Πð1Þ
k ¼ −kτΠCkðτΠ=tÞ−k−1.

Therefore, we have Ck ¼ 0 for k ≥ 1, which leads to

Eq. (36). The remaining nonvanishing constant Πð1Þ
0 is

determined by initial/boundary conditions for the bulk
stress Π.
Similarly, we find from Eq. (35) that only Eð1Þ

k can be
nonvanishing and hence only the first nonhydrodynamic

mode can contribute to E. Unlike Πð1Þ
k , Eð1Þ

k has nontrivial k
dependence and gives a factorial divergence. Indeed,
one can explicitly solve the recursive relation (35b) and
find

Eð1Þ ≃ C
X
k¼0

�
−ϵ

τΠ
t

�
k Γðk −QÞ

Γð−QÞ ð1 − δk;0Þ; ð37Þ

with C being an integration constant that is fixed by initial/

boundary conditions, as in the case of Πð1Þ
0 . To make the

formal power series Eð1Þ well defined, we apply the Borel
resummation. The Borel transform reads

B½Eð1Þ� ¼ C
��

1þ s
τΠ
t

�
Q
− 1

�
: ð38Þ

Importantly, the Borel transform B½Eð1Þ� does not possess
any singularities on the positive real axis. Hence, it is Borel
summable and is free from the imaginary ambiguity. The
absence of the imaginary ambiguity is essentially related to
the absence of the higher-order nonhydrodynamic modes;
if it exists, higher-order nonhydrodynamic modes
should exist and vice versa. With the Borel resummation,
one obtains a well-defined function describing the first
nonhydrodynamic contribution to the energy density
S½Eð1Þ� as

S½Eð1Þ� ¼ C

��
τΠ
t

�
Q
e

t
τΠΓ

�
1þQ;

t
τΠ

�
− 1

�
; ð39Þ

where ϵ → 1 is understood.

IV. KINETIC ANALYSIS

We explore how hydrodynamic attractors appear
in kinetic theory and compare them with the MIS
result.
Our starting point is a Boltzmann equation with

relaxation-time approximation in the Hubble spacetime:

� ∂
∂t −

2_a
a
p

∂
∂p

�
fðt; pÞ ¼ fð0Þ0 ðt; pÞ − fðt; pÞ

τR
; ð40Þ

where τR is relaxation time and we assume a massless limit
for simplicity so that single-particle energy p0 equals the

local momentum p0 ¼ pa (with p ≔ jp⃗j).8 f and fð0Þ0 are,
respectively, a single-particle distribution function and its
“equilibrium” form to which f relaxes after the time

evolution.9 We assume that fð0Þ0 takes a Maxwellian form

fð0Þ0 ðt; pÞ ≔ expð−paðtÞ=TðtÞÞ; ð41Þ

where T can be interpreted as a parameter that characterizes
temperature of the system. At this stage, T can be an
arbitrary function of t and its explicit form is fixed by
imposing some matching condition and/or physical require-
ments, as we will do later.
One may obtain a general solution to Eq. (40) using the

method of characteristics. The solution reads

fðt; pÞ ¼ 1

τR

Z
t

tin

dt0e−
t−t0
τR e

− pa2ðtÞ
aðt0ÞTðt0Þ

þ finðpa2ðtÞÞe−
t−tin
τR ; ð42Þ

with finðpÞ ≔ fðtin; pÞ being the initial distribution at
t ¼ tin. One may interpret the general solution of f (42)
as a sum of “a hydrodynamic generator” (first term) and a
source for nonhydrodynamic modes (second term), since
only the second term can contain information of initial
conditions and hydrodynamic attractors appear when the
initial information is lost; similar discussions can be found
in Ref. [67] for the case of the Bjorken flow. Using
Eq. (42), we can evaluate the energy density as the first-
order moment of the distribution function,

EðtÞ ≔
Z

d3p⃗
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffi
−gðtÞ

p
paðtÞfðt; pÞ

¼ 3

π2
1

a4ðtÞ
Z

t

tin

dt0

τR
e−

t−t0
τR a4ðt0ÞT4ðt0Þ

þ 1

a4ðtÞ e
−t−tin

τR Ein; ð43Þ

where
ffiffiffiffiffiffi−gp ¼ a3 is the determinant of the Hubble metric

and Ein is the initial energy density at time t ¼ tin, i.e.,

8The on-shell condition in the Hubble metric is
p2
0 − ðpaÞ2 ¼ m2, so pa is interpreted as the local momentum.
9At f ¼ fð0Þ0 , there are no microscopic collisions [i.e., the

right-hand side of the Boltzmann equation (40) vanishes] and fð0Þ0
is thus called a local-equilibrium distribution. On the other hand,
such fð0Þ0 does not necessarily vanish the left-hand side of
Eq. (40), meaning that the system is not globally equilibrated
due to expansion and that f ¼ fð0Þ0 cannot be a solution except for
the limit τR → 0. Nevertheless, for α < 3=4 in Eq. (11) and TðtÞ
given in Eq. (47), the global equilibrium is reached at t → ∞.
This is actually the situation that we consider in the numerical
calculations.
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Ein ≔
Z

d3p⃗
ð2πÞ3

ffiffiffiffiffiffi
−g

p
paðtÞfðt; pÞ

����
t¼tin

¼ 1

2π2

Z
∞

0

dpp3finðpÞ: ð44Þ

The energy density E is time dependent and is a decreasing
function of t because the spatial volume is increasing. At
late times t → ∞, the second term in Eq. (43) is vanishing
and the integral in the first term may be dominated by
contributions around t0 ∼ t because of the exponential
factor e−ðt−t0Þ=τR. Thus, at the leading order in τR, we get

E ⟶
t→∞ 3

π2
1

a4ðtÞ
Z
t0∼t

dt0

τR
e−

t−t0
τR a4ðtÞT4ðtÞ

∼
3

π2
T4ðtÞ; ð45Þ

which agrees with the contribution from fð0Þ0 ,

Eð0Þ
0 ðtÞ ≔

Z
d3p⃗
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffi
−gðtÞ

p
paðtÞfð0Þ0 ðt; pÞ

¼ 3

π2
T4ðtÞ; ð46Þ

implying that the distribution function f approaches fð0Þ0 at
late times and that the information of the initial condition
fin is lost. Note that the energy density deviates from the T4

dependence (Stefan-Boltzmann law) except for late times

due to the deviation f − fð0Þ0 ≠ 0 and the resulting collision
effects, i.e., the right-hand side of the Boltzmann
equation (40).
We turn to fix the functional form of T by requiring a

matching condition. We first assume an ansatz that T has
the following power-type dependence parametrized by T in
and q:

TðtÞ≕ T in

aqðtÞ ; ð47Þ

as the system cools down according to the power-type
expansion (11). We then fix the parameters T in and q by
matching the late-time behavior of the energy density in our
kinetic description (45) with that in NS hydrodynamics

[Eð0Þ
0 in Eq. (16b)]. We have

T in ¼
���� 3π2α2ζ

ðQ − 1Þtin

����
1=4

; q ¼ 1

4α
: ð48Þ

Note that Q − 1 > 0 [see the discussion below Eq. (17)].
The right-hand side of the Boltzmann equation (40) is

responsible for microscopic collisions between particles
and its strength is controlled by the relaxation time τR. We,
therefore, regard τR (more precisely, gradient defined as the

ratio of τR to t, which is the typical length scale for
macroscopic quantities) as a small parameter and expand
the single-particle distribution f perturbatively with regard

to τR around its “equilibrium” value fð0Þ0 . This expansion is
known as the CE expansion [52,53] and is expressed as

f ≃
X∞
k¼0

�
−ϵτR

� ∂
∂t − 2

_a
a
p

∂
∂p

��
k
fð0Þ0

≕
X∞
k¼0

fð0Þk ϵk

≕ fð0Þ; ð49Þ

where we have introduced a dimensionless variable ϵ as a
bookkeeping parameter and replaced τR → ϵτR, as we did
in Sec. III A. The CE expansion is, however, not convergent
in general [49]. It has been found to be factorially divergent
in many situations [53,68,69], so is in our case as we
see below.
We show that the CE expansion leads to a factorially

divergent series for the energy density in our Hubble-
expanding system and how the Borel resummation can cure
the divergence. To this end, we explicitly evaluate the
perturbative series for the distribution function (49) under
the power-type assumptions for the scale factor a given in
Eq. (11) and temperature T given in Eq. (47). By changing
the variables,

u ≔
pa2ðtÞ
T in

; v ≔
pa1þqðtÞ

T in
; ð50Þ

one can reexpress the series coefficients fð0Þk ’s as

fð0Þk ¼
�
−αð1 − qÞ τR

tin

�
k
u−

k
αð1−qÞ

�
−v1−

1
αð1−qÞ

∂
∂v

�
k
e−v

¼ δk;0 þ
�
τR
tin

�
k
u−

k
αð1−qÞ

X∞
m¼0

v1þmþ k
αð1−qÞ

×
ð−1Þmþ1Γðkþ ðmþ 1Þαð1 − qÞÞ
ðmþ 1Þ!Γððmþ 1Þαð1 − qÞÞ : ð51Þ

It is clear that fð0Þk is factorially divergent at large k. Using
this expression, one may obtain the perturbative series for
the energy density Eð0Þ, which is defined as the first-order
moment of the distribution function fð0Þ in the kinetic
theory as

Eð0ÞðtÞ ≔
Z

d3p⃗
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffi
−gðtÞ

p
paðtÞfð0Þðt; pÞ

≕
X∞
k¼0

Eð0Þ
k ðtÞϵk; ð52Þ
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where the coefficients Eð0Þ
k ’s read

Eð0Þ
k ¼

Z
d3p⃗
ð2πÞ3

ffiffiffiffiffiffi
−g

p
pafð0Þk

¼ 3T4

π2

�
t
τR

�
−k Γðk − 4αð1 − qÞÞ

Γð−4αð1 − qÞÞ : ð53Þ

Thus, the energy density Eð0Þ in the kinetic theory is also
expanded as a factorially divergent series within the CE
method.
One can cure the factorial divergence and obtain a

hydrodynamic attractor with the Borel resummation tech-
nique. The Borel transform of the series (53) reads10

B½Eð0Þ�ðsÞ ¼ 3T4

π2

�
1 − s

τR
t

�
4αð1−qÞ

: ð54Þ

The Borel transform of Eð0Þ has a branch cut on the real axis
originating from s ¼ t=τR to the infinity. The difference
between þ- and − lateral Borel resummations is

ðSþ − S−Þ½Eð0Þ� ¼ 3T4

π2
ð−2iÞ sinð4αð1 − qÞπÞ

× Γð1þ 4αð1 − qÞÞ

×

�
t
τR

�
−4αð1−qÞ

e−t=τR ; ð55Þ

where ϵ ¼ 1 is understood. One can read out from the last
line of Eq. (55) that the perturbative expansion on the one-
instanton backgroundEð1Þ is just a single term, instead of an
infinite sum. This means that the trans-series expansion
terminates at n ¼ 1, and thus there exists the first-order
nonhydrodynamic mode only. With the median resumma-
tion, one can cancel the imaginary ambiguity and obtain a
hydrodynamic attractor solution for the energy density Eð0Þ
in the kinetic theory as

Smed½Eð0Þ� ¼ 3T4

π2
t
τR

e−
t
τR

1þ 4αð1 − qÞ
��

t
τR

�
−1−4αð1−qÞ

× Γð2þ 4αð1 − qÞÞ cos ð4αð1 − qÞπÞ

þ 1F1

�
1þ 4αð1 − qÞ
2þ 4αð1 − qÞ ;

t
τR

��
: ð56Þ

The hydrodynamic attractor solution (56) is globally attrac-
tive, as in the case of theMIS theory. Indeed, the expressions
for the general solution to f (42) and its moment E (43)
imply that variations (with arbitrary size) from
an attractor solution decay exponentially. One can also
confirm that the attractor solution (56) includes the all-
order gradients ðτR=tÞk and behaves in the late-time
limit as

Smed½Eð0Þ� ¼ 3T4

π2

�
1 − 4αð1 − qÞ τR

t

− 4αð1 − qÞð1 − 4αð1 − qÞÞ
�
τR
t

�
2

þO
��

τR
t

�
3
��

; ð57Þ

which is in agreement with the perturbative series for the
energy density (53).
The hydrodynamic attractor solution in the kinetic theory

(56) disagrees with that in the MIS theory (25). As
demonstrated in Fig. 3, the disagreement becomes larger
at early times, where the gradient becomes large and
therefore different microscopic theories give different
results. The two theories coincide with each other only
at the very late times, where we imposed the matching
condition (48). At the analytical level, the late-time
behaviors in both theories are already derived in
Eqs. (26) and (57), which indicate that only the leading-
order terms coincide with each other and that all the other
terms disagree due to nonequilibrium corrections. For
early-time asymptotic behaviors, we find

FIG. 3. A comparison between the hydrodynamic attractor
solutions for the energy density in the MIS (25) (red) and kinetic
(56) (blue) theories. The horizontal axis is scaled with τ ¼ τΠ and
τR for the MIS and kinetic theories, respectively. We choose the
parameters as α ¼ 2=3 and c2s ¼ 1=3.

10While the Borel transform for the manual Hubble expansion
(54) has a single branch cut on the real axis, in general one could
have many branch cuts emanating from the same branch points
(e.g., in a kinetic theory within the relaxation-type approximation
under a Bjorken expansion [70]). If this was the case, the Borel
resummations and the corresponding modes become different
depending on the branch cuts.
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Smed½Eð0Þ�⟶t→0

8>>><
>>>:

3ζ α
t

�
t
τ

�
1−Q

ΓðQÞ cosðQπÞ × 3απ
sinðQπÞ ðMISÞ

3ζ α
t

�
t
τ

�
1−4α

Γð4αÞ cosð4απÞ × 3α
1−Q ðkineticÞ

; ð58Þ

where we used the matching condition (57). Both theories
predict divergent behaviors at t → 0 because Q > 1 and
α > ð3ðc2s þ 1ÞÞ−1 > 0 [see discussions below Eq. (17)].
The exponents are in general distinct and coincide only
when Q ¼ 4α ⇔ c2s ¼ 1=3. Even when Q ¼ 4α, the pre-
factors for the divergences do not agree because of the last
factors in Eq. (58). It is notable that the signs of the
early-time behaviors can be opposite, which is actually
the case for the parameter choice in Fig. 3, because they
are controlled by independent factors, tanðQπÞ and
− cosð4απÞ, for the MIS and kinetic theories, respectively.
Figure 4 shows the hydrodynamic attractor solution in

the kinetic theory (56), in comparisons with the energy
density calculated from the exact solutions to Boltzmann
equation (43) and the low-order truncations of energy
density in Eq. (53). As in the case of the MIS theory
(see Fig. 1), no matter what the initial conditions are, the
exact results approach quickly to the hydrodynamic attrac-
tor well before the low-order results work, with a typical
timescale set by the relaxation time τR. The difference from
the MIS theory is the speed of the convergence, i.e.,
nonhydrodynamics modes decay exponentially in the
kinetic theory [see Eq. (43)]. whereas it is power in
the MIS theory [see Eq. (28b)]. This is a fingerprint of
the relaxation-type collision kernel in the Boltzmann

equation (40), for which the variation δE satisfies a linear
equation no matter how large they are.

V. SUMMARY

We have analytically investigated the hydrodynamic
attractor solutions in both MIS and kinetic theories for a
viscous fluid system undergoing a manual Hubble expan-
sion based on the Borel resummation technique (without
using any approximations such as the Borel-Padé method).
To the best of our knowledge, this is the first study for
hydrodynamic attractors in a Hubble flow.
In the MIS theory (see Sec. III), we have shown that the

gradient expansion (i.e., expansion in terms of τΠ=t with τΠ
being relaxation time) leads to factorially divergent series
for the bulk stress and energy density. By resumming these
divergent series, we have obtained the hydrodynamic
attractor solutions. We have compared the obtained hydro-
dynamic attractors with numerical solutions of the MIS
theory, finding a good agreement well before the low-order
hydrodynamics’ work. By examining the stability proper-
ties of the attractor solutions against initial conditions, we
have shown that the hydrodynamic attractors in the Hubble
flow are globally attractive, which is the same as those in
the Bjorken flow but different from those in the Gubser
flow due to its distinct dimension of the phase space [27].
The disagreements between the hydrodynamic attractors
and the numerical solutions are caused by nonhydro-
dynamic modes, and we have found that only the first-
order nonhydrodynamic mode ∝ e−t=τΠ exists and all the
higher-order contributions ∝ e−nt=τΠ (n ≥ 2) are vanishing.
We have also computed the Borel resummed effective bulk
viscosity from the hydrodynamic attractor solution for the
bulk stress and observed a strong suppression in large
gradient region, similar to that for effective shear viscosity
in the Bjorken flow shown in Ref. [25].
In the kinetic theory (see Sec. IV), by employing a

relaxation-time approximation for the Boltzmann equation,
we have shown that the CE expansion results in factorially
divergent series for the distribution function and the energy
density. Applying the Borel resummation, we have
obtained the hydrodynamic attractor solution for the energy
density in the kinetic theory, which has been compared with
exact solutions to the Boltzmann equation and found a
good agreement well before the low-order truncations of
the CE expansion work. We have shown that the attractor is
globally attractive and that the higher-order nonhydrody-
namic modes n ≥ 2 are absent, which are similar to the MIS
theory. In contrast to the MIS theory, the speed of the
attraction is exponential in the kinetic theory, while that is
power in the MIS theory, due to the relaxation-type linear
collision term for the Boltzmann equation. We have also
found that the early-time behaviors of the two attractors are
quite different because of nonequilibrium corrections
stemming from large gradients.

FIG. 4. The hydrodynamic attractor solution for the energy
density in the kinetic theory (56) (black line), in comparison with
the exact solutions to the Boltzmann equation (43) with various
initial energies Ein (gray lines) and low-order results (53)
(red, blue, and green lines). The parameters are set as α ¼ 2=3
and tin ¼ τR, and the initial energies are set as
tinEin=ζ ¼ 2ðm − 1Þ (m ¼ 1; 2;…; 14).
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As for future work, it is interesting to extend our analysis
to more realistic physical setups. For example, in the
present paper we have focused on the flat Hubble flow
under a manually controlled expansion rate. We have also
assumed that the equation of state takes a simple form and
also the transport coefficients are constants. Those sim-
plifications have enabled us to perform all the calculations
fully analytically, but are not so realistic when considering
to apply to, e.g., actual cosmological problems, where the
expansion rate should be determined self-consistently by
solving the Einstein equation rather than being fixed.
Relaxing those simplifications would affect the hydro-
dynamic attractors and the associated nonhydrodynamic
modes by modifying the structures of the factorial diver-
gences as well as the resulting Borel transform/

resummation, which can be studied, e.g., numerically based
on the Padé-Borel approximation and/or analytically by
considering perturbations around the present results.
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