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In quantum electrodynamics with charged fermions, a background electric field is the source of the chiral
anomaly which creates a chirally imbalanced state of fermions. This chiral state is realized through the
production of entangled pairs of right-moving fermions and left-moving antifermions (or vice versa,
depending on the orientation of the electric field). Here we show that the statistical Gibbs entropy
associated with these pairs is equal to the entropy of entanglement between the right-moving particles and
left-moving antiparticles. We then derive an asymptotic expansion for the entanglement entropy in terms of
the cumulants of the multiplicity distribution of produced particles and explain how to re-sum this
asymptotic expansion. Finally, we study the time dependence of the entanglement entropy in a specific
time-dependent pulsed background electric field, the so-called “Sauter pulse”, and illustrate how our
resummation method works in this specific case. We also find that short pulses (such as the ones created by
high energy collisions) result in an approximately thermal distribution for the produced particles.
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I. INTRODUCTION

The notion of entanglement played a key role in the
development [1] and validation [2] of quantum mechanics.
It also plays a crucial role in the rapidly developing field
of quantum computing, where entangled qubits may provide
an exponential improvement over classical computers, see
e.g., [3].
The precise role played by entanglement in quantum

field theory is, however, still an open question. One of the
first contributions in this direction was made in [4], where
it was shown that the entanglement entropy between a
massless free field inside an imaginary sphere and the
rest of the system (described as a “bath”), reproduces the
famous “area law” of black hole thermodynamics. In a
parallel development, the spatial dependence of the
entanglement entropy in conformal field theories was
established, with its logarithmic dependence on the size of
the subregion [5,6], see [7] for a review. The link between
entanglement, quantum chaos, and thermalization is under
active current investigation, see for example [8–13] and
references therein.

Another question that has recently sparked interest is the
extent to which the renormalization group flow, which
connects high (UV) and low (IR) energies, can be under-
stood in terms of momentum-space entanglement between
the UVand the IR degrees of freedom [14–16]. It also starts
to become clear that the concept of entanglement in
quantum field theory is not only of academic interest but
can have important implications, see e.g., [17–26] where
diverse ideas related to entanglement were put forward in
an attempt to understand thermalization in high energy
heavy-ion collisions.
High energy hadron collisions are accompanied by the

production of copious quark-antiquark pairs. To investigate
the role that quantum entanglement plays in this process,
here we will study the entanglement entropy between
fermions and antifermions produced in strong electric
fields. For simplicity, we deal with 1þ 1 dimensional
electrodynamics; however, our results can be easily
extended to 3þ 1 dimensions as well.
The main two results of this paper are the following.

First, we show that the statistical Gibbs entropy associated
with the created pairs is equal to the entanglement entropy
between right and left movers (we refer to this as “chiral
entanglement”). This result elucidates the microscopic
quantum origin of the statistical entropy of the produced
state. Second, we derive an explicit relation between the
entanglement entropy and the multiplicity distribution of
created particles and show how it can be used in practice to
reconstruct the entanglement entropy from the knowledge
of the (few) cumulants of the multiplicity distribution.
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To this aim, we start in Sec. II by rederiving the results
of [27] and compute the entanglement entropy between
particles in a pair created by a background electric field.
We then compare it to the Gibbs entropy associated with
the system of the created pairs and show them equal. We
then move on to Sec. III and relate the entanglement
entropy to the cumulants of the multiplicity distribution of
produced particles. The asymptotic expansion we find is
the same as the one previously derived in the context of
shot noise in quantum point contacts (“full counting
statistics”) [28]. We also show how to resum this expan-
sion for practical applications. Then, in Sec. IV, we study
the time evolution of the entanglement entropy for a
particular time dependence of the electric pulse (“Sauter
pulse”). We observe that in the case of short pulses, the
asymptotic values are approached in a universal way.
Finally, we show how our resummed expression can be
used in practice to evaluate the entanglement entropy from
the multiplicity distribution of produced particles. In
particular, we show that it provides a substantial improve-
ment over the original asymptotic expansion. We conclude
in Sec. V by summarizing our results and presenting an
outlook.

II. CHIRAL ENTANGLEMENT AND GIBBS
ENTROPY

For the clarity of the argument, we will consider 1þ 1D
massive fermions coupled to a background electric field

S ¼
Z

d2x ˆ̄ψðiγμ∂μ þ A1ðtÞγ1 −mÞψ̂ : ð1Þ

with γμ the Dirac matrices, A1ðtÞ a homogeneous, time-
dependent background gauge field, working in the ðþ;−Þ
signature and with ψ̄ ¼ ψ†γ0 the usual Dirac conjugate.
We emphasize that this choice is out of convenience; the

computations can also be carried for free fermions in a
purely electric background in 3þ 1 dimensions. In this
case, one needs to introduce a transverse momentum pT for
each pair, which then needs to be integrated over; we refer
the interested reader to [29,30] for more information on pair
creation in 3þ 1 dimensions. Throughout this work, we
will be concerned with pair creation, associated entropies,
and thermalization. To tackle these questions, we will
use the method of Bogoliubov transformations [31], see
[32–35] for examples and reviews. It will be particularly
useful here because it will allow us to explicitly construct
and work with a Fock space, giving us a direct way to
compute density matrices and entropies thereof.
At any instant of time t�, the Hamiltonian associated

to (1)

Ht� ¼
Z

dx1 ˆ̄ψðt�;x1Þð−γ1ði∂1þA1ðt�ÞÞþmÞψ̂ðt�;x1Þ ð2Þ

is diagonalized by introducing creation and annihilation
operators ak1;t� ; a

†
k1;t� ; bk1;t� ; b

†
k;t� satisfying the usual anti-

commutation relations

fa†k1;t� ; aq1;t�g ¼ fb†k1;t� ; bq1;t�g ¼ 2πδðk1 − q1Þ ð3Þ

fak1;t� ; bq1;t�g ¼ fa†k1;t� ; bq1;t�g ¼ 0: ð4Þ

Indeed, expanding the field operator as

ψ̂ðt; x1Þ ¼
Z

dk1e−ik1x
1ðχþk1;t� ðtÞak1;t� þ χ−−k1;t� ðtÞb

†
k1;t� Þ

ð5Þ

ˆ̄ψðt;x1Þ¼
Z

dk1eik1x
1ðχ̄þk1;t�ðtÞa

†
k1;t� þ χ̄−−k1;t� ðtÞbk1;t� Þ; ð6Þ

with χ��k1;t� ðtÞ solutions to the Dirac equation for the
momenta modes

ðiγ0∂0 þ γ1ðk1 þ A1ðtÞÞ −mÞχ��k1;t�ðtÞ ¼ 0; ð7Þ

it is easy to see thatHt� is diagonal, provided that the mode
functions at time t�, χ��k1;t� ðt�Þ reduce to the free solutions
u�A1

of the Dirac equation (7) in a time-independent back-
ground A1;

χ��k1;t� ðt�Þ ¼ u�A1ðt�Þðt�;�k1Þ: ð8Þ

For an explicit form of the free spinors u�A1
, see

Appendix A.
The fact that these creation and annihilation operators

diagonalize the Hamiltonian at time t� means that they
define the concept of free particles at t ¼ t�. Conversely,
they also define the notion of the vacuum state at t ¼ t�; it
is the state annihilated jΩt�i by ak1;t� and bk1;t�

ak1;t� jΩt� i ¼ bk1;t� jΩt� i ¼ 0: ð9Þ

In this language, particle creation directly comes from
the fact that the vacuum is not uniquely defined; what is
the vacuum state at some time will correspond to some
excited state at some later time. We will consider sit-
uations with limt→−∞A1ðtÞ ¼ A−∞, namely backgrounds
where the electric field is switched-off at t ¼ −∞, and ask
what is the particle content of this initial vacuum state
jΩ−∞i at time t ¼ t�. To do so, we relate the asymptotic
operators to the ones at time t� using a Bogoliubov
transformation

ak1;t� ¼ αk1;t�ak1;−∞ þ β�k1;t�b
†
−k1;−∞ ð10Þ

b−k1;t� ¼ δk1;t�b−k1;−∞ þ γ�k1;t�a
†
k1;−∞: ð11Þ
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As the anticommutation relations (4) must be satisfied at
all times, we have the following constraints

jαk1;t� j2 þ jβk1;t� j2 ¼ 1; jδk1;t� j2 þ jγk1;t� j2 ¼ 1; ð12Þ

αk1;t�γ
�
k1;t� þ β�k1;t�δk1;t� ¼ 0 ð13Þ

and find that only two out of the four coefficients are
independent. Consistently with the constraints and the fact
that αk1;−∞ ¼ δk1;−∞ ¼ 1; βk1;−∞ ¼ γk1;−∞ ¼ 0, we set

δk1;t� ¼ αk1;t� ; γk1;t� ¼ −βk1;t� : ð14Þ

These coefficients can readily be extracted from the
knowledge of the mode functions χ�k1;−∞. First we plug
the transformations (10)–(11), taking into account the
constraints (14), into (5). Regrouping by operator and
comparing with the field expansion (5) around t� ¼ −∞,
we find

χþk1;t� ðt�Þ ¼ uþA−∞
ðt�; k1Þαk1;t� − u−A−∞

ðt�;−k1Þ†βk1;t� : ð15Þ

We can then use the normalization (A7) of the free spinors
together with their orthonormality relations (A8) to invert
this relation. This allows us the compute the Bogoliubov
coefficients as

αk1;t� ¼ uþ†
A−∞

ðt�; k1Þχþk1;t�ðt�Þ ð16Þ

βk1;t� ¼ −u−†A−∞
ðt�;−k1Þχþk1;t� ðt�Þ: ð17Þ

Note that one can also get the Bogoliubov coefficients by
considering (15) and its derivative with respect to time and
taking linear combination [34]. It is easy to show that both
methods are equivalent on-shell; the one presented here is
more straightforward once the mode functions are known.
The meaning of the Bogoliubov coefficients is clear. In

particular, we have

hΩ−∞ja†k1;t�ak1;t� jΩ−∞i ¼ hΩ−∞jb†−k1;t�b−k1;t� jΩ−∞i
¼ jβk1;t� j2 ð18Þ

and jβk1;t� j2 corresponds to the probability of observing at
time t�, having started out in the vacuum state, a(n) (anti)
particle with momentum ð−Þk.
This interpretation allows us to associate a statistical

Gibbs entropy to the system at time t� by counting
microstates. As we are dealing with fermions, only one
particle per momentum can be excited. Thus

SG ¼
Z

dk1
2π

½ð1 − jβk1;t� j2Þ log ð1 − jβk1;t� j2Þ

þ jβk1;t� j2 log ðjβk1;t� j2Þ�; ð19Þ

as every momentum is either excited or not.
We will now show that the entanglement entropy between

positive and negative frequency modes, or equivalently
between left- and right-moving (anti)fermions, as computed
from first principles, is equal to the Gibbs entropy (19),
elucidating the microscopic origin of this quantity.
The computation of the entanglement entropy was

already essentially presented in [27]. For the sake of clarity
and self-consistency, we also present it here. In terms of
one-particle states, the vacuum reads

jΩ−∞i ¼ jLi ⊗ jRi ð20Þ

where

jLi ¼ ⊗
k1
j0ak1i ð21Þ

jRi ¼ ⊗
q1
j0bq1i ð22Þ

and with the index a resp. b referring to the particle resp.
antiparticle Hilbert’s space. We used the notation ⊗ to
indicate that we are dealing with tensor products.
Conservation of charge, translational invariance, and
time-reversal invariance lead us to express the vacuum
state as a tensor products of pairs j0ak1;−∞; 0b−k1;−∞i with a
spectator state jSpi

jΩ−∞i ¼
�
⊗
k1
j0ak1;−∞; 0b−k1;−∞i

�
⊗ jSpi: ð23Þ

The state jSpi contains all the combinations which cannot
be written as pairs and is defined such that expressions
(20) and (23) are the same. As turning on a homogeneous
background electric field preserves all these symmetries,
this remainder term will not evolve and will not impact the
discussion.
We start from the density matrix associated with the

vacuum state

ρjt� ¼ jΩ−∞ihΩ−∞j ¼
�
⊗
k1
ρk1;−k1 jt�

�
⊗ jSpihSpj ð24Þ

with

ρk1;−k1 jt� ¼ j0ak1;−∞; 0b−k1;−∞ih0ak1;−∞; 0b−k1;−∞j: ð25Þ

The subscript jt� is here to remind us we want to evaluate
these quantities at time t�, namely in the “instantaneous
basis” ak1;t� ; bk1;t� . We also define a reduced density
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matrix by tracing over half of the particles and the
spectator state

ρþjt� ¼ Tr−k1;Spðρjt� Þ ¼ ⊗
k1
ρk1 jt� ð26Þ

with

ρk1 jt� ¼ Tr−k1ðρk1;−k1 jt� Þ: ð27Þ

We want to compute the entanglement entropy associated
to this reduced density matrix

SE ¼ −Trðρþjt� log ðρþjt� ÞÞ ¼
Z

dk1
2π

Sk; ð28Þ

with

Sk ¼ Trðρk1 jt� log ðρk1 jt�ÞÞ: ð29Þ

Our aim now is to compute Sk. To do so, we expand our
state in the instantaneous basis. Conservation of charge
leads us to write

j0ak1;−∞; 0b−k1;−∞i ¼ λ0j0ak1;t� ; 0b−k1;t� i
þ λ1j1ak1;t� ; 1b−k1;t� i; ð30Þ

leading to

ρk;−k ¼ jλ0j2j0ak1;t� ; 0b−k1;t� ih0ak1;t� ; 0b−k1;t� j
þ jλ1j2j1ak1;t� ; 1b−k1;t� ih1ak1;t� ; 1b−k1;t� j
þ λ0λ

�
1j0ak1;t� ; 0b−k1;t� ih1ak1;t� ; 1b−k1;t� j

þ λ�0λ1j1ak1;t� ; 1b−k1;t� ih0ak1;t� ; 0b−k1;t� j ð31Þ

ρk ¼ jλ0j2j0ak1;t�ih0ak1;t� j þ jλ1j2j1ak1;t� ih1ak1;t� j ð32Þ

and

Sk ¼ −ðjλ0j2 log ðjλ0j2ÞÞ þ jλ1j2 log ðjλ1j2ÞÞÞ: ð33Þ

The only missing piece is to relate the λ’s to the Bogoliubov
coefficients. This is done by inverting the transformation
(10)–(11)

ak1;−∞ ¼ α�k1;t�ak1;t� − β�k1;t�b
†
−k1;t� ð34Þ

b−k1;−∞ ¼ α�k1;t�b−k1;t� þ β�k1;t�a
†
k1;t� : ð35Þ

By definition of the vacuum state, we need to have

ak1;−∞j0ak1;−∞; 0b−k1;−∞i¼
!
0 ð36Þ

which implies that, after plugging in Eqs. (30) and (34),

α�k1;t�λ1 ¼ β�k1;t�λ0: ð37Þ

One can check one finds the same condition by imposing

bk1;−∞j0ak1;−∞; 0b−k1;−∞i ¼! 0. We can obtain a second con-
sistency condition using the normalization of the vacuum
state

h0ak1;−∞; 0b−k1;−∞j0ak1;−∞; 0b−k1;−∞i¼
!
1: ð38Þ

Using again the definitions (30) and (34) we find

jλ0j2 þ jλ1j2 ¼ 1 ð39Þ

and together with (37) it implies

jλ0j2 ¼ jαk1;t� j2; jλ1j2 ¼ jβk1;t� j2: ð40Þ

Using equation (33), we obtain

SE ¼ −
Z

dk1
2π

½jαk1;t� j2 logðjαk1;t� j2Þ

þ jβk1;t� j2 logðjβk1;t� j2Þ�: ð41Þ

Note that this expression was already derived in [27].
Comparing this expression with (19), and using

jαk1;t� j2 ¼ 1 − jβk1;t� j2, we find

SG ¼ SE: ð42Þ

We stress again that this result provides a microscopic
interpretation of the thermodynamic entropy associated
with the particles created: it arises from the microscopic
quantum theory as the entropy of entanglement between the
particles in a produced pair. The apparent statistical
behavior is a reflection of the quantum entanglement.
Note also that this relation between the Gibbs entropy
and the entanglement entropy also holds in the case of a
scalar particle, as can be seen from the expression derived
for the latter in [27].

III. RELATION BETWEEN THE ENTANGLEMENT
ENTROPY AND THE MULTIPLICITY

DISTRIBUTION

The fact that the particles emitted in pairs are entangled
must be directly reflected in the multiplicity distribution of
created particles. Here, we will make this link explicit and
directly express the entanglement entropy in terms of the
generating function for the multiplicity distribution of
particles. This relation seems to be rather general as it
was already derived in the context of quantum shot noise
[28]; here we derive it for arbitrary time-dependent pulses.
Let us first regularize our theory by temporarily putting it

on a circle of length R (we will then take the limit R → ∞).
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As a result, the momenta are now quantized pl ¼ 2πl
R . Let us

define Pn to be the probability of creating n fermions. Due
to Fermi’s exclusion principle, it can be written as

Pn ¼
X

α
jIα j¼n

Y
l∈Iα

npl

Y
q∉Iα

ð1 − npq
Þ ð43Þ

with npl
the probability to create a particle of momentum pl

and Iα a set of distinct indices. We use the notation jIαj to
denote the cardinal of Iα, i.e., the number of indices. This
formula is understood as follows: for any combination of n
momenta, we require these n momenta to contain a particle
(first product) and all other momenta to be empty (second
product).
A more concise way to encode this information is

obtained by considering its associated generating function

MðλÞ ¼
X∞
n¼0

Pneiλn: ð44Þ

It is a generating function in the sense that the mth moment
of the distribution of the number of created particles can be
obtained by taking derivatives of logðMðλÞÞ.
By using the explicit definition for the probability of

creating n particles (43), we can rewrite this quantity as
follows

MðλÞ ¼
X∞
n¼0

eiλn
X

α
jIα j¼n

Y
l∈Iα

npl

Y
q∉Iα

ð1 − npq
Þ ð45Þ

¼
Y
j

ð1 − npj
þ eiλnpj

Þ ð46Þ

¼ det ð1 − n̂þ eiλn̂Þ ð47Þ

after having defined

n̂ ¼
X
l

npl
jplihplj ð48Þ

→R→∞

Z
dk1nk1 jk1ihk1j: ð49Þ

Note it is easy to check that (46) can indeed be expanded
into (45). Also, note that (47) can serve as a continuum
definition for MðλÞ. This allows us to remove our regulator
and consider again the infinite volume system.
Now let us see how MðλÞ is related to the entanglement

entropy. The key reason behind this relation is thatMðλÞ, or
rather its logarithm, can be used to generate a spectral
representation of any function of n̂. Indeed, we have the
following formal relations

logðMðλÞÞ¼Tr logð1−ð1−eiλÞn̂Þ ð50Þ

¼ Trðlogðz − n̂Þ − logðzÞÞ ð51Þ

¼Tr

�Z
z

0

dz0
1

z0− n̂
−
Z

z

1

dz0
1

z0
− logðn̂Þ

�
ð52Þ

∂z logðMðλðzÞÞÞ ¼ Tr

�
1

z − n̂
−
1

z

�
ð53Þ

with z ¼ ð1 − eiλÞ−1. As a result, expressions of the type
Trðfðn̂ÞÞ for f some function of n̂ can be represented as

Trðfðn̂Þ−fð0ÞÞ¼Im
1

π

Z
dzfðzÞ∂z logðMðλðz� iϵÞÞÞ

ð54Þ

where the ϵ prescription needs to be chosen appropriately
depending on the actual function.
In our case, the probability of creating a pair with

momentum k1 is given by the Bogoliubov coefficients
nk1 ¼ jβk1;t� j2. As such we can rewrite the entanglement
entropy (41) as

SE ¼ −Trðð1 − n̂Þ logð1 − n̂Þ þ n̂ logðn̂ÞÞ ð55Þ

¼ −Im
1

π

Z
1

0

dz∂z logðMðλðz − iϵÞÞÞ

· ðð1 − zÞ logð1 − zÞ þ z logðzÞÞ: ð56Þ

This formula is already interesting as it quantitatively
shows that the full knowledge of the distribution of
produced particles is enough to infer the entanglement
entropy between the particles in the pairs.
This expression can be further expanded to directly relate

the entanglement entropy to the moments of the distribution
of particles. This is interesting as these are what would
actually be measured in an experiment. As usual, the
moments Cl are obtained from the derivatives of the
logarithm of MðλÞ

log MðλðzÞÞ ¼
X∞
l¼1

ðiλÞl
l!

Cl: ð57Þ

Integrating by part (56), inserting (57) and recalling that

λ ¼ −2
�
π

2
þ i
2
log

�
z

1 − z

��
ð58Þ

we obtain
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S ¼
X∞
l¼1

Cl

l!
ð−2Þl
π

Im
Z

1

0

dz

�
iπ
2
þ 1

2
log

�
z

1 − z

��
l

× log

�
z

1 − z

�
: ð59Þ

Using the change of variable u ¼ 1
2
logð z

1−zÞ and the
integral [36]

Z
∞

0

du
u2l

sinh2ðuÞ ¼ π2ljB2lj ð60Þ

where B2l are the Bernoulli numbers, we obtain

SE ¼
X∞
l¼1

C2l

ð2lÞ! ð2πÞ
2ljB2lj: ð61Þ

As already mentioned, the same expression was derived for
the entanglement entropy produced in quantum shot noise
[28] at quantum point contacts. This is not surprising, as
the main ingredient in the derivation is the existence of a
“full counting statistics” and the fermionic nature of the
particles.
Let us further expand this relation. We use the following

relation for the Bernoulli numbers [37]

B2l ¼
ð−1Þl−12ð2lÞ!

ð2πÞ2l ζð2lÞ ð62Þ

and rewrite

SE ¼ 2
X∞
l¼1

ζð2lÞC2l ð63Þ

with ζðxÞ the Riemann ζ function. This form has the
advantage of emphasizing the asymptotic nature of the
expansion. The ζ function quickly approaches unity as l
grows and the number of contributions to the moments is
factorially growing.
Another advantage of this expression is that it can be

analytically extended to a potentially convergent form. It
can be done as follows. First, write the ζ function as an
absolutely convergent sum for x > 1, ζðxÞ ¼ P∞

n¼1
1
nx and

then formally swap the two summations

SE ¼ 2
X∞
n¼1

X∞
l¼1

C2l

n2l
ð64Þ

¼ 2
X∞
n¼1

fCðnÞ ð65Þ

where the first equality can be interpreted as a new
definition and where we defined fCðxÞ to be the following
asymptotic expansion around x ¼ ∞

fCðxÞ ¼
X∞
l¼1

C2l

x2l
: ð66Þ

Because of the generic factorial growth of its coefficients
C2l, we consider its Borel transform

BfCðpÞ ¼
X∞
l¼1

C2l

ð2lÞ!p
2l−1 ð67Þ

which generically will have a nonzero radius of conver-
gence. The study of this Borel transform will depend on the
specific moments C2l. Assuming it does not possess
singularities along the positive real axis, it can be used
to Borel resum fCðxÞ, see [38] for a review,

fCðxÞ ¼
Z

∞

0

dpe−pxBfCðpÞ: ð68Þ

In case it does, these singularities can be interpreted as
some nonperturbative contributions which can be treated by
standard methods, see [39] for an introduction.
Equations (65) and (68) are more than just formal

manipulations; they can be used to provide an efficient
way of computing the entanglement entropy from the
knowledge of the multiplicity distribution of particles.
This can be achieved for instance by using the Padé-
Borel methods of [40–42]. We exemplify this fact and its
improvement over the bare asymptotic expansion (61) in
the next section, where we compute the entanglement
entropy in a specific pulsed background from the particle
distribution. We stress again that this approach allows
converting a (partial) knowledge of the multiplicity dis-
tribution of particles into an (imperfectly reconstructed)
entanglement entropy in a practical way.

IV. SAUTER PULSE: “ENTANGLEMENT
EQUILIBRATION”

Let us now apply these results to a specific example. We
consider the case of the Sauter pulse

AðtÞ ¼ Eτ tanh

�
t
τ

�
; EðtÞ ¼ E

cosh2ðtτÞ
: ð69Þ

We compute the associated time-dependent Bogoliubov
coefficients in Appendix B.
Let us start by studying the behavior of the entangle-

ment entropy (41) associated with the time-dependent
Bogoliubov coefficients given by equations (B18)–(B19).
We show this quantity in Fig. 1 for different values of the
dimensionless ratio γ ¼ Eτ

m . In all cases, we see that the
entropy equilibrates to an asymptotic value S∞E . Moreover,
as γ becomes smaller, the equilibration happens on a
shorter and shorter timescale and any distinctive feature
gets erased (γ is sometimes referred to as the “adiabaticity
parameter” [43]).
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The asymptotic value for the entropy S∞E can actually be computed from the well known [33,43–45] expressions for the
asymptotic coefficients

jαk1;∞j2 ¼
sinh ðπmτðγ þ 1

2
ðλþ þ λ−ÞÞ sinh ðπmτð−γ þ 1

2
ðλþ þ λ−ÞÞ

sinhðπmτλþÞ sinhðπmτλ−Þ ð70Þ

jβk1;∞j2 ¼
sinh ðπmτðγ − 1

2
ðλþ − λ−ÞÞ sinh ðπmτðγ þ 1

2
ðλþ − λ−ÞÞ

sinhðπmτλþÞ sinhðπmτλ−Þ ð71Þ

with

λ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
k1
m

� γ

�
2

s
ð72Þ

These expressions can also be obtained as the late time
asymptotics of our time-dependent expressions (B18)–
(B19). Given the apparent fast equilibriation to this
asymptotic regime, a legitimate question to ask is how
far from thermality this regime is. To find an answer, we
expand these asymptotic Bogoliubov coefficients for small
γ. Focusing on jβk1;∞j2, which corresponds to the distri-
bution of created particles we find

jβk1;∞j2 ∼γ→0

γ2m2τ2

λ2
1

sinh2ðπmτλÞ ð73Þ

∼

8<
:

E2τ2

m2π2
1

ðm2þk2
1
Þ2 ; mτ ≪ 1

4m2E2τ4

m2þk2
1

e−2πτ
ffiffiffiffiffiffiffiffiffiffi
m2þk2

1

p
; mτ ≳ 1

ð74Þ

with

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
k1
m

�
2

s
ð75Þ

and where we explicitly rewrote all the expressions in terms
of dimensionful parameters in (74). We first expand in the
limit γ ≪ 1, γ ≪ mτ and then consider the two different
cases mτ ≪ 1, mτ ≫ 1. In the former case, we find the
spectrum that decays as 1=ðm2 þ k21Þ2 while in the latter
case the distribution resembles a thermal distribution at
temperature T ¼ 1

2πτ, modulated by a soft gray factor. This
behavior is illustrated in Fig. 2. Note that similar expres-
sions were already discussed in [43] and the appearance of
a Boltzmann suppression for short pulses was discussed in
[17], where references to earlier work on phenomenology
of hadron production by (chromo)electric fields can also be
found.
The momentum distribution (73) is interesting, as it

resembles the transverse momentum spectra measured in
high energy hadron and heavy ion collisions. Of course, our
treatment has been limited to (1þ 1)-dimensional case, but
it is known that for short pulses the momentum distribution
of produced particles is isotropic [17], so the transverse
momentum distributions in this case are also given by (73).
If we model a high energy collision by an electric pulse,
and decompose it in a superposition of Sauter pulses, then
the component with the shortest duration τ would give us a
small number [suppressed by τ2, see (73)] of high trans-
verse momentum particles with a power spectrum
∼1=ðm2 þ k21Þ2. The component with τ ∼ 1=m gives rise
to the thermal-like component with the exponential trans-
verse momentum spectrum. The effective temperature
according to (73) is T ¼ 1

2πτ, in accord with the semi-
classical arguments of [17].
The emergence of an effective thermal behavior is also

manifest in the asymptotic entropy S∞E . We show its
dependence on τ, at fixed E and m in Fig. 3. As we will
want to compare it to the thermal case, we normalize by the
density of produced particle Nprod ¼

R
dk1jβk1;∞j2. It peaks

as τ goes to zero and asymptote to some finite values for
large τ. An intuition behind this behavior is the following.
Very short pulses τ can only probe high frequencies k ∼ 1

τ,

FIG. 1. Entanglement entropy as a function of time, shown for
different values of the dimensionless ratio γ ¼ Eτ

m , where E is the
electric field strength and τ is the duration of the pulse. We
observe that as the pulse is getting shorter, the entropy possesses
less distinct features and the equilibration becomes more effi-
cient, see text for discussion.
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which are very unlikely to be produced. When they are,
in our limit, E ≪ m

τ and such creation of particle is the
result of a large amplitude quantum fluctuation. In such a
fluctuation, the momentum conservation imposes a strong
entanglement of the produced particles. For longer pulses,
the momenta of the particles are correlated through the
electric field, and thus the entanglement entropy per
produced particle decreases at early times, see Fig. 3.
It is instructive to compare the equivalent quantity

obtained from the Boltzmann distribution. In one spatial
dimension, it is computed as

s ¼ pþ ϵ

T
ð76Þ

ϵ ¼ 2

Z
dp
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
e−

ffiffiffiffiffiffiffiffiffi
p2þm2

p
T ð77Þ

p ¼ 2

Z
dp
2π

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e−
ffiffiffiffiffiffiffiffiffi
p2þm2

p
T ð78Þ

n ¼ 2

Z
dp
2π

e−
ffiffiffiffiffiffiffiffiffi
p2þm2

p
T ð79Þ

S
N

¼ s
n

ð80Þ

with s, ϵ, p, n the entropy, energy, pressure and number
density, T the temperature and S, N the total entropy and
number of particles. The ratio of the entropy to the number
of particles is particularly simple in two limits. When
T → ∞, the mass of the particle becomes irrelevant and on
dimensional ground we have s ∼ T, n ∼ T, leading to a
constant ratio S

N. At zero temperature, while pressure goes
to zero, we have ϵ ∼mn so that s

n ∼
m
T and it diverges.

We show this expression for T ¼ 1
2πτ, as suggested by the

exponential factor of equation (74). For small τ, corre-
sponding to large temperatures, the Boltzmann expression
goes to a constant as expected. For finite but small τ, the
entanglement entropy per particle for the Sauter pulse is
larger than the thermal case. As explained above, this can
be understood from the fact that the particles produced by
the electric field in this limit result from large amplitude
vacuum fluctuations. For τ ∼ 1

m, the curves cross; for a range
of τ, the distribution of created particles is almost thermal.
The fact that this happens at τ ∼ 1

m is not surprising as this
corresponds to pulses that probe modes of order k ∼m.
Finally, for yet larger τ, the entanglement entropy becomes
smaller than in the thermal case; the particles created in
pairs are not “maximally random” and thus differ from a
thermal state. To sum up, very short pulses are dominated
by hard modes and create a distribution that is far are far
from thermal. The physics of moderately short pulses is
dominated by a Boltzmann suppression factor at an
effective temperature of 1=ð2πτÞ, leading to an entropy
comparable to the one of the Boltzmann distribution. A
sharper understanding of the extent to which the Sauter
pulse leads to “thermal” states is however still lacking and
is left for further work.

FIG. 3. Entanglement entropy for particles produced by Sauter
pulse and the thermodynamical entropy. Both quantities are
normalized by the number of particles: for the case of the Sauter
pulse, these are the produced particles, and for the thermody-
namical entropy the number of particles is computed from the
Boltzmann distribution at temperature T ¼ 1

2πτ. We fixm ¼ 1 and
E ¼ 1 and plot as a function of γ ¼ mτ=4.

FIG. 2. The momentum spectrum of the produced particles. On the lhs, we show the asymptotic spectrum in the regime of small γ and
small mτ, while on the rhs we keep mτ finite. For illustration purposes, in the latter case, we also show the approximated spectrum
without the polynomial “gray factor”.
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To conclude this section, we want to compute again the
entanglement entropy, but this time only using the moments
C2l of the distribution of created particles. From Eq. (50),
we get

logðMðλÞÞ ¼
Z

dk1 log ð1 − ð1 − eiλÞjβk1t�j2Þ; ð81Þ

and, correspondingly, we can directly compute the
moments from the Bogoliubov coefficients as

Cl ¼
l!
il

∂l

∂λl
Z

dk log ð1 − ð1 − eiλÞjβkj2Þ: ð82Þ

For completeness, we write down the few first coefficients
which contribute to the entropy

C2 ¼ −4
Z

dk1ðjβk1;t� j4 − jβk1;t� j2Þ ð83Þ

C4 ¼ 12

Z
dk1ð−6jβk1;t� j8 þ 12jβk1;t� j6

− 7jβk1;t� j4 þ jβk1;t� j2Þ ð84Þ

C6 ¼ −720
Z

dk1ð120jβk1;t� j12 − 360jβk1;t� j10

þ 390jβk1;t� j8 − 180jβk1;t� j6 þ 31jβk1;t� j4 − jβk1;t� j2Þ:
ð85Þ

As we are performing some numerical evaluation, we
can only evaluate a finite number L of moments. This of
course would also be the case if we were to perform an
experiment, where only a finite number of cumulants can
be measured. Let us start by considering expression (63).
We show again the time-dependence of the entropy for
some given parameters in the left-hand side of Fig. 4, black
line. We also show the results obtained by truncating (63)
after L terms, for L ¼ 1, 2, 3, 4. The asymptotic nature of

this expansion is very clear. The truncations with L ¼ 1, 2,
3 start reproducing the full answer with increased precision
but adding terms beyond L ¼ 3makes the expansion break
down, as already illustrated by the L ¼ 4 truncation. In this
case, it does not even have the correct qualitative features
anymore. Still, it is worth emphasizing that one can get a
relatively good idea of what the entanglement entropy is by
just using the first moments of the particle distribution.
In order to be able to perform better with more moments

and reconstruct the entropy more accurately, we need to
resort to the resummation (65). To perform it in practice, we
apply the Padé-Borel method of [40–42], see also [46,47]
for other concrete examples. It works as follows. First, we
construct a truncated Borel transform

BfLCðpÞ ¼
XL
l¼1

C2l

ð2lÞ!p
2l−1: ð86Þ

With infinitely many terms, the “resummation” is realized
by then computing the Laplace transform of the Borel
transform. With a finite number of terms, nothing would be
achieved if we were to directly apply the Laplace transform.
A way to understand this is that the resummation is
sensitive to the whole analytic structure of the Borel
transform. To perform a resummation with a finite number
of terms, we need to interpolate the truncated Borel
transform with some functions which can capture its global
analytic structure. A practical way of doing this is to use
Padé approximants. One can actually show it is the optimal
way to do it for meromorphic functions [41,42]. This leads
us to define an interpolated Borel transform

PBfLCðpÞ ¼ PadéL;Lþ1ðBfLCðpÞÞ; ð87Þ

where by PadéL;Lþ1 we mean we compute the associated
rational Padé approximant of degree L;Lþ 1

PadéL;Lþ1ðfÞðxÞ ¼
P

L
n¼0 anx

nPLþ1
m¼0 bmx

m
ð88Þ

FIG. 4. Entanglement entropy as a function of time obtained from the moments of the distribution of created particles. On the l.h.s., we
show the entropy obtained from the asymptotic expansion (63) truncated after L terms. On the rhs, we show the results obtained with the
resummed expression (89).
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with the coefficients an and bm uniquely determined by the
requirements that the Taylor expansions of fðxÞ and
PadéL;Lþ1ðfÞðxÞ needs to match around x ¼ 0. A priori,
the degree of the approximant can be taken to be M, N
with M þ N ¼ 2Lþ 1 but with M and N arbitrary. While
sometimes physical arguments can be used to constraint the
choice ofM andN [47], here we setM ¼ L andN ¼ Lþ 1
after some experimentation, realizing that this choice led to
particularly stable extrapolations.
Finally, we compute our numerically resummed expres-

sion as

fLCðxÞ ¼
Z

∞

0

dpe−pxPBfLCðpÞ: ð89Þ

Note that once the approximation fLCðxÞ is computed, the
sum in equation (65) is easy to evaluate.
The results of this resummation are presented on the

right-hand side of Fig. 4. Curves with only one and two
cumulants are not shown, as they do not lead to any useful
results. On the other hand, starting from L ¼ 3, we see
an important improvement with respect to the original
expansion. And crucially, contrary to the original one, this
expansion is convergent; adding higher cumulants only
improves the result. This is best illustrated by looking at
the results for L ¼ 4 and contrasting them with the one
obtained from the asymptotic expansion, on the left-hand
side panel. We strengthen this point by also showing results
with L ¼ 8 to confirm the fact that we can include more
and more cumulants to reconstruct the entanglement
entropy if we use the resummed expression (65).

V. CONCLUSION

In this work, we addressed the question of entanglement
between pair-produced particles in a strong electric field.
We started by deriving the entanglement entropy between
the left- and right-movers (or equivalently between the
positive and negative frequency modes) and showed that it
matches the statistical Gibbs entropy associated with the
created pairs. We then made explicit the link between the
multiplicity distribution of created particles and the entan-
glement entropy by deriving an asymptotic expansion of
the entanglement entropy in terms of the cumulants of this
multiplicity distribution. We also discussed a resummation
of this expression and argued that it provides a practical
method for reconstructing the entropy from the cumulants.
Finally, we studied a concrete example. We computed

the full time-dependent entanglement entropy between left
and right movers in a Sauter-type pulsed electric field. We
then studied its late-time behavior and pointed out that the
resulting spectrum of created particles is strikingly similar
to the transverse momentum distribution observed in high
energy hadron and heavy ion collisions, opening further
directions to investigate. Indeed, similar ideas have inspired
phenomenological model of heavy-ion collision motivated

by the phenomenon of pair-production induced by chromo-
electric fields, see for instance [48–50] for early works
on these so-called “flux-tubes” models. We also studied
the asymptotic expansion of the entanglement entropy in
terms of cumulants. In particular, we implemented the re-
summation proposed above and were able to accurately
reconstruct the entanglement entropy, greatly improving
over the asymptotic expansion.
This work opens up a number of interesting avenues for

future research. For instance, the resemblance of the
momentum spectra of particles produced by the Sauter
pulses to the spectra measured in high energy hadron and
heavy ion collisions and an approximately thermal behav-
ior of multiplicity distributions deserves to be investigated
further. Generalizing our results to interacting theories
would also be of great interest.
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APPENDIX A: PLANE WAVES SPINORS

We use this appendix to make our conventions explicit
and to write down the explicit form we used for the free
spinors. We use the following γ-matrices

γ0¼
�
0 −i
i 0

�
; γ1¼

�
0 i

i 0

�
; γ5¼ γ0γ1: ðA1Þ

We consider the Dirac equation in a constant A1 back-
ground

½iγ0∂0 þ γ1ði∂1 þ AÞ −m�ψ ¼ 0: ðA2Þ

A generic solution is given by

u�A ðt; k1Þ ¼ e∓iω�t∓ik1xu�A ðk1Þ; ðA3Þ

with the following dispersion relation

ω�2 ¼ m2 þ ð�k1 þ AÞ2: ðA4Þ

We take u�A to be

uþA ðk1Þ ¼
1ffiffiffiffiffiffiffiffiffi
2ωþp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ − ðk1 þ A1Þ

p
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ þ k1 þ A1

p �
ðA5Þ
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u−Aðk1Þ ¼
1ffiffiffiffiffiffiffiffiffi
2ω−

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω− − ðk1 − A1Þ
p
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω− þ k1 − A1

p
�
: ðA6Þ

They satisfy the usual identities

u�A ðk1Þ†u�A ðk1Þ ¼ 1 ðA7Þ

u�A ð−k1Þ†u∓A ðk1Þ ¼ 0 ðA8Þ

and can be used to expand the free Dirac field in a constant
background as

ψ̂ðxÞ ¼
Z

dk1
2π

ffiffiffi
2

p e−ik1xðuþA ðk1Þak1 þ u−Að−k1Þb†k1Þ; ðA9Þ

with ak1 ; bk1 free creation/annihilation operators satisfying

fa†k1 ; aq1g ¼ fb†k1 ; bq1g ¼ 2πδðk1 − q1Þ ðA10Þ

fak1 ; bq1g ¼ fak1 ; b†q1g ¼ 0: ðA11Þ

Note that in the free expansion we grouped particles by
energies (ω−ð−k1Þ ¼ ωþðk1Þ) and that the factor which
makes the measure Lorentz invariant is absorbed in the
spinor normalization.

APPENDIX B: SAUTER PULSE, EXPLICIT
FORMULAS

To be able to compute our time-dependent Bogoliubov
coefficients in the background (69), we need the associated
mode functions (7). This problem was originally solved in
[44], and we briefly rederive this solution here. Then, we
extract the associated time-dependent Bogoliubov coeffi-
cients. We focus on the positive frequency solution as it is
the one that is relevant for the Bogoliubov coefficients; the
negative frequency solution is obtained in the same way.
Let us write

χþk1;t� ðtÞ ¼
�
χþ1;t� ðtÞ
χþ2;t� ðtÞ

�
; ðB1Þ

leaving the dependence on k1 of χ
þ
1;t� ðtÞ; χþ2;t� ðtÞ implicit for

conciseness. Then, the Dirac equation (7) in the back-
ground (69) can be rewritten in components as

χ̈þ1;t�ðtÞþ
�
k21þm2− i

E
cosh2ðtτÞ

þEτ tanh
�
t
τ

��
2k1þEτ tanh

�
t
τ

���
χþ1;t� ðtÞ¼0 ðB2Þ

χþ2;t�ðtÞ ¼
−_χþ1;t� ðtÞ þ iðk1 þ Eτ tanhðtτÞÞχþ1;t� ðtÞ

m
: ðB3Þ

The change of variable

y ¼ 1

2

�
tanh

�
t
τ

�
þ 1

�
ðB4Þ

maps this system into

− τ2½m2 þ k21 þ Eð4ið−1þ yÞyþ 2k1τð−1þ 2yÞ
þ Eτ2ð1 − 2yÞ2Þ�χþ1;t� ðyÞ þ 4ð−1þ yÞyð1 − 2yÞχþ0

1;t� ðyÞ
− 4ð−1þ yÞ2y2χþ00

1;t� ðyÞ ¼ 0 ðB5Þ

χþ2;t�ðyÞ¼
iτðk1þEð−1þ2yÞτÞχþ1;t� ðyÞþ2ð−1þyÞyχþ0

1;t�ðyÞ
mτ

ðB6Þ

where χ01;2 indicates differentiation with respect to y. In this
form, this system can be relatively easily solved in terms of
the hypergeometric function 2F1ða; b; c; yÞ. A generic
solution is given by [51]

χþ1;t�ðyÞ ¼ ð1 − yÞiτ2ωoutðy−iτ
2
ωinc1;t� 2F1ða; b; c; yÞ

þy
iτ
2
ωinc2;t� 2F1ða − cþ 1; b − cþ 1; 2 − c; yÞÞ

ðB7Þ
with the following notation

Πin ¼ k1 − Eτ ðB8Þ

Πout ¼ k1 þ Eτ ðB9Þ

ωin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Π2

in

q
ðB10Þ

ωout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Π2

out

q
ðB11Þ

a ¼ iτ

�
Eτ þ 1

2
ðωout − ωinÞ

�
ðB12Þ

b ¼ 1 − iEτ2 þ i
1

2
ðωoutτ − ωinτÞ ðB13Þ

c ¼ 1 − iτωin: ðB14Þ

Note that all the dependence on t�, namely the time at
which the solutions reduce to the free ones in a constant
background, lies in the coefficients c1;t� ; c2;t� . They need to
be fixed by matching the two solutions.
In our case, we are interested in the solutions which

define the vacuum state at asymptotically early times.
Using the fact that 2F1ða; b; c; 0Þ ¼ 1, we compute the
asymptotic of (B7) as

χþ1;t� ðtÞ ∼t→−∞ c1;t�e−itωin þ c2;t�eitω
in
: ðB15Þ
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To match the free spinor solution (A5), we thus need

c1;−∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ − ðk1 þ A1Þ

2ωþ

r
ðB16Þ

c2;−∞ ¼ 0: ðB17Þ

Note that the second component χ2 is easily computed
from (B3).
With the full time-dependent mode function at hand,

we can now compute the time-dependent Bogoliubov
coefficients using relations (16)–(17). After some algebra,
we find

αk1;t� ¼
mð1 − yÞiτωout2 y−

iτωin
2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΠinðΠinþωinÞ

m2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðt�Þ2 þ ωðt�ÞΠðt�Þ

p
�
iðΠðt�Þ þ ωðt�ÞÞ

2m2τ

ab
c
ðð1 − ð1 − 2yÞ2Þ2F1ðaþ 1; bþ 1; cþ 1; yÞÞ

þ
�
1 −

ðΠðt�Þ þ ωðt�ÞÞ
m2

ð−Πðt�Þ þ ðy − 1Þωin − yωoutÞ
�

2F1ða; b; c; yÞ
�

ðB18Þ

βk1;t� ¼ −
mð1 − yÞiτωout2 y−

iτωin
2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΠinðΠinþωinÞ

m2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðt�Þ2 − ωðt�ÞΠðt�Þ

p
�
iðΠðt�Þ − ωðt�ÞÞ

2m2τ

ab
c
ðð1 − ð1 − 2yÞ2Þ2F1ðaþ 1; bþ 1; cþ 1; yÞÞ

þ
�
1 −

ðΠðt�Þ − ωðt�ÞÞ
m2

ð−Πðt�Þ þ ðy − 1Þωin − yωoutÞ
�

2F1ða; b; c; yÞ
�

ðB19Þ

where we introduced the extra notation

Πðt�Þ ¼ k1 þ Aðt�Þ ðB20Þ

ωðt�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Πðt�Þ2

q
: ðB21Þ

Some more algebra shows that these expressions indeed asymptote to (70)–(71) for t → ∞.
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