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The single-top production is an important process at the LHC to test the Standard Model and search for
the new physics beyond the Standard Model. Although the complete next-to-next-to-leading order QCD
correction to the single-top production is crucial, this calculation is still challenging at present. In order to
efficiently reduce the next-to-next-to-leading order single-top amplitude, we improve the auxiliary mass
flow method by introducing the ϵ truncation. For demonstration we choose one typical planar double-box
diagram for the tW production. It is shown that one coefficient of the form factors on its amplitude can be
systematically reduced into the linear combination of 198 scalar integrals.
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I. INTRODUCTION

The top quark is the heaviest elementary particle in the
Standard Model (SM). In 1994, the discovery of the top
quark at the Tevatron [1,2] meant the third generation of
fermions in the SM is complete. Meanwhile the top quark is
the only flavor that can decay before hadronization. This
unique property provides an opportunity to directly mea-
sure the properties of the top quark. According to the
fermion mass law [3], the top quark mass is related to the
Yukawa strength between the top quark and the Higgs
boson field. After the discovery of Higgs boson at the Large
Hadron Collider (LHC), this coupling can be directly
studied by the ATLAS and CMS collaborations [4–6].
Therefore, the top quark also plays an important role in the
study on the electroweak symmetry breaking (EWSB).
At the hadron colliders, the dominant contribution to

the top quark production is the top-pair production via
the strong interaction, such as qq̄ → tt̄ and gg → tt̄. This
process was discovered two decades ago [1,2]. Then the
next largest contribution to the top quark production is the
single-top production via the electroweak interaction,
which was observed in 2009 at the Tevatron [7,8] for
the first time. Compared to the top-pair production, theWtb

vertex is included in the single-top production, and can be
directly used to measure the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element jVtbj without assuming unitarity
[9,10] and the extraction of the top quark mass [11,12]. On
the other hand, the single-top production can be a sensitive
probe to search for the new physics beyond the SM (BSM).
For instance, the single-top production could be sensitive to
the new heavy gauge boson W0 [13–15], the new fermions
[16–18] or the new scalars [19,20]. And it has been found
that the single-top production provides a comfortable
agreement with 2HDMþ α model [21–24] to search for
the dark matter (DM).
At the LHC, there are three major modes for the single-top

production: s-channel, t-channel, and the tW production
channel. The first two channels have been observed at the
Tevatron [7,8]. And only recently the third channel, tW
production channel, was observed at the LHC [25]. Beside
the progress of experiments, the precise theoretical predic-
tions are demanded to match the high accuracy of experi-
ment measurements. And the precise theoretical predictions
can play vital roles in extracting important information from
the experiment data. For all above three channels, the next-
to-leading order QCD corrections have been investigated
[26–37]. For the next-to-next-to-leading order (NNLO)
corrections, many approximate results based on soft gluon
resummation have been obtained [38–46]. The NNLO QCD
corrections to the t channel under structure function approxi-
mation have been calculated in [47]. Also the NNLO
calculations including top-quark leptonic decay under struc-
ture function approximation and narrow width approxima-
tion have developed in recent years [48–51]. And the
next-to-next-to-next-to-leading order soft-gluon corrections
for the tW production has been studied [52].
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In the calculation of the multiloop Feynman diagrams,
the amplitude generally needs to be reduced into linear
combination of the master integrals, which can be further
evaluated analytically or numerically. The first key step of
amplitude reduction is the tensor reduction, which is used
to separate the loop momenta from fermion chains or
polarization vectors. The conventional approaches to the
tensor reduction include the projection method [53–55] and
the Tarasov’s method [56]. However, in some multiscale
processes, these approaches can be too complicated due to
the difficulty of the inverse matrix or the dimension shift.
Beside the conventional approaches, computational alge-
braic based algorithms [57–59] and numerical unitarity
method [60–64] also have been developed in the last
decade. Then, after the tensor reduction, the integration
by part (IBP) identities are usually implemented to reduce
the scalar integrals into the master integrals. In the past
decade, many algorithms and codes have been developed
for the IBP reduction [65–88].
Recently the auxiliary mass flow (AMF) method has been

proposed to reduce the amplitude and the scalar integrals
[89–91]. Also it can be used to numerically evaluate the
master integrals and the phase space [92,93]. In amplitude
reduction, this method can avoid complicated calculations of
the inverse matrix and the dimension shift while the master
integrals could be chosen freely.
In this paper, we introduce the truncation on ϵ to improve

the efficiency of the matching procedure in the AMF
method. With the help of this improvement, we can reduce
one planar double-box diagram for the single-top produc-
tion. Due to the complexity of multiloop multiscale diagram,
we choose the integrals that include irreducible numerators
to construct the set of scalar integrals. And in order to control
the length of the reduction coefficients, we keep the
reduction coefficients up to ϵ4, which is sufficient for the
NNLO corrections. In the next section the main algorithm
will be explained in detail. Then the reduction results will be
shown. Finally the conclusion is made.

II. AMPLITUDE REDUCTION VIA
AUXILIARY MASS FLOW

In general the loop amplitude can be written as

M ¼
Z

DLq
NðfqjgLj¼1; fkegEe¼1ÞQ

n
i¼1 D

νi
i

; ð1Þ

where DLq≡QL
l¼1 ðdDql=ð{πDÞÞ. fkegEe¼1 are E external

momenta and fqjgLj¼1 are L loop momenta. fDigni¼1 are the
denominators of propagators. NðfqjgLj¼1; fkegEe¼1Þ is the
numerator that may contain fermion chains or polarization
vectors. In the AMF method, all the denominators are
modified as [90]

1

Di
≡ 1

P2
i −m2

i
→

1

D̃i
≡ 1

P2
i −m2

i þ {η
; ð2Þ

where {η is the auxiliary mass, Pi ≡Qi þ Ki is the
momentum of the ith propagator. Qi and Ki are the linear
combinations of, respectively, loop momenta and external
momenta. Then we obtain the modified loop amplitude

fMðηÞ ¼
X
μ1…μR
l1…lR

Nμ1…μR;l1…lRðfkegEe¼1ÞeGμ1…μR
l1…lR

; ð3Þ

where

G̃μ1…μR
l1…lR

≡
Z

DLq
qμ1l1…qμRlRQ

n
i¼1½ðQi þ KiÞ2 −m2

i þ {η�νi ð4Þ

is the modified tensor integral. And Nμ1…μR;l1…lR is the
relevant coefficient. At the two-loop level we can define the
modified amplitude explicitly

M̃uvðηÞ≡
X

μ1…μuþv

Nμ1…μuþv;1;…; 1|fflfflffl{zfflfflffl}
u

;2;…; 2|fflfflffl{zfflfflffl}
v

ðfkegEe¼1Þ

× G̃μ1…μuþv

1;…; 1|fflfflffl{zfflfflffl}
u

;2;…; 2|fflfflffl{zfflfflffl}
v

; ð5Þ

which only include one type of the tensor integrals. Then
the two-loop modified amplitude can be written as

M̃ðηÞ ¼
X
u;v

M̃uvðηÞ: ð6Þ

After the Feynman parametrization [94], by using Taylor
series for η → ∞ [90] we can obtain the series representa-
tion of M̃uvðηÞ,

M̃uvðηÞ ¼
X
i

CiuvF i; ð7Þ

where

Ciuv ¼ ηdimðCiuvÞ=2
�Xp0

p¼0

X
j

X
α1 ;…;αt
jαj¼p

ða0pαjðDÞη−psαIðvacÞ;D2;j Þ

þOðη−p0−1Þ
�
: ð8Þ

Here F i is the form factor and Ciuv is the relevant

coefficient. IðvacÞ;D2;j represents the jth two-loop vacuum
bubble master integral. s≡ ðs1;…; stÞ is the tuple of linear
independent kinematic variables fs1;…;stg. sα≡sα11 � ��sαtt
is the monomial, where α ¼ ðα1;…; αtÞ is a t tuple of
non-negative integers. And a0pαj is the coefficient that
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depends only on the space-time dimension D. The explicit
definitions of symbols in Eq. (8) can be found in Ref. [90].
After obtaining the series representation of Ciuv, we can

choose a set of integrals for the reduction. The AMF
method allows one to choose integrals freely. Thus in
complex multiscale process we choose the integrals that
include irreducible numerators to construct the set of
modified scalar integrals. Here we define two-loop modi-
fied scalar integral

Ĩ≡
Z

D2q
ðQE

e¼1

Q
2
i¼1ðke · qiÞρeiÞð

Q
2
l¼1

Q
l
j¼1ðqj · qlÞσjlÞQ

n
i¼1½ðQi þKiÞ2 −m2

i þ {η�νi ;

ð9Þ
where the exponents ρei and σjl are nonnegative integers.
And we can define a tuple β ¼ ðβ1; β2Þ, where

β1 ≡
XE
e¼1

ρe;1 þ σ1;2 þ 2σ1;1 ð10Þ

and

β2 ≡
XE
e¼1

ρe;2 þ σ1;2 þ 2σ2;2: ð11Þ

In order to reduce M̃uvðηÞ, the set of modified scalar
integrals can be chosen as

fĨgβ¼ðu;vÞ: ð12Þ

Hence the set of modified scalar integrals has the same loop
momenta rank and denominator powers with M̃uvðηÞ. We
use Ĩuvk to denote the kth integral in fĨgβ¼ðu;vÞ. For instance,
since the number of independent external momenta is 3, the
reduction of M̃2;0ðηÞ needs seven modified scalar integrals,

Ĩ2;0;1ðηÞ≡
Z

D2q
ðq1 · q1ÞQ

n
i¼1½ðQi þ KiÞ2 −m2

i þ {η�νi ;

Ĩ2;0;2ðηÞ≡
Z

D2q
ðk1 · q1Þ2Q

n
i¼1½ðQi þ KiÞ2 −m2

i þ {η�νi ;

Ĩ2;0;3ðηÞ≡
Z

D2q
ðk1 · q1Þðk2 · q1ÞQ

n
i¼1½ðQi þ KiÞ2 −m2

i þ {η�νi ;

Ĩ2;0;4ðηÞ≡
Z

D2q
ðk2 · q1Þ2Q

n
i¼1½ðQi þ KiÞ2 −m2

i þ {η�νi ;

Ĩ2;0;5ðηÞ≡
Z

D2q
ðk1 · q1Þðk3 · q1ÞQ

n
i¼1½ðQi þ KiÞ2 −m2

i þ {η�νi ;

Ĩ2;0;6ðηÞ≡
Z

D2q
ðk2 · q1Þðk3 · q1ÞQ

n
i¼1½ðQi þ KiÞ2 −m2

i þ {η�νi ;

Ĩ2;0;7ðηÞ≡
Z

D2q
ðk3 · q1Þ2Q

n
i¼1½ðQi þ KiÞ2 −m2

i þ {η�νi : ð13Þ

Then by using Taylor series for η → ∞ we can obtain the
series representation of ĨuvkðηÞ,

Ĩuvk ¼ ηdimðĨuvkÞ=2
�Xp0

p¼0

X
j

X
α1 ;…;αt
jαj¼p

ðakpαjðDÞη−psαIðvacÞ;D2;j Þ

þOðη−p0−1Þ
�
: ð14Þ

As an analog to the procedure in [90], by matching
the form factor coefficient Ciuv and the set of modified
scalar integrals fĨuvkg in the series representation, one can
generate the coefficient matrixMðDÞ, where D ¼ 4 − 2ϵ is
the space-time dimension. Finally the reduction problem
can be transformed into the null space problem of MðDÞ,

MðDÞ ·XðDÞ ¼ 0; ð15Þ

where the coefficient matrixMðDÞ and the null spaceXðDÞ
only depend on D. For the NNLO correction, the coef-
ficient matrix usually can be large and complicated.
Consequently the null space could be difficult to obtain,
and the reduction coefficients can be very long.
To efficiently solve the null space and control the length

of reduction coefficients in the dimension regularization,
first we expand the coefficient matrix MðϵÞ at ϵ → 0,

MðϵÞ ¼ M0 þM1ϵþ � � � þMmϵ
m þOðϵmþ1Þ; ð16Þ

where M0;…;Mn are constant matrices. Similarly the
unknown null space XðϵÞ can also be expanded as

XðϵÞ ¼ X0 þX1ϵþ � � � þXmϵ
m þOðϵmþ1Þ: ð17Þ

Then by substituting Eqs. (16) and (17) into Eq. (15) we
can obtain a linear system of equations

M0 ·X0 ¼ 0;

M0 ·X1 þM1 ·X0 ¼ 0;

M0 ·X2 þM1 ·X1 þM2 ·X0 ¼ 0;

� � �
M0 ·Xm þM1 ·Xm−1 þ � � � þMm ·X0 ¼ 0: ð18Þ

Starting from the ϵ0 order, we assume that the equation

M0 ·X0 ¼ 0 ð19Þ

has r0 solutions. Then we have

M0 ·X
ðr0Þ
0 ¼ 0; ð20Þ

where

REDUCTION OF THE PLANAR DOUBLE-BOX DIAGRAM FOR … PHYS. REV. D 104, 056020 (2021)

056020-3



Xðr0Þ
0 ≡ ðX1

0;X
2
0;…;Xr0

0 Þ: ð21Þ

Since the linear combinations of fX1
0;X

2
0;…;Xr0

0 g are
also the solutions of Eq. (20), the null space equation at
ϵ1 order becomes

ðM1 ·X
ðr0Þ
0 ;M0Þ

 
Cðr0;r1Þ
0

Xðr1Þ
1

!
¼ 0; ð22Þ

where

Xðr1Þ
1 ≡ ðX1

1;X
2
1;…;Xr1

1 Þ ð23Þ

are r1 solutions, and Cðr0;r1Þ
0 is r0 × r1 constant matrix.

Now up to ϵ1, the solutions can be expressed as

Xðr1Þ
0 þXðr1Þ

1 ϵ; ð24Þ

where Xðr1Þ
0 ≡Xðr0Þ

0 · Cðr0;r1Þ
0 .

Suppose that up to ϵp we have the solutions

X
ðrpÞ
0 þX

ðrpÞ
1 ϵþ � � � þX

ðrpÞ
p ϵp: ð25Þ

Then at ϵpþ1 we can have

ðMpþ1 ·X
ðrpÞ
0 þ � � � þM1 ·X

ðrpÞ
p ;M0Þ ·

 
C
ðrp;rpþ1Þ
p

X
ðrpþ1Þ
pþ1

!
¼ 0:

ð26Þ

Then up to the next order ϵpþ1 we can obtain the solution,

X
ðrpþ1Þ
0 þX

ðrpþ1Þ
1 ϵþ � � � þX

ðrpþ1Þ
pþ1 ϵpþ1; ð27Þ

where

X
ðrpþ1Þ
0 ≡X

ðrpÞ
0 · C

ðrp;rpþ1Þ
p ;

� � �
X

ðrpþ1Þ
p ≡X

ðrpÞ
p · C

ðrp;rpþ1Þ
p : ð28Þ

Therefore, by the iteration relations we can obtain the
approximate solutions XapproxðϵÞ,

XapproxðϵÞ ¼ XðrmÞ
0 þXðrmÞ

1 ϵþ � � � þXðrmÞ
m ϵm: ð29Þ

Since we take the truncation on ϵ in MðϵÞ and XðϵÞ, the
equations in Eq. (18) are the parts of the complete linear
system of equations in Eq. (15). Meanwhile the approxi-
mation of the true solutions XðϵÞ must exist within
XapproxðϵÞ. And there could be some redundant solutions
that satisfy Eq. (18) but not satisfy Eq. (15). To check if

there are redundant solutions in XapproxðϵÞ, we can observe
the number of the linear independent solutions in
XapproxðϵÞ. If it is equal to the nullity of MðϵÞ, which
can be obtained by randomly assigning ϵ as some constant
numbers, it means that there is no redundant solution.
Therefore, the XapproxðϵÞ is the approximation of the X,

XapproxðϵÞ ¼ XðϵÞjϵmþ1¼0: ð30Þ

If there are redundant solutions in XapproxðϵÞ, we can use
higher ϵ order expansions to introduce more constraints
to the linear system in Eq. (18). Then we repeat the
above procedure until there are no redundant solutions
in XapproxðϵÞ.
The finite fields are implemented to improve the effi-

ciency in null space calculations of the constant matrices,
and the Chinese remainder theorem is used to reconstruct the
rational numbers. Finally we keep the reduction coefficients
up to ϵ4 since at the two-loop level the maximum divergence
of integrals is ϵ−4. Consequently the null space problem can
be efficiently solved. And the length of reduction coefficients
can be effectively controlled.
After the reduction, M̃uvðηÞ can be reduced to several

modified scalar integrals

M̃uvðηÞ ¼
X
i

X
k

CiuvkĨuvkðηÞF i; ð31Þ

where Ciuvk is the reduction coefficient of relevant ĨuvkðηÞ
and F i for M̃uvðηÞ. Since the set of modified scalar
integrals fĨgβ¼ðu;vÞ and M̃uvðηÞ have same denominator
powers and loop momenta rank, the reduction coefficients
fCiuvkg only depend on the numerators of amplitude and
modified scalar integrals. And the auxiliary mass {η
only exist in the denominators of amplitude and scalar
integrals. Consequently, the reduction coefficients fCiuvkg
are independent of η.
For given form factor F i of amplitude, the set fĨuvkg and

fCiuvkg can be ordered using certain well order relation,
e.g., lexicographical ordering, for ðu; v; kÞ, respectively.
And Ĩp and Cip can be denoted as the pth element in the
corresponding set. Finally the modified amplitude can be
written as

M̃ðηÞ ¼
X
u;v

M̃uvðηÞ ¼
X
i

X
p

CipĨpðηÞF i: ð32Þ

Since the Cip is independent of η, When η → 0, the original
amplitude can be written as

M ¼
X
i

X
p

CipIpF i: ð33Þ

These scalar integrals fIpg can be further reduced into final
master integrals via auxiliary mass flow or other methods.
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III. PLANAR DOUBLE-BOX DIAGRAM IN THE
SINGLE-TOP PRODUCTION

In this section, we implement our improved approach
on one double-box diagram of the tW production process
bðk1Þ þ gðk2Þ → Wðk3Þ þ tðk4Þ. The Feynman diagram
is shown in Fig. 1, which is plotted by LaTeX package
TikZ-Feynman [95].
Its relevant modified amplitude can be written as

M̃ðηÞ ¼
Z

D2q
Nðq1; q2; k1; k2; k3; k4Þ
D̃1D̃2D̃3D̃4D̃5D̃6D̃7

; ð34Þ

where the denominators are

D̃1 ¼ ðq1 − k1Þ2 þ {η;

D̃2 ¼ ðq1 þ k2Þ2 þ {η;

D̃3 ¼ ðk3 − k1 þ q1 þ q2Þ2 þ {η;

D̃4 ¼ ðk3 þ q2Þ2 þ {η;

D̃5 ¼ ðq2 − k4Þ2 þ {η;

D̃6 ¼ q21 þ {η;

D̃7 ¼ q22 −m2
t þ {η: ð35Þ

Here mW is the mass of W boson and mt is the mass of top
quark. And we define

s1 ≡ 2ðk1 · k2Þ;
s2 ≡m2

W − 2ðk1 · k3Þ: ð36Þ

For reader’s convenience we explicitly show the numerator
of this amplitude

Nðq1;q2;k1;k2;k3;k4Þ¼−{g49g210g311εμ5ðk2Þūðk4Þγμ1ð=q2þmtÞ=ε�ðk3ÞPLð=q2þ=k3Þγμ2ð=k1−=q1Þγμ3uðk1Þ
×fðq1−k2Þμ4gμ3μ5 þð2k2þq1Þμ3gμ4μ5 −ðk2þ2q1Þμ5gμ3μ4g
×fð2k4−k2−q1þ2q2Þμ4gμ1μ2 þð2q1þq2þ2k2−k4Þμ1gμ2μ4 þð−q1þq2−k2−k4Þμ2gμ1μ4g: ð37Þ

From this amplitude we can extract 10 linear independent
form factors:

F 1 ¼ ūðk4ÞPL=εðk2Þ=ε�ðk3Þuðk1Þ;
F 2 ¼ ūðk4ÞPL=εðk2Þ=k2uðk1Þðk2 · ε�ðk3ÞÞ;
F 3 ¼ ūðk4ÞPL=ε�ðk3Þ=k2uðk1Þðk3 · εðk2ÞÞ;
F 4 ¼ ūðk4ÞPLuðk1Þðk3 · εðk2ÞÞðk2 · ε�ðk3ÞÞ;
F 5 ¼ ūðk4ÞPLuðk1Þðεðk2Þ · ε�ðk3ÞÞ;
F 6 ¼ ūðk4ÞPR=εðk2Þ=ε�ðk3Þ=k2uðk1Þ;
F 7 ¼ ūðk4ÞPR=εðk2Þuðk1Þðk2 · ε�ðk3ÞÞ;
F 8 ¼ ūðk4ÞPR=ε�ðk3Þuðk1Þðk3 · εðk2ÞÞ;
F 9 ¼ ūðk4ÞPR=k2uðk1Þðk2 · ε�ðk3ÞÞðk3 · εðk2ÞÞ;
F 10 ¼ ūðk4ÞPR=k2uðk1Þðεðk2Þ · ε�ðk3ÞÞ: ð38Þ

In projection method, to finish the tensor reduction of the
amplitude, one needs to calculate the analytical inversion of
the projection matrix, which includes four independent

kinematic variables and space-time dimension D. Since the
symbolic matrix is big and complex, the analytical calcu-
lation of its inversion is quite difficult.
As mentioned in last section, the modified amplitude can

be decomposed into 15 parts

M̃ðηÞ ¼ M̃0;0ðηÞ þ M̃0;1ðηÞ þ M̃1;0ðηÞ þ M̃0;2ðηÞ
þ M̃1;1ðηÞ þ M̃2;0ðηÞ þ M̃0;3ðηÞ þ M̃1;2ðηÞ
þ M̃2;1ðηÞ þ M̃3;0ðηÞ þ M̃1;3ðηÞ þ M̃2;2ðηÞ
þ M̃3;1ðηÞ þ M̃2;3ðηÞ þ M̃3;2ðηÞ: ð39Þ

In this paper we show the reduction results for the
coefficient of F 1. The reductions of the other form factors
can be finished in the same way. And the reduction
difficulty of the other form factors is in the same level
of F 1. For simplicity, we only show the scalar integrals Ip
with nonzero reduction coefficients. Consequently 198
out of 486 scalar integrals are remaining. The reduction
coefficients are kept up to ϵ4. And the length of reduction
coefficients can be effectively controlled. For convenience

FIG. 1. Double-box diagram for the tW production.
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the constant factor {g49g210g
3
11 is factorized out in the results.

For instance,

I198 ≡
Z

D2q
ðk3 · q1Þðq1 · q1Þðq2 · q2Þ
D1D2D3D4D5D6D7

: ð40Þ

By using the in-house package SeRA.jl, the corresponding
reduction coefficient1 is

C1;198 ¼
2s1mtð1þ 5ϵþ 12ϵ2 þ 24ϵ3 þ 48ϵ4Þ
m2

t ðm2
W − s2Þ þ s2ð−m2

W þ s1 þ s2Þ
: ð41Þ

To cross check the coefficients fC1;pg, we use the Tarasov’s
method [56] and IBP reduction to reduce the original
amplitude numerically. Then we also apply the numerical
IBP reduction to fIpg. Finally the two reduction results are
consistent. In IBP reduction procedure we use packages
FIRE [68,69] and LiteRed [75].

IV. CONCLUSION

In this paper, we improve the AMF method by taking the
truncation on ϵ in the matching procedure. And we reduce
one planar double-box diagram for the tW production as
the demonstration. The amplitude can be easily reduced
into 10 form factors. One coefficient of the form factors can
be easily reduced into 198 scalar integrals which include
irreducible numerators. And the length of the reduction
coefficients can be effectively controlled. This approach
can be implemented on some other important processes in
the future, such as the other diagrams in the NNLO tW
production.
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