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We calculate the absorptive part of the photon polarization tensor in a hot magnetized relativistic plasma.
In the derivation, we utilize a Landau-level representation for the fermion Green’s function in a mixed
coordinate-momentum space and obtain a closed-form expression for the one-loop polarization tensor. At
the leading order in the coupling, its absorptive part is determined by particle and antiparticle splitting
processes (e− ↔ e− þ γ and eþ ↔ eþ þ γ, respectively), as well as by particle-antiparticle annihilation
processes (e− þ eþ ↔ γ). The interpretation in terms of quantum transitions between Landau levels is also
given. By making use of the photon polarization tensor, we study the differential photon emission rate in
the quantum limit of magnetized relativistic plasma. At low energies, the photon emission has a prolate
profile with the symmetry axis along the line of the magnetic field. At high energies, on the other hand, the
photon emission has an oblate profile. The underlying reasons for such emission profiles are given in both
regimes. The general result for the photon polarization tensor is also used to calculate the longitudinal and
transverse components of magneto-optical conductivity.
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I. INTRODUCTION

Relativistic plasmas appear in a wide range of high-
energy systems. The archetypal examples include the hot
plasma of the early Universe and the quark-gluon plasma
created in heavy-ion collisions. One also finds various
forms of relativistic plasmas in astrophysics, ranging from
cold dense matter inside compact stars to electromagnetic
plasmas in astrophysics jets powered by black holes. Even
in condensed matter physics, pseudorelativistic electron
plasmas can be realized in Dirac and Weyl semimetals. In
many cases, the corresponding plasmas could be also
strongly magnetized.
The properties of relativistic plasmas in weak magnetic

fields have been studied extensively over the years and are
well understood. On the other hand, the regime of strongly
magnetized relativistic plasma is less explored. One of the
specific long-standing and largely unresolved problems is
photon polarization. Formally, the photon polarization
tensor can be calculated by making use of the well-known
Schwinger’s result for the fermion Green’s function in a
background magnetic field [1]. While this appears to be a
straightforward task conceptually, the calculation of the
relevant Feynman diagrams is plugged with serious tech-
nical difficulties, stemming from an elaborate structure of
the Green’s function. From a physics viewpoint, there are

several reasons for complications. One of them is the
absence of the Lorentz symmetry, which is broken explic-
itly by the background magnetic field. At a nonzero
temperature, the symmetry is further reduced by the
thermal bath effects. Additionally, the quantum states of
charged fermions in a magnetic field are much more
complicated than the simple plane waves. They are clas-
sified by a discrete Landau level index that replaces the two
transverse components of the particle momentum. The
matters are madeworse also because the Landau level states
are highly degenerate.
Before addressing the photon polarization effects in a hot

magnetized plasma, it should be noted that even the case of
a strongly magnetized vacuum is very challenging. The first
calculations of the vacuum polarization in a homogeneous
magnetic field were done in the 1970s [2,3], but their
physical meaning was not always clear because of the
complicated structure. Beyond the weak field case [4,5],
only the limit of an ultrastrong magnetic field, where the
lowest Landau approximation becomes reliable, was under-
stood well [6,7]. More recently, some progress in solving
the problem of QED vacuum in a strong magnetic field
beyond the lowest Landau approximation was reported in
Refs. [8–12], where the combination of analytical and
numerical methods was employed.
In the vacuum, the regime of a quantizing magnetic field

is achieved when the field strength is comparable to the
fermion mass or larger. In the case of quantum electrody-
namics, this means that the magnetic field should be
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comparable to or larger than Bc ≃m2
e=e ≈ 4.414 × 1013 G.

In hot (dense) matter, besides, the Landau energy scale
should be comparable to or exceed the value of temperature
(chemical potential). While such relativistic systems are not
common, sufficiently strong magnetic fields are realized
naturally under certain conditions. One example is the
magnetars that host a strong enough field to turn the
vacuum into a birefringent medium. The corresponding
theoretical prediction stems from the well-known
Heisenberg-Euler effective action [13]. Tentatively, it has
been supported by the observation of thermal emission with
a large degree of polarization coming from the isolated
neutron star RX J1856.5–3754 [14].
Superstrong magnetic fields can also appear in the early

Universe and possibly affect its evolution [15–18].
Moreover, some observable signatures of the primordial
fields can be detected in present-day astronomy [19–24].
Similar conditions, albeit on much smaller spatial scales,
could be also created in ultrarelativistic heavy-ion collisions.
Indeed, such collisions produce not only a hot quark-gluon
plasma but also strong magnetic fields. Theoretical predic-
tions suggest that the strength of the magnetic field in
noncentral heavy-ion collisions could be comparable to
the QCD energy scales, i.e., B≳m2

π=e ≈ 3.1 × 1018 G
[25,26]. The presence of such a strong field is likely to have
numerous observable effects that lead to distinct features in
various multi-particle correlators of charged particles
[27,28].
To make further progress in studies of strongly magnet-

ized plasmas, it is beneficial to have a more detailed
knowledge of the photon polarization effects. Despite
promising attempts reported by several research groups,
however, they remain largely unknown in the regime of
nonzero temperature and chemical potential. At nonzero
temperature, for example, the polarization tensor was
obtained in the lowest Landau level approximation in
Ref. [29] and the weak-field limit in Ref. [30,31]. Some
calculations were also done within the framework of the
Ritus method and the real-time formalism in Refs. [32–34].
Here we report a partial solution to the general problem

in the regime of a strongly magnetized thermal plasma. In
particular, by making use of the Landau level representa-
tion for the fermion Green’s function, we derive a relatively
simple closed-form analytical expression for the absorptive
part of the polarization tensor [35] at nonzero energy and
momentum. It should be emphasized that we consider a
magnetized relativistic plasma in the quantizing limit when
the effects of Landau level quantization play an important
role. This is in contrast to the semiclassical regime that
assumes a weak magnetic field when the quantization
effects play no role. The absorptive part of the polarization
function gets contributions from the following particle-
particle, antiparticle-antiparticle, and particle-antiparticle
processes: (i) e− → e− þ γ, (ii) eþ → eþ þ γ, and
(iii) e− þ eþ → γ. By extending this work in the future,

we hope to obtain also the real part of the polarization
tensor within a similar framework.
In this study, we will determine the photon polarization

function in a magnetized plasma by direct calculation. We
will find that it contains 4 symmetric and 2 antisymmetric
tensor structures. As required by the gauge symmetry, all
tensor structures are transverse with respect to the external
photon momentum. Our results may have direct applica-
tions to several observable effects, including the photon
emission and absorption, optical conductivity, and Landau
damping in strongly magnetized relativistic plasmas. We
expect that the polarization effects in this regime could be
useful also for illuminating the anomalous properties of
chiral plasmas [28].
To demonstrate possible applications of the main result,

we use the absorptive part of the polarization tensor to
calculate the differential photon emission rate in a hot QED
plasma in a strong magnetic field. As we will argue below,
one of the contributions is analogous to the synchrotron
emission in the quantum limit [36], while the other to the
one-photon particle-antiparticle annihilation. This particu-
lar result was applied in Ref. [37] to a study of the hot
quark-gluon plasma, produced in relativistic heavy-ion
collisions. In particular, it was argued that the angular
dependence of the photon emission in a strong magnetic
field can resolve the so-called v2-puzzle in the observed
photon spectra. (For earlier studies, see also Refs. [38–42].)
To further verify the validity of our result, here we also
calculate the optical conductivity of the magnetized hot
QED plasma and compare it with similar results obtained
for Dirac semimetals.
This paper is organized as follows. In Sec. II, we start

from the definition of the one-loop photon polarization
tensor in terms of the fermion Green’s functions in a
magnetic field. In the same section, we also obtain a general
expression for the absorptive part of the polarization tensor.
The photon emission in a magnetized hot QED plasma is
studied in detail in Sec. III. The derivation of the magneto-
optical conductivity and the corresponding numerical
results are presented in Sec. IV. The summary of the main
results and conclusions are given in Sec. V. Some technical
details and calculations are provided in several appendixes
at the end of the paper.

II. POLARIZATION FUNCTION

In a hot magnetized plasma, each charged particle
species (or flavor) affects the photon polarization function.
At leading order in the coupling, the individual contribu-
tions to the polarization are represented by the same one-
loop Feynman diagram in Fig. 1. This implies that the
effects of different particle species are additive in this
approximation. Therefore, without loss of generality, it is
sufficient to analyze a partial contribution of a single
fermion species of mass m and charge q. In the case of
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QED plasma, for example, the values of the corresponding
model parameters are m ¼ 0.511 MeV and q ¼ −e, where
e > 0 is the absolute value of the electron charge. Such a
QED plasma, which is made of equal number densities of
electrons e− and positrons eþ, can be viewed as a default
choice in the analysis below. However, by changing the
values of m and q, the same results will also apply to other
relativistic plasmas made of charged fermions (e.g., the
quark-gluon plasma, where the polarization effects are
determined primarily by the lightest up, down, and perhaps
strange quarks).
Let us briefly comment on the validity of the one-loop

approximation used here. In the context of QED, which is
the main emphasis in the current study, it is an excellent
approximation because the fine structure constant is very
small. Of course, the same approximation is not necessarily
as good in QCD. Nevertheless, as argued in Ref. [37], it
may work with some caveats in the regime of a very strong
magnetic field. Possible ways of improving the approxi-
mation by going beyond the leading order were also
outlined in Ref. [37], but the prospects of real progress
in calculating subleading corrections are not clear at
this point.
Without loss of generality, we will assume that the

magnetic field B points in the þz direction, see Fig. 2. For
the vector potential, we will use the simplest Landau gauge:

A ¼ ð−By; 0; 0Þ, where B is the magnetic field strength. As
is easy to verify, the corresponding field strength tensor
reads Fμν ¼ −ε0μν3B. In such a constant background
field, the fermion Green’s function takes the following
form [28]:

Gðt − t0; r; r0Þ ¼ eiΦðr⊥;r0⊥ÞḠðt − t0; r − r0Þ; ð1Þ

where r ¼ ðx; y; zÞ is the position vector and r⊥ ¼ ðx; yÞ is
its projection on the plane perpendicular to the magnetic
field. The explicit expression for the Schwinger phase is
given by Φðr⊥; r0⊥Þ ¼ −qBðx − x0Þðyþ y0Þ=2. As one can
see, the Schwinger phase is the only part of the Green’s
function that breaks the translation invariance. Note that
this phase does not affect the calculation of the photon
polarization tensor at the leading one-loop order. The same
will not remain true at higher loops, however.
It is convenient to write the translation invariant part of

Green’s function Ḡðt; rÞ in Eq. (1) by using a mixed
coordinate-momentum space representation [28],

Ḡðt; rÞ ¼
Z

dωdpz

ð2πÞ2 e−iωtþipzzḠðω;pz; r⊥Þ; ð2Þ

where the Fourier transform is given as a sum over the
Landau levels, i.e.,

Ḡðω; pz; r⊥Þ ¼ i
e−r

2⊥=ð4l2Þ

2πl2

X∞
n¼0

D̃nðω; pz; r⊥Þ
ω2 − p2

z −m2 − 2njqBj :

ð3Þ

The numerator in the nth Landau level contribution has the
following explicit form:

D̃nðω; pz; r⊥Þ ¼ ðωγ0 − pzγ
3 þmÞ

×

�
PþLn

�
r2⊥
2l2

�
þ P−Ln−1

�
r2⊥
2l2

��

−
i
l2

ðr⊥ · γ⊥ÞL1
n−1

�
r2⊥
2l2

�
; ð4Þ

where Lα
nðzÞ are the generalized Laguerre polynomials

[43], P� ≡ 1
2
ð1� is⊥γ1γ2Þ are the spin projectors, and

l ¼ 1=
ffiffiffiffiffiffiffiffiffijqBjp

is the magnetic length. By definition, s⊥ ¼
signðqBÞ and Lα

−1ðzÞ≡ 0.
By making use of the fermion Green’s function in the

Landau-level representation, it is straightforward to write
down the momentum-space expression for the polarization
function in a magnetized plasma. Within the Matsubara
finite-temperature formalism, the corresponding one-loop
result reads

FIG. 1. The leading-order one-loop Feynman diagram for the
photon polarization tensor in a magnetic field.

FIG. 2. A schematic illustration of the coordinate system used.
The photon momentum and its projection on the plane
perpendicular to the magnetic field are denoted by k and k⊥,
respectively.
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ΠμνðiΩm;kÞ ¼ 4πNfαT
X∞
k¼−∞

Z
dpz

2π

Z
d2r⊥e−ir⊥·k⊥ tr½γμḠðiωk; pz; r⊥ÞγνḠðiωk − iΩm; pz − kz;−r⊥Þ�; ð5Þ

where α ¼ q2=ð4πÞ is the coupling constant, Nf is the number of active fermion flavors in the plasma, and the trace in the
integrand runs over the Dirac indices. As per standard convention, the fermionic and bosonic Matsubara frequencies are
ωk ¼ ð2kþ 1ÞπT and Ωm ¼ 2nπT, respectively. By substituting Green’s function (3) into the definition for Πμν and
performing the Matsubara summation with the help of Eq. (A5) in Appendix A, we derive the following expression for the
polarization tensor:

ΠμνðiΩm;kÞ ¼ −
αNf

πl4

X∞
n;n0¼0

Z
dpz

2π

X
λ¼�1

ðEn;pz
− λEn0;pz−kzÞ½nFðEn;pz

Þ − nFðλEn0;pz−kzÞ�
2λEn;pz

En0;pz−kz ½ðEn;pz
− λEn0;pz−kzÞ2 þ Ω2

m�
X4
i¼1

Iμνi ; ð6Þ

where En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z þ 2njqBj
p

is the fermion energy in
the nth Landau level. Note that, in the last expression, we
also calculated the Dirac traces and integrated over the
transverse spatial coordinates (r⊥) by using the results in
Appendixes B and C. The explicit expressions for functions
Iμνi can be found in Appendix C.
By imposing a suitable regularization for the Landau-level

sum in Eq. (6), in principle, one could use the brute-force
numerical methods to evaluate the (retarded) photon polari-
zation function in a hot magnetized plasma. Moreover, the
partial contributions in the sum have a clear physical
interpretation in terms of quantum transitions between
Landau-level states. In practice, however, the corresponding

calculation is not easy. Additional complications come from
the need to perform the analytic continuation to real values of
photon energy, iΩm → Ωþ iϵ. A partial resolution of the
problem is to extract the real and imaginary parts of the
retarded polarization function and study them separately. As
we will discuss below, the structure of the imaginary part is
much simpler than that of the real one. Thus, in this paper, we
will concentrate primarily on the imaginary part and leave the
real part of the polarization tensor for future studies.
After replacing iΩm → Ωþ iϵ, it is straightforward to

extract the imaginary part of the retarded polarization
tensor. The result reads

Im½Πμν
R ðΩ;kÞ� ¼ αNf

2l4

X∞
n;n0¼0

Z
dpz

2π

X
λ;η¼�1

nFðEn;pz
Þ − nFðλEn0;pz−kzÞ

2ηλEn;pz
En0;pz−kz

X4
i¼1

Iμνi δðEn;pz
− λEn0;pz−kz þ ηΩÞ: ð7Þ

(Strictly speaking, this is the absorptive rather then imagi-
nary part of the polarization tensor [35].) The δ function has
a nonvanishing support when the following energy con-
servation equation

En;pz
− λEn0;pz−kz þ ηΩ ¼ 0 ð8Þ

is satisfied. Therefore, by finding the values of pz that solve
the corresponding equation, the integration over pz can be
performed analytically.
Before proceeding further with the analysis, let us note

that the imaginary part of the polarization tensor in Eq. (7)
is an odd function of the photon frequency Ω. Taking this
into account, we will assume without loss of generality that
Ω > 0 in the rest of the paper. From a physics viewpoint,
the case of Ω > 0 could be associated with the photon
emission processes whileΩ < 0with the photon absorption
processes. In equilibrium, of course, the rates should be the
same as required by the principle of detailed balance.

Depending on the choice of the signs of λ and η, the
energy conservation equation (8) represents one of the three
possible processes involving particle and/or antiparticle
states with the Landau level indices n and n0.
Schematically, the corresponding processes are shown in
Fig. 3. Two of them are the particle and antiparticle splitting
processes, e− → e− þ γ and eþ → eþ þ γ, shown in panels
(a) and (b), respectively. They correspond to transitions
between Landau levels with the energies of the same signs,
as shown schematically in panels (d) and (e), respectively.
Note that these processes represent the quantum version of
the synchrotron radiation. Unlike the quasiclassical
version, the current description in terms of the Landau
level transitions captures all quantum effects of the syn-
chrotron radiation. The latter includes the quantization of
photon energies and the fermion recoil effects due to
photon emission.
The third process type is the particle-antiparticle anni-

hilation, shown diagrammatically in panel (c) of Fig. 3. In
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terms of Landau levels, it corresponds to transitions
between the states with energies of the opposite signs,
shown in panel (f).
By examining the energy conservation equation (8), it is

easy to check that the two splitting processes are described
by setting λ ¼ þ1. The sign of η further specifies whether
the splitting process is e− → e− þ γ (η ¼ −1) or eþ →
eþ þ γ (η ¼ þ1). In these two cases, real solutions for pz
exist only when the following necessary conditions are
satisfied:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − k2z

q
≤ k− and n > n0; ð9Þ

for e− → e− þ γ (λ ¼ þ1, η ¼ −1), and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − k2z

q
≤ k− and n < n0; ð10Þ

for eþ → eþ þ γ (λ ¼ þ1, η ¼ þ1). In Eqs. (9) and (10),
we introduced the shorthand notation for the transverse
momentum threshold

k− ¼
��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 2njqBj
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2n0jqBj

q ���; ð11Þ

which depends on the Landau level indices n and n0 of the
initial and final quantum states, respectively.
The annihilation process e− þ eþ → γ is realized when

λ ¼ −1 and η ¼ −1. In this case, the necessary condition
for the existence of real-valued solutions for pz is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − k2z

q
≥ kþ; ð12Þ

where, by definition, the transverse momentum threshold is

kþ ¼
��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 2njqBj
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2n0jqBj

q ���: ð13Þ

When Ω > 0, there are no physical processes that corre-
spond to λ ¼ −1 and η ¼ þ1. Accordingly, there are no
real solutions to the energy conservation equation (8) in
this case.
In all cases, when real solutions exist, they are given by

the following explicit expressions:

pð�Þ
z ¼ kz

2

"
1þ 2ðn − n0ÞjqBj

Ω2 − k2z
� Ω
jkzj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
Ω2 − k2z

��
1 −

k2þ
Ω2 − k2z

�s #
: ð14Þ

Note that there are two solutions labeled by the plus and minus signs in the superscript. By using this result and the energy
conservation equation, written in the form ðEn;pz

þ ηΩÞ2 ¼ E2
n0;pz−kz

, it is straightforward to derive the following explicit
expressions for the fermions energies:

En;pz
j
pz¼pð�Þ

z
¼ −

ηΩ
2

"
1þ 2ðn − n0ÞjqBj

Ω2 − k2z
� jkzj

Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
Ω2 − k2z

��
1 −

k2þ
Ω2 − k2z

�s #
; ð15Þ

(a) (b) (c)

(d) (e) (f)

FIG. 3. Three types of processes involving fermion states with the Landau level indices n and n0: (a) e− → e− þ γ, (b) eþ → eþ þ γ,
(c) e− þ eþ → γ. The corresponding Landau level transitions are shown schematically in panels (d), (e) and (f), respectively.
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En0;pz−kz jpz¼pð�Þ
z

¼ ληΩ
2

�
1 −

2ðn − n0ÞjqBj
Ω2 − k2z

∓ jkzj
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
Ω2 − k2z

��
1 −

k2þ
Ω2 − k2z

�s �
: ð16Þ

As expected, these expressions define positive definite energies when the necessary conditions in Eqs. (9), (10), and (12) are
satisfied.
By making use of the explicit solutions, the δ function in Eq. (7) can be rewritten in a much simpler form, i.e.,

δðEn;pz
− λEn0;pz−kz þ ηΩÞ ¼

X
s¼�

2En;pz
En0;pz−kzδðpz − pðsÞ

z Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2z − k2−ÞðΩ2 − k2z − k2þÞ

p : ð17Þ

Indeed, this can be derived by using the following result:

���� ∂ðEn;pz
− λEn0;pz−kzÞ
∂pz

����
pz¼pð�Þ

z

¼ jkzEn;pz
þ ηpð�Þ

z Ωj
En;pz

En0;pz−kz

����
pz¼pð�Þ

z

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2z − k2−ÞðΩ2 − k2z − k2þÞ

p
2En;pz

En0;pz−kz
: ð18Þ

To obtain the last form of the expression, we used Eqs. (14) and (15).
By substituting Eq. (7) into Eq. (19), we finally derive the expression for the imaginary part of the polarization tensor:

Im½Πμν
R ðΩ;kÞ� ¼ αNf

4πl4

X∞
n;n0¼0

X
λ;η¼�1

X
s¼�1

Θn;n0
λ;η ðΩ; kzÞ

nFðEn;pz
Þ − nFðλEn0;pz−kzÞ

ηλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2z − k2−ÞðΩ2 − k2z − k2þÞ

p X4
i¼1

Iμνi j
pz¼pðsÞ

z
: ð19Þ

where threshold function Θn;n0
λ;η ðΩ; kzÞ is defined as follows:

Θn;n0
λ;η ðΩ; kzÞ ¼

8>><
>>:

θðk2− þ k2z −Ω2Þ for λ ¼ 1; η ¼ −1; n > n0;

θðk2− þ k2z −Ω2Þ for λ ¼ 1; η ¼ 1; n < n0;

θðΩ2 − k2z − k2þÞ for λ ¼ −1; η ¼ −1;
ð20Þ

and Θn;n0
λ;η ðΩ; kzÞ ¼ 0 otherwise. This function defines the

windows of the parameter space where the necessary
conditions (9), (10), and (12) are satisfied.
This analytical expression for Im½Πμν

R ðΩ;kÞ� is one of
the main results of the paper. We will use it in the next two
sections to calculate the photon emission rate and the
optical conductivity of a strongly magnetized hot relativ-
istic plasma. Before proceeding to the applications, how-
ever, it is instructive to verify that the polarization tensor is
transverse (i.e., kμΠμν ¼ 0 and Πμνkν ¼ 0), as required by
the gauge invariance of the theory.

Since both thermal bath and background magnetic field
break the Lorentz symmetry, the final tensor structure of the
polarization tensor is rather complicated. Its explicit form is
determined by tensors Iμνi , defined in Appendix C. As is
clear from Eq. (6) and the explicit expressions for Iμνi in
Appendix C, the general tensor structure is same for both
real and imaginary parts of the polarization function. Thus,
by analyzing all similar terms of the absorptive part of
Πμν

R ðΩ;kÞ in Appendix D, we find that the polarization
tensor takes following form:

Πμν
R ðΩ;kÞ ¼

�kμkkνk
k2k

− gμνk

�
Π1 þ

�
gμν⊥ þ kμ⊥kν⊥

k2⊥

�
Π2 þ

�kμkk̃νk þ k̃μkk
ν
k

k2k
þ
k̃μkk

ν⊥ þ kμ⊥k̃νk
k2⊥

�
Π3

þ
�kμkkν⊥ þ kμ⊥kνk

k2k
þ k2⊥

k2k
gμνk − gμν⊥

�
Π4 þ

�
Fμν

B
þ
kμkk̃

ν⊥ − k̃μ⊥kνk
k2k

�
Π̃5 þ

k̃μkk̃
ν⊥ − k̃μ⊥k̃νk
k2k

Π̃6; ð21Þ

where we used the following notation:
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gμνk ¼ diagð1; 0; 0;−1Þ; kμk ¼ gμνk kν ¼ k0δ
μ
0 þ kzδ

μ
3; k̃μk ¼ −εμ12νkν ¼ kzδ

μ
0 þ k0δ

μ
3;

gμν⊥ ¼ diagð0;−1;−1; 0Þ; kμ⊥ ¼ gμν⊥ kν ¼ kxδ
μ
1 þ kyδ

μ
2; k̃μ⊥ ¼ −ε0μν3kν ¼ kyδ

μ
1 − kxδ

μ
2: ð22Þ

Note that k̃⊥;μk̃
μ
⊥¼ k⊥;μk

μ
⊥ ¼−k2⊥, k̃k;μk̃

μ
k ¼−kk;μk

μ
k ¼−k2k,

and kμk̃
μ
⊥ ¼ kμk̃

μ
k ¼ 0. As we see the polarization tensor in

Eq. (21) contains four symmetric tensor structures and two
antisymmetric ones. Naively, it may appear that another
symmetric tensor, i.e., k̃μkk̃

ν
k=k

2
k, can be constructed from k̃μk.

As one can verify, however, it is exactly the same as
kμkk

ν
k=k

2
k − gμνk . Note that the antisymmetric contributions,

defined by the component functions Π̃5 and Π̃6, appear
because the time-reversal symmetry is broken by a nonzero
magnetic field.
By using the definitions in Eq. (22), one can verify that

all six tensor structures in Eq. (21) are transverse.
Therefore, the polarization tensor is transverse as well,
i.e., kμΠμν ¼ 0 and Πμνkν ¼ 0, which is consistent with the
gauge invariance. The explicit expressions for the (absorp-
tive part of) component functions are given in Appendix D.

III. PHOTON EMISSION FROM QED PLASMA

Here we will use the general result for Im½Πμν
R ðΩ;kÞ�

which is obtained in the previous section to study the
photon emission from a strongly magnetized hot QED
plasma. The corresponding emission is directly observable
when the plasma is optically thin, i.e., its size is small

compared to the photon mean free path in the plasma. For
optically thick systems, the photon emission will come only
from the surface layer of a depth comparable to the mean
free path.

A. Photon emission: Analytical results

In quantum field theory, the photon production rate from
a thermally equilibrated charged plasma can be expressed
in terms of the imaginary part of the retarded polarization
tensor Πμν

R ðΩ;kÞ as follows [44]:

Ω
d3R
d3k

¼ −
1

ð2πÞ3
Im½Πμ

R;μðΩ;kÞ�
expðΩTÞ − 1

; ð23Þ

where Ω and k are the photon frequency and momentum,
respectively, and T is the temperature of the plasma.
Because of the rotation symmetry about the z axis, it is

convenient to use the spherical coordinates and write
d3k ¼ k2dk sin θdθdϕ. Note that the production rate is
independent of the polar angle ϕ. Thus, without loss of
generality, the differential rate is fully characterized by

d2R
kdkdðcos θÞ ¼ −

1

ð2πÞ2
Im½Πμ

R;μðk;kÞ�
expðkTÞ − 1

; ð24Þ

where we substituted Ω ¼ k for the on-shell photons. The photon momentum is given by k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2z

p
, where k⊥ ¼

k sin θ and kz ¼ k cos θ are the components perpendicular and parallel to the magnetic field, respectively.
By performing the Lorentz contraction in expression (19), we derive the following result:

Im½Πμ
R;μðΩ;kÞ� ¼

αNf

4πl4

X∞
n>n0

θðk2− þ k2z −Ω2Þ
X
s¼�1

nFðEn0;pz−kzÞ − nFðEn;pz
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2− þ k2z −Ω2Þðk2þ þ k2z −Ω2Þ
p X4

i¼1

F i

����
pz¼pðsÞ

z ;λ¼1;η¼−1

þ αNf

4πl4

X∞
n<n0

θðk2− þ k2z −Ω2Þ
X
s¼�1

nFðEn;pz
Þ − nFðEn0;pz−kzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2− þ k2z −Ω2Þðk2þ þ k2z − Ω2Þ
p X4

i¼1

F i

����
pz¼pðsÞ

z ;λ¼η¼1

þ αNf

4πl4

X∞
n;n0¼0

θðΩ2 − k2z − k2þÞ
X
s¼�1

nFðEn;pz
Þ þ nFðEn0;pz−kzÞ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΩ2 − k2z − k2−ÞðΩ2 − k2z − k2þÞ
p X4

i¼1

F i

����
pz¼pðsÞ

z ;λ¼η¼−1
; ð25Þ

where, by definition, F i ¼ gμνI
μν
i (with i ¼ 1, 2, 3, 4). As shown in Appendix C, F 2 ¼ F 3 ¼ 0, while F 1 and F 4 are

nonzero. The explicit expressions for the latter two functions are given by

F 1 ¼ 4π½ðΩ2 − k2zÞl2 − 2ðnþ n0Þ�ðIn−1;n0
0 ðξÞ þ In;n0−1

0 ðξÞÞ þ 8πm2l2ðIn;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞÞ; ð26Þ

F 4 ¼ 16πIn−1;n0−1
2 ðξÞ; ð27Þ
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where ξ ¼ k2⊥l2=2. For the definition of functions In;n0
i ðξÞ

in terms of the Laguerre polynomials, see Appendix B.
By making use of the explicit expressions for the fermion

energies in Eqs. (15) and (16), it is straightforward to show
that the first two contributions in Eq. (25), which describe
the photon emission due to the particle splitting e− →
e− þ γ (λ ¼ þ1, η ¼ −1) and the antiparticles splitting

eþ → eþ þ γ (λ ¼ þ1, η ¼ 1) processes, are equal to each
other. This is not surprising, of course, because the two
processes are related by the charge conjugation symmetry.
(Note, however, that the same is not true in a plasma at a
nonzero chemical potential [45].) By taking this symmetry
into account and substituting the result into Eq. (24), we
obtain the final expression for the rate:

d2R
kdkdðcos θÞ ¼

αNf

ð2πÞ3l4½expðkTÞ − 1�
X∞
n>n0

gðn; n0Þ½θðΩ2 − k2z − k2þÞ − θðk2− þ k2z −Ω2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2− þ k2z − Ω2Þðk2þ þ k2z −Ω2Þ

p ðF 1 þ F 4Þ

þ αNf

2ð2πÞ3l4½expðkTÞ − 1�
X∞
n¼0

g0ðnÞθðΩ2 − k2z − k2þÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2zÞðΩ2 − k2z − k2þÞ

p ðF 1 þ F 4Þ; ð28Þ

where

gðn; n0Þ ¼ 2 −
X

s1;s2¼�
nF

�
Ω
2
þ s1

Ωðn − n0ÞjqBj
Ω2 − k2z

þ s2
jkzj

2ðΩ2 − k2zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2z − k2−ÞðΩ2 − k2z − k2þÞ

q �
; ð29Þ

g0ðnÞ ¼ gðn; nÞ ¼ 2 − 2
X
s¼�

nF

�
Ω
2
þ s

jkzj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðm2 þ 2njqBjÞ
Ω2 − k2z

s �
: ð30Þ

While the analytical expression in Eq. (28) for the photon
production rate is relatively simple, its predictions are not
obvious. As is clear, each term in the sum has a simple
interpretation as a partial contribution from a splitting or
annihilation process that involves a quantum transition
between Landau levels n and n0. Schematically, the relevant
low-energy transitions for the two types of processes
(e− → e− þ γ and e− þ eþ → γ, respectively) are shown
in Figs. 4 and 5 for several fixed values of the photon
energy and several fixed directions of emission. Because of
the superposition of a large (infinite) set of relevant
transitions, the final energy and angular dependence of
the differential rate is hard to grasp from Eq. (28).
Therefore, in the next subsection, we use numerical
methods to study the photon production rate in more detail.
Let us note in passing that the general result in Eq. (28),

derived in the strong-field case, should also have a well-
defined zero-field limit. To obtain such a limit, one has to
perform an infinite sum over the Landau levels analytically.
While such a task is beyond the scope of this study, it may
not be hopeless if the resumming technique of Ref. [36] is
utilized.

B. Photon emission: Numerical results

To get an insight into the underlying physics of the
photon emission from a magnetized relativistic plasma,
here we study the corresponding differential rate by
numerical methods. To stay as general as possible, we

will express all dimensionful parameters (e.g., the magnetic
field strength and temperature) in units of the fermion mass
m. In particular, we will consider the following three values
of temperature: T ¼ 5m, T ¼ 15m, and T ¼ 50m, which
cover a range of different regimes (from moderately
relativistic to ultrarelativistic). To explore the interplay of
the magnetic field and thermal effects in each regime, we
will calculate the photon production rate for two different
values of the magnetic field, i.e.,

ffiffiffiffiffiffiffiffiffijqBjp ¼ 5m andffiffiffiffiffiffiffiffiffijqBjp ¼ 15m.
For the QED plasma, the mass of particles (electrons) is

m ¼ me ¼ 0.511 MeV and the charge is q ¼ −e. In this
case, as is easy to check, the two choices of the magnetic
field

ffiffiffiffiffiffiffiffiffijqBjp ¼ 5me and
ffiffiffiffiffiffiffiffiffijqBjp ¼ 15me correspond to B ≈

1.1 × 1015 G and B ≈ 9.9 × 1015 G, respectively. Note
that the approximate conversion formula reads B≈
4.414 × 1013ð ffiffiffiffiffiffiffiffiffijqBjp

=meÞ2 G, where both
ffiffiffiffiffiffiffiffiffijqBjp

and me

are given in the energy units. On the other hand, if the
charged particles are quarks with charge q and mass
m ¼ 5 MeV, the same numerical results, rescaled by a
factor of ðq=eÞ2, will also describe the partial contribution
of photon emission from the given quark species in a
magnetized quark-gluon plasma at B ≈ 1.1 × 1017je=qj G
and B ≈ 9.5 × 1017je=qj G, respectively.
When calculating the rate in Eq. (28) numerically, the

sum over Landau levels has to be truncated at some finite
value of nmax. Qualitatively, such truncation is equivalent to

XINYANG WANG and IGOR SHOVKOVY PHYS. REV. D 104, 056017 (2021)

056017-8



setting an ultraviolet energy cutoff at about ΛUV ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nmaxjqBj

p
. In application to the photon emission, this

implies that the photon energy should be limited from
above by the cutoff, i.e., Ω≲ ΛUV. Indeed, the photon
emission is meaningful within this framework only when
the energies of both initial and final Landau-level states lie
below ΛUV. In general, it is expected that the emission rate
in the plasma is a rapidly decreasing function of the photon
energy at large Ω. However, its value can be calculated
reliably from Eq. (28) only if sufficiently many Landau
levels are included in the sum, i.e., nmax ≳Ω2=ð2jqBjÞ.
As the numerical analysis will show, the photon emission

is dominated by the particle and antiparticle splitting
processes (e− → e− þ γ and eþ → eþ þ γ), provided the
temperature is comparable to or higher than the magnetic
energy scale

ffiffiffiffiffiffiffiffiffijqBjp
and the photon energy Ω is not much

larger than
ffiffiffiffiffiffiffiffiffijqBjp

. Nevertheless, the particle-antiparticle
annihilation processes (e− þ eþ → γ) also contribute, espe-
cially at small temperatures and large Ω. For a fixed value
of Ω, we find that the maximum Landau-level indices
are constrained by Eq. (12), namely, maxðn; n0Þ ≤ n�Ω ¼
½ΩðΩ − 2mÞ=ð2jqBjÞ�. Therefore, the corresponding sum

of the annihilation contributions can be limited to
nmax ¼ n�Ω. Note that n�Ω grows quadratically with the
photon energy Ω and decreases with the magnetic field
as the inverse power law 1=B. Numerically, one finds that
n�Ω ¼ 196 for Ω ¼ 100m and jqBj ¼ 25m2. On the other
hand, n�Ω ¼ 21 for Ω ¼ 100m and jqBj ¼ 225m2.
As we will discuss later in more detail, the low-energy

quantization of Landau levels also sets a limit for the
photon energy from below, namely Ω≳ ΛIR, where ΛIR ¼ffiffiffiffiffiffiffiffiffijqBjp

=
ffiffiffiffiffiffiffiffiffiffiffi
2nmax

p
. The restriction comes from the fact that

the separation between the fermionic Landau levels is of the
order of jqBj at low energies. As a result, the emission of
photons with small energies, Ω ≪

ffiffiffiffiffiffiffiffiffijqBjp
, can come only

from the quantum transitions between the states with
sufficiently large longitudinal momenta and/or Landau-
level indices, where the vertical separation between the
levels is equal to or smaller than Ω, see Fig. 4(a). From a
physics viewpoint, this implies that the rate is strongly
suppressed when Ω ≪

ffiffiffiffiffiffiffiffiffijqBjp
. On a technical side, how-

ever, this means that a reliable calculation requires the
inclusion of a sufficiently large number of Landau levels,
i.e., nmax ≳ jqBj=ð2Ω2Þ. In the numerical calculation

(a) (b) (c)

FIG. 4. Schematic representation of Landau level transitions for the splitting processes e− → e− þ γ with a fixed direction of the
photon emission, i.e., θ ¼ 0 (blue), θ ¼ π=3 (green), and θ ¼ π=2 (red), allowed by the energy conservation. Note that, at θ ¼ 0, only
the transitions between the adjacent Landau levels (nþ 1 → n) contribute nontrivially. The individual panels show the results for
different photon energies: (a) Ω ¼ m, (b) Ω ¼ 2m, (c) Ω ¼ 3m.

25

10

(a) (b) (c)

FIG. 5. Schematic representation of Landau level transitions for the annihilation processes e− þ eþ → γ with a fixed direction of the
photon emission, i.e., θ ¼ π=6 (blue), θ ¼ π=3 (green), and θ ¼ π=2 (red), allowed by the energy conservation. Note that, the emission
is forbidden at θ ¼ 0. The individual panels show the results for different photon energies: (a) Ω ¼ 5m, (b) Ω ¼ 10m, (c) Ω ¼ 15m.
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below, we will set nmax ≃ 450. Even with such large nmax,
one finds that the range of photon energies Ω is strongly
constrained, i.e.,

ffiffiffiffiffiffiffiffiffijqBjp
=30≲ Ω≲ 30

ffiffiffiffiffiffiffiffiffijqBjp
. To remain in

the range of validity, therefore, we will consider the
following range of photon energies:m ≤ Ω ≤ 100m, which
lies within the required limits for both choices of the
magnetic field.

C. Photon emission at jqBj= ð5mÞ2
Let us start by presenting the numerical results for the

differential photon emission rate in the case the magnetic
field jqBj ¼ ð5mÞ2 and temperature T ¼ 5m. The corre-
sponding rates as functions of the angular coordinate θ are
shown in Fig. 6 for several representative sets of photon
energies. The results for six smaller energies (Ω≲ ffiffiffiffiffiffiffiffiffijqBjp

)
are shown in panel (a), while the results for six larger
energies (Ω≳ ffiffiffiffiffiffiffiffiffijqBjp

) are shown in panel (b). By compar-
ing the results, we see that the differential rate has a
qualitatively different overall behavior in the two regimes.
While at small photon energies the emission tends to be
strongest along the magnetic field direction (θ ≈ 0), at large
energies the emission tends to be strongest in the directions

perpendicular to the magnetic field (θ ≈ π=2). In other
words, the photon emission has a nonzero ellipticity [37],
with the overall profile changing from a prolate shape at
Ω≲ ffiffiffiffiffiffiffiffiffijqBjp

to an oblate shape at Ω≳ ffiffiffiffiffiffiffiffiffijqBjp
. The corre-

sponding qualitative change of the emission profile is
visualized by panels (c), (d), and (e) in Fig. 6, where the
polar plots of the differential rates are presented. As one can
see from panel (a), the overall photon emission has a well-
pronounced prolate shape at small energies. The profile
gradually changes from prolate to oblate at intermediate
energies, see panel (b). Finally, as seen from panel (c), it
becomes oblate at high photon energies.
As is evident from Fig. 6, the photon emission rate is not

a smooth function of the angular coordinate θ. It has
numerous spikes that come from the Landau-level quan-
tization in the spectrum of charged fermions in a magnetic
field. In essence, the spikes result from a near-threshold
photon production when k⊥ ¼ Ω sin θ ≈ k�. As one can
see from Eq. (28), the rate near the Landau-level thresholds
is described by a singular inverse-square-root dependence
on the energy (at fixed θ) or the angular coordinate θ (at
fixed energy). Of course, the actual singularity is a
consequence of the clean limit approximation that neglects

FIG. 6. The differential photon production rate as a function of the angle θ for jqBj ¼ 25m2 and T ¼ 5m.
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interaction effects of charged particles. In a more refined
approximation, as we will demonstrate in Sec. III G,
interactions lead to a nonzero quasiparticle width that
smoothes out the dependence of the rate on the energy
and the angular coordinate θ. For simplicity, however, we
will ignore the interaction effects since they are not
expected to change the overall qualitative behavior of
the emission rate. Moreover, since the inverse-square-root
singularities are integrable, they have little effect on the net
integrated rate (see also Sec. III G).
As is clear from Eq. (28), there are two types of

thresholds in the photon production. One of them is
associated with the splitting (i.e., e− → e− þ γ and
eþ → eþ þ γ) processes, while the other with the annihi-
lation (i.e., e− þ eþ → γ) processes. They are characterized
by a qualitatively different dependence of the rate on the
angular coordinate θ in Fig. 6. For the particle splitting
processes, the rate grows gradually as θ approaches the
threshold value from below and then drops suddenly at the
threshold. For the annihilation processes, on the other hand,
the rate first jumps to a large value (infinite value in the
clean limit) at the threshold and then decreases gradually
with θ. Both types could be easily identified in the
differential rates shown in Fig. 6.
For example, one can readily identify the first annihi-

lation peak at sin θ ¼ 2m=Ω (provided Ω ≥ 2m), which is
connected with the threshold for transitions between the
lowest Landau-level states with positive and negative
energies. For example, the rates for the photon energies
Ω ¼ 3m, Ω ¼ 4m, Ω ¼ 5m, and Ω ¼ 6m, presented in
Fig. 6(a), have the corresponding peaks at θ ≈ 0.232π,
θ ¼ π=6, θ ≈ 0.131π, and θ ≈ 0.108π, respectively.
Similarly, one can identify some thresholds for the

splitting processes. The thresholds for the transitions
between the n ¼ 1 and n ¼ 0 Landau levels appear when
sin θ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2jqBj

p
−mÞ=Ω (provided Ω≳ 6m). For

example, the rates for the photon energies Ω ¼ 10m,
Ω ¼ 15m, Ω ¼ 20m, Ω ¼ 25m, and Ω ¼ 30m, presented
in Fig. 6(b), have the corresponding peaks at θ ≈ 0.210π,
θ ¼ 0.134π, θ ≈ 0.099π, θ ≈ 0.079π, and θ ≈ 0.066π,
respectively. In the rates at some smaller photon energies,
shown in Fig. 6(a), one can also identify the thresholds
for the transitions between the n ¼ 2 and n ¼ 1

Landau levels which occur when sinθ¼ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ4jqBj

p
−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þ2jqBj
p

Þ=Ω (provided Ω≳ 3m). For Ω ¼ 3m,
Ω ¼ 4m, Ω ¼ 5m, and Ω ¼ 6m, the corresponding peaks
appear at θ ≈ 0.421π, θ ¼ 0.259π, θ ≈ 0.198π, and
θ ≈ 0.161π, respectively.
By comparing the results at different photon energies Ω

presented in Fig. 6, we see that the rates tend to decrease
overall with increasingΩ. This qualitative conclusion is not
surprising and will be reconfirmed more rigorously later by
analyzing the dependence of the integrated rates on the
photon energy. It is explained largely by the strong energy
dependence of the Fermi-Dirac distribution functions that

appear in the definition of the polarization tensor, see
Eq. (25). From a physics viewpoint, the emission of high-
energy photons is possible only when there exist occupied
Landau-level states with sufficiently large positive energies
or empty Landau-level states with sufficiently large neg-
ative energies. In a thermal plasma, however, the avail-
ability of such states rapidly decreases with increasing the
energy.
For the most part, the same qualitative behavior of the

differential photon emission rate is obtained at higher
temperatures, T ¼ 15m and T ¼ 50m. The corresponding
numerical results are presented in Figs. 7 and 8, respec-
tively. Naturally, the photon rate grows as a whole with
increasing the temperature of plasma. Also, as one might
expect, it tends to become a smoother function of the
angular coordinate θ at higher temperatures. Most impor-
tantly, we find that, with increasing the temperature, the
ellipticity of photon emission remains qualitatively the
same. In particular, the emission profile starts from a
prolate shape at low energies (Ω≲ ffiffiffiffiffiffiffiffiffijqBjp

) and gradually
evolves to an oblate shape at high energies (Ω≳ ffiffiffiffiffiffiffiffiffijqBjp

).
As one might check, even the degree of the ellipticity at
high energies remains about the same (i.e., ∼20%).

D. Photon emission at jqBj= ð15mÞ2
The results for the stronger magnetic field qB ¼ ð15mÞ2

are shown in Figs. 9, 10 and 11 for the same three default
choices of temperature, T ¼ 5m, T ¼ 15m, and T ¼ 50m,
respectively. Qualitatively, the functional dependence of the
differential rate has many features similar to those at the
smaller magnetic field. However, some differences can be
clearly seen as well. For example, the quantization effects
at the lowest temperature T ¼ 5m are much more pro-
nounced. While the overall rates are small in the
low-temperature regime, the partial contribution of the
annihilation processes is substantial. For Ω ≤ 6m, as one
can see from Fig. 9(a), there is only one well pronounced
singularity in the angular dependence and it is associated
with the first singularity at sin θ ¼ 2m=Ω, provided the
photon energy exceeds the threshold, i.e., Ω > 2m. Below
the threshold energy (Ω < 2m), on the other hand, the rate
is strongly suppressed. The latter is explained by the fact
that the charge particles of a low-temperature plasma
(T ≪

ffiffiffiffiffiffiffiffiffijqBjp
) reside primarily in the lowest Landau level.

Since the occupation numbers of the higher levels are
negligible, the phase space for the quark and antiquark
splitting processes is highly restricted and, in turn, the
corresponding contributions to the rate are negligible.
From the polar representation of the differential rates,

shown in panels (c) through (e) of Fig. 9, the ellipticity of
the emission profile may not be obvious at the lowest
temperature, T ¼ 5m. The main complication comes from
a very nonsmooth dependence of the rate on the angular
coordinate θ. By utilizing a Fourier transform, however,
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one can still verify that the profile evolves from a largely
prolate shape at small energies (Ω≲ ffiffiffiffiffiffiffiffiffijqBjp

) to an oblate
shape at large energies (Ω≳ ffiffiffiffiffiffiffiffiffijqBjp

).
By comparing the results in Figs. 9, 10 and 11, we see

that the differential rates not only grow with increasing the
temperature, but also their angular dependence gets
smoother. One can also verify that the relative contribution
of the splitting (annihilation) processes gets larger (smaller)
with at temperatures. Because of the smoother rates at T ¼
15m and T ¼ 50m, the ellipticity of the emission profiles
can be easily identified from the polar representation of the
differential rates, see (c) through (e) of Figs. 10 and 11.
They are qualitatively the same as in the case of the
weaker qB ¼ ð5mÞ2.

E. Integrated photon production rate

For both values of the magnetic field, qB ¼ ð5mÞ2 and
qB ¼ ð15mÞ2, we see that the differential rates tend to grow
overall with increasing the temperature. In order to see this
clearly, it is instructive to calculate the total integrated
photon production rate, i.e.,

dR
kdk

¼
Z

π

0

d2R
kdkdðcos θÞ sin θdθ

¼ −
1

ð2πÞ2
Z

π

0

Im½Πμ
R;μðk;kÞ�

expðkTÞ − 1
sin θdθ: ð31Þ

The corresponding numerical results for the integrated rates
as a function of the photon energy are presented in Fig. 12
for each of the three fixed values of temperature, T ¼ 5m,
T ¼ 15m, and T ¼ 50m. The two separate panels contains
the results for qB ¼ ð5mÞ2 and qB ¼ ð15mÞ2, respectively.
Overall, as we see, the photon rates grow with the temper-
ature. This is not surprising since hotter plasmas should
shine brighter.
The energy dependence in both panels of Fig. 12 shows

that the integrated rates fall rapidly at large values of Ω.
This is expected, of course, since the emission of high-
energy photons is possible only when there are some
occupied (empty) charged particle (antiparticle) states with
sufficiently high positive (negative) energies. In a thermal
plasma at fixed temperature T, however, the number
densities of such states are controlled by the Fermi-Dirac

FIG. 7. The differential photon production rate as a function of the angle θ for jqBj ¼ 25m2 and T ¼ 15m.
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distributions, which drop quickly with increasing particle
energies.
The dependence of the integrated rates in the region of

small photon energies is more subtle. Our analysis reveals
that the rate has a local maximum at some value of Ω,
determined by the magnetic field strength and the temper-
ature. When Ω decreases further, the rate gets strongly
suppressed. This is seen in the case of the stronger magnetic
field jqBj ¼ 225m2 in panel (b) of Fig. 12 for the rates at
T ¼ 5m and T ¼ 15m. As we will explain in Sec. III F
below, the same should happen also in the case of the
weaker magnetic field, jqBj ¼ 25m2, but at smaller ener-
gies. The corresponding suppression of the rate at small
photon energies is caused by the Landau-level quantization.

F. Landau-level quantization at small Ω
As one might expect, the Landau-level quantization has a

strong effect on the photon emission at small energies. This
is clear already from the illustration of the relevant quantum
transitions in Figs. 4 and 5. The corresponding processes
are possible only when the photon energy is greater than or

equal to the separation between the neighboring Landau
levels. This is a necessary condition imposed by the energy
conservation.
From general considerations, the Landau quantization

has the strongest effect when Ω ≪
ffiffiffiffiffiffiffiffiffijqBjp

. In this case,
transitions between particle states are highly restricted
because the typical separation between the low-lying
Landau levels is of the order of

ffiffiffiffiffiffiffiffiffijqBjp
, while the photon

energy is much smaller. Strictly speaking, this does not
apply to the annihilation processes that involve only the
(positive- and negative-energy) states in the lowest Landau
level. They still contribute when Ω > 2m, see Appendix E.
Nevertheless, the partial contribution of such annihilation
processes to the rate decreases rapidly when Ω goes down
and approaches the threshold. Furthermore, for Ω < 2m, it
turns off completely. Thus, to understand the universal
suppression mechanism for the photon emission rate at
small Ω, we will concentrate on the splitting processes and
ignore the annihilation channel.
The kinematic restrictions for the splitting processes at

small Ω can be understood from the visualization of the
quantum transitions in Fig. 4(a). In particular, the

FIG. 8. The differential photon production rate as a function of the angle θ for jqBj ¼ 25m2 and T ¼ 50m.
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transitions between the neighboring Landau levels with
small indices n are possible only at large enough longi-
tudinal momenta, where the energy levels are sufficiently
close to each other. The quantitative estimate for the
momenta can be obtained from the solution of the energy
conservation condition in Eq. (14). In particular, one finds
that jpzj ∼ jqBj=½Ωð1þ j cos θjÞ�. Since the particle states
with such large jpzj also have large energies, i.e.,
Epz

≳ jqBj=½Ωð1þ j cos θjÞ�, their occupation numbers
and, in turn, their contributions to the photon emission
rate are exponentially suppressed whenΩ → 0. One should
add that there are also numerous transitions involving states
with large Landau indices (with n up to about jqBj=Ω2) that
contribute to the rate too. However, all relevant transitions
occur between states with comparable or larger energies,
implying that their contributions are subject to the same
exponential suppression by the Fermi-Dirac distributions.
As the value of Ω grows and becomes comparable to the

Landau energy scale, Ω ∼
ffiffiffiffiffiffiffiffiffijqBjp

, the quantization effects
relax gradually. This is seen from the visualization of
quantum transitions in panels (b) and (c) of Fig. 4(a).
When the photon energy Ω grows, the transitions start to

involve particle states with lower energies. The larger
occupation numbers of such states lead to a higher photon
production rate. With further increasing of Ω, however, the
role of quantization gradually diminishes. Eventually, when
Ω ≫

ffiffiffiffiffiffiffiffiffijqBjp
, the rates start to decrease again with increasing

Ω. Therefore, the photon production rate as a function of the
photon energy has the following universal behavior. It starts
with a vanishingly small value when Ω ≃ 0, reaches a
maximum at an intermediate energy, and then decreases at
large Ω.
As argued in Ref. [37], the quantization of Landau levels

also explains the prolate shape of the photon emission
profile in the region of small Ω. The latter follows from the
angular dependence of the particle momenta of the lowest
energy states participating in the splitting processes, i.e.,
jpzj ∼ jqBj=½Ωð1þ j cos θjÞ�. The smallest values of jpzj
(and, thus, the particle energies) are achieved when θ ¼ 0
and θ ¼ π (along the line of the magnetic field). These
determine the directions of the strongest photon emission.
In contrast, the largest values of jpzj correspond to
θ ¼ π=2, implying that the photons emitted perpendicular
to the magnetic field have the lowest rate.

FIG. 9. The differential photon production rate as a function of the angle θ for jqBj ¼ 225m2 and T ¼ 5m.
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G. Interaction effects in the vicinity
of Landau-level thresholds

In this study we used the clean limit approximation that
ignores all particle interactions except for the interaction
with a strong background magnetic field. One of the
consequences of such an approximation was the appear-
ance of numerous singular spikes in the differential photon
rate as a function of the angular coordinate θ or energy Ω.
The corresponding inverse-square-root singularities were
connected with Landau-level thresholds in the three proc-
esses responsible for the photon production (i.e.,
e− → e− þ γ, eþ → eþ þ γ, and e− þ eþ → γ). As we
explain below, the singularities will be removed and the
rate will have smooth dependence when interaction effects
are taken into account. Qualitatively, this can be understood
as follows.
In an interacting plasma, charged particles should have a

nonzero quasiparticle width Γ, which is determined by the
imaginary part of the self-energy. When the quasiparticle
width is small, its effect can be captured in the calculation
of the photon emission rate by replacing the δ function in
the particle spectral weight with a Gaussian profile of width
Γ. The inclusion of Γ will modify the on-shell condition for

interacting particles and, in turn, relax slightly the energy
conservation relation in the processes responsible for the
emission. From a technical point of view, one can replace
the δ function, that enforces the energy conservation
condition on the right-hand side of Eq. (19), with a
Gaussian profile, i.e.,

δðEn;pz
− λEn0;pz−kz þ ηΩÞ

→
1ffiffiffiffiffiffi
2π

p
Γ

Z
∞

−∞
dεe−

ε2

2Γ2δðEn;pz
− λEn0;pz−kz þ ηΩþ εÞ

¼ 1ffiffiffiffiffiffi
2π

p
Γ

Z
∞

−∞
dΩ0e−

ðΩ0−ΩÞ2
2Γ2 δðEn;pz

− λEn0;pz−kz þ ηΩ0Þ; ð32Þ

where, in the second line, we changed the integration
variable from ε toΩ0 ¼ Ωþ ηε. Such an introduction of the
quasiparticle width effects leads to a simple modification of
the expression for the imaginary part of the polarization
tensor:

Im½Πμ
R;μðΩ;kÞ� →

1ffiffiffiffiffiffi
2π

p
Γ

Z
∞

−∞
dΩ0e−

ðΩ0−ΩÞ2
2Γ2 Im½Πμ

R;μðΩ0;kÞ�:

ð33Þ

FIG. 10. The differential photon production rate as a function of the angle θ for jqBj ¼ 225m2 and T ¼ 15m.
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FIG. 11. The differential photon production rate as a function of the angle θ for jqBj ¼ 225m2 and T ¼ 50m.
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FIG. 12. Panel (a): The energy dependence of the integrated photon production for jqBj ¼ 25m2 and three different temperatures
T ¼ 5m (blue line) and T ¼ 15m (green line), and T ¼ 50m (red line). Panel (b): Same as panel (a) but for jqBj ¼ 225m2.
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Note that the result is a convolution of the result obtained in the clean limit and a Gaussian distribution. Let us verify now
that the modification has the predicted smearing effect on the inverse-square-root singularities in the near-threshold
production of photons. It suffices to consider an isolated singularity at Ω ¼ Ωthr, e.g.,

θðΩ −ΩthrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω −Ωthr

p fðΩÞ → 1ffiffiffiffiffiffi
2π

p
Γ

Z
∞

−∞
dΩ0e−

ðΩ0−ΩÞ2
2Γ2

θðΩ0 −ΩthrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0 − Ωthr

p fðΩ0Þ

≈

ffiffiffiffiffiffiffiffiffi
πjωj
8Γ

r
e−

ω2

4

�
θðωÞ

�
I−1=4

�
ω2

4

�
þ I1=4

�
ω2

4

��
þ

ffiffiffi
2

p

π
θð−ωÞK1=4

�
ω2

4

�	
fðΩthrÞ; ð34Þ

where ω ¼ ðΩ −ΩthrÞ=Γ is a dimensionless deviation from
the threshold energy and fðΩÞ is a smooth function. The
effect of smearing is visualized in Fig. 13, where we show
the partial contribution of an isolated threshold singularity
over the background value R0. Note that the local peak of
the near-threshold rate is shifted from Ωthr to
Ω�

thr ≈Ωthr þ 0.765Γ. The maximum value of the function
is approximately 1.021fðΩthrÞ=

ffiffiffi
Γ

p
.

As we see, the quasiparticle width Γ indeed smoothes out
the threshold singularities in the photon rate. In the weakly
interacting regime, when Γ is small, the corresponding
modifications occur only in small windows of energies near
the thresholds, i.e., jΩ −Ωthrj≲ Γ. Thus, the overall
features of the photon rate obtained above in the clean
limit of a strongly magnetized plasma will remain approx-
imately the same even after the interaction effects are
accounted for. Moreover, one can also verify that the
integrated rates will not change much either. Indeed, by
integrating both singular and smoothed functions in
Eq. (34), one can verify that the relative error is less than
0.84% when the integration range is as small as

jΩ −Ωthrj ≤ 4Γ. With expanding the integration range
further, the error rapidly decreases too.

IV. MAGNETO-OPTICAL CONDUCTIVITY OF
RELATIVISTIC PLASMA

In this section, we demonstrate another use of the general
result for the imaginary part of the photon polarization
function obtained in Sec. II. In particular, belowwe calculate
the absorptive part of the magneto-optical conductivity of a
hot relativistic plasma. The corresponding frequency-depen-
dent transport coefficient is a valuable characteristics in a
plasma under time dependent perturbations. The general
theoretical predictions could be also applied to pseudo-
relativistic electron plasmas of Dirac and Weyl semimetals
[46–48], where it can be tested experimentally [49].
In the linear response theory, the magneto-optical con-

ductivity can be expressed in terms of the imaginary part of
the photon polarization tensor as follows:

σijðΩÞ ¼ Im½Πij
RðΩ; 0Þ�
Ω

: ð35Þ

Note that only the diagonal components of the conductivity
tensor are nonzero in the case of the vanishing chemical
potential, which is studied in this paper. Indeed, the off-
diagonal (Hall) conductivity σHðΩÞ is trivial because of the
charge conjugation symmetry.
Compared to the general result for the polarization tensor

obtained in Sec. II, the conductivity tensor has a much
simpler structure. This is the result of taking the limitk → 0.
Indeed, by making use of the expression in Eq. (21),
supplemented by the definitions of individual component
functions in Appendix D, we find that the magneto-optical
conductivity takes the following form:

σijðΩÞ ¼ δi3δ
j
3σkðΩÞ þ ðδi1δj1 þ δi2δ

j
2Þσ⊥ðΩÞ þ ε0ij3σHðΩÞ;

ð36Þ
where the longitudinal and transverse Hall conductivities are
given by

2 2 6 8
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FIG. 13. The effect of quasiparticlewidthΓ on the near-threshold
behavior of the rate as a function of the photon energy. A singular
dependence R − R0 ∝ θðωÞ= ffiffiffiffi

ω
p

, where ω ¼ ðΩ − ΩthrÞ=Γ and
R0 is the background rate, is replaced by a smooth function defined
in Eq. (34).
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σkðΩÞ ¼
Im½Π1ðΩ; 0Þ�

Ω
¼ −

αNf

Ωl2

X∞
n;n0¼0

X
λ;η¼�1

Θn;n0
λ;η ðΩ; 0Þ

nFðEn;pðþÞ
z
Þ − nFðλEn0;pðþÞ

z
Þ

ηλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2ðΩ2 − k2þÞ

p k2þðδn;n0 þ δn−1;n0−1Þ;

ð37Þ
σ⊥ðΩÞ ¼

Im½Π4ðΩ; 0Þ�
Ω

¼ −
αNf

Ωl4

X∞
n;n0¼0

X
λ;η¼�1

Θn;n0
λ;η ðΩ; 0Þ

nFðEn;pðþÞ
z
Þ − nFðλEn0;pðþÞ

z
Þ

ηλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2−ÞðΩ2 − k2þÞ

p ½Ω2l2 − 2ðnþ n0Þ�ðδn;n0−1 þ δn−1;n0 Þ: ð38Þ

Here we used explicit expressions for the component functions Im½ΠiðΩ; 0Þ�, which are obtained from the definitions in
AppendixD by taking the limitk → 0. In the derivation, we also took into account that the solutions of the energy conservation
equation at kz ¼ 0 are given by

pð�Þ
z ¼ � 1

2Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2−ÞðΩ2 − k2þÞ

q
; ð39Þ

and the corresponding quasiparticle energies are

E
n;pð�Þ

z
¼ −

η

2Ω
½Ω2 þ 2ðn − n0ÞjqBj�; ð40Þ

E
n0;pð�Þ

z
¼ λη

2Ω
½Ω2 − 2ðn − n0ÞjqBj�; ð41Þ

which are the same for pð−Þ
z and pðþÞ

z .
The expressions for the longitudinal and transverse conductivities, defined by Eqs. (37) and (38), can be further

simplified, i.e.,

σkðΩÞ ¼
αNf

l2

X∞
n¼0

ð2 − δn;0Þ
4M2

nθðΩ2 − 4M2
nÞ

Ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − 4M2

n

p tanh

�jΩj
4T

�
; ð42Þ

σ⊥ðΩÞ ¼
2αNf sinhðΩ2TÞ

Ωl4½coshðΩ
2TÞ þ coshðjqBjTΩ Þ�

X∞
n¼1

½2ð2n − 1Þ −Ω2l2�θ½ðMn −Mn−1Þ2 − Ω2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðMn −Mn−1Þ2 −Ω2�½ðMn þMn−1Þ2 −Ω2�

p
þ 2αNf sinhðΩ2TÞ
Ωl4½coshðΩ

2TÞ þ coshðjqBjTΩ Þ�
X∞
n¼1

½Ω2l2 − 2ð2n − 1Þ�θ½Ω2 − ðMn þMn−1Þ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ω2 − ðMn −Mn−1Þ2�½Ω2 − ðMn þMn−1Þ2�

p ; ð43Þ

where we used the shorthand notation Mn ¼ En;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj þm2

p
.

Note that the longitudinal conductivity σkðΩÞ in Eq. (42)
comes exclusively from the annihilation (or “interband”)
transitions. Thus, while the conductivity is nonzero for
Ω ≥ 2m, it vanishes below the lowest frequency annihila-
tion threshold, i.e., Ω < 2m. (Needless to say that the
threshold goes away in the limit of massless fermions.)
Numerically, the longitudinal conductivity as a function of
frequency is relatively easy to calculate even in the limit
of a weak magnetic field. This is because the sum in
Eq. (42) terminates at a finite Landau-level index nmax ¼
½ðΩ2 − 4m2Þ=ð4jqBjÞ�. The corresponding numerical
results for the two choices of the magnetic field and three
different values of temperature are shown in Fig. 14. By
comparing the energy dependence in the two panels, we see

that the longitudinal conductivities for the weaker and
stronger magnetic fields differ primarily by the separation
scale between the neighboring peaks.
It is interesting to note that the longitudinal part of

conductivity, shown in Fig. 14, tends to decrease with
increasing the temperature of plasma. Such decrease should
not be too surprising however. Mathematically, it comes
from tanh½Ω=ð4TÞ� in Eq. (42). From a physics viewpoint,
it is explained by the gradual depletion of the occupied low-
energy states when the temperature grows.
Unlike the longitudinal conductivity, the transverse con-

ductivity σ⊥ðΩÞ contains two different types of contribu-
tions, represented by the two sums in Eq. (43). The first sum
represents the contributions due to particle-particle and
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antiparticle-antiparticle (or “intraband”) transitions. As one
can verify, they are nonzero only in the region of sufficiently
small frequencies, i.e., Ω <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBj þm2

p
−m. Note that

the quoted upper limit is determined by the largest vertical
separation between neighboring Landau levels, i.e., the

energy difference between the 0th and 1th levels at
pz ¼ 0. The second sum in Eq. (43) captures the contribu-
tions due to annihilation (“interband”) transitions. This one is
nonvanishing only at sufficiently large frequencies, i.e.,
Ω >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBj þm2

p
þm. As one can see, the frequency

FIG. 14. Longitudinal magneto-optical conductivity as a function of frequency Ω for jqBj ¼ 25m2 (panel a) and jqBj ¼ 225m2

(panel b).

FIG. 15. Transverse magneto-optical conductivity as a function of frequency Ω for jqBj ¼ 25m2 (panel a) and jqBj ¼ 225m2 (panel
b). Panels (c) and (d) show the same results at small frequencies, where only the “intraband” transitions contribute.
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windows for the two types of processes do not overlap and
are separated by a gap of width 2m. Interestingly, for both
types of contributions, the sums over Landau levels terminate
at nmax ¼ ½ðð2jqBj þ Ω2Þ2 − 4m2Ω2Þ=ð8jqBjΩ2Þ�.
The numerical results for the transverse conductivity

σ⊥ðΩÞ are presented in Fig. 15. Panels (a) and (b) display
the overall dependence of the conductivity on frequency for
the two fixed values of the magnetic field, jqBj ¼ ð5mÞ2
and jqBj ¼ ð15mÞ2, respectively. As predicted, only the
intraband transitions contribute to σ⊥ðΩÞ in the low-
frequency region (Ω <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBj þm2

p
−m) and only the

interband transitions contribute in the high-frequency
region (Ω >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBj þm2

p
þm). In the intermediate

window of frequencies, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBj þm2

p
−m < Ω <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jqBj þm2
p

þm, the transverse conductivity vanishes
identically.
While it is easy to resolve and identify the annihilation

peaks in the high-frequency regime in panels (a) and (b) of
Fig. 15, the low-frequency region appears much more
convoluted due to many nearly overlapping thresholds for
particle-particle (antiparticle-antiparticle) transitions. Thus,
to resolve the details of the transverse conductivity better,
we show the low-frequency results separately in panels (c)
and (d) for jqBj ¼ ð5mÞ2 and jqBj ¼ ð15mÞ2, respectively.
The temperature dependence of the transverse conduc-

tivity in the high-frequency region can be understood
qualitatively from the results in panels (a) and (b) of
Fig. 15. Just above the annihilation threshold, the con-
ductivities have an inverse ordering with the largest
(smallest) value of conductivity obtained for the lowest
(highest) temperature. At sufficiently high frequencies,
however, the ordering gradually becomes normal, i.e.,
the largest (smallest) value of conductivity is obtained
for the (lowest) temperature. The transition from the
inverse-ordering (σ⊥ðΩÞ increasing with T) to the nor-
mal-ordering regime (σ⊥ðΩÞ decreasing with T) depends
both on the magnetic field and the ration T=

ffiffiffiffiffiffiffiffiffijqBjp
.

As one can see from panels (c) and (d) of Fig. 15, the
transverse conductivity mostly grows with temperature in
the region of low frequencies. This is expected, of course,
since the main part of the result comes from many
transitions between neighboring Landau levels with suffi-
ciently close energies and, thus, large indices n (running up
to about n ∼ jqBj=Ω2). When the temperature increases, the
occupation numbers of the relevant high-energy states grow
and, as a result, σ⊥ðΩÞ becomes larger. As we see from
Figs. 15(c) and 15(d), this trend gradually changes as the
frequency increases and approaches the largest particle-
particle threshold

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBj þm2

p
−m from below. Near the

highest particle-particle threshold, the ordering of results
for the three values of temperature (T ¼ 5m, T ¼ 15m, and
T ¼ 50m) is opposite. The width of the corresponding
near-threshold region is not universal however. It changes
depending on the ratio of energy scales set by the magnetic

field and temperature. As one can see from the results
shown in panels (c) and (d) of Fig. 15, the near-threshold
region with inverse ordering of conductivities for the three
fixed temperatures widens when T=

ffiffiffiffiffiffiffiffiffijqBjp
grows.

Similarly to the photon emission discussed in Sec. III, both
longitudinal and transverse magneto-optical conductivities
have numerous singular peaks, associated with the threshold
effects. From the analytical expressions in Eqs. (42) and (43),
we see that the singularities are also of the same inverse-
square-root type. As argued in Sec. III G, the peaks are
expected to smooth out when one takes quasiparticle
interaction effects into account.
Our results for the magneto-optical conductivity agree

with those obtained in the quantum limit for Dirac
semimetals in Refs. [46–48]. Indirectly, such an agreement
provides a valuable cross-check for the derivation of the
photon polarization tensor in Sec. II. Unlike the conduc-
tivity, though, the polarization tensor extends to the case of
nonzero photon momenta and has a considerably more
complicated structure.

V. SUMMARY AND CONCLUSIONS

In this study, we utilized a coordinate representation for
the fermion Green’s function in a constant magnetic field to
derive a closed-form analytical expression for the absorp-
tive part of the photon polarization tensor in a relativistic
plasma. We found that the polarization tensor contains 4
different symmetric structures and 2 antisymmetric ones.
Such an abundance of tensor structures is the result of the
Lorentz symmetry breaking by the magnetic field and the
thermal bath. As required by the gauge symmetry, all 6
tensor structures are transverse. We found that the anti-
symmetric parts of the tensor vanish at zero chemical
potential (μ ¼ 0), which was the main focus of this study.
This is the consequence of the charge conjugation sym-
metry. It is expected, however, that both antisymmetric
structures will be nonzero when μ ≠ 0 [45].
The derivation in this study was focused on the absorp-

tive part of the photon polarization. The latter includes the
imaginary parts of symmetric tensor structures and, in
principle, the real parts of antisymmetric ones. As we
argued before [37], the absorptive part of the tensor is
determined by the following three types of processes:
(i) e− → e− þ γ, (ii) eþ → eþ þ γ, and (iii) e− þ eþ → γ.
In a quantum description, they correspond to particle-
particle, antiparticle-antiparticle, and particle-antiparticle
transitions between Landau levels, respectively. At the
vanishing chemical potential, both particle-particle and
antiparticle-antiparticle transitions contribute equally to
the polarization tensor.
By utilizing the photon polarization tensor, we studied in

detail the differential photon emission rate for a strongly
magnetized thermal relativistic plasma. In this context, the
particle-particle and antiparticle-antiparticle transitions
can be viewed as splitting (1 → 2) processes, while the
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particle-antiparticle ones as annihilation (2 → 1) processes.
All of them are affected by the Landau-level quantization. In
particular, the photon rate as a function of the photon energy
(for a fixed direction of emission) or as a function of the
angular coordinate (for fixed photon energy) contains
numerous inverse-square-root singularities. They are asso-
ciated with the threshold effects in photon production. Since
the inverse-square-root singularities are integrable, they
cause no complications in studying rates integrated over
the angular coordinates or the energy. Conceptually, the
actual singularities are an artifact of the clean-limit approxi-
mation that ignores all particle interactions except for the
interaction with the background magnetic field. As we
showed, taking interactions into account will smooth out
the threshold singularities. Quantitative effects of inter-
actions can be captured by the quasiparticle width Γ. It
the value of Γ that also determines the width of an energy
window near the threshold, where the singular behavior will
be smeared out.
In this study, we analyzed the angular dependence of the

differential photon emission rate in a wide range of model
parameters. In all regimes, ranging from a moderately
relativistic to an ultrarelativistic plasma, the emission is
highly anisotropic. In addition to its spiky dependence on
the angular coordinate coming from the threshold effects,
the emission has an overall ellipsoidal profile that changes
gradually with the photon energy. In general, the profile is
prolate at small energies (Ω≲ ffiffiffiffiffiffiffiffiffijqBjp

) and oblate at large
energies (Ω≳ ffiffiffiffiffiffiffiffiffijqBjp

). In other words, the dominant
emission tends to be along the line of the magnetic field
at small energies and perpendicular to the magnetic field at
large energies. The prolate emission profile at small
energies can be explained largely by the Landau-level
quantization that strongly restricts the kinematics of photon
emission. On the other hand, we speculate that the oblate
profile at large energies is a natural consequence of the
synchrotron radiation in the semiclassical limit [36], which
goes predominantly in the directions perpendicular to the
magnetic field. Of course, the synchrotron radiation comes
only from the splitting (1 → 2) processes. However, there
are also contributions from the annihilation (2 → 1) proc-
esses. While the latter are subdominant at sufficiently high
temperatures, they become important at low temperatures
and high photon energies.
The combination of our results for several representative

choices of the magnetic field and temperature provides a
rather detailed picture of the photon emission. As one
might expect, the photon rate tends to grow with increasing
the temperature of the plasma. Concerning the energy
dependence, however, we found that the rate has a non-
monotonic behavior. For small photon energies,
Ω ≪

ffiffiffiffiffiffiffiffiffijqBjp
, it is strongly suppressed by the Landau-level

quantization. With increasing the energy, the quantization
effects gradually relax and the rate grows. After reaching a
maximum value at an intermediate value, however, the rate
starts to decrease. The decreasing trend also persists at very
large energies, where the suppression comes from the
Fermi-Dirac distribution of charged particles with high
energies.
The other application of the absorptive part of the photon

polarization tensor, presented in this paper, was the
calculation of magneto-optical conductivity in a quantum
limit of relativistic plasma. By making use of the explicit
tensor structure, we calculated both longitudinal and trans-
verse parts of the conductivity. As in the case of photon
emission, the Landau-level quantization affects the main
features of the frequency dependence of optical conduc-
tivity. One of such characteristic features is the appearance
of singular spikes associated with the Landau-level thresh-
old effects. Of course, the singularities come from using the
clean-limit approximation and should go away when
particle interactions are taking into account.
In the case of the longitudinal component of conductivity

σkðΩÞ, we showed that only the annihilation (“interband”)
processes contribute. Accordingly, the result for σkðΩÞ is
nonvanishing only when Ω > 2m. The transverse compo-
nent of conductivity σ⊥ðΩÞ, on the other hand, comes
from the splitting (“intraband”) processes when Ω <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBj þm2

p
−m and the annihilation (“interband”) ones

when Ω >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBj þm2

p
þm. The two windows of

frequencies are separated by a gap of width 2m, where the
transverse conductivity vanishes.
While we carefully studied the imaginary part of the

photon polarization at μ ¼ 0 in this paper, the case of
nonzero μ was not addressed. It appears that the corre-
sponding problem poses only a technical complication that
can be overcome with a moderate effort. Such study is
underway now [45]. A more difficult extension of the
present work will be obtaining the real part of the photon
polarization. We are currently exploring several promising
approaches to address the problem.

ACKNOWLEDGMENTS

The work of X.W. was supported by the start-up funding
No. 4111190010 of Jiangsu University. The work of I. A. S.
was supported by the U.S. National Science Foundation
under Grant No. PHY-1713950.

APPENDIX A: MATSUBARA SUMS

In this Appendix, we present several general results for
the fermionic Matsubara sums needed in the calculation of
the photon polarization function in the main text.
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Let us start by quoting the following standard sums

T
X∞
k¼−∞

1

½ω2
k þ a2�½ðωk −ΩmÞ2 þ b2� ¼

ðaþ bÞ½1 − nFðaÞ − nFðbÞ�
2ab½ðaþ bÞ2 þΩ2

m�
þ ða − bÞ½nFðaÞ − nFðbÞ�

2ab½ða − bÞ2 þ Ω2
m�

; ðA1Þ

T
X∞
k¼−∞

ωkðωk − ΩmÞ
½ω2

k þ a2�½ðωk −ΩmÞ2 þ b2� ¼
ðaþ bÞ½1 − nFðaÞ − nFðbÞ�

2½ðaþ bÞ2 þ Ω2
m�

−
ða − bÞ½nFðaÞ − nFðbÞ�

2½ða − bÞ2 þ Ω2
m�

; ðA2Þ

T
X∞
k¼−∞

iωk

½ω2
k þ a2�½ðωk − ΩmÞ2 þ b2� ¼

iΩm½1 − nFðaÞ − nFðbÞ�
2b½ðaþ bÞ2 þ Ω2

m�
þ iΩm½nFðaÞ − nFðbÞ�

2b½ða − bÞ2 þΩ2
m�

; ðA3Þ

T
X∞
k¼−∞

iðωk −ΩmÞ
½ω2

k þ a2�½ðωk − ΩmÞ2 þ b2� ¼ −
iΩm½1 − nFðaÞ − nFðbÞ�

2a½ðaþ bÞ2 þ Ω2
m�

þ iΩm½nFðaÞ − nFðbÞ�
2a½ða − bÞ2 þΩ2

m�
: ðA4Þ

where nFðϵÞ ¼ 1=½expðϵ=TÞ þ 1� is the Fermi-Dirac distribution function, and ωk ¼ ð2kþ 1ÞπT and Ωm ¼ 2mπT are the
fermionic and bosonic Matsubara frequencies, respectively. Note that distribution function satisfies the following
property: nFð−xÞ ¼ 1 − nFðxÞ.
By making use of Eqs. (A1) through (A4), it is straightforward to derive the following Matsubara sum of a more general

type:

T
X∞
k¼−∞

iωkðiωk − iΩmÞX þ iωkY1 þ ðiωk − iΩmÞY2 þ Z
½ðiωkÞ2 − a2�½ðiωk − iΩmÞ2 − b2�

¼
X
λ¼�1

ða − λbÞ½nFðaÞ − nFðλbÞ�
2λab½ða − λbÞ2 þ Ω2

m�
�
λabX þ iΩm

aY1 þ λbY2

a − λb
þ Z

�

¼
X

η;λ¼�1

nFðaÞ − nFðλbÞ
4λabða − λbþ ηiΩmÞ

½λabX − ηðaY1 þ λbY2Þ þ Z�; ðA5Þ

where X, Y1, Y2, and Z are arbitrary coefficient functions independent of the fermion Matsubara frequency ωk.
In the calculation of the photon polarization function in the main text, parameters a and b should be replaced with the

Landau-level energies En;pz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2 þ 2njqBj

p
and En0;pz−kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz − kzÞ2 þm2 þ 2n0jqBj

p
, respectively.

APPENDIX B: INTEGRALS OVER TRANSVERSE SPATIAL COORDINATES

In this Appendix, we present the explicit results for all types of integrals over the transverse spatial coordinates, r⊥, that
appear in the calculation of the photon polarization function.
Instead of the Cartesian coordinates x and y, it is convenient to use the polar coordinates r⊥ ≡ jr⊥j and φ⊥ in the r⊥

plane. Then, the results of the angular integrations are given in terms of the Bessel functions. In particular, one derives the
following results for the integrals that appear in the calculation:Z

d2r⊥e−ir⊥·k⊥fðr⊥Þ ¼ 2π

Z
∞

0

r⊥dr⊥J0ðr⊥k⊥Þfðr⊥Þ; ðB1Þ
Z

d2r⊥e−ir⊥·k⊥rμ⊥fðr⊥Þ ¼ −2πik̂μ⊥
Z

∞

0

r2⊥dr⊥J1ðr⊥k⊥Þfðr⊥Þ

¼ −πikμ⊥
Z

∞

0

r3⊥dr⊥½J0ðr⊥k⊥Þ þ J2ðr⊥k⊥Þ�fðr⊥Þ; ðB2Þ
Z

d2r⊥e−ir⊥·k⊥r2⊥fðr⊥Þ ¼ 2π

Z
∞

0

r3⊥dr⊥J0ðr⊥k⊥Þfðr⊥Þ; ðB3Þ
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Z
d2r⊥e−ir⊥·k⊥rμ⊥rν⊥fðr⊥Þ ¼ 2π

Z
∞

0

r3⊥dr⊥
��

−k̂μ⊥k̂
ν⊥ −

1

2
gμν⊥

�
J2ðr⊥k⊥Þ −

1

2
gμν⊥ J0ðr⊥k⊥Þ

�
fðr⊥Þ; ðB4Þ

where we used the following relation for the Bessel functions:

J1ðr⊥k⊥Þ ¼
1

2
r⊥k⊥½J0ðr⊥k⊥Þ þ J2ðr⊥k⊥Þ�: ðB5Þ

The remaining integrals over r⊥ can be expressed in terms of the following dimensionless functions:

In;n0
0 ðξÞ ¼ 1

l2

Z
∞

0

r⊥dr⊥e−r
2⊥=ð2l2ÞJ0ðr⊥k⊥ÞLn

�
r2⊥
2l2

�
Ln0

�
r2⊥
2l2

�
; ðB6Þ

In;n0
1 ðξÞ ¼ 1

l3

Z
∞

0

r2⊥dr⊥e−r
2⊥=ð2l2ÞJ1ðr⊥k⊥ÞLn

�
r2⊥
2l2

�
L1
n0

�
r2⊥
2l2

�
; ðB7Þ

In;n0
2 ðξÞ ¼ 1

l4

Z
∞

0

r3⊥dr⊥e−r
2⊥=ð2l2ÞJ0ðr⊥k⊥ÞL1

n

�
r2⊥
2l2

�
L1
n0

�
r2⊥
2l2

�
; ðB8Þ

In;n0
3 ðξÞ ¼ 1

l4

Z
∞

0

r3⊥dr⊥e−r
2⊥=ð2l2ÞJ2ðr⊥k⊥ÞL1

n

�
r2⊥
2l2

�
L1
n0

�
r2⊥
2l2

�
; ðB9Þ

where ξ ¼ k2⊥l2=2.
It should be noted that In;n0

0 ðξÞ, In;n0
2 ðξÞ, and In;n0

3 ðξÞ are symmetric under the interchange of indices n and n0. In contrast,
In;n0
1 ðξÞ is not symmetric, but it can be rewritten in terms of the other functions. Indeed, by making use of Eq. (B5) and the

well-known identity for the Laguerre polynomials Lα
nðxÞ ¼ Lαþ1

n ðxÞ − Lαþ1
n−1ðxÞ, one derives

In;n0
1 ðξÞ ¼

ffiffiffi
ξ

2

r
½In;n0

2 ðξÞ − In−1;n0
2 ðξÞ þ In;n0

3 ðξÞ − In−1;n0
3 ðξÞ�: ðB10Þ

One can also derive the following relations:

In;n0
1 ðξÞ ¼ nþ n0 þ 2

2
ffiffiffiffiffi
2ξ

p ½In;n0
0 ðξÞ − Inþ1;n0þ1

0 ðξÞ� þ
ffiffiffi
ξ

p

2
ffiffiffi
2

p ½Inþ1;n0
0 ðξÞ þ In;n0þ1

0 ðξÞ� − n − n0ffiffiffiffiffi
2ξ

p In;n0
0 ðξÞ; ðB11Þ

In;n0
2 ðξÞ ¼ nþ n0 þ 2

2
½In;n0

0 ðξÞ þ Inþ1;n0þ1
0 ðξÞ� − ξ

2
½Inþ1;n0

0 ðξÞ þ In;n0þ1
0 ðξÞ�; ðB12Þ

In;n0
3 ðξÞ ¼ nþ n0 þ 2

2
½Inþ1;n0

0 ðξÞ þ In;n0þ1
0 ðξÞ� − ðn − n0Þ2

2ξ
½In;n0

0 ðξÞ þ Inþ1;n0þ1
0 ðξÞ�: ðB13Þ

Other random relations:

In;n0
1 ðξÞ ¼

ffiffiffi
2

ξ

s
ðn0 þ 1ÞIn;n0

0 ðξÞ − 1ffiffiffiffiffi
2ξ

p In;n0
2 ðξÞ

¼ nþ n0 þ 2ffiffiffiffiffi
2ξ

p In;n0
0 ðξÞ − 1ffiffiffiffiffi

2ξ
p In;n0

2 ðξÞ − n − n0ffiffiffiffiffi
2ξ

p In;n0
0 ðξÞ; ðB14Þ

In;n0
3 ðξÞ ¼

ffiffiffi
2

ξ

s
½ðnþ 1ÞIn;n0

1 ðξÞ þ ðn0 þ 1ÞIn0þ1;n
1 ðξÞ�; ðB15Þ
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In;n0
3 ðξÞ ¼ In;n0−1

2 ðξÞ −
ffiffiffi
2

ξ

s
ðn − n0 − ξÞIn0;n

1 ðξÞ; ðB16Þ

2ðnþn0þ1−ξÞIn;n0
0 ðξÞ¼In;n0

2 ðξÞþIn−1;n0−1
2 ðξÞ; ðB17Þ

ffiffiffiffiffi
2ξ

p
In;n0
0 ðξÞ ¼ In;n0−1

1 ðξÞ þ In0;n
1 ðξÞ; ðB18Þ

2ðn − n0ÞIn;n0
0 ðξÞ ¼

ffiffiffiffiffi
2ξ

p
ðIn0;n

1 ðξÞ − In;n0
1 ðξÞÞ; ðB19Þ

In;n0
1 ðξÞ ¼ In0;n

1 ðξÞ þ
ffiffiffi
2

ξ

s
ðn0 − nÞIn;n0

0 ðξÞ; ðB20Þ

In0;n
1 ðξÞ ¼

ffiffiffiffiffi
2ξ

p
In;n0
0 ðξÞ − In;n0−1

1 ðξÞ; ðB21Þ

In;n0
1 ðξÞ ¼

ffiffiffiffiffi
2ξ

p
In;n0
0 ðξÞ − In0;n−1

1 ðξÞ; ðB22Þ

2ðn0−nÞ
ξ

In;n0
0 ðξÞ

¼ In;n0−1
2 ðξÞ−In−1;n0

2 ðξÞþIn;n0−1
3 ðξÞ−In−1;n0

3 ðξÞ: ðB23Þ

All of the above integrals can be calculated exactly in
terms of the generalized Laguerre polynomials by using
table integral [43]. The results read

In;n0
0 ðξÞ ¼ ð−1Þnþn0e−ξLn0−n

n ðξÞLn−n0
n0 ðξÞ; ðB24Þ

In;n0
1 ðξÞ ¼

ffiffiffiffiffi
2ξ

p
ð−1Þnþn0e−ξLn0−nþ1

n ðξÞLn−n0
n0 ðξÞ; ðB25Þ

In;n0
2 ðξÞ ¼ 2ð−1Þnþn0 ðn0 þ 1Þe−ξLn0−n

n ðξÞLn−n0
n0þ1

ðξÞ; ðB26Þ

In;n0
3 ðξÞ ¼ 2ð−1Þnþn0ξe−ξLn0−nþ1

n ðξÞLn−n0þ1
n0 ðξÞ: ðB27Þ

Note that the above functions are expressed in terms of the
exponential function e−ξ and a product of the Laguerre
polynomials of degrees n and n0 (or n and n0 þ 1). In
numerical calculations, it is the product of two polynomials
that produces the largest evaluation errors. This is particu-
larly detrimental when the values of n, n0, and jn − n0j are
all large. As we argue below, the problem can be relaxed
partially by rewriting the corresponding functions equiv-
alently as a product of the power function ξjn−n0j and the
Laguerre polynomials of smaller degree(s) ∼minðn; n0Þ.
This can be achieved by utilizing the well-known identity
for the Laguerre polynomials

Lα
nðξÞ ¼ ð−ξÞ−α ðnþ αÞ!

n!
L−α
nþαðξÞ: ðB28Þ

By applying this to the first Laguerre polynomial in each
product, the functions in Eqs. (B24)–(B27) can be rewritten
in the following equivalent form:

In;n0
0 ðξÞ ¼ ðn0Þ!

n!
e−ξξn−n

0 ðLn−n0
n0 ðξÞÞ2; ðB29Þ

In;n0
1 ðξÞ ¼ −

ffiffiffiffiffi
2ξ

p ðn0 þ 1Þ!
n!

e−ξξn−n
0−1Ln−n0−1

n0þ1
ðξÞLn−n0

n0 ðξÞ;
ðB30Þ

In;n0
2 ðξÞ ¼ 2

ðn0 þ 1Þ!
n!

e−ξξn−n
0
Ln−n0
n0 ðξÞLn−n0

n0þ1
ðξÞ; ðB31Þ

In;n0
3 ðξÞ ¼ −2

ðn0 þ 1Þ!
n!

e−ξξn−n
0
Ln−n0−1
n0þ1

ðξÞLn−n0þ1
n0 ðξÞ:

ðB32Þ

These representations are particularly useful in numerical
calculations when n > n0. Similarly, by applying Eq. (B28)
to the second Laguerre polynomial in each product, we can
rewrite functions In;n0

i ðξÞ as follows:

In;n0
0 ðξÞ ¼ n!

ðn0Þ! e
−ξξn

0−nðLn0−n
n ðξÞÞ2; ðB33Þ

In;n0
1 ðξÞ ¼

ffiffiffiffiffi
2ξ

p n!
ðn0Þ! e

−ξξn
0−nLn0−nþ1

n ðξÞLn0−n
n ðξÞ; ðB34Þ

In;n0
2 ðξÞ ¼ 2

ðnþ 1Þ!
ðn0Þ! e−ξξn

0−nLn0−n
n ðξÞLn0−n

nþ1 ðξÞ; ðB35Þ

In;n0
3 ðξÞ ¼ −2

ðnþ 1Þ!
ðn0Þ! e−ξξn

0−nLn0−nþ1
n ðξÞLn0−n−1

nþ1 ðξÞ:

ðB36Þ

These are suitable when n < n0.
For completeness, let us also discuss the properties ofIn;n0

0

and In;n0
2 in the limit of small jk⊥jl. This limit is of relevance

for the photon emission in the regime of small Ω, as well as
for the photon emission in the direction of the magnetic field
(θ ≈ 0) at an arbitrary Ω. By making use a closed form
representation for the generalized Laguerre polynomials [50]
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Lα
nðξÞ ¼

Xn
i¼0

ðnþ αÞ!ð−ξÞi
i!ðn − iÞ!ðαþ iÞ! ; ðB37Þ

which is valid for α > −1, and keeping only the terms up to linear order in ξ ¼ jk⊥j2l2=2, one obtains the following results:

In;n0
0 ðξÞ ≃ δn;n0 − ½ð2nþ 1Þδn;n0 − ðnþ 1Þδn;n0−1 − ðn0 þ 1Þδn−1;n0 �ξþO½ξ2�; ðB38Þ

In;n0
2 ðξÞ ≃ 2ðnþ 1Þδn;n0 − 2ðnþ 1Þðn0 þ 1Þð2δn;n0 − δn;n0−1 − δn−1;n0 ÞξþO½ξ2�; ðB39Þ

In;n0
3 ðξÞ≃ðnþ 1Þðn0 þ 1Þð2δn;n0 − δn;n0−1 − δn−1;n0 ÞξþO½ξ2�: ðB40Þ

Note that a similar expansion for In;n0
1 ðξÞ can be obtained by usingEq. (B10). Aswe can see, functions In;n0

0 ðξÞ and In;n0
2 ðξÞ are

diagonal in the Landau-level indices (i.e., ∼δn;n0 ) at the leading (zeroth) order in jk⊥jl. On the other hand, In;n0
3 ðξÞ vanishes

when jk⊥jl → 0.

APPENDIX C: EXPLICIT EXPRESSIONS FOR Tμν
i AND Iμνi

In the expression for the photon polarization function, there are several types of Dirac traces. For completeness, the
corresponding results are presented here. For brevity of notation, we will use the following shorthand notations:
Lm
n ≡ Lm

n ðξÞ, Tμν
i ≡ Tμν

i ðk⊥Þ, and Iμνi ≡ Iμνi ðk⊥Þ, where i ¼ 1, 2, 3, 4.
The four types of traces needed in the calculation are

Tμν
1 ¼ tr½γμðpkγk þmÞðPþLn þ P−Ln−1Þγνððpk − kkÞγk þmÞðPþLn0 þ P−Ln0−1Þ�

¼ 2ðpμ
kðpk − kkÞν þ ðpk − kkÞμpν

k − gμνk ½pkðpk − kkÞ −m2�ÞðLnLn0 þ Ln−1Ln0−1Þ
− 2gμν⊥ ½pkðpk − kkÞ −m2�ðLnLn0−1 þ Ln−1Ln0 Þ þ 2il2qFμν½pkðpk − kkÞ −m2�ðLnLn0−1 − Ln−1Ln0 Þ; ðC1Þ

Tμν
2 ¼ i

l2
tr½γμðpkγk þmÞðPþLn þ P−Ln−1Þγνðr⊥ · γ⊥ÞL1

n0−1�

¼ −
2i
l2

ðpμ
kr

ν⊥ þ rμ⊥pν
kÞðLn þ Ln−1ÞL1

n0−1 þ 2qðpμ
kF

νρr⊥;ρ − Fμρr⊥;ρpν
kÞðLn − Ln−1ÞL1

n0−1; ðC2Þ

Tμν
3 ¼ −

i
l2

tr½γμðr⊥ · γ⊥ÞL1
n−1γ

νððpk − kkÞγk þmÞðPþLn0 þ P−Ln0−1Þ�

¼ 2i
l2

ððpk − kkÞμrν⊥ þ rμ⊥ðpk − kkÞνÞðLn0 þ Ln0−1ÞL1
n−1

þ 2qððpk − kkÞμFνρr⊥;ρ − Fμρr⊥;ρðpk − kkÞνÞðLn0 − Ln0−1ÞL1
n−1; ðC3Þ

Tμν
4 ¼ 1

l4
tr½γμðr⊥ · γ⊥ÞL1

n−1γ
νðr⊥ · γ⊥ÞL1

n0−1� ¼
4

l4
ðgμνr2⊥ þ 2rμ⊥rν⊥ÞL1

n−1L
1
n0−1; ðC4Þ

where pkγk ≡ p0γ
0 − pzγ

3 ¼ iωkγ
0 − pzγ

3 and ðpk − kkÞγk ≡ ðp0 − k0Þγ0 − ðpz − kzÞγ3 ¼ ðiωk − iΩmÞγ0 − ðpz − kzÞγ3.
The only nonzero components of the field strength tensor are F12 ¼ −F21 ¼ −B or, equivalently, Fμν ¼ −ε0μν3B.
Thus, Fμρr⊥;ρ ¼ ðr⊥ ×BÞμ.
By making use of the results in Appendix B, one can also calculate the corresponding integrals over the transverse spatial

coordinates, r⊥. The results are given by

Iμν1 ¼
Z

d2r⊥e−ir⊥·k⊥e−r
2⊥=ð2l2ÞTμν

1 ¼ −4πl2gμν⊥ ½pkðpk − kkÞ −m2�½In;n0−1
0 ðξÞ þ In−1;n0

0 ðξÞ�

þ 4πl2½pμ
kðpk − kkÞν þ ðpk − kkÞμpν

k − gμνk ½pkðpk − kkÞ −m2��½In;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞ�
þ 4πil4qFμν½pkðpk − kkÞ −m2�½In;n0−1

0 ðξÞ − In−1;n0
0 ðξÞ�; ðC5Þ
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Iμν2 ¼
Z

d2r⊥e−ir⊥·k⊥e−r
2⊥=ð2l2ÞTμν

2 ¼ −4πlðpμ
kk̂

ν⊥ þ k̂μ⊥pν
kÞ½In;n0−1

1 ðξÞ þ In−1;n0−1
1 ðξÞ�

− 4πil3qðpμ
kF

νρk̂⊥;ρ − Fμρk̂⊥;ρpν
kÞ½In;n0−1

1 ðξÞ − In−1;n0−1
1 ðξÞ�; ðC6Þ

Iμν3 ¼
Z

d2r⊥e−ir⊥·k⊥e−r
2⊥=ð2l2ÞTμν

3 ¼ 4πlððpk − kkÞμk̂ν⊥ þ k̂μ⊥ðpk − kkÞνÞ½In0;n−1
1 ðξÞ þ In0−1;n−1

1 ðξÞ�

− 4πil3qððpk − kkÞμFνρk̂⊥;ρ − Fμρk̂⊥;ρðpk − kkÞνÞ½In0;n−1
1 ðξÞ − In0−1;n−1

1 ðξÞ�; ðC7Þ

Iμν4 ¼
Z

d2r⊥e−ir⊥·k⊥e−r
2⊥=ð2l2ÞTμν

4 ¼ 8π½gμνk In−1;n0−1
2 ðξÞ − ðgμν⊥ þ 2k̂μ⊥k̂ν⊥ÞIn−1;n0−1

3 ðξÞ�: ðC8Þ

The explicit expressions for functions In;n0
i (i ¼ 1, 2, 3, 4) are given in Eqs. (B24)–(B27) in Appendix B.

After performing the Matsubara sums, substituting iΩm → Ωþ iϵ, and using the energy conservation condition (8), one
finds that the Iμνi functions in the final result will be replaced by similar expressions where only the following replacements
should be made:

pμ
k → p̄μ

kjpz¼pð�Þ
z

¼ −ηEn;pz
δμ0 þ pzδ

μ
3jpz¼pð�Þ

z

¼ 1

2
kμk

�
2ðn − n0ÞjqBj

Ω2 − k2z
þ 1

�
� 1

2
k̃μk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
Ω2 − k2z

��
1 −

k2þ
Ω2 − k2z

�s
; ðC9Þ

ðpk − kkÞμ → ðp̄k − kkÞμjpz¼pð�Þ
z

¼ −ηλEn0;pz−kzδ
μ
0 þ ðpz − kzÞδμ3jpz¼pð�Þ

z

¼ 1

2
kμk

�
2ðn − n0ÞjqBj

Ω2 − k2z
− 1

�
� 1

2
k̃μk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
Ω2 − k2z

��
1 −

k2þ
Ω2 − k2z

�s
; ðC10Þ

pkðpk − kkÞ → p̄kðp̄k − kkÞjpz¼pð�Þ
z

¼ λEn;pz
En0;pz−kz − pzðpz − kzÞjpz¼pð�Þ

z

¼ m2 þ ðnþ n0ÞjqBj − 1

2
k2k: ðC11Þ

where kμk ¼ Ωδμ0 þ kzδ
μ
3 and k̃μk ¼ kzδ

μ
0 þ Ωδμ3. Note that kk;μk̃

μ
k ¼ 0 and k̃k;μk̃

μ
k ¼ −k2k. The definition of the transverse

threshold momenta k− and kþ are given in Eqs. (11) and (13), respectively.
By using these results, we can derive the alternative expressions for tensors Iμνi tensors. In particular, one obtains

Iμν1 j
pz¼pð�Þ

z
¼ −4πl2gμν⊥

�
ðnþ n0ÞjqBj − 1

2
k2k

�
½In;n0−1

0 ðξÞ þ In−1;n0
0 ðξÞ�

− 4πl2gμνk

�
ðnþ n0ÞjqBj − 1

2
k2k

�
½In;n0

0 ðξÞ þ In−1;n0−1
0 ðξÞ�

þ 4πil4qFμν

�
ðnþ n0ÞjqBj − 1

2
k2k

�
½In;n0−1

0 ðξÞ − In−1;n0
0 ðξÞ�

þ 4πl2Aμν
� ½In;n0

0 ðξÞ þ In−1;n0−1
0 ðξÞ�; ðC12Þ

where we used the following shorthand notation:

Aμν
� ¼ −

1

2
kμkk

ν
k

�
1 −

4ðn − n0Þ2ðqBÞ2
ðΩ2 − k2zÞ2

�
þ 1

2
k̃μkk̃

ν
k

�
1 −

4½m2 þ ðnþ n0ÞjqBj�
Ω2 − k2z

þ 4ðn − n0Þ2ðqBÞ2
ðΩ2 − k2zÞ2

�

� ðkμkk̃νk þ kνkk̃
μ
kÞ
ðn − n0ÞjqBj
Ω2 − k2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4½m2 þ ðnþ n0ÞjqBj�
Ω2 − k2z

þ 4ðn − n0Þ2ðqBÞ2
ðΩ2 − k2zÞ2

s
: ðC13Þ

Note that the upper and lower signs correspond to pðþÞ
z and pð−Þ

z , respectively.

XINYANG WANG and IGOR SHOVKOVY PHYS. REV. D 104, 056017 (2021)

056017-26



Similarly, by combining the next two tensor functions together, one finds

Iμν2 þ Iμν3 j
pz¼pð�Þ

z
¼ −4πlBμν

� ½In;n0−1
1 ðξÞ þ In−1;n0−1

1 ðξÞ�

− 4πlðkμkk̂ν⊥ þ kνkk̂
μ
⊥ − Bμν

� Þ½In0;n−1
1 ðξÞ þ In0−1;n−1

1 ðξÞ� − 4πil3
qB
k⊥

Cμν
� ½In;n0−1

1 ðξÞ − In−1;n0−1
1 ðξÞ�

− 4πil3
qB
k⊥

½Cμν
� − ðkμkk̃ν⊥ − kνkk̃

μ
⊥Þ�½In0;n−1

1 ðξÞ − In0−1;n−1
1 ðξÞ�; ðC14Þ

where, by definition,

Bμν
� ¼ 1

2
ðkμkk̂ν⊥ þ kνkk̂

μ
⊥Þ
�
2ðn − n0ÞjqBj

Ω2 − k2z
þ 1

�
� 1

2
ðk̃μkk̂ν⊥ þ k̃νkk̂

μ
⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4½m2 þ ðnþ n0ÞjqBj�
Ω2 − k2z

þ 4ðn − n0Þ2ðqBÞ2
ðΩ2 − k2zÞ2

s
; ðC15Þ

and

Cμν
� ¼ 1

2
ðkμkk̃ν⊥ − kνkk̃

μ
⊥Þ
�
2ðn − n0ÞjqBj

Ω2 − k2z
þ 1

�
� 1

2
ðk̃μkk̃ν⊥ − k̃νkk̃

μ
⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4½m2 þ ðnþ n0ÞjqBj�
Ω2 − k2z

þ 4ðn − n0Þ2ðqBÞ2
ðΩ2 − k2zÞ2

s
: ðC16Þ

Finally, the last one is given by

Iμν4 j
pz¼pð�Þ

z
¼ 8π½gμνk In−1;n0−1

2 ðξÞ − ðgμν⊥ þ 2k̂μ⊥k̂ν⊥ÞIn−1;n0−1
3 ðξÞ�: ðC17Þ

When calculating the Lorentz contracted expression for the polarization tensor Im½Πμ
μ� ∼P

4
i¼1 gμνI

μν
i , it is convenient to

introduce the following scalar functions: F i ¼ gμνI
μν
i . By making use of the original definition for Iμνi , one finds that

F 1 ¼ 8π

�k2kl2

2
− ðnþ n0Þ

�
ðIn−1;n0

0 ðξÞ þ In;n0−1
0 ðξÞÞ þ 8πl2m2ðIn;n0

0 ðξÞ þ In−1;n0−1
0 ðξÞÞ; ðC18Þ

F 2 ¼ gμνI
μν
2 ¼ 0; ðC19Þ

F 3 ¼ gμνI
μν
3 ¼ 0; ðC20Þ

F 4 ¼¼ 16πIn−1;n0−1
2 ðξÞ: ðC21Þ

By adding together the nonvanishing functions F i, we derive

F 1 þ F 4 ¼ 8πðnþ n0 þm2l2Þ½In;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞ� þ 8π

�k2k − k2⊥
2

l2 − ðnþ n0Þ
�
½In;n0−1

0 ðξÞ þ In−1;n0
0 ðξÞ�: ðC22Þ

Note that the second term simplifies when photons satisfy the on-shell condition k2k ¼ k2⊥.

APPENDIX D: TENSOR STRUCTURE OF Im½Πμν�
Bymaking use of the expression for the polarization tensor in Eq. (19) and the definition of tensors Iμνi in Appendix C, we

find that the imaginary part of Πμν
R ðΩ;kÞ has the following structure:
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Im½Πμν
R ðΩ;kÞ� ¼

�kμkkνk
k2k

− gμνk

�
Im½Π1� þ

�
gμν⊥ þ kμ⊥kν⊥

k2⊥

�
Im½Π2�

þ
�kμkk̃νk þ k̃μkk

ν
k

k2k
þ
k̃μkk

ν⊥ þ kμ⊥k̃νk
k2⊥

�
Im½Π3� þ

�kμkkν⊥ þ kμ⊥kνk
k2k

þ k2⊥
k2k

gμνk − gμν⊥
�
Im½Π4�

þ
�
Fμν

B
þ
kμkk̃

ν⊥ − k̃μ⊥kνk
k2k

�
Im½Π̃5� þ

k̃μkk̃
ν⊥ − k̃μ⊥k̃νk
k2k

Im½Π̃6�; ðD1Þ

where we utilized the shorthand notations introduced in Eq. (22). Note that kμk̃
μ
⊥ ¼ kμk̃

μ
k ¼ 0 and Fμνk⊥;ν ¼ Bk̃μ⊥. One can

also check that k̃⊥;μk̃
μ
⊥ ¼ k⊥;μk

μ
⊥ ¼ −k2⊥ and k̃k;μk̃

μ
k ¼ −kk;μk

μ
k ¼ −k2k.

To simplify the representation of the six component functions in the imaginary part of polarization tensor (D1), it is
convenient to introduce the following operator:

X̂ð…Þ ¼ αNf

4πl4

X∞
n;n0¼0

X
λ;η¼�1

X
s¼�1

Θn;n0
λ;η ðΩ; kzÞ

nFðEn;pz
Þ − nFðλEn0;pz−kzÞ

ηλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 − k2z − k2−ÞðΩ2 − k2z − k2þÞ

p ð…Þ: ðD2Þ

Note that, with the help of the operator X̂, the polarization tensor in Eq. (19) can be rewritten in a compact form
as Im½Πμν

R � ¼ X̂
P

4
i¼1 I

μν
i .

By using the operator in Eq. (D2), we can also write down the explicit expressions for the individual tensor component
functions. In particular, the first four components, defining the symmetric tensor structures, are

Im½Π1� ¼ 8πX̂
�
2ðn − n0Þ2

k2kl
2

−m2l2 − ðnþ n0Þ
�
½In;n0

0 ðξÞ þ In−1;n0−1
0 ðξÞ�; ðD3Þ

Im½Π2� ¼ −16πX̂In−1;n0−1
3 ðξÞ

¼ −8πX̂
�
ðnþ n0Þ½In;n0−1

0 ðξÞ þ In−1;n0
0 ðξÞ� − ðn − n0Þ2

ξ
½In;n0

0 ðξÞ þ In−1;n0−1
0 ðξÞ�

	
; ðD4Þ

Im½Π3� ¼ �4πX̂ðn − n0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
k2k

��
1 −

k2þ
k2k

�s
½In;n0

0 ðξÞ þ In−1;n0−1
0 ðξÞ�; ðD5Þ

Im½Π4� ¼ −2πX̂
�k2kl

2 þ 2ðn − n0Þ
k⊥l

½In;n0−1
1 ðξÞ þ In−1;n0−1

1 ðξÞ� þ
k2kl

2 − 2ðn − n0Þ
k⊥l

½In0;n−1
1 ðξÞ þ In0−1;n−1

1 ðξÞ�
	

¼ −2πX̂
�
k2kl

2½In;n0−1
0 ðξÞ þ In−1;n0

0 ðξÞ� − 2ðn − n0Þ2
ξ

½In;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞ�
	
: ðD6Þ

Similarly, the component functions of the antisymmetric contributions read

Im½Π̃5� ¼ −2πis⊥X̂ðk2kl2 − 2ðnþ n0ÞÞ½In;n0−1
0 ðξÞ − In−1;n0

0 ðξÞ�; ðD7Þ

and

Im½Π̃6� ¼∓ 2πiX̂
s⊥k2kl2

k⊥l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

k2−
k2k

��
1 −

k2þ
k2k

�s
½In;n0−1

1 ðξÞ − In−1;n0−1
1 ðξÞ þ In0;n−1

1 ðξÞ − In0−1;n−1
1 ðξÞ�

¼ ∓ 4πi
s⊥
k2⊥

X̂ðnþ n0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2k − k2−Þðk2k − k2þÞ

q
½In;n0

0 ðξÞ − In−1;n0−1
0 ðξÞ�: ðD8Þ
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APPENDIX E: LOWEST LANDAU LEVEL
APPROXIMATION

In the lowest Landau level approximation (i.e.,
n ¼ n0 ¼ 0), the explicit result for the Lorentz-contracted
imaginary part of the polarization tensor reads

Im½Πμ
R;μðΩ;kÞ� ¼ −

4αNfm2θðΩ2 − k2z − 4m2Þ
ðΩ2 − k2zÞl2Rm

×
sinhðΩ

2TÞe−k
2⊥l2=2

coshðΩ
2TÞ þ coshðkzRm

2T Þ ; ðE1Þ

where Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=ðΩ2 − k2zÞ

p
. Note that the solutions

to the energy conservation equation are given by

pð�Þ
z;0 ¼ kz

2
�Ω

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

Ω2 − k2z

s
: ðE2Þ

On these solutions, the charged particle energies are

E0;psþ
z
¼ E0;ps−

z −kz ¼
Ωþ kzRm

2
; ðE3Þ

E0;psþ
z −kz ¼ E0;ps−

z
¼ Ω − kzRm

2
: ðE4Þ

In deriving the result in Eq. (E1), we used L0
0ðxÞ ¼

L−1
0 ðxÞ ¼ 1 and took into account that, in the lowest

Landau level approximation,

F 1 ¼ 8πm2l2e−k
2⊥l2=2; ðE5Þ

and F 4 ¼ 0. As is easy to check, the result in Eq. (E1) is
consistent with the spectral function obtained in the lowest
Landau level approximation in Ref. [29]. With that being
said, it is important to remember that, as emphasized in the
main text, this approximation is not very reliable for
calculating the photon production rate even in very strong
magnetic fields.
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