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Resummation of quantum radiation reaction and induced polarization
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In a previous paper we proposed a new method based on resummations for studying radiation reaction of
an electron in a plane-wave electromagnetic field. In this paper we use this method to study the electron
momentum expectation value for a circularly polarized monochromatic field with ay = 1, for which
standard locally constant-field methods cannot be used. We also find that radiation reaction has a significant
effect on the induced polarization, as compared to the results without radiation reaction, i.e., the Sokolov-
Ternov formula for a constant field, or the zero result for a circularly monochromatic field. We also study
the Abraham-Lorentz-Dirac equation using Borel-Padé resummations.
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I. INTRODUCTION

Radiation reaction (RR) [1,2], i.e., the difference
between the actual trajectory of a charge and the one
predicted by the Lorentz force equation (with only the
background field, no self-field), is becoming an important
effect in high-intensity laser experiments [3,4] (see also
[5]). RR is an old topic which continues to be the subject
of theoretical studies [6—13]. Even in classical electrody-
namics there is still some debate on which equation is
correct. Perhaps more relevant for upcoming laser experi-
ments is how to obtain quantum RR with spin etc. and e.g.,
how to go beyond the standard locally constant-field (LCF)
approximation. In [14] we developed a new method for
calculating the momentum expectation value of an electron
in a plane-wave background field. It is fully quantum,
includes both real photon emissions and loops and can be
used for arbitrary spin (see e.g., [15—17] for other studies
of spin-dependent RR). This method is based on the use of
first-order Mueller matrices as building blocks of higher-
order probabilities [18,19]. In [14] we focused for sim-
plicity on a constant field, but this method is not restricted
to LCF or ag> 1. It works as long as the field is
sufficiently long. In this paper we will consider both a
constant field as well as a circularly polarized monochro-
matic field with ay = 1. The circular case provides a
contrasting example compared to the constant field case,
which we will now explain.
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If an initially unpolarized electron is in the background
field for a sufficiently long time, then it can become
polarized. If one neglects RR and considers a constant
field, the polarization is given by the famous Sokolov-
Ternov result. This induced polarization is along the
magnetic field direction. The Sokolov-Ternov effect was
originally considered for electrons in storage-rings.
However, one has a similar effect in other fields as well
[20-22], in particular plane waves. However, if one just lets
an electron stay in the laser field then RR will eventually
lead to a considerable change in the momentum. This is not
included in the Sokolov-Ternov result. The method in [14]
is not restricted to only the momentum expectation value;
here we will use these methods to study how RR affects the
induced polarization.

For a linearly polarized field and in the LCF regime, it
has been shown in [20,23] that the induced polarization
tends to average out due to the fact that the magnetic field
changes direction every half cycle. There are ways [20,23]
to compensate for this by choosing some asymmetric field.
One might wonder, though, if a circularly polarized field
could be used instead to generate polarized particles. If one
only considers the contribution from real photon emission
then one would conclude that a circularly polarized field
would be able to make the particles polarized along the
propagation direction of the laser. However, at first order in
a, this is exactly canceled by the cross term between the
zeroth order amplitude and the first-order loop [19,24,25]
(see though [26] for dependence on collision angle). Hence,
if one neglects RR then there is no induced polarization for
a circularly polarized field. Here we will use the methods
of [14] to show that there is in fact a nonzero induced
polarization if one takes RR into account.

Polarization effects of particles in a circularly polarized
field in LCF have been studied in [27,28]. There is a crucial
difference here. For a circular field in LCF, one needs to
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start with polarized particles in the initial state to have
longitudinally polarized particles in the final state. Here we
are instead interested in a circular field with gy~ 1 in
which, as we will show, even an initially unpolarized
particle may become longitudinally polarized. In this
regime, spin up and down the longitudinal direction plays
essentially the same role as spin up and down the magnetic
field direction for a linearly polarized field.

This paper is organized as follows. In Sec. III we study
how RR affects the Sokolov-Ternov polarization for a
constant field. In Sec. IV we show the details of how to
use the general methods in [14] for a circularly polarized
monochromatic field with @, = 1 (i.e., beyond LCF), and
we apply these methods to both the momentum expectation
value and the induced polarization. In order to gain some
insights into how the approximation in [14] relates to the
full QED result (which cannot be calculated), in Sec. V we
compare its leading classical limit, which we in [14]
showed is equal to solution of the Landau-Lifshitz (LL)
equation [29,30], with a resummation of the Abraham-
Lorentz-Dirac (LAD) equation.

II. NOTATION AND BASIC INGREDIENTS

We use units with the electron mass m, =1 (and
¢ =h=1). A factor of the electron charge is absorbed
into the laser field, eF,, — F,, so e only appear explicitly
ina = ¢*/(4rx). We use lightfront coordinates v* = 2v- =
v’ + v*and v, = {v,, v,}. The vector potential of the laser
has a,. =0 and a,(¢) is a function of lightfront time
¢ =kx=k,x" =w(t+z). o is a characteristic laser
frequency, E is the field strength, and q := E/w. p, is
the initial electron momentum, by := kp and y := agyby.

In [14] we studied the expectation value of the lightfront
longitudinal momentum (kP), where P, is the final
electron momentum. The starting point is the a expansion
(kP) = 3% (kP)", (kP)") = O(a"). The spin depend-
ence can be expressed in terms of Stokes vectors N
and strong-field-QED Mueller matrices M, (kP)(") =
(1/2)Ng-M™ - N;, where Ny and N; are the initial and
final Stokes vector of the electron and the Mueller matrix
M) is given by a sum of all the relevant O(a") diagrams.
For large a and/or a long pulse, the leading-order terms
can be expressed as products of O(a) Mueller matrices
[18,19]. These are obtained from the probabilities
Pe—ety = (1/2)Ng-M®-N; + O(a?) and P, _, =
(1/2)Ng- (1 +MY) - N, + O(a?). M™ is given by a
sum of 2" diagrams with 0 < m < n Compton scattering
steps M€ and n — m loop steps M. For example, at O(a?)
we have M€ - M€, M€ - ML, MY - M€ and M- - MY, with
corrections that are small for large a, or a long pulse.

These matrix products are lightfront time ordered: The
most general expressions for M® and M" involve two
lightfront-time integration variables ¢ and ¢’. We change

variables to o = (1/2)(¢p + ¢') and 6 = ¢ — ¢’ and then to
leading order we have a time ordering of the ¢ variables
while the 6 integrals can be performed for each ML
separately [31].

The integrals over the transverse momentum compo-
nents also factorize [32], so only the longitudinal momen-
tum plays a nontrivial role here. The longitudinal
momentum changes at Compton steps, so all the sub-
sequent steps depend on how much of the electron
longitudinal momentum is carried away by the emitted
photon. The loop steps have independent longitudinal
momentum integrals, but it is anyway convenient to pull
out this integral in order to combine M® and M".

The Stokes vectors are 4 dimensional, N = {1,n},
where n is a 3D vector pointing in the average spin
direction. Consequently, the Mueller matrices are in general
4 x 4. However, in some cases some of the elements might
be irrelevant. For the two cases we will consider here, a
constant field and spin along the magnetic field direction or
a circularly polarized monochromatic field and spin along
the laser propagation direction, we only have two relevant
elements.

Although this approach works for general nonconstant
fields, here and in [14] we focus on either a constant field or
a monochromatic field. In [14] we showed that for a
constant field we have

M(n):AI%(MC.MW_I)OAI—q))‘f'ML'M(n_l)()())’
(1)

where the O(a) building blocks are expressed in terms of
Airy functions and Ai; (§) = [ dxAi(x), and if we restrict
to an initial electron that is either unpolarized or polarized
up or down the magnetic field direction then the 4 x 4
Mueller matrices reduce to the following 2 x 2 matrices

—Ai _ A g Aig)
MC€ = All(é) : < st Ve (2)
g5 —Aij (&) - 22
I R S 5
—g%E AR+

&= (r/x)*?, r=(1/s1)=1,k=(1/5))+sand 5, =1 ~¢.
In [14] we considered the expectation value of the longi-
tudinal momentum (kP) and then the first term is given
by M@ = p,1.

We can use (1) to first calculate the orders separately and
then resum the a expansion afterwards. Each M“€ comes
with a factor of agA¢, where A¢ is the length of the field,
so at O(a") we have an overall factor of (aayAg)" times
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functions of y. It is therefore natural to absorb ayA¢ into
the following effective expansion parameter

constant field: T = aagAdgp. (4)

Even though a < 1, T can be large for a sufficiently strong
field (large a,) or long pulse. Higher orders can therefore be
important. Fortunately, as we showed in [14] and as we will
see further examples of here, we can resum these series
with Padé approximants using only quite few terms. The
expansions of various strong-field-QED phenomena have
recently been studied in [13,33-36].

Or we can resum (1) right from the start, which gives
M=5Y®,7"M" as the solution to an integro-
differential equation

%%;AiﬂMCM@n—D+MLMm%6)

where M(T = 0) = M,

III. RR AND THE SOKOLOV-TERNOV EFFECT

In [14] we focused on (kP), but this formalism is more
general. In this section we will consider the probability
of transition between Stokes vector N; and Ny, for which

we have P = (1/2)N;-M-N;, where M and M®" is
obtained from the same (1) but with M(® =1 instead
of M©) = p1.

A. Standard Sokolov-Ternov, no RR

If we neglect RR then we should obtain the standard
Sokolov-Ternov result. In our approach, we turn off RR by
replacing y(1 — ¢g) — y in the first term in (1). The first-
order Mueller matrix is given by

0 e
M, = (6)
< 0 =3y )
and with no RR it is straightforward to sum up all orders,

which gives

1 1 2 (1-exp[-
PZ-My( 5v3

5\/— ])
. )'Mv(ﬂ

which agrees with the results in [37,38]. For a very long
pulse, T > 1/4? and with an initially unpolarized state,

%{ sgf} Ny ®)

so the degree of the induced polarization is 8/(5v/3) ~0.92.
Note that this is just a constant, in particular, independent of

0 exp [—

the momentum y. However, the time scale for this is
T ~1/4%, which is slower than the time scale for RR,
which causes the longitudinal momentum to decrease as
x(T) = /(1 +[2/3]xT). Since for large T the combina-
tion y*(T)T ~ 1/T is actually small rather than large, this
suggests that the result with RR included will be very
different from (7). Note that, in experiments where one can
use the standard Sokolov-Ternov result, the reason why one
can neglect RR is because in such experiments the particles
are re-accelerated in order to compensate for RR. But in the
following we are instead interested in electrons that are sent
into a laser field without anything to counteract RR, and we
will now show that the result will be very different (even
for y < 1).

B. RR included, low energy

To see the effects of RR, we consider first the leading
order in y < 1. Inserting the ansatz

0 B
M, = n+1 n 9
(00 ©
for n>1 into (1), we find B,=-(2/3)B,_; and
A, = —(2/3)A,_;. Thus we have a simple geometric series
and we find

1 Ty (0 1
P=-N,- |1 ‘N,. (10
0 [+1+yy<o —3f3 ro (10)

2
Note that this varies on the same time scale as the
momentum expectation value, i.e., T ~ 1/y. For an asymp-
totically long pulse, 7 > 1/y, and for an initially unpo-
larized electron we have

1 3y

P = > {1 > } N;.
This is quite different from the standard Sokolov-Ternov
result (8): The asymptotic result is reached much faster
(T > 1/y), but is a much lower degree of polarization for
x < 1. However, (11) suggests that we might be able to
compensate for the negative effect of RR by increasing y.
Since the degree of polarization cannot be larger than 1, it is
clear that the leading order (11) cannot be used for larger y.
So, we now turn to a numerical treatment.

(11)

C. RR included, higher energy

The orders M,, can be calculated separately either by
resummation of the y expansion or with numerical inter-
polation functions exactly in the same way as in [14]. The
only difference is that in [14] we considered the expectation
value of the longitudinal momentum, with M = b1, while
now we have N, = {0, 1}. However, in [14] we used the
“standard” Borel transform to resum the y expansions, while
here we are going to use a slight modification.
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We begin by noting that the first order can be expressed
as a Mellin integral

0 -3
M _/d_Sgi/zS(l—kS) T3] (12)
V) 2zid S sinfs] | AT |
B3

where the integration contour goes through the real axis at
—2 < ReS < 1/3.The y < 1 expansion is obtained directly
from the residues of the poles at S = —n, n = 2,3, .... For
large n we have for the coefficient of y”

m 1 /3 3\m 51/0 14+ 0(1/m)
W 3(2) T )

-1+ 01 /m)
(13)
Of course, for this order we already have an exact
expression, e.g., (12), but (13) will help us to guess a
convenient resummation for M,, n > 1. We write M,, as
in (9) but where A, and B,, are now functions of y. We
focus on B,,. Its expansion

B, =Y B"y" (14)
m=0

starts with the constants B,(10> obtained in Sec. III B. In
contrast to the n = 1 case, for n > 1 we only have the first
~100 terms in y. From (13) we take

(=¢)"T[m + b,]. (15)
as an ansatz for the large-order scaling of Bﬁ,m).

In many applications one finds Borel transforms with
poles at t > 0, and then there is an ambiguity in the Laplace
integral because one can avoid the pole by integrating either
above or below it. This may actually be an interesting
property because one can then study how this ambiguity is
resolved due to resurgence, which relates different sectors
of trans-series (see [39] for a recent review). However, all
the asymptotic series in this paper have alternating signs at
large orders and we have found no poles for the resummed
Borel transforms for ¢ > 0.

In this case, we take ¢ = 3/2 and determine b numeri-
cally. We find b, =3 + (3/2)n for n > 1. Note that the
value of b, does not need to be perfect (in fact, b, =
3 + (3/2)n might be only an approximation), but we see
that at larger n b, is considerably larger than b; = 9/2,
which one might expect to be significant. Thus, instead of
the standard Borel transform, we use the Borel-Leroy
transform (the factor of ¢ is just a variable rescaling)

oo Bglm)
m=0 n

Bgm+1) /Bgm)
m
BL[B,] ™ V/BL[B,]™

50 100 150 m
-1.00
-1.02
-1.04
-1.06
-1.08
-1.10

FIG. 1. Ratios of neighboring coefficients for the expansion

in (14) and its Borel-Leroy transform (16).

Figure 1 shows that this transforms the asymptotic series
in (14) into a convergent one. This can now be resummed
with a Padé approximant [40-49]. We have used'
[40/(40 + ceil[b,] + 1)]. In contrast to the Padé resumma-
tion of the a expansion, where we know or have a good
idea of what i and j in [i/j] should be for the fastest
convergence, in this case we just chose [40/(40 +
ceil[b,] + 1)] because it turned out that having j consid-
erably larger than i gives faster convergence (especially at
higher orders in ). That we have to change i —j as n
increases might be understood as a consequence of fact
that (9) has an overall factor of y"*! and so, although we
have not calculated the y > 1 scaling of M,, yet, it seems
clear that the y > 1 limit of M,, is very different from y"*!,
which means that the resummed B, has to go faster and
faster to zero as y increases. Thus, there is still considerable
room for finding more optimized resummations that
would give the same results but with much fewer terms.

'In some cases one may have to choose slightly different
Padé orders due to the appearance of spurious poles. That these
poles are indeed spurious and not genuine is confirmed by the
fact that they disappear by choosing a different order. In
contrast, a genuine pole, such as the one closest to the origin
at t+ < 0 which determines the radius of convergence, can be
seen even if one chooses different orders. For more about
spurious poles see [46,50].
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One option would be the new resummation method in [51],
which would allow us to incorporate the large-y scaling in
the resummation. The final result is obtained from a
Laplace integral

o by—1

B = [T g0, )
0 X \X

where x = cy. Now we have the first ~10 to 20 terms in the

a expansion.

The next step is to resum the a expansion. For this we
can use Padé approximants [n/m]| directly. For n > m the
resummation would diverge as 7 — oo, which is unphys-
ical. For n < m the resummation would go to zero as
T — oo, but we already know that in the classical limit the
resummation should be nonzero at 7 — co, and in the
quantum regime we can confirm by solving the integro-
differential equation that the result should not go to zero.
Thus, to have a nonzero (and finite) limit as 7 — oo we
resum this expansion with diagonal Padé approximants,
[n/n]. The result is shown in Fig. 2. As in [14], we again
find a fast convergence of the Padé approximants. For this
particular value of y, we are close to the asymptotic limit at
T =100 and for T < 100 we see that the resummation has
already converged to a good precision with Padé[4/4],
which is obtained with the first eight terms in the «
expansion. The leading order (11) gives a rather large
overestimation at y = 0.3, but Fig. 2 shows that the exact
result still gives a significant degree of polarization.

IV. CIRCULARLY POLARIZED FIELD

In the previous section and in [14] we considered a
constant field. Now we will consider a circularly polarized
monochromatic field. As a constant field can be seen as
a first step toward LCF, a monochromatic field can be

pol.
0.25
0.20
015 Pade[1/1] Pade[5/5]
Pade[2/2] ----- Pade[6/6]
0-10 Pade[3/3]
Pade[4/4]
0.05 x=0.3
N
0 50 100 150 200 250 300

FIG. 2. The polarization induced on an initially unpolarized
electron. Pade [n/n] refers to diagonal Padé approximants
(>m e TH/(1+ 3", d;T"). The leading order (11) leads to
a large overestimation for this value of y and is therefore
not shown.

seen as the first step toward a locally monochromatic-field
(LMF) approximation [19,52,53] (see also [54-57]). While
approaches based on LCF only work for large ay, LMF
works also for smaller a, provided the pulse length is
sufficiently long. In this section we will therefore focus on
ay ~ 1. The effective expansion parameter is

circular field: T = aAd, (18)

for a(¢p) = ap{sing,cos$,0} and 0 < ¢ < A¢.

A. Definitions

In general the Mueller matrices are 4 x 4. For a constant
field one can reduce this to 2 x 2 if one considers initial and
final electrons that are either unpolarized or polarized
parallel or antiparallel to the magnetic field. For a circularly
polarized field (with ag ~ 1) the general 4 x 4 matrices can
be found in [19]. However, also in this case one can reduce
the Mueller matrices to 2 x 2, but in this case the special
spin direction is parallel/antiparallel to the wave vector of
the field. The recursive and integro-differential equations
for the circular field are obtained from (1) and (5) by
replacing y — b, and, for initial and final states that
are unpolarized or polarized along the wave vector of
the field, the first-order Mueller-matrix building blocks
are given by [19]

MC_<§~71—~70 %<1+ﬁ)~72

) > (19)
%(14'&%72 —;TIJO"‘%(J] - Jo)

and

5T +J0 —5(+ 5T
ML — qz 1 1 0 2K< T2 20)
—3(+3)72 =571+ Jo

where sy =1—¢q, k = (1/sy) + 51, r=(1/s1) —
i [do ir 2(
S 21
Jo 2n/ee {2/90 } ZJ 1)

i [do . ,[/0 ir
T = —2a3(u)%/gsm2 (§> exp {2_1709}

_ ag(u) SO240(2) + 2y (2) — 273(2)] (22)

n

ag de 4 0 ir
Ty =— 2(”)/ 7 <1n€—ésm2§> exp{z—bO@}

2(% a5 )W (&)= L) (23)
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where the first version of these functions involve the
effective mass M [58], which in LMF is given by

0 =0M?= 9{1 + a3 (u) (1 - sinc2§>}, (24)

u=o0/T, ag(u) = agh(u) for a field given by a(¢p) =
ag(¢p/T){sin¢,cos p,0} with pulse length 7 and pulse
envelope &, sinc(x) = sin(x)/x, and the singularity at
0 =0 is avoided using a contour equivalent to
60 — 6 + ie, and the second version is expressed in terms
of Bessel functions J, with argument

2 = ag(u) r [Zbon

SPiegw]. e
by
and the sum over 7 is restricted by

n > S+ ad(u). (26)

While this formalism can be used for e.g., a Gaussian
pulse envelope h(u) = e¢™, in this paper we will for
simplicity consider a monochromatic field, i.e., ay(u) =
apf(u)0(1 — u) and we use A¢ instead of 7 for fields with
constant envelope. We change integration variable from ¢
toy = V/b().

B. Integrals for the b, expansion

To obtain the b, expansions we need the following
integrals

7 = / * 4T ). 27)

We have calculated these using the -integral rather than
the Bessel-function representations. We have

21
7" — [ g2 28
0 / 70(—i@®)'+n (28)

(n)

and similarly for 7, and Z <2">. With a partial integration

one can show that 7" = —nZU"™, so we focus on Z{"

and 7 g"). The factorial growth of these integrals is respon-
sible for the factorial growth of the b, expansion.
We can obtain a large-order expansion by exponentiating

1
o) = exp (—n In[-iB)]) (29)
and then performing the 6 integral with the saddle-
point method. The saddle point, 6,, is determined by a
transcendental equation which can easily be solved numeri-
cally. Then one can change integration variable from

0=06,+380//n to 60, expand the integrand in 1/n
and perform the resulting Gaussian integrals (analytically).
We find

1
T\ ~ (1.588...)"T {n +—}

2
0.21... 0.22...
x(o.34...——+ - —) (30)
n n
and
70 n 1
/% (1.588...)'T | n+ 5
.017... .019...
x(0.74...+00 —0029 —) (31)
n n

where the coefficients have been obtained to high precision
and have not been rounded for the digits shown above. A
direct sum of the first 11 terms, i.e., including the term with
1/n'°, has a precision of ~10~!! for n = 10 and ~10~%2
for n = 100.

We still need to obtain Z\") for finite 7. We have found
that in the process of calculating a large number of terms in
the b, expansion and several terms in the o expansion, and
then resumming these expansions, the precision can be
reduced by several orders of magnitude. However, this is
not a problem, because we can obtain a very high precision

of 7 E"). For odd n the integrals are simply given by —iz
times the residue at & = 0, which gives rational numbers.
So, for odd n we have exact expressions. For even n we
could in principle close the contour in the upper half plane
and use the residue theorem for the poles there. However,
there are an infinite number of poles, and, although each
pole can be obtained quickly and to a high precision using

2r (n + %) +iln {2(2;:)2 <n + %) 2] (32)

as starting point for a numerical root finding, the sum over
these poles converges slowly.

It is actually faster to just perform the integrals directly
by integrating along the real axis except for a detour above
0 =0 at a distance |6| ~ 1. With this approach we have
obtained the integrals to a precision of ~10~% for all the
relevant n. However, the first couple of n takes a rather long
time to compute. For larger n, on the other hand, the
integrals converge very quickly, so for n 2 20 (the largest n,
e.g., N = 130, needs to be about the same as the
maximum order in by) we can quickly obtain a precision
of e.g., ~107100,

We can also obtain such a high precision for lower n with
the following approach, where we use a third expansion.
This is essentially a perturbative expansion in the amplitude
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of the field, a,, except that, as seen from (24), it is more
natural to expand in &:=a3/(1 + a}) instead. Then the
expansion of 1/(1 — 8sinc?[0/2])!*" is a binomial series.
Each term in the integrand now has the form
(1/6/)sinc®"[0/2]. We use the binomial theorem to write
this as a sum of terms with ¢/"%¢ where 0 < k < 2m.
Now we can use the residue theorem to calculate each term.
Only those terms with m < k < 2m contribute. We find

0 2m

I(()”) — (1 _5)1+1125m Z

m=1 k=m+1

(_1)k21+n(k _ m)2m+n+1(2m)!(m + Vl)'

mlk!(2m + n + 1)1(2m — k)! (33)
and
0 2m
IV =1-or> o Y
m=1 k=m+1
_1\kon(p _ 2m+n—1 | — |
(=1)k2"(k — m) @mim+n=1)t

(m— 1)k!2m +n — 1)!(2m — k)!

The sums over m have a finite radius of convergence.
To see this, we go back a couple of steps and write
sinc>"[0/2] = exp{mIn (sinc™[0/2])}, and then the large
m behavior can be obtained by rescaling 6 — 6//m and
expanding the integrand in 1/m. For even n (recall that odd
n are anyway simple) we find

I(n,m>>l) 9 (1 _ 5)1+nm(n+1>/2(m + I’l)'
O T 2302y

(35)

and

Zm>1) (1=8)"m"D/2(m +n—1)!
: 30072 (jm — 1) IT[H42]

(36)

or to leading order I(g"""»l)~c0nst.><m<3"+1)/2 and

7D const. x mGr=D/2 From !z
and the ratio test we find that the radius of convergence
is 0 =1, which is fortunate since we always have
5 =a3/(1+ a}) < 1. Hence, apart from the partial resum-
mation achieved by using ¢ rather than a,, no additional
resummation is needed” and (33) can therefore be summed
directly. (33) allows us to obtain a very high precision
quickly. It is much faster than the direct numerical
integration for lower n, but slower for large n. Thus, we
have used (33) for the first ~20 terms and a direct
integration for n = 20, in both cases obtaining a precision

’If 5 is close to 1 it might be useful to find some resummation.
However, then a, would have to be large, which might mean that
an LCF expansion in 1/a, would anyway be more convenient.

of <1079, Summing the first I < m < 500 terms in (33) is
enough to achieve this precision for n ~ 20. Fewer terms
are needed for lower n, while more terms are needed for
larger n. The precision can be checked either by summing
many more terms and checking the relative precision, or by
estimating the size of the remainder by summing the large
order approximation (35) and (36) frome.g., m = 500 to oo
in terms of polylogarithms, or by comparing with the direct
integration.

C. Momentum expectation value

We consider first the momentum expectation value
and to leading order in y < 1. We use the ansatz
N ~ a2"bit A, + C,by, B,by}. We find a recursive
formula, A, = —(2/3)A,_; and

B, = % <A,,_l - [1 + rll] Bn_l) (37)

so C, is not needed, with initial conditions A; = —2/3 and
B, =2/3. With Eq. (2.2.7) in [46] we can solve this in
terms of the harmonic number H,,

2\
B”: <—§> (1+n)(1—Hn+l) (38)
Resumming this gives

_ b§In[1 +3agboT]

0,1} -Nmn = . 39
;{ ) [1+3agboT]? 39

Apart from some constants, this is essentially the same
function® as the spin difference for a constant field [14],
even though we are considering a different spin direction.

At higher energy we can use the same resummation
methods or solve the integro-differential equation as in the
constant-field case [14]. For the resummation approach we
have used the Borel-Leroy method (16) with ¢ = 1.588...
[same as in (30)], b, =3+ (3/2)n and b, =4 + (3/2)n
for (kP)(1)+ (kP)(}) and (kP)(1) — (kP)({), respec-
tively, and [40/(40 + ceil.[b,] + 1)] or a nearby approx-
imant if there is a spurious pole for some n.

The integro-differential equation has been solved using
the midpoint method, i.e., we make an interpolation
function for the b, dependence of

dT OM(T,)

M(T,1152) = M(T,) + > T

(40)

where the derivative is obtained from (the circular version
of) (5), and then we use this to compute an interpolation
function at the next step

*Note that 7 includes a factor of ag in the constant field
case (4), but not in the circular case (18).
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FIG. 3.

Momentum expectation value for a circularly polarized
monochromatic field.

OM(T 41/2)

M(Tn+1) = M(Tn) +dT T )

(41)
and so on. In all cases in this paper we have used a step size
dT = 1/10. This integro-differential approach is much
slower than the resummation approach.

Figure 3 shows that both approaches give the same
result. These methods are the same as for the constant-field
case. Figure 3 shows that also the results are very similar in
shape as in the constant field case.

D. Sokolov-Ternov effect

Without RR, three of the four elements in the sum
MC + M" « —k k cancel, and the sum of all orders gives

1 1 0
a ZNO (0 exp [—TMJ) Ny (42)
The factor M, can be obtained directly by integrating
MC + MY, But we do not need to obtain it in order to
see that without RR the degree of polarization can only
be reduced: If we start with an unpolarized electron
Ny = {1,0} then there is no effect at all, while if we start
with a polarized electron Ny = {1, =1} then the degree of

polarization decreases as the pulse length 7 increases. We
will now show that this changes if RR is included.

To see what happens when RR is included, we consider
first the low-energy limit. With the ansatz

M :a2<"—1)bn+l <0 B”bo )
neoo © \0 A,+C,b,

for n > 1, we find A, = (-2/3)"'A, and

2 1 2\ n-1
B,=—=(1+-)B,_,—(-2) 4 44
n 3< +I’l> n—1 < 3> 1> ( )

while C, is not needed. We can solve this using again
Eq. (2.2.7) in [46]. We find

B, — (— %) "4 G - H1+n> A, (45)

which is very similar to the LCF case. Summing all orders
we find

(43)

p—IN (1 b ) N (46)
2% \o 1+4/)
where
2 ZT
= _% (47)
1 +§boaOT
and
-b3 ) L,
B = W bodoT l + gboaOT
3
3 2
—Eln [1 +§b0a%T]>I, (48)
where
1 [ 5
IT== [ dyr*Jo) (49)
CZO 0

For small a, we have 7 ~2/5, and 7 ~ 35a0/(24\/§) for
large ay. As a check, note that by summing over the final
spin we have P = N; - {1,0} = 1, which also explains why
there are only two nontrivial elements. For an unpolarized
initial electron we have P = (1/2){1, B} - Ny, so B gives an
induced polarization. Hence, without RR the degree of
polarization can only be reduced, but with RR we find a
nonzero induced polarization. For a very long pulse we find

3 3
Ax—-=-byI B=~--bT. 50
by G (50)

This should be compared with the Sokolov-Ternov effect.
For low-energy electrons, by < 1, the induced polarization
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is a small effect. The reason for this is that RR leads to a
reduction of the (lightfront) longitudinal momentum.

For larger b, we can use the resummation or the integro-
differential approach. We have used the Borel-Leroy
method for resumming the b, expansion. For B we have
(16) with b,, = 4 + (3/2)n for n > 2, while for A we have
b, =3+ (3/2)n for n > 1. For both terms ¢ = 1.588...
and we have used [40/(40 + ceil.[b,] + 1)].

The results are shown in Fig. 4. At by = 0.3 the induced
polarization is on a ~1% level. This is not a large effect
compared to the constant-field case, but it is non-negligible,
and it is a clear signal of RR since without RR there would
be no induced polarization. One might have expected such
a signal, because, although the off-diagonal terms vanish
in M€ + ML « —k k (which, recall, is the reason for the
absence of an induced polarization without RR), RR breaks
this cancellation because all the steps that follow a photon
emission step MC depend on the longitudinal momentum
that was emitted in that step, but subsequent steps do not
depend on the photon momentum in the loop MV,

E. Circular perturbative

In this section we will expand each order in a to leading
order in ag < 1. In this regime the J; functions become
very simple,

pol.
20 40 60 80 100 120 140
Z0.005! Pade[10/10]
-------- integro-diff.
-0.010+
bp=0.3
-1 —————
1+A
1.00¢
0.95F
Pade[10/10]
090F N . integro-diff.
0.85F
bp=0.3
osor T
0 20 40 60 80 100 120 140

FIG. 4. B and 1+ A in (46) for a circularly polarized mono-
chromatic field.

a? 1—y
j1:?0 jzza% 3 (51)

joza% (2—7>

EE I

and J; = 0 for y > 2. Since M€ and M" are proportional
to a3 it is natural to define the following effective expansion
parameter

circular field, perturbative: T = aajA¢p.  (52)

Since a} < 1, the pulse length would have to be much
longer in order to have a not small 7. This makes perhaps
this regime less interesting from an experimental point of
view. It can also be challenging for calculations, because
small a in general makes the corrections to the incoherent
product approximation more important, so the pulse length
has to be extra long to compensate for this. However, there
is an interesting difference compared to the other cases:
The b, expansions are no longer asymptotic, but have a
finite radius of convergence. We can therefore resum
both the by and the o expansions with Padé approximants.
In Fig. 5 we have resummed the b, expansion with

[46/52] and [46/51] for (kP)(1)+ (kP)(!) and
(kP)(1) — (kP)({), respectively.
kP/kp
1.0¢
)
ll
081
A T s LL
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0.4F ' '
\
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0.2 RN
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L L L -..\ ------------- L T
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FIG. 5. Momentum expectation value to leading order in
ag < 1.
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V. RESUMMATION OF LAD

Both the classical LL and our quantum approximation
give series in a which can be resummed with Padé
approximants. However, we know/suspect that the full
QED expansion is asymptotic. If this is the case then LL
cannot be the exact (classical) equation, but LAD might be
since it leads to asymptotic series in a. In [7] it was shown
how the nonrelativistic LAD can be resummed with
the Borel method. In this section we will consider the full
LAD expansion. Since we cannot obtain a compact/closed
form expression for each order, we will restrict to a
constant-crossed field for simplicity, f,, = k,a, —a,k,
with @' constant.

LAD is given by

2
= "k, + ga('fc’” + ¥231). (53)

Since we consider a constant field, only derivatives of
the position appear. We denote P* = x. We write the
solution as

(7 2\u
W@—@ﬁ+w%+@”%ym,6®
0 0

where P is the momentum at z = 0, y, = /P 2P0
and g;(7) are functions to be determined. From the on-shell

condition P> =1 and f3 = 0 we find

_1+gi-g

20 (55)

9

Instead of proper time 7, it is natural to use a rescaled
lightfront time

. X0 d . d
u(r) = PO kx(7) dr *)(ogod—u- (56)
We also define
2

Projecting LAD with PO f2 and PO f gives us two
equations for the two unknown functions

go(u) = 8(8,[9090] + P*93)
gy (u) = 14 68(0,[9091] + P 900n)- (58)

where F' = dF/du and
P = g + 2439, — 97" (59)

We will first attempt to solve (58) by a direct expansion
in 6. The zeroth order is given by

go=1+006) g =u+0O(5). (60)
Substituting g; = Y.V, 5”gl(~n)(u) + O@N!) into  the
right-hand sides of (58) and integrating over u gives

(N+1)

g;’(u). For the first couple of orders we find

go =1 —us+ u?8* + (6u —u?)5 + (—18u? + u*)s*
+ (—80u + 36u® — u°)5° + (392u® — 60u* + ub)s°

243
+ (1520u _ 3524u +90u’ — u7>57 + O(8%)
(61)
u*s u? u
=y - — -2 Z 152 2_7 |3
Gr=u-= +< u+2>5 +(6u 2)5
a1 w
+ (20u— 3” +”7>54+0(55). (62)

Each order is a polynomial in « and the first tens of orders
can be obtained quickly. However, the number of terms
increases as we go to higher orders and eventually the
calculation becomes very slow. We stopped at O(677). To
study the (non)-convergence properties of a series one
can usually plot the ratios of neighboring coefficients.
However, here it turns out to be easier to study the even and
odd orders separately. In Fig. 6 we plot the ratios of the
odd-order coefficients for a small, moderately large and
large value of u. For small u we see a typical line for an
asymptotic series with factorially growing coefficients with
alternating sign. Such a series can be dealt with using the
Borel-Padé method. For the moderately large u we have a
very different plot with no discernible pattern up to the
maximum order calculated. In the large u plot we again see
a simple pattern, but this time in the first ~20 orders rather
than as an asymptotic limit. This almost constant line is
what one expects from a function that is close to LL, which
has a finite radius of convergence. We can understand this
from (61): After a long time in the field, # > 1, one may
expect the highest power in u at each order in 6 to give a
good approximation, i.e.,

=Y (o= —g (@)
n=0

C1+6u

Hence, for a sufficiently long pulse we expect the solution
to LAD to converge to the LL solution (this has been shown
in [8,9]), where the in general asymptotic series can be
approximated by a convergent series. For smaller u, on the
other hand, we have checked that the § expansion can be
resummed with the Borel-Padé method. However, as u
increases this resummation seems to eventually break down
(given the fixed number of terms we have calculated). One
might try to find different resummations or a way to obtain
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FIG. 6. Ratios of neighboring odd-order coefficients for gy, g(()z["ﬂ]ﬂ) / g(()zr’“), with u = {1/10, 11,75} from left to right. The

corresponding plots for the even orders, g(()z["+l])/ g(ozn), have a similar behavior.

higher orders. However, we have used a different approach
instead, which seems to work for any u.

In this approach we begin by noting that, e.g., from (63),
we expect to have a considerable change in the momentum
for 6u ~ 1. We therefore change variable to v = du and treat
v as independent of 6. We also define

ho(v) = go(u = v/8)  hi(v) = 69 (u = v/5). (64)

We expand the solution as
hi(v) = h{" (v)&". (65)
n=0
Note that this is not the same as repeatedly substituting
LAD into itself to remove higher-order derivatives, an

approach that has recently been studied in [12]. To zeroth
order in 9, the solution is now given by LL

1

_ 2\ _ 1,LL 2
ho =1+ O@) = i+ O(F) (66)
and
e O =K+ 0@). (67)
: 2(1 4 v) ! '

In this approach, each order is not just a polynomial in v.
Fortunately, though, we can still find simple explicit
expressions for each order. The first couple of orders are
given by

1 6v
= 52
v+ 1 + (v+1)3
_4v(60 + 60 + 112?)
3(14v)°

ho

S +0%  (68)

and

h :v(2—|—v) (4log(1—|—v)_3v(2+2v+1}2)>52
2(1+w) 1+v (1+v)3
zv<l2log(1+v) 30—48v+4vz+28113+11114>54
(1+v)? 3(1+0)°
+0(8°%) (69)

Note that using v instead of u gives series in 6> rather than
5. We have obtained the first 34 terms, i.e., up to O(5%). The
expressions become very long, we just note that in the limit
v — oo all higher orders scale as 1/v compared to the zeroth
(LL) order. If we go back to the original variable u, then each

function hg”) (v = 6u) provides a partial resummation of the

o0 expansion from the first approach. In particular, the exact
solution to LL is already included. Consequently, the ratios

of neighboring coefficients, 4" (v)/A{" (v) shown in
Fig. 7, now have a simple behavior (typical for alternating
and factorially divergent series) for both small and large v, in
contrast to Fig. 6.

This means that for an arbitrary value of v we can resum
the 6 expansion using the Borel-Padé method. We have
used [15/15] approximants. The results are shown in Fig. 8
and 9 for § = 1/3. The reason for choosing this rather large
value of ¢ is to be able to clearly distinguish LAD and LL.

h(()n+1)/hgn)

S n
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N\

\‘\\
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20NN e - v=1/30
A
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N
-40 ~¢"1\
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FIG. 7. Ratios of neighboring coefficients for hgy(v),
n+1 n
' (0)/m? (v).
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FIG. 8. Resummation of LAD using Borel-Padé[15/15]. The
numerical results have been obtained by integrating LAD back-
wards with the resummation result at v = 15 as final conditions.

For smaller ¢ it is difficult to see the difference because it is
given by a function of 5°. After a very long time in the field,
v > 1 oru > 1/6, the result converges to LL. We have also
compared the resummation with a numerical solution to
LAD. Since LAD is numerically unstable when integrated
forwards in time, we have integrated LAD backwards in
time [59,60] with the resummed result A["™ (v, > 1) at

dhq/dv
1.0

LL
08 LAD num

LAD resum
0.6

0=1/3
v
2 4 6

FIG. 9. As Fig. 8 for second term.

one instant of time v, as final conditions. As shown in
Fig. 8 and 9, we find excellent agreement between the
numerical solution and the resummation. The considered
value of ¢ is quite large, but since the resummation is based
on a § < 1 expansion, it would be even more precise for
smaller 6. For the numerical solution we have continued
passed v < 0 assuming that the field is zero for v < 0, to
illustrate the fact that the solution has pre-acceleration. This

means that P,(f)) is strictly speaking not the (exact) initial
momentum even if the field is zero at u < 0. Thus, the &
series gives a pre-acceleration solution without runaway.

To obtain the runaway solutions one would start with a
trans-series-like ansatz; see e.g., the recent papers [61,62]
for trans-series solutions to differential equations. We first
write the solution as

g:(u) = ¢ () + ¢ (u) (70)

(0)

where g;’ (u) is the solution found above by resumming the

perturbative series in §. As mentioned, ggo)(u) is free from

runaways. We expand the nonlinear equations (58) to linear

order in the perturbation gl(l). This gives two homogeneous

differential equations which we can solve with the ansatz
1 u N Ln n
6 () = ey g ()3, (7)
n=0

To leading order we find

1)
9 B 14+ O(5) u  u? )
<g§1>>_Rec(i+u+(’)(5) exp S+7+2lu ,
(72)

where ¢ is an arbitrary, small complex number. The

resummation approach for gl(.o)(u) selects one particular

value of the initial acceleration with the initial momentum
as input. The arbitrary complex constant in (72) gives the
remaining solutions to LAD. It is straightforward to
calculate, at least the first ~20, terms in the 6 expansion
in the preexponential part of (72) using the expansion of

ggo)(u) which we have already obtained. However, we can

already see from (72) that any nonzero value of ¢ will lead
to runaway solutions. Note that both LL and the preaccel-
eration solution of LAD varies significantly on time scales
u = 1/6. But (72), on the other hand, leads to an expo-
nential difference already at u ~ 1. Hence, if we start with a

small perturbation at u = 0, then at u ~ 1 we already have a

much larger ggl). Thus, we can see explicitly the reason why

LAD is numerically unstable when integrated forwards in
time. To obtain the full runaway solutions one would have
(n) nu/s

to include additional terms g;* with ¢"*/°, n > 1. However,
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since the runaway solutions are anyway unphysical, we will
stop here.

VI. CONCLUSIONS

We have studied RR using our recently proposed
resummation methods. In [14] we studied the electron
momentum expectation value for a constant-crossed field
and with the initial electron either unpolarized or polarized
along the magnetic field. Here we have considered the
momentum for a circularly polarized monochromatic field
with @y =1 and the initial electron unpolarized or polar-
ized along the laser propagation direction. We have found
that, as a function of an appropriate effective pulse length
parameter (proportional to «), both the spin-averaged
momentum P_(1)+ P_(|) and the difference P_(1) —
P_(]) look similar to the constant-field case [14], even
though both the field and spin direction are different.

In both cases, we have also studied the polarization of the
final electron. For a constant field and without RR, the
polarization is given by the Sokolov-Ternov result, which is
~0.92 asymptotically. Here we find that with RR there is still
a nonzero degree of polarization asymptotically, but this
asymptotic value is reached on a much shorter time scale and

is significantly lower. For a circularly polarized monochro-
matic field and without RR, there is no induced polarization
to leading order [19,24,25], because the loop cancels the
contribution from photon emission. However, here we find
that with RR there is a nonzero degree of polarization.
Finally, in order to gain some insights into what one
might find if one could find a way to include the terms that
have been neglected in the incoherent product approach, we
have shown how to use resummation methods for LAD.
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