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The Bethe-Salpeter amplitude Φðk; pÞ is expressed, by means of the Nakanishi integral representation,
via a smooth function gðγ; zÞ. This function satisfies a canonical equation g ¼ Ng. However, calculations of
the kernel N in this equation, presented previously, were restricted to one-boson exchange and, depending
on method, dealt with complex multivalued functions. Although these difficulties are surmountable, in
practice, they complicate finding the unambiguous result. In the present work, an unambiguous expression
for the kernel N in terms of real functions is derived. For the one-boson scalar exchange, the explicit
formula for N is found. With this equation and kernel, the binding energies, calculated previously, are
reproduced. Their finding, as well as calculation of the Bethe-Salpeter amplitude in the Minkowski space,
become no more difficult than in the Euclidean one. The method can be generalized to any kernel given by
irreducible Feynman graph. This generalization is illustrated by example of the cross-ladder kernel.
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I. INTRODUCTION

One of the efficient methods of solving the Bethe-
Salpeter (BS) equation [1]

Φðk; pÞ ¼ i2

½ðp
2
þ kÞ2 −m2 þ iϵ�½ðp

2
− kÞ2 −m2 þ iϵ�

×
Z

d4k0

ð2πÞ4 iKðk; k
0; pÞΦðk0; pÞ; ð1Þ

directly in Minkowsky space, is based on using the
Nakanishi representation [2] for the BS amplitude:

Φðk; pÞ ¼ −i
Z

1

−1
dz0

Z
∞

0

dγ0

×
gðγ0; z0Þ

½γ0 þm2 − 1
4
M2 − k2 − p · kz0 − iϵ�3 : ð2Þ

(here m is the constituent mass,M is the bound state mass)
and finding the function gðγ; zÞ from corresponding equa-
tion. The latter equation is derived from the BS one after
substituting (2) into (1). An advantage of this method is in
the fact that the function gðγ; zÞ satisfies an equation which
is relatively easily solvable and its solution is smooth.
Having found it numerically, one can restore by Eq. (2) the
BS amplitude in Minkowski space. Then, after substituting

Φðk; pÞ, e.g., in the expression for the electromagnetic
form factor one can integrate analytically over the relative
momentum k and express form factor in terms of the
solution gðγ; zÞ [3,4]. In this way, the Minkowski BS
amplitude Φ appears as an auxiliary quantity which in
the final result is replaced by g.
For the massless ladder kernel (Wick-Cutkosky model

[5,6]) the γ dependence of the function gðγ; zÞ is reduced to
the delta function δðγÞ and to finite sum of its derivatives so
the integral (2) turns into sum of the one-dimensional ones
with the functions gnðzÞ, satisfying a system of equations.
In the nonrelativistic limit, the Coulomb spectrum and
wave functions are reproduced.
For massive ladder exchange kernel:

Kðk; k0Þ ¼ −
16πm2α

ðk − k0Þ2 − μ2 þ iϵ
ð3Þ

(α is the coupling constant which appears in the corre-
sponding Yukawa potential VðrÞ ¼ − α

r e
−μr) this method

was proposed and an equation for gðγ; zÞ was firstly
obtained in [7]. Subsequent researches [8–11], including
the present one, were aimed to deriving, step by step, most
simple forms of this equation and its kernel, convenient for
practical use, further simplifying the numerical solutions.
In Ref. [8], by substituting Φðk; pÞ in the form (2) into

Eq. (1) and making the light-front projection, the following
equation for the function gðγ; zÞ was derived:Z

∞

0

gðγ0; zÞdγ0
½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2�2

¼
Z

∞

0

dγ0
Z

1

−1
dz0Vðγ; z; γ0; z0Þgðγ0; z0Þ; ð4Þ
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where κ2 ¼ m2 − 1
4
M2. The kernel Vðγ; z; γ0; z0Þ was

expressed via the kernel Kðk; k0Þ, Eq. (3), of the BS
equation (1) in [8].
The equation in the form (4), although solvable numeri-

cally, was not yet convenient enough, since it contained the
integrals in both parts. This resulted in instability of the
numerical procedure which though was overcome in
Ref. [8] but required extra methods and studies.
Further efforts in this field were then directed to

derivation of equation in the “normal” form:

gðγ; zÞ ¼
Z

∞

0

dγ0
Z

1

−1
dz0Nðγ; z; γ0; z0Þgðγ0; z0Þ; ð5Þ

which does not contain the integral in the lhs. It was firstly
derived in [10], using uniqueness of the Nakanishi repre-
sentation. This derivation was real “matter of art,” however
restricted to the ladder kernel only. The binding energies
found in [10] by numerical solution of Eq. (5) were in very
good agreement with the solutions of Eq. (4) found in [8]
and with the Euclidean space solutions. Besides, the
stability of results was much better.
Then in Ref. [11] it was noticed that the integral in the lhs

of Eq. (4) had a form of the Stieltjes transform which could
be inverted analytically. Inverting it, an equation, again in
the form (5), was found. The operator, inverse to the
operator in the lhs of Eq. (4), applied to the rhs of (4),
creates the kernel N of Eq. (5). N is expressed through V as
follows [11]:

Nðγ; z;γ0; z0Þ ¼ γ

2π

Z
π−ϵ

−πþϵ
dϕeiϕ

×Vðγeiϕ − z2m2 − ð1− z2Þκ2; z;γ0; z0Þ; ð6Þ

with ϵ → 0. The equations in the form (5), found in [10]
and [11] by different methods, were equivalent since their
kernels coincided with each other. However, these kernels
were obtained in rather different forms, so it was not easy to
compare them analytically. Their equivalence was demon-
strated in [11] numerically.
For the first glance, the way from the kernel K in the BS

equation (1) to the kernelN in Eq. (5) was paved. However,
as it was noticed and demonstrated in examples already in
[11], the direct calculation of the kernel Nðγ; z; γ0; z0Þ by
Eq. (6) was, to some extent, ambiguous. This problem arose
since the kernel Vðγ; z; γ0; z0Þ was expressed via the
functions sqrt and log, see Eqs. (9) and (10) below, which
are multivalued in the complex plane [where we go after the
substitution γ → γeiϕ − z2m2 − ð1 − z2Þκ2]. Though this
ambiguity can be eliminated, this delicate problem requires
some extra efforts and very attentive and careful definitions
of branches of the multivalued complex functions. This
complicates the direct practical applications of the
approach [11] to solving the BS equation via finding the
function gðγ; zÞ from Eq. (5).

The aim of the present work is to represent the kernel N
in Eq. (5) in another (third) form which does not contain
this ambiguity. We emphasize that we are only talking
about a new, more convenient form of one and the same
kernel. The kernel N in new form, derived in the present
article, is identical to ones found in Refs. [10,11]. However,
its form is completely unambiguous, restricted to the real
functions only, does not require delicate choosing branches
of multivalued functions, and therefore it makes directly
numerical solving Eq. (5) not more complicated than
solving the Euclidean BS equation. Though the kernel
N, derived below, might look a little bit lengthy and
cumbersome, it is given by the explicit formulas, does
not contain any integrations (for one-boson exchange), and
therefore it is easy, unambiguously and rapidly computated.
The advantages of this new representation of the kernel

N in Eq. (5) make solving the BS equation a simple and
routine work.
Further content of the present paper is the following. In

Sec. II we derive this new form of the kernel N. Section III
summarizes the results of Sec. II in the form of recipes
ready to use. In Sec. IV we take the limit of zero exchange
mass μ → 0 and show analytically that in this limit Eq. (5)
with the kernel found in Secs. II and III turns into the Wick-
Cutkosky equation and kernel [5,6]. This serves as another
test of our kernel and shows that Eq. (5) is a direct
generalization of the Wick-Cutkosky one for massive
exchange. In Sec. V Eq. (5) defined in the interval −1 ≤
z ≤ 1 is reduced to the half interval 0 ≤ z ≤ 1 and the
corresponding kernel is derived. This allows us to increase
the precision of numerical calculations. In Sec. VI we
explain how to derive the kernel in the canonical equa-
tion (5) from the Feynman cross-ladder one. The method
can be applied to any kernel K in the BS equation (1).
Section VII contains the concluding remarks.

II. CALCULATING THE LADDER
KERNEL N IN EQ. (5)

The relation between the original kernel K, Eq. (3),
appearing in the BS equation (1), and the kernel V in
Eqs. (4), (6) was derived in Ref. [8]. In the case of the
ladder kernel (3), the kernel V takes the form

Vðγ;z;γ0;z0Þ ¼
�
Wðγ;z;γ0;z0Þ; if −1≤ z0 ≤ z≤ 1

Wðγ;−z;γ0;−z0Þ; if −1≤ z≤ z0 ≤ 1;
ð7Þ

where

Wðγ;z;γ0;z0Þ¼ αm2ð1−zÞ2
2π½γþz2m2þð1−z2Þκ2�

Z
1

0

dv

�
v
D

�
2

; ð8Þ
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D ¼ vð1 − vÞð1 − z0Þγ þ vð1 − zÞγ0
þ vð1 − zÞð1 − z0Þ½1þ zð1 − vÞ þ vz0�κ2
þ v½ð1 − vÞð1 − z0Þz2 þ vz02ð1 − zÞ�m2

þ ð1 − vÞð1 − zÞμ2:

A. Integrating over v, ϕ

The integral (8) over v was calculated analytically [8]. It
reads

Wðγ; z; γ0; z0Þ ¼ αm2

2π

ð1− zÞ2
½γ þ z2m2 þ ð1− z2Þκ2�

1

b22ðbþ − b−Þ3

×

�ðbþ − b−Þð2bþb− − bþ − b−Þ
ð1− bþÞð1− b−Þ

þ 2bþb− log
bþð1− b−Þ
b−ð1− bþÞ

�
; ð9Þ

where

b0 ¼ ð1 − zÞμ2;

b� ¼ −
1

2b2

�
b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 − 4b0b2

q 	
;

b1 ¼ γ þ γ0 − ð1 − zÞμ2 − γ0z − γz0

þ ð1 − z0Þ½z2m2 þ ð1 − z2Þκ2�;
b2 ¼ −γð1 − z0Þ − ðz − z0Þ½ð1 − zÞð1 − z0Þκ2

þ ðzþ z0 − zz0Þm2�: ð10Þ

The kernel Nðγ; z; γ0; z0Þ is now determined by the integral
over ϕ, Eq. (6).
As mentioned, Eqs. (9) and (10) and, hence, the kernel

Vðγ; z; γ0; z0Þ contains log and sqrt—the multivalued func-
tions in the complex plane. This requires, after substituting
γ → γeiϕ − z2m2 − ð1 − z2Þκ2, very careful definition of
their branches. This is the reason of difficulty and limitation
in practical use of this method. In the next section we will
avoid this difficulty.

B. Integrating over ϕ, v

The method of calculation of the kernel N used in the
present work differs from one used in [11] only by the order
of integrations: first over ϕ, then over v. This minimal, for
the first glance, difference turns out to be crucial. The
integrand in Eq. (8), before integrating over v, does not
contain any multivalued functions. Therefore the ϕ inte-
gration is straightforward and unambiguous. It results in
real functions. The subsequent v integration is analytical.
This calculation of the double integral (6), (8) will be
carried out below.
We take the kernel Vðγ; z; γ0; z0Þ in the form Eqs. (7), (8),

do not integrate over v in (8), but make the substitution

γ → γeiϕ − z2m2 − ð1 − z2Þκ2 in the argument γ. In this
way, the kernel (6) obtains the form

Nðγ; z; γ0; z0Þ ¼
Z

1

0

nðγ; z; γ0; z0; vÞdv; ð11Þ

where

nðγ; z; γ0; z0; vÞ

¼ cðvÞ
Z

π−ϵ

−πþϵ
dϕ

1

ðaðvÞ expðiϕÞ þ bðvÞÞ2 ð12Þ

and

aðvÞ ¼ γvð1 − vÞð1 − z0Þ;
bðvÞ ¼ ð1 − zÞ½ð1 − vÞμ2

þ vðγ0 þ vðz02m2 þ ð1 − z02Þκ2ÞÞ�;

cðvÞ ¼ 1

ð2πÞ2 αm
2v2ð1 − zÞ2: ð13Þ

Note that aðvÞ, bðvÞ, and cðvÞ are positive. Besides the
argument v, aðvÞ depends also on γ; z0, bðvÞ depends on
z; γ0; z0, and cðvÞ depends on z. This creates dependence of
Nðγ; z; γ0; z0Þ on all four variables γ; z; γ0; z0. We omit these
extra arguments in aðvÞ, bðvÞ, cðvÞ for shortness. For some
values of parameters and variables it may happen that
aðvÞ ¼ bðvÞ. Then the denominator in (12) crosses zero
when ϕ → �π (ϵ → 0) and the integrand of nðγ; z; γ0; z0; vÞ
vs ϕ becomes singular. It remains to be singular after ϕ
integration. We will show that the singularity, which
survives after the ϕ integration, is represented by the delta
function δ½bðvÞ − aðvÞ� and after integration over v in (11)
it gives a finite, nonsingular contribution to Nðγ; z; γ0; z0Þ.
However, due to its origin, we will call it “singular part
contribution.” Another finite contribution results from the
nonsingular part of nðγ; z; γ0; z0; vÞ vs v. So, we get two
contributions, Nreg and Nsing, which we will call non-
singular (or regular) and singular part contributions corre-
spondingly. The kernelNðγ; z; γ0; z0Þ is the sum of these two
terms:

Nðγ; z; γ0; z0Þ ¼ Nreg þ Nsing; ð14Þ
where

Nreg ¼
Z

v2

v1

nregðγ; z; γ0; z0; vÞdv; ð15Þ

Nsing ¼
Z

1

0

nsingðγ; z; γ0; z0; vÞdv: ð16Þ

The functions nregðγ; z; γ0; z0; vÞ and nsingðγ; z; γ0; z0; vÞ will
be found below and are given by Eqs. (18) and (33)
correspondingly. The arguments of the functions Nreg and
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Nsing are omitted here. We precisely restore them below,
calculating these functions. Note that, depending on the
argument values, the contribution of Nsing may be zero. Or,
on the contrary, Nreg and Nsing may enter in Nðγ; z; γ0; z0Þ
twice, for different sets of arguments (see Sec. III). In the
integral (15) for Nreg the integration interval 0 ≤ v ≤ 1 was
replaced by the interval 0 ≤ v1 ≤ v ≤ v2 ≤ 1 since, as it
will be shown below, nregðγ; z; γ0; z0; vÞ contains the theta
function which can make the integration interval more
narrow than 0 ≤ v ≤ 1 and reduce the integration limits
(though, not always).
We start with calculation of the nonsingular part Nreg.

Calculating it, we will also determine the integration
limits v1;2.

1. Nonsingular part contribution

To calculate the integral (12) for aðvÞ ≠ bðvÞ, we can put
in (12) ϵ ¼ 0. We introduce the complex variable
y ¼ expðiϕÞ. Then this integral obtains the form

nregðγ; z; γ0; z0; vÞ ¼
1

i

Z
C
dy

cðvÞ
y½aðvÞyþ bðvÞ�2 ; ð17Þ

where integration is carried out over the unit closed-circle C
around origin in the complex plane y. The integrand vs y
has two poles:

y ¼ 0 and y ¼ −
bðvÞ
aðvÞ;

with the corresponding residues:

Resðy¼ 0Þ ¼ −
icðvÞ
b2ðvÞ and Res

�
y¼ −

bðvÞ
aðvÞ

�
¼ icðvÞ
b2ðvÞ:

If both poles are within the unit circle C, the residues cancel
each other and the integral is zero. The result is not zero if

the pole y ¼ − bðvÞ
aðvÞ is outside the unit circle C. It happens

when − bðvÞ
aðvÞ < −1 → bðvÞ > aðvÞ. Therefore, the result is

nregðγ; z; γ0; z0; vÞ ¼ 2πiResðy ¼ 0ÞjbðvÞ>aðvÞ
¼ 2πcðvÞ

b2ðvÞ θ½bðvÞ − aðvÞ�: ð18Þ

Its contribution to the kernel Nðγ; z; γ0; z0Þ is given by the
integral (15) over v. This integral can be calculated
analytically, in terms of the primitives, since bðvÞ vs v
is a quadratic polynomial.
Some tedious analysis is related to the theta function in

(18). Its argument bðvÞ − aðvÞ is also a quadratic function
of v:

bðvÞ−aðvÞ¼A0v2þB0vþC0¼A0ðv−v−Þðv−vþÞ; ð19Þ

where

A0 ¼ γð1 − z0Þ þ ð1 − zÞ½m2z02 þ κ2ð1 − z02Þ� > 0; ð20Þ

B0 ¼ðγ0 − μ2Þð1 − zÞ − γð1 − z0Þ; ð21Þ

C0 ¼ μ2ð1 − zÞ > 0; ð22Þ

and v∓ are the roots of the quadratic equation
bðvÞ − aðvÞ ¼ 0:

v∓ ¼ 1

2A0

ð−B0 ∓
ffiffiffiffiffiffi
D0

p
Þ; ð23Þ

where

D0 ¼ B2
0 − 4A0C0: ð24Þ

IfD0 < 0, the roots are complex and the polynomial (19) vs
v does not change the sign. Since A0 > 0, it is always
positive. In this case, the theta function in (18) does not give
any constraint and the integration for Nreg in (15) is carried
out in the interval 0 ≤ v ≤ 1, that is v1 ¼ 0, v2 ¼ 1.
If D0 > 0, the equation bðvÞ − aðvÞ ¼ 0 vs v has two

real roots v∓. These roots, depending on values of the
variables γ; z; γ0; z0, can be inside the interval 0 ≤ v ≤ 1,
one inside, another outside, etc. When v crosses a root, the
argument bðvÞ − aðvÞ of the theta function changes the
sign and the theta function changes its value from 0 to 1 or
back. Since the coefficient A0 at v2 in Eq. (19) is positive,
the value of polynomial between the roots v∓ is negative.
If the interval v− ≤ v ≤ vþ is inside of 0 ≤ v ≤ 1 or
partially overlaps with it, their overlapping part (where
θ½bðvÞ − aðvÞ� ¼ 0) is excluded from integration. In this
way, the initial integration interval 0 ≤ v ≤ 1 is reduced by
the theta function to one or two smaller intervals.
Note that according to Eq. (23), if D0 > 0 and since the

product A0C0 is positive, then
ffiffiffiffiffiffi
D0

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0 − 4A0C0

p
<

jB0j and therefore the roots v∓ cannot have opposite signs:
either both roots are negative (if B0 > 0), or both are
positive (if B0 < 0). Therefore we will consider the
following cases only:
(1) v− < vþ < 0. Since the interval between the

roots v− < v < vþ (where bðvÞ − aðvÞ < 0 →
θ½bðvÞ − aðvÞ� ¼ 0) does not overlap with
0 ≤ v ≤ 1, whereas for v > vþ (and certainly, for
v > 0), bðvÞ − aðvÞ > 0 → θ½bðvÞ − aðvÞ� ¼ 1, in
this case, the theta function in (18) does not give any
constraint and the integration limits in (15) are
v1 ¼ 0, v2 ¼ 1.

(2) 0 < v− < vþ < 1. The theta function is zero if
v− < v < vþ. The integration limits are v1 ¼ 0,
v2 ¼ v−, and v1 ¼ vþ, v2 ¼ 1. One should take
sum of the integrals over these two intervals.
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(3) 0 < v− < 1 < vþ. The integration limits are v1 ¼ 0,
v2 ¼ v−.

(4) 1 < v− < vþ. The integration limits are v1 ¼ 0,
v2 ¼ 1, like in the case 1.

The integral (15) with nreg defined in (18) is represented
as

Nregðγ; z; γ0; z0; v1; v2Þ ¼ Fðv2Þ − Fðv1Þ; ð25Þ

where FðvÞ is the primitive:

FðvÞ¼
Z

2πcðvÞdv
b2ðvÞ ¼ αm2

2π

Z
v2dv

ðA1v2þB1vþC1Þ2;
ð26Þ

and v1;2 are the integration limits indicated above for the
cases 1–4. The denominator in the rhs of (26) contains

bðvÞ
1 − z

¼ ð1 − vÞμ2 þ v½γ0 þ vðz02m2 þ ð1 − z02Þκ2Þ�
¼ A1v2 þ B1vþ C1; ð27Þ

where

A1 ¼ m2z02 þ κ2ð1 − z02Þ > 0;

B1 ¼ γ0 − μ2;

C1 ¼ μ2 > 0:

From the expression (27) we see that since γ0 > 0, in the
interval 0 ≤ v ≤ 1 [which is larger than the integration
interval v1 ≤ v ≤ v2 in (15)], the value A1v2 þ B1vþ C1 is
always positive. This means that if the denominator in (26)
has zeros, these zeros are outside the interval 0 ≤ v ≤ 1.
Therefore, the integrand in (26) is not singular. However,
the form of FðvÞ depends on the sign of

D1 ¼ B2
1 − 4A1C1: ð28Þ

Namely, calculating the integral (26), we find

FðvÞ ¼
�
F−ðvÞ; if D1 < 0

FþðvÞ; if D1 > 0
; ð29Þ

where

F−ðvÞ ¼ αm2

2π

�
B1C1 þ ðB2

1 − 2A1C1Þv
A1jD1j½C1 þ vðB1 þ vA1Þ�

þ 4C1

jD1j3=2
arctan

B1 þ 2vA1ffiffiffiffiffiffiffiffiffijD1j
p �

ð30Þ

and

FþðvÞ ¼ −
αm2

2π

�
B1C1 þ ðB12 − 2A1C1Þv
A1D1½C1 þ vðB1 þ vA1Þ�

þ 2C1

D3=2
1

log

�
1 −

2
ffiffiffiffiffiffi
D1

p
B1 þ

ffiffiffiffiffiffi
D1

p þ 2A1v

��
: ð31Þ

Equation (25) together with Eqs. (29)–(31) determine the
regular part contribution Nreg.

2. Singular part contribution

The singular part contribution results from the integral
(12) where bðvÞ ¼ aðvÞ for some value of v. To extract it
from (12), we calculate this integral analytically and then
take the limit bðvÞ → aðvÞ. Calculating the integral via
primitive, we find

nðγ; z; γ0; z0;vÞ ¼ 2cðvÞðπ − ϵÞ
b2ðvÞ

þ cðvÞArg½bþ aðvÞexp½iðϵ− πÞ��
b2ðvÞ

−
cðvÞArg½ðbðvÞþ aðvÞexp½ið−ϵþ πÞ��

b2ðvÞ

−
2aðvÞcðvÞ sinϵ

bðvÞ½ðbðvÞ− aðvÞcosϵÞ2 þ a2ðvÞsin2ϵ� :

ð32Þ

At ϵ → 0 and bðvÞ → aðvÞ, the last term in (32) only is
singular and dominates. We keep it, take the limit
ϵ → 0, and make the replacement aðvÞϵ ¼ ϵ0. In this
way we find

nsingðγ; z; γ0; z0; vÞ ¼ −
2cðvÞϵ0

bðvÞ½ðbðvÞ − aðvÞÞ2 þ ϵ02� :

Using the formula

1

π

ϵ

ðx2 þ ϵ2Þ ¼ϵ→0
δðxÞ;

we obtain

nsingðγ; z; γ0; z0; vÞ ¼ −
2πcðvÞ
aðvÞ δ½bðvÞ − aðvÞ�: ð33Þ

The difference bðvÞ − aðvÞ (a second-order polynomial in
v) is represented in the form of product, Eq. (19). If roots
v∓ of the equation bðvÞ − aðvÞ ¼ 0 vs v are real and both
are in the interval 0 < v < 1, then the integral over v [the
second term in (15)] is reduced to the sum over roots:
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Z
1

0

nsingðγ; z; γ0; z0; vÞdv ¼ Nsingðγ; z; γ0; z0; v−Þ

þ Nsingðγ; z; γ0; z0; vþÞ; ð34Þ

where we denoted

Nsingðγ; z; γ0; z0; vÞ ¼ −
2πcðvÞ

A0jvþ − v−jaðvÞ
: ð35Þ

aðvÞ, cðvÞ are defined in (13), A0 is defined in (20). If only
one root v− is in the interval 0 < v < 1, then instead of the
sum (34) we should take the contribution of this root only:Z

1

0

nsingðγ; z; γ0; z0; vÞdv ¼ Nsingðγ; z; γ0; z0; v−Þ: ð36Þ

As explained above, two real roots v∓ have the same sign.
Therefore the situation when one root vþ is in the interval
0 < v < 1, whereas the root v− is outside (and, hence,
v− < 0) is impossible.
If both roots are outside of the interval 0 < v < 1, the

singular part does not contribute. This analysis is similar to
one given in the points 1–4 above Eq. (25).
In this way, Eqs. (34)–(36) determine the singular part

contribution Nsing.

III. SUMMARY

In this section, summarizing the above results, we give the
recipe of calculating the ladder massive exchange kernel
Nðγ; z; γ0; z0Þ in Eq. (5). It takes a few following steps.
Depending on the relation between z, z0 (z < z0 or z > z0),
the kernel Nðγ; z; γ0; z0Þ is expressed, by the formula sim-
ilar to Eq. (7), via the auxiliary kernel Ñðγ; z; γ0; z0Þ which
will be constructed in this section. In its turn, the kernel
Ñðγ; z; γ0; z0Þ is expressed via Nregðγ; z; γ0; z0; v1; v2Þ,
Eq. (25), and via Nsingðγ; z; γ0; z0; vÞ, Eq. (35). The function
Nregðγ; z; γ0; z0; v1; v2Þ is constructed via another function
FðvÞ, Eq. (29). The contributionsNreg andNsing to Ñ depend
on the sign ofD0, Eq. (24), determining the existence of the
real roots v∓ of the equationbðvÞ − aðvÞ ¼ 0. IfD0 > 0 and
the real roots exist, the result depends on their positions
relative to the interval 0 ≤ v ≤ 1. For all these cases the
kernel Nðγ; z; γ0; z0Þ in Eq. (5) is defined below. The con-
struction is a little bit lengthy, but it is coherent and absolutely
unambiguous.
We do not stop at the construction of the kernel

Nðγ; z; γ0; z0Þ, but we reduce below Eq. (5) to Eq. (49)
defined in the half-interval 0 ≤ z ≤ 1. The kernel
Nhalfðγ; z; γ0; z0Þ in this reduced equation will be also
expressed through Ñðγ; z; γ0; z0Þ.
We consider the following cases.
(1) D0 < 0. According to Eq. (23), the roots v∓ are

complex. Therefore, the singular contribution Nsing

is absent. Besides, bðvÞ − aðvÞ > 0. Hence, always

θ½bðvÞ − aðvÞ� ¼ 1. Therefore

Ñðγ;z;γ0;z0Þ ¼Nregðγ;z;γ0;z0;v1 ¼ 0;v2 ¼ 1Þ; ð37Þ

with Nregðγ; z; γ0; z0; v1; v2Þ defined in (25).
(2) D0 > 0. The roots v∓ given by Eq. (23) are real. The

form of the kernel Ñ is different in three following
subcases, depending on the positions of the roots.
(a) The roots are out of the integration domain 0≤

v≤1 over v: either v−<vþ<0, or 1 < v− < vþ.
Then the kernel Ñðγ; z; γ0; z0Þ is still defined
by Eq. (37).

(b) Both roots are in the integration interval:
0<v−<vþ<1. Then the kernel Ñðγ; z; γ0; z0Þ
reads

Ñðγ; z;γ0; z0Þ ¼Nregðγ; z;γ0; z0;v1 ¼ 0; v2 ¼ v−Þ
þNregðγ; z;γ0; z0;v1 ¼ vþ; v2 ¼ 1Þ
þNsingðγ; z;γ0; z0;v−Þ
þNsingðγ; z;γ0; z0;vþÞ; ð38Þ

with Nregðγ; z; γ0; z0; v1; v2Þ defined in (25) and
Nsingðγ; z; γ0; z0; vÞ defined in (35).

(c) One root is in the integration interval 0 ≤ v ≤ 1,
whereas the second one is at v > 1. That is,
0 < v− < 1 < vþ. Then the kernel Ñðγ; z; γ0; z0Þ
takes the form

Ñðγ; z; γ0; z0Þ ¼ Nregðγ; z; γ0; z0; 0; v−Þ
þ Nsingðγ; z; γ0; z0; v−Þ: ð39Þ

We remind that the roots cannot have opposite signs [see
remark below Eq. (24)]; therefore the case v− < 0 < vþ is
excluded.
The kernel Nðγ; z; γ0; z0Þ is constructed via Ñðγ; z; γ0; z0Þ

similarly to Eq. (7):

Nðγ; z; γ0; z0Þ ¼
�
Ñðγ; z; γ0; z0Þ; if − 1 ≤ z0 ≤ z ≤ 1

Ñðγ;−z; γ0;−z0Þ; if − 1 ≤ z ≤ z0 ≤ 1.

ð40Þ

We emphasize that in the second case (if − 1 ≤ z ≤ z0 ≤ 1)
we should make the replacement z → −z; z0 → −z0 every-
where, including Eqs. (20)–(22) determining the positions
of the roots (23).
This completes the calculations. Just this kernel

Nðγ; z; γ0; z0Þ, with Ñðγ; z; γ0; z0Þ defined above, enters in
Eq. (5) for gðγ; zÞ.

A. Test 1.

For test, we take the same parameters which were used in
the test carried out in [11], namely:
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α ¼ 1; m ¼ 1; μ ¼ 0.15; M ¼ 1.9:

We also take the same values of variables:

γ ¼ 0.1; γ0 ¼ 1; z ¼ 0.2; z0 ¼ 0.35:

Since z < z0, according to Eq. (40), the kernel Nðγ; z; γ0; z0Þ
is determined by Ñðγ;−z; γ0;−z0Þ. That is. in further
calculations, we should change the signs of the variables
z, z0: z → −z, z0 → −z0. For these new values of variables,
we find D0 ¼ 1.036 > 0. By Eq. (23), we find the roots of
the equation bðvÞ−aðvÞ¼ 0: v−¼−2.672, vþ ¼ −0.0263.
Hence, we deal with the case 2(a). The value of Ñ is
determined through Nreg by Eq. (37). The contribution
Nsing of the singular part is absent. In its turn, Nreg is
determined by Eqs. (25), (29) and, since D1 ¼ 0.937 > 0,
finally by FþðvÞ, Eq. (31). In this way, we find the value of
the kernel: N ¼ 0.1153980591510, that coincides within
all digits with the value found in Eq. (31) of Ref. [11].

B. Test 2.

For the same set of the parameters α,m, μ,M we take the
following set of variables:

γ ¼ 0.5; γ0 ¼ 0.1; z ¼ 0.2; z0 ¼ 0.35:

Since z < z0, according to Eq. (40), the kernel Nðγ; z; γ0; z0Þ
is still determined by Ñðγ;−z; γ0;−z0Þ. That is, in further
calculations, we should take the negative values of z, z0:
z → −z, z0 → −z0. For these new values of variables, we
find D0 ¼ 0.239 > 0. By Eq. (23), we find the roots of the
equation bðvÞ − aðvÞ ¼ 0: v− ¼ 0.050, vþ ¼ 0.579.
Hence, we now deal with the case 2(b). The value of Ñ
is determined through Nreg and Nsing by Eq. (38). The
singular part now gives a nonzero contribution. In its
turn, Nreg is determined by Eqs. (25), (29) and, since
D1 ¼ −0.0127 < 0, finally by F−ðvÞ, Eq. (30). In this way,
we find the value of the kernel: N ¼ −0.0531890858160,
that coincides within all digits with the value found in
Eq. (33) of Ref. [11].
Note that these two tests cover all three functions used to

calculate N: the function F−ðvÞ, Eq. (30), the function
FþðvÞ, Eq. (31), and Nsingðγ:z; γ0; z0; vÞ, Eq. (35).

IV. MASSLESS EXCHANGE

The case μ ¼ 0 corresponds to the Wick-Cutkosky
model [5,6]. For simplicity, we will consider the ground
state only. In this model, the ground-state function gðγ; zÞ
turns into

gðγ; zÞ ¼ δðγÞgðzÞ; ð41Þ

and the equation for gðzÞ was found in [5,6]. Below we will
show that Eq. (5) with the kernel found in the previous

sections turns, in the limit μ → 0, into the Wick-Cutkosky
equation.
According to Sec. III, the formulas which should be used

to calculate the kernel N in Eq. (5) depend on the position
of the roots, Eq. (23), relative to the interval 0 < v < 1.
Decomposing v∓, Eq. (23), in series of μ2 and denoting
B00 ¼ B0ðμ ¼ 0Þ, we should consider two cases: B00 < 0
and B00 > 0.
The case B00 < 0 ðγ0 < 1−z0

1−z γÞ:

v− ¼ −
1

B00

ð1 − zÞμ2 > 0; vþ ¼ −
B00

A0

> 0:

From Eqs. (20), (21) it follows: A0 > 0; A0 þ B00 > 0.
Therefore − B00

A0
< 1, 0 < v− < vþ < 1. We should calcu-

late the kernel according to the case 2(b) from the
Summary, Sec. III, i.e., by Eq. (38).
The case B00 > 0 ðγ0 > 1−z0

1−z γÞ:

v− ¼ −
B00

A0

< 0; vþ ¼ −
1

B00

ð1 − zÞμ2 < 0:

In this case: v− < vþ < 0. We should calculate the kernel
according to case 2(a) from Sec. III, i.e., by Eq. (37).
In this way, taking the limit μ → 0 in Eq. (37) and in the

first line of Eq. (38), we find the regular part contribution:

Nregðγ; z; γ0; z0Þ ¼
( αm2ð1−zÞ

2πγð1−z0Þ
1

γ0þm2z02þκ2ð1−z02Þ ; if γ0 < 1−z0
1−z γ

αm2

2πγ0
1

γ0þm2z02þκ2ð1−z02Þ ; if γ0 > 1−z0
1−z γ:

ð42Þ

The singular part contribution is calculated similarly. For
B0 < 0 ðγ0 < 1−z0

1−z γÞ this contribution is given by the second
line of Eq. (38). For B0 > 0 ðγ0 > 1−z0

1−z γÞ it is absent; see
Eq. (37). That is,

Nsingðγ;z;γ0;z0Þ¼
(
−αm2ð1−zÞ

2πγð1−z0Þ
1

γ0þm2z02þκ2ð1−z02Þ ; if γ0< 1−z0
1−z γ

0 if γ0> 1−z0
1−z γ

:

ð43Þ

The full kernel Ñ is the sum of (42) and (43):

Ñðγ; z; γ0; z0Þ ¼
(
0; if γ0 < 1−z0

1−z γ

αm2

2πγ0
1

γ0þm2z02þκ2ð1−z02Þ ; if γ0 > 1−z0
1−z γ

¼ αm2

2πγ0
θ½γ0ð1 − zÞ − γð1 − z0Þ�
γ0 þm2z02 þ κ2ð1 − z02Þ: ð44Þ

The first lines in Eqs. (42) and (43) are the same, up to the
opposite signs; they cancel each other in Eq. (44).
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We will show that the solution in the Wick-Cutkosky
form (41) indeed satisfies Eq. (5) with the kernel (44).
Since the support of the function gðγ; zÞ is γ > 0, the delta
function δðγÞ is obtained in the limit μ → 0 from a function
having a peak at γ > 0. To keep this property, we replace
δðγÞ by δðγ − ϵÞ with ϵ > 0 and at the end of calculation
take the limit ϵ → 0. With the kernel Ñðγ; z; γ0; z0Þ,
Eq. (44), and with gðγ; zÞ ¼ δðγ − ϵÞgðzÞ Eq. (5), after
integration in the rhs over γ0 by means of the delta function
δðγ0 − ϵÞ, obtains the form:

δðγ − ϵÞgðzÞ ¼
Z

1

−1
dz0

αm2

2πϵ

θ½ϵð1 − zÞ − γð1 − z0Þ�
ϵþm2Qðz0Þ gðz0Þ;

where Qðz0Þ ¼ 1 − η2ð1 − z02Þ, η ¼ M
2m. Note that the func-

tion

hðγÞ ¼ 1

ϵ
θ½ϵð1 − zÞ − γð1 − z0Þ�

vs γ differs from zero in the narrow interval 0 < γ < ϵ 1−z
1−z0.

In this interval it is constant (equal to 1
ϵ) and it is zero

outside. The integral

Z
∞

−∞
hðγÞdγ ¼

Z
ϵ 1−z
1−z0

0

hðγÞdγ ¼ 1 − z
1 − z0:

Hence, the integral over γ from the function 1−z0
1−z hðγÞ is 1;

this function approximates the delta function δðγ − γ0Þ,
where γ0 is a value within the interval 0 < γ0 < ϵ 1−z

1−z0.
Therefore, replacing, in the limit ϵ → 0, hðγÞ → 1−z

1−z0 δðγÞ
and omitting δðγÞ in both parts of the equation, we obtain
the following equation for gðzÞ:

gðzÞ ¼ α

2π

Z
1

−1
dz0

1 − z
1 − z0

gðz0Þ
Qðz0Þ :

This equation is valid when z0 < z. For z0 > z one should
make the replacement z → −z, z0 → −z0. Therefore we
obtain

gðzÞ ¼ α

2π

Z
1

−1
dz0Rðz; z0Þ gðz

0Þ
Qðz0Þ ; ð45Þ

where

Rðz; z0Þ ¼
(

1−z
1−z0 ; if z0 < z
1þz
1þz0 ; if z0 > z:

Equation (45) exactly coincides with Eq. (15) from [6],
derived in the case μ ¼ 0, and with Eq. (12) from [4] (for
the quantum number n ¼ 1). This coincidence can be
considered as another test of the kernel presented in
Sec. III.

V. EQUATION ON THE HALF-INTERVAL 0 ≤ z ≤ 1

It is easy to show that the solution of Eq. (5) with the
kernel constructed by Eq. (40), even with arbitrary function
Ñ, is either symmetric, or antisymmetric. For finding its
solution numerically, it is useful, using this symmetry, to
reduce it, instead of the interval −1 ≤ z ≤ 1, to the half-
interval 0 ≤ z ≤ 1.
Using the definition (40), we rewrite Eq. (5), in terms of

the kernel Ñ as follows:

gðγ; zÞ ¼
Z

∞

0

dγ0
Z

0

−1
dz0Ñðγ; z; γ0; z0Þgðγ0; z0Þ

þ
Z

∞

0

dγ0
Z

z

0

dz0Ñðγ; z; γ0; z0Þgðγ0; z0Þ

þ
Z

∞

0

dγ0
Z

1

z
dz0Ñðγ;−z; γ0;−z0Þgðγ0; z0Þ: ð46Þ

For symmetric gsymðγ; zÞ ¼ gsymðγ;−zÞ, making the
replacement of variable z0 → −z0 in the first line of the
rhs of Eq. (46), we get

gsymðγ; zÞ ¼
Z

∞

0

dγ0
Z

1

0

dz0Ñðγ; z; γ0;−z0Þgsymðγ0; z0Þ

þ
Z

∞

0

dγ0
Z

z

0

dz0Ñðγ; z; γ0; z0Þgsymðγ0; z0Þ

þ
Z

∞

0

dγ0
Z

1

z
dz0Ñðγ;−z; γ0;−z0Þgsymðγ0; z0Þ:

ð47Þ

Introducing the kernel defined on the half-intervals
0 ≤ z ≤ 1, 0 ≤ z0 ≤ 1,

Nhalfðγ; z; γ0; z0Þ

¼
�
Ñðγ; z; γ0;−z0Þ þ Ñðγ; z; γ0; z0Þ; if z0 < z

Ñðγ; z; γ0;−z0Þ þ Ñðγ;−z; γ0;−z0Þ; if z0 > z
; ð48Þ

where Ñ is defined in Eqs. (37), (38), or (39), depending
on the positions of the roots v∓ (for given arguments
γ;�z; γ0;�z0), we rewrite Eq. (47) as

gsymðγ; zÞ

¼
Z

∞

0

dγ0
Z

1

0

dz0Nhalfðγ; z; γ0; z0Þgsymðγ0; z0Þ: ð49Þ

The antisymmetric solution gasymðγ; zÞ is determined by
Eq. (49) with the kernel Nhalf which differs from (48) by
the opposite sign at the first term in the rhs side in (48), i.e.,
by the replacement Ñðγ; z; γ0;−z0Þ → −Ñðγ; z; γ0;−z0Þ.
Equation (49) is most convenient for the numerical

solution, since its interval in z is twice more narrow than
in (5). That allows to twice increase the density of the
discretization points and, in this way, to increase the
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precision. Solution gðγ; zÞ in full interval −1 ≤ z ≤ 1 is
trivially obtained from gsymðγ; zÞ [or from gasymðγ; zÞ] using
the symmetry (antisymmetry) of this solution.
Solving Eq. (49) for μ ¼ 0.15 and μ ¼ 0.5 numeri-

cally, by spline techniques, with number of intervals
Nγ ¼ Nz ¼ 24, we reproduced, within three digits, the
results shown in Table I in Ref. [10]. Increase of number of
intervals improves the comparison.

VI. CROSS-LADDER KERNEL

As mentioned, the above calculation of the kernel N in
Eq. (5) was based on the inversion of the kernel L contained
in the lhs of Eq. (4) written symbolically in the form
Lg ¼ Vg. The recipe of this inversion is universal for any
kernel V contained in the rhs of Eq. (4). The result of
application of the inverse lhs kernel L to V: N ¼ L−1V is
given by Eq. (6). Therefore, similar calculation of the
kernel N can be carried out for any kernel K in the BS
equation (1), given by an irreducible Feynman graph [and,
correspondingly, for any kernel V in the rhs of Eq. (4)].
Though, of course, for more complicatedK the calculations
become more cumbersome. We illustrate it (more sche-
matically) for the cross-ladder kernel.
Feynman graph for the cross-ladder kernel is shown in

Fig. 1. Corresponding kernel VðCLÞðγ; z; γ0; z0Þ in the
noncanonical equation (4) was calculated in [9]. We rewrite
VðCLÞ as

VðCLÞðγ; z; γ0; z0Þ ¼ −
1

π2
α2m4ð1 − z2Þ3

Z
1

0

y4ð1 − y4Þ2dy4

×
Z

1

0

dy3

Z
1−y3

0

dy2

Z
1−y2−y3

0

Gηdy1;

ð50Þ

where η ¼ 1 − y4½1 − ð1 − y1 − y3Þðy1 þ y3Þ�,

G ¼ 1

½γ þm2z2 þ κ2ð1 − z2Þ�D3
; ð51Þ

and D reads

D ¼ cγγ þ cγ0γ0 þ cκκ2 þ cmm2 þ cμμ2

− y4jc̃j½γ þm2z2 þ κ2ð1 − z2Þ�: ð52Þ

The coefficients c��� determining D are given in [9].
Making in (50) the substitution (6), we obtain for the

kernel NCLðγ; z; γ0; z0Þ the expression

NðCLÞðγ; z; γ0; z0Þ ¼ −
1

π2
α2m4ð1 − z2Þ3

Z
1

0

y4ð1 − y4Þ2dy4

×
Z

1

0

dy3

Z
1−y3

0

dy2

Z
1−y2−y3

0

nηdy1;

ð53Þ

where

n ¼ 1

2π

Z
π−ϵ

−πþϵ

dϕ
ða1 exp iϕþ b1Þ3

; ð54Þ

and

a1 ¼ ðcγ − y4jc̃jÞγ;
b1 ¼ cγ0γ0 − cγðκ2ð1 − z2Þ þm2z2Þ þ cκκ2

þ cmm2 þ cμμ2:

Like for the ladder kernel, Eq. (14), the result is again
given by sum of two integrals (now—4D integrals over y1,
y2, y3, y4) from regular and singular part contributions:
n ¼ nreg þ nsing. They are calculated similarly to the ladder
case. However, in the ladder case, the values a and b are
positive. The condition that the pole y ¼ − bðvÞ

aðvÞ is outside

the unit cycle means − bðvÞ
aðvÞ < −1, that is bðvÞ − aðvÞ > 0.

In the cross-ladder case, a1, depending on the values of
variable, can be positive or negative, that now means:
j b1a1 j > 1, that is jb1j − ja1j > 0. Hence,

nreg ¼
1

2πi

Z
C
dy

1

yða1yþ b1Þ3
¼ 1

b31
θðjb1j − ja1jÞ;

nsing ¼ −
1

b21
δðb1 − a1Þ: ð55Þ

The kernel is obtained by substituting in Eqs. (55) the
values a1, b1 and integrating according to Eq. (53).

VII. CONCLUSION

Wehave found the new form of the kernelNðγ; z; γ0; z0Þ of
the canonical equation (5): g ¼ Ng, for the Nakanishi
function g for the ladder kernel. This form differs from
two forms found previously inRefs. [10,11], though all three
kernels are equivalent to each other. The kernel in the form
found in the present paper is expressed via the real functions,
does not contain any ambiguities, and the method of its

p

p

p"

1

2

p’

p’

1

2
p’ − p  + p"

2 1

p  − p"
1

p’  − p"
1

FIG. 1. Cross-ladder kernel.
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calculation can be applied to any kernel given by irreducible
Feynman graph. We outlined this generalization for the
cross-ladder BS kernel. For the ladder, the integration is
fulfilled analytically and the result forN is given by Eq. (40)
in terms of Ñ determined in Sec. III. The solutions gðγ; zÞ of
Eq. (5), defined in the interval −1 ≤ z ≤ 1, are either
symmetric relative to z → −z, or antisymmetric. For both
solutions Eq. (5) is reduced to Eq. (49), defined on the half-
interval 0 ≤ z ≤ 1. For symmetric solution, the kernel is
defined in Eq. (48). For the antisymmetric one, the kernel is
constructed as explained in Sec. V. For the cross ladder, the
kernel is given by Eq. (53).
The canonical equation (5), in contrast to Eq. (4), does

not contain the integral in the lhs and therefore it is solved

more easily; its solution is stable relative to the numerical
procedure. Equation (5) is an equation in two variables,
with smooth easy calculated kernel, and therefore finding
its solution is not more difficult than for the Euclidean BS
equation. However, it provides, via Nakanishi function, the
BS amplitude in Minkowski space. Therefore, applications
of these methods to solving the BS equation can give
considerable advantages [3,12].
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