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The lepton pair production in ultraperipheral collisions is studied in the classical field approximation. We
derive a general form of the cross section in terms of photon distributions that depend on the transverse
momentum and coordinate based on the wave packet form of nuclear wave functions. Such a general form
of the cross section in the classical field approximation contains the results of the generalized equivalent
photon approximation (EPA) as well as the corrections beyond EPA in the Born approximation.
By rewriting the general form of the cross section in light-cone coordinates, we find a good connection
with the transverse momentum dependent distribution factorization formalism in the Born approximation.
Our numerical results are consistent with current experimental data.
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I. INTRODUCTION

Strong electromagnetic fields are produced in the rela-
tivistic heavy ion collisions [1-9]. One way to describe the
evolution of electromagnetic fields is through the relativ-
istic magnetohydrodynamics consisting of the hydrody-
namical conservation equations coupled with Maxwell’s
equations. The solutions to equations of ideal magnetohy-
drodynamics with longitudinal boost invariance show that
the transverse magnetic field decays as ~1/7z with 7 being
the proper time [10-15] (for a recent numerical simulation
of electromagnetic fields based on ideal magnetohydrody-
namics, see, e.g., Ref. [8]).

Although strong electromagnetic fields decay rapidly,
there are still many novel transport phenomena induced by
strong fields that could be measured in experiments, such
as the chiral magnetic and separation effects [1,16,17], the
chiral electric separation effect [18-21], and other non-
linear chiral transport phenomena [21-25]. These effects
can be described by chiral kinetic theory for massless
fermions derived from the path integral [26-28], the
Hamiltonian approaches [29,30], the quantum Kkinetic
theory via Wigner functions [23,31-38], and the world-
line formalism [39]. The chiral kinetic theory has been
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extended to the massive fermions and with collision kernels
[40-48]. For reviews of recent developments in this field,
see, e.g., Refs. [49-53].

Another type of effects is related to the nonperturbative
production of lepton pairs in strong electric fields through
the Schwinger mechanism [54]. Recent developments
along this line include the lepton pair production in strong
magnetic fields by the Schwinger mechanism [55-58] and
the vacuum birefringence [59-61].

Recently the lepton pair production through strong
electromagnetic fields in ultraperipheral collisions
(UPC) has drawn broad interest. Back to 1930s,
Weizsacker and Williams considered the electromagnetic
field produced by a fast moving particle as an equivalent
flux of quasireal photons [62,63]. This approximation is
called the Weizsacker-Williams method or equivalent
photon approximation (EPA) [64]. A related process is
the lepton pair production through collisions of two real
photons and was studied by Breit and Wheeler [65] under
the condition that the total energy of two photons should
be greater than the mass of the lepton pair. The STAR
Collaboration at Relativistic Heavy Ion Collider (RHIC)
has measured the lepton pair (/) production process in
UPC [66]. There are also several measurements related
to nonlinear effects of quantum electrodynamics (QED)
such as the vacuum birefringence [67] and the light-by-
light scattering [68]. The transverse momentum spectra of
the lepton pair in peripheral collisions of heavy ions are
found to be significantly broader than the ones in UPC by
STAR [69] and by the ATLAS Collaboration at the Large
Hadron Collider (LHC) [70]. Such broadenings may arise
from medium effects in peripheral collisions; therefore,
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UPC may provide a baseline for future studies of
medium effects.

Several theoretical methods are available to describe the
lepton pair production in UPC. A widely used method is the
EPA or the generalized EPA (gEPA). The total cross section
of yy — I has been calculated in EPA in the classical field
approximation of QED [71]. The original EPA calculations
predict that the position (transverse momentum) of the peak
in the transverse momentum spectrum is less than 20 MeV,
inconsistent with the experimental data [72—74]. Therefore
the generalized EPA was proposed [71,74-79] to give the
correct position of the peak in the transverse momentum
spectrum [77-79].

The azimuthal asymmetry in the lepton pair from linearly
polarized photons in UPC has been studied in the transverse
momentum dependent (TMD) factorization formalism
[80,81] similar to polarized gluons [82—84]. In this for-
malism, the photon Wigner functions are introduced into
the cross section which depends on the transverse momen-
tum and coordinate [85,86]. The broadening of transverse
momentum has also been studied in the TMD formal-
ism [87].

With all these different formulations in different per-
spectives of the process, it is natural to ask if there is a
unified description. In this paper, we will derive a general
form of the cross section based on wave-packet nuclear
wave functions, which incorporates photon distributions
with the dependence on the transverse momentum and
coordinate. The cross sections in (g)EPA and the TMD
formalism can be derived from the general form. The
numerical results of the cross section in the general form are
in good agreement with experimental data.

This paper is organized as follows. In Sec. II, we derive a
general form of the cross section in terms of transverse
momentum and coordinate dependent photon distributions.
In Sec. III, we implement the classical field approximation.
In Sec. IV we take the ultrarelativistic limit to reproduce the
results of (g)EPA. In Sec. V, we rewrite the general form
of the cross section in light-cone coordinates and make a
connection with results of the TMD formalism. The
numerical results of the cross section in the general form
are given in Sec. VI, and a comparison is made with
experimental data as well as the results of (g)EPA and the

|

TMD formalism. The main results of this work are
summarized in Sec. VIIL.

Throughout this paper, we choose the metric g,, =
diag{+, —, —, —} for ordinary coordinates (x°, x!, x*, x}) =
(t,x). The light-cone coordinates x* = (x,x™,x7) with
xF=(x"+x%)/v2 and x; = (x',x?) are also used.

A vector ¢ can be written as a* = a'n’, +a n* + dy
= (a® £a%)/v2 and n, are lightlike vectors
satisfying n2 = n%2 =0 and n, - n_ = 1. The inner prod-

uct of two vectors in light-cone coordinates is
a - b = a_b+ +a+b_ —ar 'bT'

where a*

II. GENERAL FORM OF CROSS SECTIONS
FOR LEPTON PAIRS

In this section, we give a general form for the differential
cross section of lepton pairs in UPC, with the detailed
derivation being given in the Appendix A.

As shown in Fig. 2, we consider collisions of two nuclei
A; and A, moving alone in the £z direction which are
displaced by an impact parameter by and generate a pair of
leptons [ and [ along with other particles X, ..., X Freens

A1(Pa1) + Ay (Paa) = U(ky) + 1(ky) ZX]‘ Ky), (1)

where four-momenta of particles are given in parentheses.
Here Py = (E4.Pyy) and Py, = (Exp. Pyy) with Ey; =
/P3| + M7 and E4, = /P3, + M3 are on-shell momenta
of two nuclei with masses M| and M,, respectively. The
three-momenta of two nuclei are P,; = (0,0, P3,) and
P,, = (0,0,—Pj,) in the center of mass frame of the
collision.

In order to describe collisions at fixed impact parameters,
we need to assume the wave functions of colliding nuclei to
be wave packets. We follow the standard way in quantum
field theory to obtain the cross section at the impact
parameter by in Eq. (AS). Making the ansatz (A9) for
the longitudinal momentum amplitudes of wave packets
and completing the integrals over longitudinal momenta of
wave packets we arrive at

3
&K,

1 Pk d*k
=——— [ d*brd®b,rd*b / ! 2 :
77 80n) / rdbird’hyr) 2m)32E;, (27)} 2Ek2H (27)32Ex,

{3

X / d2P1 TdZPZszplleZP/ZT

U\/m(;z[(yf — P3)*or(Pir)dpr (Por) o7 (P ) (P

emirirgmiardar 5 by — by + byr) (2)5¢) <P1 + Py =k —ky = fo)

x 2
MP1+P2—>k]+k2+Z K, P’+P’—>k,+k2+ZK,

spin of [,/

f
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Xy X X, X,
o— =i il P
ky 1
PiN
PZ/'
k
Py 2 P,
Kjp1 - X; Kjr1 - X;
FIG. 1. Feynman diagrams for the photon fusion process in
UPC.

Here Py, P,, P/, and P}, are on-shell momenta of nuclear
wave packets given by P; = (Ep;,Pi7,2P5, — PY),
Py = (Epy, Pyr, =2P; + PY), Py = (Epy. Pi7, PY), and
Py, = (Epy,P,y,—PT). As the solution to the energy
conservation Pf is a function of transverse momenta
Py, Pyr, P|;, and P),,. We see that the z components
of Pi+ P, and P|+ P, are vanishing. The function
G(x?) is defined in Eq. (A9), which is a positive and
decreasing function of x? satisfying G(0) = 1. We have
used the shifts of transverse momenta Ay = P}, — Py
and A,r =P,; —Py7, and the relative velocity of two
nuclei » given in Eq. (A10) as a function of transverse
momenta.

In the tree level of Feynman diagrams (sometimes called
Born approximation) as shown in Fig. 1, the lepton pair is
produced in the photon fusion process

X1 WW\/W AVAVAVAVAVAV,
z
by, by,
P,
1 v,
b,
! Pa,
Vi

FIG. 2. A cartoon for photon emission in UPC.
(1) +7(p2) = (ki) + 1(ks). (3)

Here, we assume the photon y(p;) or y(p,) comes from
the nuclei A,(P;) or A,(P,), respectively. Note that each
photon does not have to come from the nuclear center. We
can identify b,y in Eq. (2) as the transverse distance
between y(p;) and A;(P;) with i = 1, 2, which are related
to the impact parameter by = b7 — b, as shown in Fig. 2.
The invariant amplitude M can be obtained through the
matrix element of the operator 7" or the T-matrix element.
The results are given in Eqs. (A16) and (A17). By inserting
these results for invariant amplitudes into Eq. (2), the
differential cross section can be put into the form

do 1 1
d3k1d3k2 ~ 32(2”)6 EuEn / d2de2b1Td2b2T / d4p1d4pz5<2)(bT —bir + bZT)(Z”)45(4>(p1 +p2—ky — k)
d’P i iy d*Pryyy 1
(1+1)T <2+2)T 2 /zZ Z \2 * / * /
G|(Pf - P P P P P
x / (271.)2 (2”)2 vm [( 1 Al) M’T( lT)¢T( 2T)¢T( 1T)¢T( 2T)
X So'ﬂ<p1’ b1T)Spu(P2,bzr)“”"p(l?l,l?z;m — Py + P\, py— Py + Pk, k), 4)

where P’ is a function of nuclear transverse momenta that approaches P, if all nuclear transverse momenta are vanishing,
L+°P s the lepton tensor in Eq. (A21), and we have used variables Ay and A, with

to replace Pz, Pz, P|,, and P},. We have used the Wigner functions for photons

e (P |A(0)A, (y1) [ Pr)e™r i,

LAy [ dy
Sou(P1.bi7) = —U/ :

@02 ) @)
Sulprbor) = [ [ 22 o pIAL 01, () e, ©)

which are similar to those in Refs. [85,86]. We will discuss them carefully in the TMD factorization formalism in Sec. V.
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We can also integrate Eq. (4) over by; and b,y and express the differential cross section at fixed by

do 1 1

d’P i &Py d* P d*Plyy 1

3, B 2h. 6 /d4p1d4p2/ 2 2 2 2
ki dkyd®by  32(27)° EyEgg (27)° (27)* (27)* (27)* v\/EpiEpyEpy Epy
x e G2(PF — P5,)*dr(Pir)dr(Par) gy (Pr) iy (Phr)

X LM (py, pas p1 — Py +P/1,P2—P2+P/2;k1’k2)/

d4y1 in-y /AT
s PA APy

dy,
X / (2;:)24 eiP2y2 <P’2|A,T,(O)Ay(y2)|P2>(2n)25(2)(p1T + Py — Pl — PL)(27)48W (py + pa— ky — k).

(7)
We can also integrate Eq. (7) over b7 to obtain
do 1 1 d*P, d*P 1
= d4d4/'T2T P,/) b (Pyr)?
d3k1d3k2 32(277,’)6 EklEkZ/ pPia p> (271’)2 (2”)2 UEPIEP2 |¢T( 1T)| |¢T( 2T)|
X S5 (P1, P1)Spu(Pa. p2) L (py, pas p1. P2 ki, ko) (2m)*8H (py + po — ki — ky), (8)

where we have used P = P4, as the solution to the energy
conservation equation with the conditions P;; =P/,
and P,y =P, so the on-shell momenta of nuclear
wave packets now become P = (Ep,Piy,P3,) and
Py = (Epy, Pyr, —P3,). We have also defined

Sou(P.p) = / (;’Tyyeiﬂ~y<P|A;‘;<o>Aﬂ<y>|P>, 9)

as the TMD correlation function for unpolarized nuclei.

In this section, we have given a general form for the
impact parameter dependent cross section. The cross
sections in Egs. (7) and (8) are similar to the TMD
factorization for photons. We see that S,,(P, p) appear
in Egs. (7) and (8) as nonperturbative soft correlation
functions for photons. In the next section, we will show
how to handle soft correlation functions in the classical
field approximation.

III. CLASSICAL FIELD APPROXIMATION

In this section, we take the classical field approximation
for the photon field A#(x). We follow the idea in early
works [71,75,76] and extend their original formalism by
including impact parameters b and b,;.

We consider collisions of two nuclei in the center of
mass frame as shown in Fig. 2. The fluid velocities of two

nuclei are ) =y;(1,0,0,v;) and uh =y,(1,0,0,—2,)

withy;, =1/4/1— vfz being the Lorentz factor. At very

high energy, these four-velocities have properties u o '

and ub < n*, where n' and n* are lightlike vectors
given by Eq. (B4). The charge currents are then
Ha=2Zisepio(x)uf 5, where p;,(x) are the charge

[
densities. By choosing the Lorentz gauge 0,A* =0 or
p-A(p) =0, we can solve the Maxwell equations
9,0"°Al, 5) = Ji, to derive the classical photon (electro-

magnetic or EM) fields A}(tl,2)‘ We introduce the nuclear
form factor F(k) as the Fourier transformation of p(x)

F(p) = / Prep(x),

3
o) = [ e ) (10)

Then the classical photon fields in momentum space are

Fp
Al 2)(P) =21Z,2e5(p - uy 2) %“’1‘2 (11)

where we have replaced §(p°) by its covariant form
8(p - uy,) [88]. Note that in Refs. [71,75], an extra phase
factor e is included in A{})(p) to describe the

dependence on the impact parameter. Since we have
already introduced the dependence on impact parameters
systematically into the differential cross sections (4), (7),
we do not need to add this phase factor into AI(1,2)(P)
in (11). One can verifiy that our formalism is equivalent to
Refs. [71,75].

The matrix elements of photon operators in Eq. (A18) are
assumed to take the form with i = 1, 2 labeling two nuclei
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(PAS(PDAL(P)IP:) = AL(P)AL(P)2\/ (P - ) (P} - u;)(22)38®) (B; — P} — P; + P))
1 _ _ _ _
= Ay (p)A,(p:) ;2 EpiEpy(27)8(p; - it; — p} - ; — P; - ; + P} - ;)8 (pir — Pl — Pir + Plyp),

(12)

where Az (p}) = A7 ;) (p) and A, (p;) = A, (;) (p;) denote the classical photon fields in (11) and a’ denote the components of
a for a = p,p’, P, P’ that are perpendicular to u*, a; - u; = 0, which are given by

alll = _(ai ’ ﬂt)ﬁ,zl + d%yatlu = Aﬁfai,w (13)

with it = y(v,0,0,1), ¢¢ = diag(0,—1,-1,0), and A} = ¢" — u*'u¥. Note that @ are actually the spatial components of
a’ in the comoving frame of the nucleus labeled by i. So @/ can be decomposed as @ = (a; - u;)u? + a*. The explicit forms
of @ for a = p, p’ are given by ! under the conditions a; - u; = 0,

a° al

—u [ 0 1 R ) 2

a, = |al.a;r.— ), a, = (ay,ayr,——= ). (14)
U1 )

Now we can derive the cross section from Eq. (A18) for collisions of two equal nuclei (Z; = Z, = Z and v; = v, = v)
by using Egs. (11) and (12) in Eq. (A18) and completing the integrals over p!, p5, p; - uj, and p, - u,. The result is

A Pk Pk &Bp, &Ep d*P,; d*P dzP/ d*P!
~El d2de2b1Td2b2T/ ! 2 / b pi/ S S GP(PE = P5))Y)
2y (27)32E;; (27)32E, | (27)* (272)3 ) (27)* (27)* (27)% (2x)?
. . b . F _1—7 F _1—7 F* _]—7/2 F* =12
X ¢r(Pi7)r(Par) i (P ) @ (Phy) x e~ Pirbirg=Parfar 52 (b — b7 4 byy) ( _21) ( -22) ( > il o )
—P1 —P3 —Pi —P3
X Z [”m”zull””(ﬁl»l_’z;kl»kz)][ulausz”’)*(l_’ﬁv1_7/2§k1»kz)](2”)45(4)(l_71 + Py —ky — k), (15)
spin of 1,

where py, p,, p|, and p, are given by Eq. (14) and p) = p; — P, + P} for i = 1, 2. Note that p;, p!, P;, and P!
are momenta perpendicular to the four-velocity u¥ which have three independent components, while quantities with
index T are transverse ones perpendicular to the beam direction. We denote the 0 components of photon momenta p;
and p! as w; and ! for i = 1, 2, respectively, and then the conditions p} = p; — P; + P/ require w; = w; — Ep; + Epy and
pir = pir — Piz + Py In the derivation of (15), the four-momentum integrals are treated as d*p; = d(p, - u;)d*p,=
d(p;-u;)d(—p;- u;)d*p;y, because of —p,;-it;=w;/(vy) when applying p;-u; =0, we have d*p;,=
d(p;- Ui)dwidzpir/(W)-
Completing the integrals over bz, bor, by, Pz, and P, in Eq. (15), we obtain

-~ 6424/ d*ky d’ky /da)1d2P1T/dw2d2P2TF( pi) F(- _2) “(=p1) F* (= p%)
B 2y%0? (2”)32Ek1 (2”)32Ek2 (277)3 (2”)3 1_7% _Pz P% —Pz
(2

X Z ul;JMQI./L’u (pl’pZaklst)][ulaLthLp(p]’pbkl’kz)] ) )(P1+P2—k1—k2), (16)
spin of 1,1

where we have used P = P4, as the solution to the energy conservation equation with the conditions P, = P}, and
P, = P};. The result of (16) is consistent with the results in Refs. [71,75].
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o /
On the other hand, we can carry out the integrals over p; -

u;, p; - u;, 't and P;y fori = 1,2 in Eq. (A18), and the result is

Z4et dwd? dw-d? ad*P,+ d*P
_ze / Pbrdbrdhy; / 14 Piy d03d Doy / o Gx dr(Pir) (Par)3% oy

2R (2z)*  (2x)

X /delT e~ i (Pi—Pir >F (_]_7/12) Fi=p - )¢T(PIIT)
(2r)? —pt P

" / 0(12§§T e plypar) £ (pZ/ZZ)F(_;ZZ)

x / &k, &k 2 2

(27)°2E (27)2Ey,

spin of 1,1

where CU: = w; — EPi + EPi/, P/IT = PlT -

Pir + Pips and Py = Pyy —

—bir +byr)

¢*T(PI2T)G2[(P/IZ - Pi\l)z]

Z (1,100, L* (P Pas Ky ko) [15100, L7 (P P Ky k)] (270)* 6™ (1 + P — Ky — ko),

(17)

Por + p5y. Note that p, and p5, are now free

variables. We see in the above formula that the couplings of impact parameters with nuclear momenta have been converted
to those with photon momenta by integration over nuclear transverse momenta P’ and P},. Completing the integrals over

b7 and b,y will give a term

e_ibT'(p/lT_plﬁa(z)(plT + Ppor + p/lT - P/zr)’ (18)

in the integrand.

If we make a similar ansatz to (A9) for transverse momentum amplitudes we can simplify Eq. (17) significantly,

dr(Pir) 7 (Pip)dbr(Por) 7 (Por) =
:(2”)45( [Pi7 = (Pir —
x Gr[(pir =

where Gy (x?) may differ from G(x?

(27)*6@ (P + P;)/2]51
P1T)/2] [P2T (Por —
P1T) 1G7[(P5r —

J[(Por + Poy) /21G[(Piy — Pi7)2|Gr[(Pyy — Por)?]
Pyr)/2]
P2r)’), (19)

) for longitudinal momenta but with similar behavior: it is a positive function with

G7(0) = 1 and decreases rapidly with growing x2. Then the integrals over P, and P,; in Eq. (17) can be completed, and

we obtain
A dw\d*p 7 dwyd*pyr
° W/ d®brd®b17d?byr8? (by — by + byr) / 2z}  (2x)?
EPir v,y (o), -pir) E(=PT) F(=D1) )
iz T G
/(27:) —pP? 52 rl(Pir = Pi7)’]
oy F*(=p3) F(=p3)
e~ bar-(Py—Por) 2 2 G ’
) / (27)? P2 Pl rl(Par — Por)’]

/ P, &,
X
(27T)32Ek1 (27[)32Ek2

spin of 1,1

where we have used P = P4, as the solution to the energy
conservation equation with the conditions P, = —P/; and
Py = —P),, and o) = w; for i = 1, 2.

We emphasize that one of our main results in this work is
the cross section (20) with impact parameter dependence
which encodes the information of photons in transverse

Z (11,100, L7 (D1, P2 Ky ko) 115140, L (P, Phs ey ko) (27) 69 (py + o — ki = Ka),

(20)

|
phase space. This is the basis for the derivation of EPA
results in Sec. IV at the relativistic limit. We will show that
Eq. (20) contains all high order contributions of yy — I at
the tree level. In Sec. VI, we will compute cross sections
based on Eq. (20) and compare our results with exper-
imental data.
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We will also parametrize the TMD correlation function It implies that photons are almost on-shell [71],
S, in Eq. (9) and implement the TMD factorization
formalism in Sec. V. p? _

e~ o). (24)

IV. CONNECTION TO EPA

In this section, we will derive the EPA result from
Eq. (20). Now we evaluate u;,u, L*(py, pa: k. ky) and
Uy U, L7 (P, P ki, ky) in Eq. (17). In order to s1mp11fy
notations, from now on, we resume the use of py, p,, pi,
and p) in L* and L°* for py, p,, P}, and p), respectively,
if there is no ambiguity. It is convenient to rewrite
Uy, Uz, T (py, pai kyky) in light-cone coordinates,

Following (23), the first, second, and third terms of (21)
are O(1), O(y™"), and O(y~2), respectively. Therefore the
leading order contribution comes from the first term. The
expansion in (21) can also be interpreted as the photon
virtuality expansion. Details can be found in Appendix B.

At the relativistic limit, the cross section (20) can be put
into a compact form

’ o =0+ 00, (25)
U o L* (pys paskiks)
= y20? p_llp_é Lil —2p%2 P_’l ﬁ Li- & Pi p_é [+ where oy is the leading order contribution from the first
w1 @ W) Wy W, @, term of Eq. (21)
b Pir[Por|
Tt oL 21 i Pirllpor
/4 W] Wy ( ) },2 2 1 2Ltj~ 2 2417 pJLlj(plaPZ,khkz)
w12 w1,
where i, j = x, y stand for transverse directions, we have 2,2 p1 p2 Uy 22 7 1[p | S pIL
used Eq. (A23), and sz are given by rv o' a)z L Wp oL (171, P27k1, kz)

(26)

0] 1 0} 1
p?=—1<l —), p%=—2<1¥—>- (22)
V2 v V2 v and oo represents the corrections from other terms. In the

above formula, i, j, k, [ are indices of two transverse
directions, and pi, and p, denote the directions (unit
vectors) of py7,r and p';,;, respectively, which play the

At the relativistic limit v — 1 and y — oo, the following
power counting rules hold in the light-cone coordinate

T Py Py pi > role of polarization vectors of photons so the summation
60_1’ a)_zN o), 60_1’ a)—zN O(r=2). over i, j, k, | represents that over photon polarizations.

r r Therefore we can define the last two lines of Eq. (20) as a
p_l, p_2N(9(y—l)' (23) kind of cross section of the photon fusion to produce
oy 2] dileptons,

( )= — / Th__dh > PIPSLY(pr. paski, k)]
Oyl P1s P2i DY D 8o @y (27)2E, (2ﬂ)32Ek2§pinof”P1P2 P1> P23 K15k

X [PEPILK (P! phs ki ko) (27)*6W (py + pa — ki — ko). (27)

When p, = p| and p, = pb, 6,,_,;1(p1 P2, P’ P3) becomes the ordinary cross section for production of lepton pairs by two
photons.
The leading order cross section from Eq. (20) is put into the form

GO(AIAQ - l?) ~ / dzbrdzb]rd2b275(2)(b7‘ - b]T + b27‘)

Za [ &P, - F*(=p?) F(=p?)
/da)ldzpndwzcﬂpﬂ o /(2;;; i PP [py 7| pl | 7 Grl(pir —Pir)’]

Z*a [ d’ph; i ——— F*(=p%) F(-p3)
X a)lﬂ: / (27[) 27" PzT pr) |p ||p2T| p2 _p2 GT[(pZT pZT)z]ny—»li(pl > P25 pll s p/2)

(28)
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If we approximate p}, ~ p;7 for i = 1, 2, we have

Gr[(pir

Then Eq. (28) can be written in a compact way

-pir)’ &1,
%—»ﬁ(l’l . D2 s D) R %-»17(191 . P2)

~ Gy7—>17(w1 ’ 0)2). (29)

Uo(AlAz - li)%/dszdzblezbZT/da)ldzplewzdszTnAl(wl’blT’plT)nAZ(CUvaZTvpQT)

x 5@ (by — by + byr)o,, (@, @)

:/dszdzblezbZT/dwldwznAl(whblT)nA2(w27b2T)5<2)(bT_b1T+b2T)6yy—>ﬁ(w17w2)7 (30)

where the photon flux spectra from A; and A, are

d2pzT —ib —-p )
nai(@;, bir, pir) ® ﬁ (2n)? L pir| Py e~ P PP
« F*(_Pi )F(—Piz)
-p? -pi
nai(@;, bir) :/dzpiTnAi(wivbiTvpiT)
2 2 2
= 427a —d Pir eibiT'piTp.T F(_pi) 2’
w; (27)? Co-p
(31)

for i = 1, 2. The impact parameter structure in Eq. (30) is
similar to the space-dependent photon flux defined in
Refs. [85,86,89]. The approximation that leads to the result
of (30) is called the generalized EPA or gEPA [71].

We can complete the integrals over by, b7, and b, in
Eq. (30) to obtain

00(141142—’17):/dwlda)znm(wl)nAz(wz)Uwai(wl7602)7
(32)

where ny; and ny, are the photon fluxes generated by A,
and A,, respectively, and are given by

4220{ d2pi
nai(w;) = P /(2”)21’%7

, (33)

F(-p})|?
2

for i = 1, 2. Note that the photons are very close to real
ones as shown in Eq. (24). The approximation that leads to
the result of (32) is called EPA.

About o in (25), the cross section beyond the EPA, with
the same approximation as for Eq. (30), we obtain

Z4a2v d3k1 d3k2 d(l)l d(l)z F(—pz) 2 F(—pz) 2
b6 = d*p,rd> ! 2 (27)*st —ky—k))Z, (34
K /(Zﬂ)32Ek1 (275)32Ek2/ o wz/ Pird p ‘ -y 2 (27)*6*(p1+pr—ki—ky) (34)
where 7 is defined through
Yot ,
ulﬂ”ZDLﬂuulaI"QpLgp* 2602 [pll pjzp]]{plzLULGp* + 1]7 (35)
w1,

where L*

= L"(py, pas ki, ko) and L7 = (py, py; ki, ko) which are given by (A22). Note that the first term inside the

square brackets gives o,. The explicit form of Z is given by
T = =2pi pJLU(p3 pYLF= + pypAL+*) + 4pi plp7 pT LULT™ = 2(p3 pi LI~ + p7 phL™) pk ph LM
+4(p3 piL"™ + py pALY)(p3 pXL* + pyp5L**) — 8(p3 piLi= + py piL ™) py
+4pyps piph LM LT = 8prps L™ (py pAL*™ + pypAL™F) + 16(p7)*(p3 )P L LT, (36)

+7 -
Py L

So we see that the cross section (17) contains not only the result of EPA but also the result beyond the EPA.
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V. CONNECTION TO TMD FACTORIZATION
FORMALISM

In this section, we will discuss the connection of our
results to those from the TMD factorization formalism.
Here we just give a concise comparison between the results
from our approach and those from the TMD factorization
formalism. The details of the TMD factorization formalism
applied to UPC can be found in Refs. [80,81,87,90]. The
recent developments in the impact-parameter dependent
cross sections in terms of photon Wigner functions are
given in Refs. [85,86].

We work in the light-front formalism and discuss photon
Wigner functions based on Refs. [85,86]. The gauge
invariant TMD correlation function of EM fields [91]
for an unpolarized nucleus moving in +z direction is
defined as

d*é .
Wby ) = [ sl pE O P (@)

(37)

Similarly one can define the TMD correlation function
WHYPS(P,, p,) for the nucleus moving in —z direction. In
Sec. III we use the Lorentz gauge. Both YW and the
cross section are gauge invariant; therefore, in this section
we follow the standard TMD factorization formalism to

|

choose the light-cone gauge, A* = 0, for nuclei 1 and 2
moving in the £z direction. In the light-cone gauge the
classical solutions to EM fields read

F(—p? o
A12)(P) = 25Z1265(p - 1) : D : [wll,z ——iufz},

where the upper/lower sign corresponds to nuclei 1 and 2
moving in the £z direction, as a comparison, the result in
the Lorentz gauge is given in Eq. (11). One can verify that
the TMD correlation functions are related to the correlation
functions in Eq. (9) as

WH';M(Pl,Pl) = (PT)ZSW(Pl,Pl),
Wt (Py, py) = (p3)*S* (P, pa). (39)

Note that there is a different sign from Ref. [81].

We follow the twist expansion in the TMD factorization
formalism [91-98], where the twist-2 contribution comes
from W15t the twist-3 contribution comes from Wi+
and WUt and WH=+= contributes at twist-4.

In the order of twist-2, we can parametrize correlation
functions for nuclei 1 and 2 of the same species as

- it j 1 ij P Pj Pir i
[ apwes e = gt =g wi + (DB B g i )|

M? 2M?
dp Wi+ (p _1 P | —dii fr 2 PhrPhr | Par i\ pr 2 40
P> (P2, p2) —2x2 > | =97 f7 (%2, p3p) + M2 +2M29T (X2, P3r) | 5 (40)

where x; = p{/P| and x, = p; /P5 denote light-cone momentum fractions. The TMD distribution f7(x;, p,) represents
the usual unpolarized photon distribution, while k% (x;, p?;) represents the distribution function of linearly polarized
photons in an unpolarized nucleus [91]. The cross section (8) up to twist-2 can be expressed by

1 1 1 po.ph
o N ——— | &Pk Pk /d tdprdp; d? T2 Y (%, p2
Otwist 2 32(271.)6/ 147Ky P @ Pirdp, dPor VE EnyEr By 2x1PT M2 7(x1,Pir)
1 phrph
X 22 1 (x5 D30) Loy (P11 P23 D1 P2 K1 Ka) (270)*8H Py + o — Ky = Ky), (41)
2X2P2 M

where we have assumed Ep; =~ E4; and Ep, &~ E4, and performed the integrals over P, and P,;.
The TMD distributions f7(x, p7) and /% (x, p7) are nonperturbative in nature and cannot be derived directly from the
perturbation theory. In the classical field approximation based on the classical solution (38) we obtain

Z’a 2

F(- 2
xf7(x,p}) = — P7 Cr)

’

(04
Xh}}(x’ p%) ) M?

2

2
2Z ’ (42)

F(-p?)
2

b -p

which are consistent with the photon flux n,(w, pr) in Egs. (33). The details for the derivation of the above result can be
found in Appendix C. Inserting Eq. (42) into Eq. (41) yields
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d . 1 6 M P U F(- 2\ (2 F(—- 2\ (2

36tw1it2 _ IOZ4a21j/dw1d2p1wa2d2p2T plTpliz“pészT ( 121) ( 122)

Plidky,  2(27) EnEyn  oyw; —Pi =P

X Lyiop(P1. P23 P1. Pai ki ko) 20) 6% (1 + pa = ki = ko). (43)
I
It is straightforward to prove that the above result is Z2a|F(-p?)|
equivalent to Eq. (30). /dPTw+_;+_(P1,P1) :4P1+(P1_)2? _p21 (45)
1

In the classical field approximation, the twist-3 correla-
tion functions are given by

F(-p})|?
—p?

/dPTWU;H(Pl’Pl) =0, (44)

L 7%
/dPTw+”+ (P1,P1)=2P1+P1P'1?

and the twist-4 correlation function is

d3k2 dCU] da)z

Z4a21j/ &k, Pood
Otwistn — —5 5
fwist 871'4 (271')32Ek1 (2”)32Ek2 (D% (U% PrrdPar

with Z given by Eq. (36). It is remarkable that oy, 1S
exactly 6o in Eq. (34). Therefore, since we have already
shown that o2 = 09 in Eq. (43), the total cross sec-
tion (46) in the TMD factorization formalism is consistent
with the EPA result (25).

Thus we have shown the equivalence of EPA and TMD
factorization formalism. We would like to emphasize that
our main result (20) includes corrections beyond the EPA or
twist-2. Note that, in principle, one also needs to consider
the Sudakov factor in the TMD factorization theorem
[80,81,86,87]. It is still a challenge to add the effective
|

No higher order (twist-3 and twist-4) correlation functions
contribute to the tree level diagram of yy — I1.

The total cross section in the TMD factorization for-
malism reads

0 = Oyist2 T Otwistn> (46)
where
F _p2 2 F _p2 2
L R TR SR S )
1 2

Sudakov factor into our framework, which we reserve for a
future study.

VI. NUMERICAL RESULTS

In this section, we will present numerical results for the
cross section and compare them with STAR measurements
at 200 GeV Au + Au collisions at RHIC [67,69]. The cross
section can be expressed as a multidimension integral over
independent variables

vAl'S dArdpy dprd
el R & ’1‘2;;5’“

64ny*v? (27)?

/ dY o, dP,dip o dM ,dnioddsis

“(=p?) F(=pi) F*(=p%) F(-p3)

. F
x e~ ®rArh Arp P Hbr) T 2

-p?  -p%  -p}

X Z [ulyMZULﬂy(plvpZ;kl’k2)““16u2/)Lo—p*(p/l7plz;kl’kZ)]' (48)

spin of / N

The derivation of the above formula as well as the
explanation of all variables are given in Appendix D. Here
we have introduced a factor P*(b;) which will be ex-
plained shortly. The high-dimension integral of the cross
section (48) is a challenge in the numerical calculation. In
this paper we use the ZMCintegral package [99,100] which
has been applied to the calculation of high dimensional
integrals in heavy ion collisions [101].

For the numerical calculation we choose the nucleus
form factor [73,80,81,102] as

0

Flg) = 27 sin(aRy) = gRycos(aR, )

———, (49
a’q®> +1 (49)

where a = 0.7 fm, R, = 1.2A'/3 fm is the nucleus radius
with A being the number of nucleons, and p° = 3A/(4zR3)
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TABLE I. The total cross sections from STAR measurements
and theoretical models. The numerical integration errors are
labeled as “int.”

Total cross sections

0.261 £ 0.004(stat.) + 0.013(sys.)
+0.034(scale) mb

Data or models
STAR data [67]

STARLight [73] 0.22 mb
Zha et al’s gEPA [77] 0.26 mb
Zha et al’s work [77] 0.26 mb

This work Eq. (20)
¢EPA Eq. (30)

0.252 £ 0.0016 (int.) mb
0.256 £ 0.0030 (int.) mb

is the nucleon number density to make F(¢g=0)=1 [102].
One can also choose R, = 1.14'/3 fm as in Refs. [80,81].

Another factor that should be taken into account is that
two nuclei may undergo mutual Coulomb excitation and
emit neutrons [81]. To consider such effects, we need to
introduce an extra factor P?(b7) in the calculation of the
cross section, where P(by) is the probability of emitting a
single neutron from an excited nucleus and can be para-
metrized as [103]

P(by) = i;]vi whre™ =1 —exp(-w), (50)

where N, denotes the number of photons that can be
absorbed by a nucleus, and w is defined by

Z3(A-2)

w=545x10" =" _—=.
A23p3

(51)

Note that the probability of emitting more than one neutron
is highly suppressed, so multiple neutron emission is
usually neglected. The formula (50) has been widely used
[72,76,78,103-105]. Other choices are P(by) ~ w [76] and
P(by) = wexp(—w) [76,78,103,104,106]. In this work, we
choose (50) in our numerical calculation.

We follow STAR experiments [67,69] to choose that the
transverse momentum of the electron and that of the positron
is greater than 200 MeV but the transverse momentum of the
electron-positron pair is less than 100 MeV.

In Table I, we show the total cross sections from STAR
measurements and some theoretical models. The total cross
sections computed from both Eq. (20) (under the approxi-
mation Gy = 1) and gEPA in Eq. (30) are very close to the
experimental results.

In Fig. 3, we plot differential cross sections as functions
of the invariant mass of the lepton pair M,,. The STAR
data [67] as well as the results of some models [73,74]
(including our model) are presented. Our results using
Eq. (20) under the approximation Gy =~ 1 (the blue-solid
line) are consistent with data. But our results give lower
values than those from gEPA.

— ————
= 1 -
RO oY E
S AT *  STAR 3
3 & ]
) g This Work
-CE’ 10k ———- Zha etal's work  _|
E -
3
I
(0]

-2
o 10 3
=
=
S}
© sl

10~

0 0.5 .

Meo(GeV/c?)

FIG. 3. Differential cross sections as functions of the invariant

mass of the lepton pair M,,. The blue-solid line represents
our results using Eq. (20). The red-dashed, green-dotted, and
magenta-dot-dashed lines represent the results from Ref. [74]
based on QED, gEPA [74], and STARLight [73], respectively.
The points are STAR data [67], while the shaded areas stand for
the experimental uncertainty.

The differential cross sections as functions of the lepton
pair’s transverse momenta are presented in Fig. 4. We
compare our results with STAR data [67], the results of
Ref. [74], and STARLight [73]. Our results using Eq. (20)
are in a good agreement with the data in the low transverse
momentum region, while they give a little larger values
than the data for transverse momenta larger than 0.02 GeV.
The difference may come from possible higher order
corrections [79,107].

In Fig. 5, we show the average transverse momentum
squares of lepton pairs as functions of M,,. Our results are

o L e SO S S B I S B S B R S B [

*x STAR

This Work 3

———- Zha et al.'s work

~o3f R XnXn .
N S/ I \S— STARLight ]
|® 2' —
+ -

[

T oL

SE ]
S

©

0 0.02 0.04 0.06 0.08 0.1
T
P..(GeV/c)

FIG. 4. Differential cross sections as functions of the lepton
pair’s transverse momenta. The blue-solid line shows our results
using Eq. (20). The red-dashed, brown-dot-dashed, and magenta-
dotted lines are the results from Ref. [74] (times a factor of 9.1),
XnXn [67], and STARLight [73], respectively. The data points
are from STAR measurements [67], while the shaded areas stand
for the experimental uncertainty.
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e L L

et ——
o ——"" e STAR
v 40f - -
~ This Work
—
———= Zha et al.'s work without B
- e Zha et al's work with B ]
[ S R R N
0.5 1. 1.5 2. 25
Mee(GeVi/c?)
FIG. 5. Average transverse momentum squares of lepton pairs

as functions of M,,. The blue-solid line shows our results using
Eq. (20). The green-dotted lines and red-dashed lines are from
Ref. [74] with and without contributions of magnetic fields,
respectively. The data points are from STAR measurements [67].

consistent with experimental data, so we do not need to
consider extra contributions from magnetic fields at the
early stage. According to Refs. [85,87,90], the Sudakov

———t———7—
g 3
S *  STAR 3
[ P(by)=1-exp(-
3 (b1)=1-exp(-w)
5 ——— P(b1)=w
ENTE RN - P(b.) from 2006.07365
23 o 7
°
N
+$ 10'25— E
T F .
> . E
> F TN
-3l P R
1075 1 1.5 2 2.5
Mee(GeV/c?)
A ,/ T T T T
6_
C / \\ * STAR ]
sE / \ Pb.)=1-exp(-w) ]

\ ———= P(b1)=w
.............. P(b, ) from 2006.07365

IS
T

N w
L L
1 1

da(yy- e*e”)/dPl (mb/(GeVic?))
|

0. 0.02 0.04 0.06 0.08 0.1
Pl.(GeVic)

FIG. 6. Differential cross sections by using different P(br).
The blue-solid, dark-red-dashed and green-dotted lines are the
results of using P(by) = 1 —exp(—w), P(by) = w, and P(by)
of Ref. [78], respectively.

form factor may play a role to the broadening of the
transverse momentum.

That difference between our results and experimental
data may come from the choice of parameters. In Fig. 6, we
show the results from different P(b7). For the invariant
mass spectrum of the lepton pair, the result with P(b;) ~ w
[76] matches the data, but the transverse momentum
spectrum of the lepton pair is much higher than the data.
The result with P(br) of Ref. [78] underestimates both
invariant mass and transverse momentum spectra. These
results imply that we need to study the parameter depend-
ence systematically, which we leave for a future study.

VII. SUMMARY

A general form for the cross section of the lepton pair
production in ultraperipheral collisions of heavy ions is
derived. The wave functions of two colliding nuclei moving
in the *+z direction are assumed to be in the form of wave
packets that allow a rigorous description of ultraperipheral
collisions. A relative phase factor is introduced into the
wave function of one colliding nucleus that is displaced by
an impact parameter from the other colliding nucleus,
through which the transverse momentum and position
are coupled. This leads to photon distributions with
dependence on transverse momentum and position.

The results of the generalized equivalent photon approxi-
mation can be reproduced at the ultrarelativistic limit in our
formalism. The results of the TMD factorization formalism
up to the Born approximation can also be reproduced from
our general form if light-cone coordinates are used. It can
be proved that the results of the generalized equivalent
photon approximation are consistent to the twist-2 results
of the TMD factorization formalism in the classical field
approximation at the Born level. We have also shown that
the general form of the cross section has already included
high order corrections such as the ones beyond the
equivalent photon approximation or the ones from higher
twists in the classical field approximation at the Born level.

The numerical results for the differential cross sections
with respect to invariant mass and transverse momentum of
the lepton pair are in a good agreement with STAR data.
One approximation we have made in our results is that
wave packets are assumed to be narrow so that they are
similar to plane waves. In the future this approximation will
be relaxed so that the effects from broader wave packets can
be studied. Other effects such as the Sudakov factor as well
as the dependence on various parameters are expected to be
investigated in the future.
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APPENDIX A: DERIVATION OF IMPACT-
PARAMETER DEPENDENT CROSS SECTION

In this Appendix, we will derive the cross section that
depends on the impact parameter b;. We assume the wave
functions of two colliding nuclei moving in the +z
direction (see Fig. 2) can be written in the form of wave
packets following the argument of Ref. [108],

A = /(%rg%fﬁ(ﬂ)e"’”"lﬂ%

#(P2)|Py), (A1)

ad°P
= [ e

where Pl = (EP17P1> and P2 = (EPZ’PZ) with EP] =
V/P{ + M7 and Ep, = \/P5 + M3 are on-shell momenta
of two nuclei with masses M, and M,; ¢(P,) = ¢(P; —
P,,) and ¢(P,) = ¢(P, — P,,) denote the amplitudes
of momentum states that are centered at the nuclear
momenta P, = (0,0,P5,) and P, =(0,0,—P5%,),
respectively. They satisfy the normalization condition
=3 [@k|¢p(k)|> = 1. Here we have introduced the

|

e

impact parameter b* = (0,bz,0) into the state of Aj,
which is the transverse distance between the centers of
two nuclei.

The initial state of nuclei can be written as

_ [ &P, &Py p(P1)p(Py)er P
|A1A2>in - / (27[)3 (2]1’)3 \/m\/m |P1P2>in’
(A2)

while the final state is assumed to be in momentum states
instead of wave packets

'1,7, ;Xf> =

where the indices “in” and “out” stand for the in and out

states at t — +oo, respectively, and Xy with momenta Ky

denote all other particles that are produced in collisions.
The cross section reads

Szl

{r}
X |0ut<k1’k2vZfo|A1A2>in|2'

(A3)

k17k2,Zfo> ,

out

By, &Pl 1 PK,
2 32Ek 27T)32Ek2 I (271')32Ef

(A4)

Using Egs. (A2) and (A12) and completing the integration
over P and P in the above formula, we obtain

a’pP, d’P, P d*P)

/ by Y / Pk, &Pk, H /
o =
r (27)°2Ey (27)2E; 11 (27)2Ex; ) (27

{r}

< B(PGPG (P (Py)e=rir (215 (Pl P,

X
E: MP1+P2—>/<1+/<2+Z KMo, +P/—’k1+k2+sz

spin of 1,/

V\2Ep, (2)\/2Ep, (25)\/2Epy (21)\2Epy

—ky —ky — Zlg) (2z)*6W(P) + Py — Py — P})
i

(A5)

where A7 = P, — P;7 and M denotes the invariant amplitude defined through the 7-matrix element. By rewriting the

delta function for transverse momenta as

SO(Pyp + Py — P, —P,,) = /dzb”
T T (272.)2

and adding an integral

/d2b1T5(2)(bT = by +byr) =1,

the cross section (AS5) can now be put into the form

exXp [isz . (PIT + PZT — P/IT - PIZT)]

056011-13



REN-JIE WANG, SHI PU, and QUN WANG PHYS. REV. D 104, 056011 (2021)

&k &Pk d’K
O'—/deszblezszZ/ 3 l 3 2 H 3 /
{f} 271' 2Ek1 271') 2Ek2 (27T>*2EKf

/ &P, a*p, d*P) &P
(27)°V2Ep; (27)*/2Ep, (27)*/2Epy (27)*/2Epy

x e~ bir g=ibor8or §2) (b — b7 4 by ) (27)* 6 (P1 +Py—ky—ky — Zlg) (27)%8(P? + P5 — Pi — P3)
-

d(P1)p(Pr)d" (Py)g*(Py)

x 8(Epy + Epy = Ep — Epy) Z MP1+P2—’k1+k2+Zfo P’ 4P —>k1+k2+ZKf (A8)

spin of 1,/

where we have used Ayy = P, — Py

Now we look at the momentum amplitudes ¢(P;) and ¢(P,) in nuclear wave functions as wave packets. Normally the
total cross section does not depend on the form of ¢(P;) and ¢(P,) [108]. A natural choice for ¢p(P;) and ¢(P,) is that they
can be factorized as ¢(P;) ~ ¢, (P7)pr(P;7) with i = 1, 2, where ¢, (P;) are distributions of longitudinal momenta that P;
and P are centered at P35, and —P3,, respectively, and ¢7(P;y) are distributions of transverse momenta that P, are
centered at zero. As a simple ansatz we assume the longitudinal part takes the form

. 1 1
B-PRIPEIPEIO(PE) = CaPol(P5 + P)/2 = PRJBIPS + P52+ PG| (P = PR G [ 5 - P
(A9)
where G(x?) is a positive function with G(0) = 1 and decreases rapidly with growing x?, and the factor of 1/4 inside
G-functions is by convention. So we can carry out the integrals over P; and P} to remove two delta functions and to set

P} =2P3, — P and P; = —2P3, — P% in the integrand. Then we complete the integrals over P} and P% to remove two
delta functions for longitudinal momenta and energies

1
/dP’lZdP’ké(P’f + P57 — P5 — P)8(Epy + Epy —Ep; — Epy) = E/ dP|.dP,.8(P{ + P5)8(Epy + Epy — Ep; — Epy)

1 1
~ 2|P¥/Epy + P{/Epy + Pi/Ep; + P{/Ep| 80’
A10)
where we have used Pj =2P3, — P{ and P5 = —2P%, — P57, and P} = —P% are solved as functions of transverse
momenta from the energy conservation. Furthermore the condition P{ = —P5 leads to P{ = —P5 = 2P}, — P{. With

these conditions, two G-functions in Eq. (A9) give G*[(P} — P5,)?] as a function of transverse momenta.

Completing the integrals over P5, P5, PT, and P5 in Eq. (A8) by using (A9) and (A10), we obtain Eq. (2) for the
cross section.

Now we deal with the invariant amplitude M through the matrix element of the operator T (T-matrix element) as

out<k17k2’ZKf|P1P2>in = (k. ka, ZKle +iT)|PyPy) (A1)
f f
with the 7-matrix element being parametrized as

(ki k. > K[iT|P Py) = (2m)*s®) <P1 +Py—ky —ky — Zl@-) iMPﬁPZ_,kﬁkﬁszf, (A12)
- i «
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where M denotes the invariant amplitude of the process. By definition, the 7T-matrix element can be written in the form

<k1,k2,ZKf|iT|P1P2> = —62/d4x1d4xz<k1k2|7[l/7(x1)Y”V/(xl)l/_lz(xz)Y"llfz(xz)]|O><2Kf|T[Aﬂ(x1)Au(xz)]P1P2>’
f S

(A13)
where 7 denotes the time-ordered operator. The lepton part is evaluated as

4 v-q+m

- - H d oy iky-x)+iky-xy—iq-(x)—x;
(ke ko | T [ (31 )7y (x0 )2 (x2) 7 w2 (x2)]]0) = l/#”(lﬁ)i’” 3 7 v(ky)ethiritikexaia (=)

q* —m? + ie

[ d'q r-q+m sy iy iy
+Z/Wu(kl)7ymy#v(k2)elkl Xo+iko-xy+ig-(x Xz). (A14)

We make an approximation that the time-ordered operator in the EM part can be removed so that it can be put into the form

<;Kf|ﬂA,4<x1>Ay<xz>1|P1P2> ~ <§ijf|A,,<x1>Ay<x2>|P1P2>

4 4
:/égi/égiexp(—ipl.xl—ipz.x2)<§f:Kf|Aﬂ(pl)Ay(p2)|P1P2>, (A15)

where we have performed Fourier transformation for the EM fields. Using Eqs. (A14) and (A15) and completing the
integrals over x; and x, in Eq. (A13), we obtain

<k1,k2, ZKf|iT|P1P2> = (27)*s@ <P1 + Py —ky —ky - ZKf> iMP1+P2—>k1+kz+Zfo,
f f

d4191 d4P2
Miryiinssy, == | G555 | GRS KA AP P)
S

v (p1— ko) +m
(pl —k2)2—m2+i€

y-(ky—py)+m
(ky = p1)* =m* +ie

x [u(knw Polks) + k) Pk, (Al6)

Following the same procedure, we obtain

<P/1P/2|<—iTT)k17k27;Kf> = (2r)*ot <P/1 + Py =k —ky - ;Kf> (_i)M;HP;—»kﬁkﬁZK/
f

M* = —¢2 d4p/1 d4p/2 <P’P’|A+( /)A'I'( /)|ZK >
Pi+Py—ki+hk+y Kp (m)* ] @m)t\[1 PR 7 !
~

y-(ky—py) +m

v (P — k) +m
(kl—p’l)z—mz—i-ie '

(P} — ko)> —m? +ie

riulky) + oko)r*

X [@(kz)y”

Note that in Egs. (A16) and (A17) we have suppressed the spin indices of lepton spinors.
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Using Egs. (A16) and (A17) in Eq. (2), the cross section is put into the form

1 Bk Bk 1
- &*b;d?b;d%b / ! 2 / &P, d*Pyrd° P, P,
’ 8(2”)8/ TR ] 2n)2Ey, (20)2E, A T Ay JEp Epy Epy Epy

X 7 (Pi7)pr (Por )y (P ) b5 (Ph ) G*(PT — Pfu)2]e_ih'T‘A‘Te_ib"‘A"(s(z)(bT —bir +byr)

d*p, d*p, d*p| d*p, ) )
[ P AL A, () ) PN )AL ) P2

X L (py, pa; i Phs ki ko) (22)*6W (py + py = ky = ko), (AL8)

where we have used the identity

Z/H 2;1 I;fn; f‘ZKf><ZKf’ =1 (A19)

{3 !

and the relation

ZKfzpl+P2—P1—P2:P/1+P/2—P/1_P/2- (A20)
7
We have also used the lepton part as

L (py, pas . phi ki ko) = e Z L (py, pas ki ko)L (ph. ph k. ky)
spin of 1,1

= 64Tr{(7 ki +m) [y"

y-(ky—py)+m Pty y-(p1—ky)+m "
(ky — p)?> —m? + ie (p1 —ky)> —m? + ie

v-(k—p)+m oy (Pi—k)+tm
S (7 . k2 - m) |:},p — 1/ P _l 2 . T ! ) _2 3 ; P , (A21)
(ky = py)* —m* + ie (Py —ky)* —m* + ie

where L*¥ and L°7* are defined by

_ v (ki=pi)+m v (pi—ky) +m
L¥(py, priki, ko) = ilky) |1 s “olks),
(P1> P2 ki k) = a(ky) |y G p P —m e’ +7 =k - e v(ky)
_ v- (ki —pi)+m (Py —ka) +m
Lo (), phs ki ky) = (ko) |17 o4y 2| u(ky). A22
(pl p2 1 2) U( 2) |:y (kl —pll)z_m2+i€ (p/l —kz)z_m2+i8y u( 1) ( )
A useful property of L*(py, p,, ky, k,) is the following identity [71]:
LR = py, LM = 0. A23
"

In (A18) we have also reduced the photon matrix element as

(PyPAIAL(PS)AG(P})A,(PD)A(p2) P Pa)
1

~ 2 (PUAS(PY)AL(p1) [P (PS|AS(P5)AL (p2) P2) + : (PL1AS(PY) A (P1)I PP AG(P})A, (p2)|Pa)

4
+ % (PIAS(P)AL(p2)|P1) (PIAL(ph)AL (1) Pa) + i<P’ A5 (P3)AL(P2)|P1) (PYAL(P1)A,(P1)|P2) +
~ (PLAS(P)AL(P) 1P (PAIAL(P5)A, (p2) [Py).- (A24)

This is because each term in the second approximate equality can be proved to be identical after change of variables, giving
a symmetry factor of 4. So one can just take the first term and multiply it by 4 to obtain the photon matrix element. We can
rewrite the integrals over py, p,, p}, and p) in (A18) as
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d4p d4p d4p/ d4p/ . 4
= / (271.)14 (2ﬂ>24t (2”)14 (2”)24 L”D'GP(PI’ Pz;Pllvplz;kl’ k2)<P/1 |AZ<P/1 )Ap(Pl)‘P1><P/2|AP(P/2)Au(P2)|P2>

d*p, d*p . . :
= / (2”)14 (271)24/‘14)’1614)’2 exp (ipy - y1 + ipa - y2)L*P(py, pos p1 — Py + Py, po = Py + Phsky ky)

x (PYAZ(0)A, (y1)|P1)(PAAF(0)A, (y2)|P2). (A25)

In deriving the above formula, we have converted all photon fields in momentum space to coordinate space as

(PAIAL(PY)AL(P2)|P2) — (Ph|AL(5)A, (x2) | Po), (A26)

and changed all coordinate variables to X; = (x; + x})/2 and y; = x; — x| for i = 1, 2; then we carried out the integration over
X; after shifting x| and x} for the photon fields in (P} |Af(x})A, (x,)|P,) and (P4|A}(x5)A, (x,)|P,), respectively, by making
use of the formula A#(x+y) = e'P*A#(y)e~ P

Inserting (A25) into Eq. (A18), the cross section is rewritten as

1 &Pk Bk 1
=—— [ &b;d®b;d?b / ! 2 / &P, d* Py d° P, P,
8(2”)8/ o (27)*2E (27)°2E), A Tar O\ Ep EpyEpy Epy

X 7 (Py7)pr (Por) 7 (P 1) b7 (Poy ) G*(PT — P/Zn)2]e_ib'T'A'Te_ib”'A"5(2)(bT — b7 +byr)
d4P1 d4P2 4. 4 . . e JAT
X | a7z | dnid yrexp (ipy -y +ip2 'y2)<P1|Aa(0)AM()’1)|P1><P2|A/)(0)Au()’2)|P2>
(27)* (27)
X LM (py, py; py = Py + P, py = Py + Phiky ko) 27)*6@W (py + pa — ky — ka). (A27)

Equations (A18) and (A27) are our starting points.

APPENDIX B: SOME USEFUL FORMULA IN L(f}” =g — n’in”_ —n4nt. (B3)
LIGHT-CONE COORDINATES
A four-vector or a four-tensor can be written in light- T?e+ innf:rr ~ product of two vectors is a-b=
cone variables. For example, the coordinate is written ¢ b +a b” —ar-br. The explicit forms of lightlike
as ¥ = (xT,x7,x7) with x* = (x* £ x%)/v/2 and x; = Sudakov vectors are
(x!, x?). The Minkowski metric tensor becomes |
u
n, = <1’ 0,0, O)Iightcone =5 (1’ 0,0, l)normalcoordinate’
01 0 O \{i
G = 10 0 0 i (B]) nt = <07 1,0, O)Iightcone = E (1, 0,0, _1)norma1coordinate'
0 0 -1 0
(B4)
00 0 -1

th L Z1 2 s n ) The four-momenta of colliding nuclei can be written as
wi u=+,—1, 2. So we have x,=g,x" =

— + . . .
x~,xt,—x7). It is convenient to decompose an arbitrar; _
( ) N p " y PZI.AZ = Mty 5. (B5)
four-vector a* by lightlike Sudakov vectors n’. and n*,

i i 2 —p? = . = I
satisfying n3 =n- =0 and n, -n_ =1, where M , and u/ , are masses and four-velocities of two

nuclei, respectively, and " , are given b

a* =atn’ +ant +af, (B2) P Y 12 4C B Y
uy =71(1,0,0,v;),
where a* = (a + @*)/v/2 and dy = ¢’ a, with the space- :l
like transverse projector uy = 72(1,0,0,—n3), (B6)
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withy,, =1/,/1 - v%’z being the Lorentz factor. Then the

four-momenta of two nuclei can be written in the form

M2
Pl = PLnt + 2Pj]{1 n,
M2
Ph, = —2n' + Py,nt, (B7)
2P,
where light-cone variables are
My, Myy,
P} l(1+v), Pp=—(+wv,). (B8
= (1+2y) 2= (I+wy).  (B8)

For high energy nuclei with v, ~ 1, we have P, > M,
and Py, > M,.

From the classical photon field (11), we have p; - u; =
pi-u;=0 for i=1 2. Then p; and p, can be
decomposed as

= pTI’l’i -+ pl_ni_l + plfT’
+

= py 'y + pynt + phy, (B9)

+ (] 1 + (05 1
=—|1£—/|, =—|1F—]. B10
m ﬁ( Ul) & x/§< :sz> (P10
At high energies, we have v, — 1, so it is easy to verify

iy, A
w (2] w wy

~O(r?). (Bl

On the other hand, in the rest frame of a nucleus, it is
assumed

pi ~ O(x;M7), (B12)
and therefore, we have
. M.
T~ 0. (B13)
a),- a),-

which means photons are almost on shell.

We assume a collision of two identical nuclei, so we have
vy = vy. To simplify wu,u L* in Eq. (17), we use
Eq. (A23) and obtain

piLiL/ +pZLzu
LOU(Pl’Pbkhkz) == =
w
piLyi + pZLyz
L (py, pa ki k) = %, (B14)
2

where i = x, y denotes two transverse directions. From
Eq. (B10) or pi,/w,, = £1/v (the upper/lower signs
correspond to nuclei 1 and 2, respectively), u;,u,, L* can
be rewritten as

. . .
u]ﬂuzyL”D — 7/217_11&111'_/' _1 (p_llLiz _p_éin) _ 1 L%,
/4

W) Wy U\ w»H 21}2

(B15)

where i, j = x, y denote two transverse directions. The
result of (B15) is consistent with Ref. [71]. We can also use
the light-cone coordinate and obtain

_ p—L+y _ piLiu
L™(p1, pa ki ky) = —1—+l,
Pi
FrE— — plpwi
L”+(p17p27k17k2):_M. (B16)
P>
So we evaluate u;,u,, L* as
pipl
il L = y20? L2 L
Wy Wy
iyt o
— 2721]2 (p_llp_ZLi— + p_lﬁLJrj)
w1 Wy )
-+
+ 4y2v2p—1p—2L+‘. (B17)

Wy Wy

It seems that there is an extra factor v in the first term of
Eq. (B17) in comparison with Eq. (B15), and it is
straightforward to prove that Eq. (B17) and (B15) are
equivalent. According to Eqs. (B11) and (B13), at the
relativistic limit » — 1 or y — oo, the first, second, and
third terms of (B17) are O(1), O(y~') and O(y2),
respectively. Therefore the leading order contribution
comes from the first term.

APPENDIX C: TMD CORRELATION FUNCTIONS
IN CLASSICAL FIELD APPROXIMATION

The gauge invariant correlation function for an unpo-
larized nucleus is defined as

e
(27)*

where F#** = Q"AY — 0 A* is the field strength tensor of the
EM field, and P = (Ep, 0,0, P?) is the four-momentum of

Wwp(P, p) _/ e E(PIF*(0)Fro(£)|P),  (C1)
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a nucleus moving in the +z direction. The requirement that W***°(P, p) must be Hermitian and parity-even leads to the
following parametrization:

X, + iXs
2

X X Xy —iX
Wo(P, p) = Xyetels + 22 Plgplpel 1 23 pleplpe 4 Plngile pel 1 4T2’5 gl po

X

where A¥BYl = A#BY — B*A" and all coefficients X; are real functions of P and p. We work in a light-cone coordinate
system and focus on W***¥(P, p) which is related to S,,(P, p) in (9) in the light-cone gauge

) P\ 2 P+2/‘u P+ﬂnli_|_ vk o
WHE (P, p) = —gt (ﬁ) (X2 +2xX, + 27X5) + (ﬁ) Fo Ko+ P [X“ T <§‘x>x4

[y

PJr pT n’i] . 0oy o o 2
BTREY. iXs+nn” |2X, + X5 + xX4 + x(X4 + xX3) + 2 5 (X4 + xX3) + 5 X6,
(C3)
where we have used 6 = 2(P - p)/M? and x = p*/P™.
The twist-2 correlation function comes from transverse components W4+,
o (P2 P\2 pipl
Wit = _gfi <ﬁ> (X, + 2xX, + X3) + <ﬁ> P AT;;T X;. (C4)
Integrating over p~ for W%/, we have the following parametrization
Vit L 2 piijf P7 i\ v 2
dp~ W+ (P, p) :EP _ngfy(xs PT) + M2 +W9T th(x, pT) ) (Cs)
where f7(x,p%) and h}(x,p7) are distributions defined as
5\ 2PT _ 5 p7
xf(x,p7) = a dp=| Xo + 2xX, + x° X3 + WXG ,
2P*
xhp (% P7) = 2 / dp~Xe. (C6)
The twist-3 contribution of W comes from following components
.. Ptpi c i
W+l’+ = ﬁMT |:X4 + XX3 + (E - X>X6 - lX5:| 5
i j] p+
i, - P
Wikt = %ﬁ (X4 + xX; — iX5). (C7)
The twist-4 contribution reads
. c c 2
W+_’+_ = 2X1 + X2 + XX4 + X<X4 + .X'X3) + 2 (E - x> <X4 + .XX3) + (5 - X) XG‘ (C8)

More details and discussions can be found in Ref. [91] and references therein.
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Now we take the classical field approximation. We transform Eq. (C3) to momentum space and obtain

4 1
WHER(P, p) = ﬁ / (% (PIE(p)F*(p)|P)

= (217)4/%<P|[p/+,4’m<p/) — pHATH(pN][pTAY (p) — p*A*(p)]|P)

:ﬁ/{;ﬂ);]? P <P|ATﬂ(p/)Ay(p)|P>’ (Cg)

where we have used the light-cone gauge AT = 0. In the light-cone gauge the classical field has the form

—p2 7
A*(p) =2xZed(p - u) F(_p]; ) [u“ - llj—+u+] , (C10)

as the solution to the Maxwell equation. Here u# = y(1, 0,0, v) is the four-velocity of the nucleus satisfying P* = Mu*. We
use the same ansatz as (12) for the matrix element in Eq. (C9)

(P|A™(p")A(p)|P) ~ 2MA™(p")A*(p)(21)*8(p - it = p - 0)6® (7 — P7), (C11)

where #* = y(v,0,0, 1) satisfying u - & = 0. Using the above formula in (C9) we obtain the transverse component

L 1 d*p’ v . _ _
WA (P, p) = : / S P RMAT A ()a(p = - )6 oy )

F* _pIZ)F _p2 ) p/i ) p_]
27rZ 2ZM/ 4p Tpts(p - u)s(p - u) ( 5 ( 2) W=yt MJ_FM+

-p? b P
><5(p-u—p )8 (pr— 7)
1 F(_pz) 2 i J
= M2 W)8(p -u) g prpT, (C12)
where we have used d*p’ = d(p' - u)d(—p' - it)d*p’y in carrying out the integral over p’ and the constraints by the delta

functions give p’* = p*.
Then we take an integral over p~ for W/ (P, p) and obtain

/dp‘W*“*J(P,p) = RMZZequr 257 (C13)

F(-p*)|?

where p denotes the momentum that satisfies p - u = 0, in Sec. III we denote it as p as defined in Eq. (14), but here we
suppressed the bar to simplify the notation. Comparing with Eq. (C5) we can extract

27%a | F(=p*)|?
1y (x, p}) = 22 M2 :
xhi(x. p7) 2 —p?
PT Za ,|F(=p*)

xf7(x,p3) =

(C14)

thT(x PT) 7P% 3

2M? —-p

APPENDIX D: INDEPENDENT VARIABLES FOR NUMERICAL INTEGRATION OF CROSS SECTIONS

If the wave packets are very narrow in momentum we can make an approximation in Eq. (20): G7[(p}; — pir)*] ~ 1 for
i =1, 2. In this case we can carry out the integrals over b7, b,7, and p}; to obtain
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o Z“/ / dnd’ Dy dond Dar Rl i, gy, i) 2 PF) FEP) F(202) F-12)
(2z)  (2z)> (2x)? e

d kl d’ k2 " opk
) / (27)*2Ey (27)72Ey, sp%J”ly”p” (P1. Pas ki, k)| (1512, L7 (P phi Ky k)] (2)*8W) (py + pay — ki — ko),

(D1)
where pS; = pi7 + Par — Pl @) = 0y, and @, = w,. Note that the photon momenta p;, p,, p/, p5 are momenta that
satisfy p; - u = 0 and p} - u = 0 for i = 1, 2, in Sec. IIl we denote them as py, p,, P}, p, as defined in Eq. (14) but here we

suppressed the bars to simplify the notation. Then we can complete the integrals over w;, @, and p,7 to remove the delta
functions, fixing @; and w, as

=5 [k} + K3 + (ki + K3) 0],

(K + k9 = (K + KS)v), (D2)

NI*—‘Nl'—

and fixing p,r and p; as por = k7 + Kyr — pi7 and p4; = k7 + kop — p;. This gives the cross section of the form

Z'a? &2 p d? P’
— | dy,d*k,;dy,d*k d*b lT IT o=ibr(p)—Pir)
647r r*? / I ey 2T/ T/ 2 (2n)? ¢

F* F(—p9) F* —p p .
Cp ) ( 21) ( ) ) il 2) Z u]ﬂ”ZDLﬂ (Phpz,kl’kz)””lauzl)llp (P}, P ki ko)l (D3)
—P1 —P1 D3 _Pz

spin of 1,1

where we have used the rapidity and transverse momentum as independent variables for lepton momenta so that the lepton
momenta k; and k, can be expressed as

=Lt 4+ L ey 4 kL (D4)

V2
Here the rapidity and transverse mass are defined as

_11E+k 11k+
VIO EZE T2 e

my=Kk¥+m>=E>—kX=2k"k". (D5)

Z

Then we have d°k/E; = dyd°kr.
Now we choose independent integration variables of the cross section. The impact parameter is written as

by = (bycos ¢y, by singy,). (D6)
The transverse momentum shift is defined as
Ar = P/n —Ppir = (Arcosgy, Arsing,), (D7)

so the integral over p; can be replaced by Az. Since the invariant mass and transverse momentum spectra of lepton pairs
were measured in experiments, we should define the four-momentum of the lepton pair

Plgé :kjf+kg = (P(e)e’PZe’Pée)

= (/M2 + (PL)> cOSh ¥ o0, PL, 08 (e Pl sin o/ M2, + (PL,?sinh ¥, ). (D8)

where Y, is the rapidity of the lepton pair and M,, is the invariant mass of the lepton pair given by
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M%e = Pge = 2mg + 2k1 . k2 = Zpee . kz. (D9)

Instead of k| and k5, we choose P, and two variables of k4 as independent variables since k5 satisfies the constraint (D9).
Two variables of k; are chosen to be the pseudorapidity 7;, and the azimuthal angle ¢, of the transverse momentum, so k5
can be expressed by

Ky = (\/ m + k37 cosh? nya. kor COS o, kor sin ¢y, ko sinh 77k2) . (D10)

Here k,7 is obtained by solving Eq. (D9),

:flMge‘i‘ fiM2, — faf3

kyr 7 (D11)
where
fi= 2(PeTe COS hee COS iy + qr SiN e, SN Py + 1/ M2, + (PL,)* sinh Y, sinh 'Ikz),
f2 = 4IMZ, + (PL,)*| cosh® ¥, cosh® iy — f1,
f3 =M}, +4M2, + (P1,)*|m? cosh? Y. (D12)
One can verify
dyd*kyrdy,d*kyr = JdY oo dPL.dpe.AM . driodepyo, (D13)

where J is a function of P%, and k5. From P%. and k5, we obtain k| = P%, — k4. The photon momenta are given by

y_ (PotvPE P+ P,
Pi=\——F—Pircosg,. pirsing,,————|,
2 20
PO — pP? PO — pP?
P/; = 6871]99’[)?6 _plTCOS(pplvP}e)e _plTSin¢p1v _eeivee ,
2 2v
PO, + vP? . . P, + vP?
pl = <%,PIT cos ¢, + Arcosda,pirsing,; + Ay Slnﬁbm% )
PO — pP? PO — vP?
pi = <+P — Pir €0 hy1 = Agcos . Ple = pipsingsyy — Arsin by, —27;’> (D14)
where we can choose p;r and ¢,; as independent variables.
In summary, we can choose the following integration variables:
(Yee’ PZe? ¢ee’ Mee)? (’1k2, ¢k2)’ (plT’ ¢pl)’ (AT1 ¢A)? (bT7 ¢b)? (DIS)

where we used the parentheses to enclose variables from the same source. In terms of these independent variables, the cross
section (D3) can be rewritten in the form of Eq. (48).
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