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We compute trace anomaly contribution to hydrogen atom mass, which turns out to be related to the part
of the Lamb shift. To the best of our knowledge, this is a first model independent calculation of trace
anomaly contribution to a bound state. This finding might shed new light on our understandings of the mass
structure of QCD bound states, such as, heavy quarkonium.
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I. INTRODUCTION

The origin of proton mass is one of the most fundamental
questions remain to be answered in hadronic physics study.
The current light quark masses generated through the Brout-
Englert-Higgs mechanism only makes up a small part of
proton mass. At the classical level, the proton mass vanishes
identically in the massless limit due to the exact cancellation
between the quark’s kinetic energy and the negative potential
energy according to the relativistic virial theorem [1], the
field theory formulation of which states that the trace of the
QCD energymomentum tensor (EMT) vanishes in the chiral
limit. Therefore, the large piece of proton mass essentially
originates from the quantum effect, i.e., the trace anomaly of
the energy momentum tensor [2–4], which comes as the
consequence of the violation of the approximate conformal
symmetry of QCD [4].
Due to the nonperturbative nature of low energy QCD, it

appears to be impossible to solve the problem analytically.
Instead, one can try to gain some insights into the protonmass
structure by decomposing it into different pieces [5,6] based
on theQCDEMT, namely, trace anomaly contribution, parton
kinematic energy and potential energy. These different con-
tributions can be computed in lattice QCD or measured in
high energy scatterings [7–13]. In particular, the tremendous
progress on lattice calculations has been made in recent years
[14–18]. On the other hand, the proton mass decomposition
issue [19–22] and the renormalization properties of the dif-
ferent terms of the energy momentum tensor [9,10,22,23],
have gained renewed interest previously. We recognized that
the QCD EMT also plays a key role in the various different
context of strongly interacting matter studies [24–29].

As mentioned above, most previous studies of trace
anomaly focus on its nonperturbative origin and formal
aspects, such as its contribution to proton mass and renorm-
alization properties. In this short note, wemake an attempt to
promote our understanding of the trace anomaly contribution
to bound state mass with a different strategy. Namely, we
compute the contribution from the trace anomaly of theQED
EMT to the mass of the simplest QED bound state, i.e.,
hydrogen atom, and relate it to other known physical
quantities since this is a completely solvable problem in
quantum mechanics. To be more specific, trace anomaly
contribution is related to part of the Lamb shift. This is in
sharp contrast to proton mass decomposition case [5,6]
where trace anomaly part is considered to be a new additional
contribution to the bound state mass other than parton
kinematic energy and potential energy. To the best of our
knowledge, this is the first field theory calculation for trace
anomaly contribution to a realworld bound state. It is the first
step toward the understanding of trace anomaly contribution
to bound state mass in a perturbation theory, and thus is
interesting in its own right. The method developed in this
note can potentially be applied to analysis the mass decom-
position of the heavy quarkonium, for which case, the
perturbative treatment is justified to some extend.
The note is structured as follows. In the next section, we

present the detailed derivation of trace anomaly contribu-
tion to hydrogen atom mass and show its relation with the
Lamb shift. In Sec. III, we summarize our work and discuss
the possible extension of the calculation to heavy quarko-
nium case.

II. TRACE ANOMALY CONTRIBUTION TO
HYDROGEN ATOM MASS

We begin with introducing the trace of the QED EMT,

Tμ
μ ¼ ð1þ γmÞm0Ψ̄Ψþ βðeÞ

2e
½FμνFμν�R; ð1Þ
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where γm ¼ 3α
2π and

βðeÞ
2e ¼ α

6π at the next to leading order. The
subscript R indicates that the gauge field is the renormal-
ized one [2,30]. m0 is electron bare mass. Notice that the
first operator is renormalization invariant [31], so that one
has m0Ψ̄Ψ ¼ ½mΨ̄Ψ�R þOðαÞ.
The main purpose of this paper is to investigate the trace

anomaly contribution to the hydrogen atom mass from the

operator βðeÞ
2e ½FμνFμν�R and relate it to the known physical

quantity. It is also interesting to compute the leading order
correction and the next to leading order correction to the
operator ð1þ γmÞm0Ψ̄Ψ, not only from the point of view of
making our calculation self-contained, but also for deepen
our understanding of the role played by the mass term in a
perturbation theory, which might be relevant for the study
of mass decomposition of heavy quarkonium. We found
that the combination of the trace anomaly contribution and
the NLO correction to the m0Ψ̄Ψ from the vacuum
polarization diagram is related to the Uehling effect which
is the small part of the Lamb shift. The difference between
the NLO corrections to the operator ð1þ γmÞm0Ψ̄Ψ in the
vacuum and in the bound state gives rise to the rest part of
the Lamb shift. Our calculation thus provides a nice
consistency check for the mass decomposition formula
presented in Eq. (1) in a perturbation theory.
We first compute the leading order contribution to the

expectation value of the operator m0Ψ̄Ψ for the ground
state of hydrogen atom. For simplicity, the proton inside
hydrogen atom merely serves as an infinitely heavy charge
source and thus becomes decoupled in our treatment. From
Poincaré invariance, the matrix elements of the QED EMT
in a hydrogen atom state with momentum P reads,

hPjTμνjPi ¼ 2PμPν ð2Þ
where the state is normalized according to

hP0jPi ¼ 2P0ð2πÞ3δ3ðP0 − PÞ: ð3Þ
The hydrogen atom mass can be related to the trace of the
QED EMT,

hPjTμ
μjPi ¼ 2M2: ð4Þ

Let us now work in the rest frame. By noticing that
hPjPi ¼ 2M

R
d3x, the hydrogen atom mass at the leading

order is given by(omitting proton mass),

MH;0 ¼
hHj R d3xm0Ψ̄ðxÞΨðxÞjHi

hHjHi
¼ m

Z
d3xφ†

0ðxÞγ0φ0ðxÞ ð5Þ

where m0 ¼ m at the leading order with m being the
electron physical mass. This relation was first discovered
by V. Fock [32]. φ0ðxÞ is the ground state wave function
normalized to

R
φ†
0ðxÞφ0ðxÞd3x ¼ 1. Here we changed the

notation from hPj to hHj. Plugging the wave function of the
ground state computed from the Dirac equation, we derive,

MH;0 ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
: ð6Þ

The difference betweenMH;0 and electron mass is given by,

MH;0 −m ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
−m ≈ −13.6 eV ð7Þ

which is precisely the ground state energy of hydrogen
atom. Therefore, the EM potential energy and electron
kinematic energy is implicitly included in the electron
mass term.
We now proceed to compute the trace anomaly con-

tribution and the NLO correction to the electron mass
term. At higher order, two operators m0Ψ̄ðxÞΨðxÞ and
FμνðxÞFμνðxÞ mix with each other under renormalization.
As pointed out in Refs. [22,23], the trace anomaly con-
tribution to the mass of the free electron state is scheme
dependent, and perhaps is not a physical observable.
What matters is the difference between the anomaly
contribution to the mass of free particle and that in a
bound state. Here we specify the subtraction scheme
following Refs. [2,22,23],

hej½FμνðxÞFμνðxÞ�Rjei ¼ 0

hγj½FμνðxÞFμνðxÞ�Rjγi ¼ hγjZ−1
3 FμνðxÞFμνðxÞjγiTree ð8Þ

which appears to be the most natural choice. By inserting
the time evolution operator, we calculate the expectation
value of the trace anomaly part with,

Fig: 1ðaÞ ¼ hHjR d3x β
2e ½FμνðxÞFμνðxÞ�RT e−i

R
d4yHIðyÞjHi

hHjHi :

ð9Þ
The Feynman diagram contributing to this matrix element
at the first nontrivial order is shown in Fig. 1(a). By
applying the standard Feynman rules in the Coulomb gauge
in which the Coulomb photon propagator simply takes the
form −i

k⃗2
[33,34], we have the relation,

(a) (b)

FIG. 1. Trace anomaly contribution (diagram a) and the vacuum
polarization diagram with the mass operator insertion (diagram
b). Black dots represent the interaction with Coulomb potential.
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Fig: 1ðaÞ ¼ −
4

3
α2

Z
d3y

Z
d3q
ð2πÞ3

eiq⃗·y⃗

q⃗2 þ iϵ
½φ̄0ðyÞγ0φ0ðyÞ�:

ð10Þ

which is just the trace anomaly contribution to hydrogen
atom mass. At the NLO, the expectation value of the
electron mass term receives the contribution from the
vacuum polarization diagram Fig. 1(b) [35],

2 × Fig: 1ðbÞ ¼ 8α2
Z

d3y
Z

d3q
ð2πÞ3

eiq⃗·y⃗

q⃗2 þ iϵ

Z
1

0

da
að1 − aÞm2

m2 þ að1 − aÞq⃗2 ½φ̄0ðyÞγ0φ0ðyÞ� ð11Þ

It is convenient to group these two contributions together,

Fig: 1ðaÞ þ 2 × Fig: 1ðbÞ ≈ −8α2
Z

d3y
Z

d3q
ð2πÞ3 e

iq⃗·y⃗

Z
1

0

da
a2ð1 − aÞ2

m2
φ†
0ðyÞφ0ðyÞ ¼

−4α2

15m2
φ†
0ð0Þφ0ð0Þ ð12Þ

To arrive at the above expression, we have made the Taylor expansion in terms of the power q⃗2

m2. This turns out to be just the
part of the Lamb shift that is caused by the vacuum polarization effect.
We now turn to the calculation of the self-energy corrections. As a warm up exercise, we first compute the self-energy

corrections to the mass of free electron state as shown in Figs. 2. It is straightforward to obtain,

Fig: 2ðaÞ ¼ γmm0 þm − δm ¼ γmm0 þm −
α

2π
m0

Z
1

0

dað2 − aÞ ln aΛ2

ð1 − aÞ2m2
0

ð13Þ

Fig: 2ðbÞ ¼ α

2π
m0

Z
1

0

da

�
2 ln

aΛ2

ð1 − aÞ2m2
0

−
2ð2 − aÞ
ð1 − aÞ

�
ð14Þ

2 × Fig: 2ðcÞ ¼ α

2π
m0

Z
1

0

da

�
−a ln

aΛ2

ð1 − aÞ2m2
0

þ 2að2 − aÞ
ð1 − aÞ

�
ð15Þ

where Λ is the UV regulator in the Pauli-Villars regulari-
zation. Summing up all three terms, one obtains,

hejð1þ γmÞm0

R
d3xΨ̄ðxÞΨðxÞjei

hejei ¼ m ð16Þ

As expected, at the NLO, the physical mass of a free
electron entirely comes from the electron mass term and the
associated anomaly part. An all order proof of Eq. (16) in
the subtraction scheme specified above can be achieved by
invoking the Callan-Symanzik equation [2].

Now we move on to compute the difference of the
self-energy correction between a free electron state and
that in the bound state. The self-energy correction of
electron in hydrogen atom still arises from the loop
diagrams Fig. 2(b) and Fig. 2(c), but with the internal
electron propagator being replaced by the one computed
in the presence of the background Coulomb field. The
calculation can be most conveniently formulated using
the NRQED in the Coulomb gauge. The effective
Lagrangian of NRQED is obtained from the full QED
Lagrangian,

L ¼ ψ†
�
i∂0 − eA0 −

p⃗2

2m0

þ e
2m0

ðp⃗0 þ p⃗Þ · A⃗ −
e2

2m0

A⃗2 − ð1þOðαÞÞ ie
2m0

σ · ½ðp⃗ − p⃗0Þ × A⃗�
�
ψ þ � � � ð17Þ

(a) (b) (c)

FIG. 2. NLO corrections to the electron mass term.
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by expressing the four component spinor Ψ in terms of two
component spinor ψ in the nonrelativistic limit,

Ψ ≈ e−im0t
1ffiffiffi
2

p

0
B@

�
1 − σ⃗·ðp⃗−eA⃗Þ

2m0

�
ψ�

1þ σ⃗·ðp⃗−eA⃗Þ
2m0

�
ψ

1
CA ð18Þ

where p⃗ and p⃗0 are three momentum operators acting on the
fields ψ and ψ† respectively.
The contribution from Fig. 2(c) can be expressed as

δZ2m0Ψ̄ðxÞγμΨðxÞ. Due to the conservation of the vector
current in QED, the calculation of δZ2m0Ψ̄ðxÞγμΨðxÞ can
be converted to compute −δF1ð0Þm0Ψ̄ðxÞγμΨðxÞ where
δF1ð0Þ denotes the first order correction to the vertex
function Fð0Þ at zero momentum transfer,

hHj
Z

d3xΨ̄RðxÞγμΨRðxÞjHi
NLO

¼ δF1ð0ÞhHj
Z

d3xΨ̄RðxÞγμΨRðxÞjHi
Tree

ð19Þ

where the subscript Ψ̄R stands for the renormalized field. It is most convenient to choose the Lorentz index μ to be 0. One
then has,

2 × Fig: 2ðcÞ ¼ −
hHjm0

R
d3xΨ̄RðxÞγ0ΨRðxÞjHiNLO

hHj R d3xΨ†
RðxÞΨRðxÞjHiTree

¼ −
hHjm0

R
d3xΨ†

RðxÞΨRðxÞjHiNLO
hHjHi ð20Þ

Combining the above with Fig. 2(b), one obtains,

Fig: 2ðbÞ þ 2 × Fig: 2ðcÞ ¼ hHjm0

R
d3x½Ψ̄RðxÞΨRðxÞ −Ψ†

RðxÞΨRðxÞ�jHiNLO
hHjHi ð21Þ

which can be converted into the following form with the help of Eq. (18),

Fig: 2ðbÞ þ 2 × Fig: 2ðcÞ ≈
hHj R d3xfψ†½ e

2m0
ðp⃗0 þ p⃗Þ · A⃗ − p⃗2

2m0
− e2

2m0
A⃗2 − ie

2m0
σ · ½ðp⃗ − p⃗0Þ × A⃗��ψgjHi

hHjHi ð22Þ

where the operators ψ† and ψ should be understood as the
renormalized ones. It is easy to verify that the spin-orbital
coupling term − ie

2m0
σ · ½ðp⃗ − p⃗0Þ × A⃗� does not contribute

to the mass shift. We are now ready to compute the
expectation values of these operators in NRQED.

One first notices that the operators ψ† p⃗2

2m0
ψ , ψ† e2

2m0
A⃗ ·

A⃗ψ in a free electron state and in a bound state yield the
same contribution at the order of interest [36]. The energy

shift entirely comes from the operator ψ† e
2m0

ðp⃗0 þ p⃗Þ · A⃗ψ,
the expectation value of which can be diagrammatically
computed as shown in Fig. 3. Note that Fig. 3 represents
the part of the NLO correction from Fig. 2 which can
lead to the energy level shift. By applying the standard
Feynman rules of NRQED in the Coulomb gauge for

transverse photon propagator −i
k⃗2
ðδij − k⃗ik⃗j

k⃗2
Þ [33,34], the

Fig. 3(a) reads,

Fig: 3ðaÞ ¼ α

ð2πÞ2
�Z

d3xφ†
0ðxÞ

∇2

m2
0

φ0ðxÞ
�

×
Z

d3k

	
2

3k⃗2
−
1 − k⃗2=ð3ðk⃗2 þ μ2ÞÞ

k⃗2 þ μ2



: ð23Þ

To arrive at the above expression, we have imposed a
scale cut off μ by replacing the photon propagator 1

k2þiϵ →
1

k2þiϵ −
1

k2−μ2þiϵ following the Weinberg’s method [36].

In a bound state, the internal electron propagator in the

(a) (b)

FIG. 3. Part of the NLO correction to the electron mass term in
NRQED in vacuum (diagram a), and that in the bound state
(diagram b).
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position space is given by
P

M
φMðxÞφ†

MðyÞ
ΔEMþiϵ , where φM are a

complete orthonormal set of state-vectors, and ΔEM is the
difference between the energies of the state M and the

ground state. Here we neglect the positron contribution to
the propagator. Using the electron propagator in the bound
state, one readily obtains,

Fig: 3ðbÞ ¼ α

ð2πÞ2
X
M

����
Z

d3xφ†
0ðxÞ

∇
m0

φMðxÞ
����
2

×
Z

d3k

2
64 2

3jk⃗jðΔEM þ jk⃗jÞ
−

1 − k⃗2=ð3ðk⃗2 þ μ2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ μ2

q �
ΔEM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ μ2

q �
3
75 ð24Þ

By using the identity
P

M ΔEMj
R
d3xφ†

0ðxÞ ∇
m0
φMðxÞj2 ¼ e2

2m2
0

φ†
0ð0Þφ0ð0Þ [37] and the completeness relationP

M φMðxÞφ†
MðyÞ ¼ δ3ðx − yÞ, the energy shift for the ground state can be cast into a compact form,

Fig: 3ðbÞ − Fig: 3ðaÞ ¼ α

ð2πÞ2
X
M

ΔEM

����
Z

d3xφ†
0ðxÞ

∇
m0

φMðxÞ
����
2

×
Z

d3k

2
64 2

3k⃗2ðΔEM þ jk⃗jÞ
−

1 − k⃗2=ð3ðk⃗2 þ μ2ÞÞ�
k⃗2 þ μ2Þ

�
ΔEM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ μ2

q �
3
75

≈
4α2em
3m2

φ†
0ð0Þφ0ð0Þ

	
ln

μ

2ΔE
þ 5

6



ð25Þ

where ΔE is a mean excitation energy. To arrive at the
expression in the third line, we made use of a trick
described in [36]. This result was first derived by Bethe
in 1947 [37]. It is worthy to stress again that we computed
the energy shift by evaluating the expectation value of the
operator m0Ψ̄Ψ rather than by calculating the self-energy
correction dircetly. To justify the nonrelativistic treatment
for electron, the scale μ should be chosen to be smaller than
m, and was actually just set to be m in the Bethe’s original
work, leading to a rather good agreement with the observed
energy shift. To remove the μ dependence in a rigorous
way, one has to include the high energy part [36], or in
modern effective field language, performs a matching
calculation for the vertex correction between the full
QED and NRQED [33,34,38], which is however beyond
the focus of this short note.

III. CONCLUSION

In summary, we have calculated the contribution from
the trace anomaly of the QED energy momentum tensor to
the hydrogen atom mass which is given in Eq. (10). It is
shown to be related to the small part of the Lamb shift
splitting that arises from the vacuum polarization effect in
the perturbation theory up to the accuracy of the order α5.
We stress again that this is the first attempt to understand
the role of trace anomaly contribution to a bound state mass
in a perturbation theory. We further computed the radiative

corrections to the electron mass term of the QED EMT in
the bound state, which turns out to be consistent with the
electron self-energy calculation in the conventional treat-
ment of the Lamb shift problem, as it should be.
The trace anomaly part is widely believed to be the

dominant contribution to the mass of QCD bound states. It
would be interesting to extend this analysis to heavy
quarkonium system with an effective potential model.
Actually, the perturbative calculation with the Cornell
potential has achieved remarkable success in describing
the spectrum of heavy quarkonium system. In analogy to
hydrogen atom case, trace anomaly contribution to quar-
konium mass is not a new source of bound state mass, and
rather is part of already known potential energy. More
precisely, trace anomaly contribution is related to the
potential that violates conformal symmetry. The correction
to the Coulomb part of the Cornell potential from the
vacuum polarization effect can be computed in an analo-
gous way as we did for hydrogen atom. The considerable
amount of mass generated from the linear potential energy
can also be attributed to trace anomaly contribution.
However, the linear part of the Cornell potential inherently
arises from the nonperturbative effect, and might be beyond
the reach of the current method. Nevertheless, this certainly
deserves further investigation. Moreover, the comparison
between perturbative calculation and the Lattice result [39]
will deepen our understanding of the role of trace anomaly
contribution to a bound state in perturbation theory.
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To understand the trace anomaly contribution in the non-
perturbative region, it might be necessary to invoke the
Higgs-like mechanism induced by highly nontrivial QCD
vacuum structure [40], and is beyond the power of the
method presented in this short paper.
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