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We investigate precision observables sensitive to custodial-symmetric/-violating UV physics beyond the
Standard Model. We use the Standard Model effective field theory (SMEFT) framework which in general
includes nonoblique corrections that require a generalization of the Peskin-Takeuchi 7 parameter to
unambiguously detect custodial symmetry/violation. We take a first step towards constructing a SMEFT
reparametrization-invariant replacement, which we call .7, valid at least for tree-level custodial-violating
contributions. We utilize a new custodial basis of YSMEFT (SMEFT augmented by right-handed neutrinos)
which explicitly identifies the global SU(2), symmetries of the Higgs and fermion sectors, which in turn
permits easy identification of higher-dimensional operators that are custodial preserving or violating. We
carefully consider equation-of-motion redundancies that cause custodial-symmetric operators in one basis
to be equivalent to a set of custodial-symmetric and/or -violating operators in another basis. Utilizing
known results about tree/loop operator generation, we demonstrate that the basis-dependent appearance of
custodial-violating operators does not invalidate our .7 parameter at tree level. We illustrate our results with
several UV theory examples, demonstrating that 7 faithfully identifies custodial symmetry violation,

while T can fail.

DOI: 10.1103/PhysRevD.104.056006

I. INTRODUCTION

It is widely anticipated that there is new physics beyond
the Standard Model (SM). In the absence of directly
producing the new particles of the beyond-the-SM
(BSM) sector, we would like to maximize the information
we can glean about the UV physics from indirect probes. In
this approach, the LEP era established the importance of
electroweak precision data [1,2], which could test the SM
to an accuracy of ~0.1%. Constraints on the scale of new
physics can be Az 10 TeV for those contributing to
electroweak precision observables at the order /A2,

Directly calculating the contributions to electroweak
precision observables from a given UV theory is in
principle straightforward. However, it must be done on a
case-by-case basis and consequently, does not (necessarily)
provide general insights about the new physics. Peskin and
Takeuchi demonstrated that the new physics effects can be
efficiently categorized by utilizing three precision
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parameters: S, T, and U [3]. These parameters provide a
simple, stunningly ubiquitous bridge between the effects of
anew UV sector and electroweak precision data, and have
become popular tests in determining the phenomenologi-
cally viable parameter space for BSM theories. In particu-
lar, the T parameter is identified as the manifestation of
“custodial” symmetry-breaking effects from the UV sector.
Theories beyond the SM are often constructed to respect
custodial symmetry in order to avoid the strong bounds on
the T parameter, including originally technicolor [4] (for a
review, see Ref. [5]), as well as composite Higgs (e.g.,
Refs. [6-10]), little Higgs theories [11-15], and dark matter
theories [16-18].

The Peskin-Takeuchi 7' parameter can be constrained
from a variety of electroweak data. There are two observ-
ables that are often associated with directly constraining 7"
£.(0), the ratio of charged current to neutral current (CC/
NC) in the limit of zero momentum [3], and the Veltman
p= ’7%";7(2”):29 [19]. We emphasize that these two are quite
different observables' despite often being confused with
each other (see, e.g., Ref. [20]). In particular, p,(0) only
depends on 7, where a nonzero value can be directly

'"We thank S. Chang for emphasizing this point to us.
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associated with custodial violation. The Veltman p, on the
other hand, depends on all of S, 7', and U, and can deviate
from 1 due to custodial-symmetric UV effects (see Ref. [3]):

p.(0) =1 =aT, (1a)

a 1 cos 26
p—1= — 20T U). (1b
r c0529< 2> TS O o ) (1b)

In determining the strongest experimental constraints on 7'
(and S, U), the simplicity of Eq. (1a) may be outweighed by
the precision on the Veltman p observable and associated Z-
pole observables that can simultaneously constrain S, 7,
and U.

The S, T, U parameters, however, have limitations. In
particular, a key assumption, clearly stated at the time, is
that the UV physics contributes only “obliquely,” i.e., via
the two-point functions of the SM electroweak gauge
bosons. Another assumption is that the analysis only
accounts for up to p? terms in gauge boson two-point
functions. As precision increased, the framework was
generalized to p* order by introducing the new parameters
V, W, X, and Y [21-24], though the oblique assumption
remains in place.

Following the discovery of the Higgs boson [25,26], the
Standard Model effective field theory (SMEFT) [27-29]
has become a new popular framework for model-indepen-
dent analyses of BSM physics, especially given the null
results for the various direct BSM searches at the LHCIn
this framework, new physics is considered as sufficiently
heavy, such that it can be integrated out, resulting in higher-
dimensional operators, supplementing the SM Lagrangian.2

From the SMEFT point of view, only a very restricted set
of UV theories (the so-called universal theories [24,42,43])
contribute only obliquely; fully general UV sectors cap-
tured by SMEFT also have nonoblique corrections [44]. In
addition, even for universal theories, oblique corrections do
not remain oblique: nonoblique corrections are generated as
soon as renormalization group effects are included [45,46].
Therefore, a generalization of the T parameter that does not
rely on restricting to oblique-only corrections would be of
significant importance to determine custodial symmetry or
its violation of a generic UV theory.

2Classifying the general form of these operators has had a long
history [28,29]. The “Warsaw” basis [30], for instance, provides a
nonredundant parametrization of the set of all dim-6 operators.
Other operator bases, e.g., the SILH basis [10] can be related
through integration-by-parts and equations-of-motion redundan-
cies [31]. A systematic classification and counting of SMEFT
operators has been recently achieved using the Hilbert series
technique [32-36] up to dimension eight and beyond [37-40].
The number of operators grows rapidly with the dimension
[39,40]. At dim-6, SMEFT contains 3045 operators [39,41],
assuming all of the global symmetries of the SM are broken.

In this paper we present a first step in resolving this issue.
Note that once we generalize beyond the oblique
assumption, exactly what one means by custodial sym-
metry becomes more subtle and needs to be revisited. The
CC/NC ratio, universal for purely oblique corrections, now
depends on what fermions are considered. Given this
ambiguity in defining custodial symmetry, we make a
choice that resembles the definition from p,(0).
Specifically, we define UV physics to be custodial sym-
metric when an SU(2), global symmetry is preserved (in
the limit of zero hypercharge coupling) by all UV inter-
actions with the Higgs sector of the SM.

In the SMEFT framework, one works with effective
operators whose constituents have manifest transformation
properties under the global SU(2), symmetries in the SM
Higgs and/or fermion sectors. In this sense, the Wilson
coefficients are superior to the S, 7', U parameters, as they
can directly indicate SU(2), symmetries or their violation.
This is a simplification compared to the oblique framework,
where one has to infer the SU(2), symmetry from the CC/
NC ratio. To better utilize this feature of SMEFT, we take
linear combinations of operators in the dimension-six (dim-
6) Warsaw basis, extended to include right-handed neu-
trinos (thus YSMEFT, rather than SMEFT), and map them
into a new custodial basis where all operators have
manifest transformation properties under the global
SU(2), symmetries in the SM. This allows us to directly
identify UV custodial symmetry/violation from the Wilson
coefficients generated by matching.

Assisted by the custodial (¢)SMEFT basis, we construct
a linear combination of Wilson coefficients that we call .7,
a new precision parameter that serves as a generalization of
the T parameter to indicate custodial symmetry/violation in
nonoblique theories. We show that .7, can be constructed
from Z-pole observables and myy, faithfully determining at
tree level if the UV sector contains “hard” custodial
violation (that persists even when the hypercharge gauge
coupling vanishes), independent of whether the UV sector
contributes only obliquely. Importantly, as our new 7,
parameter involves multiple electroweak observables. As a
consequence, the constraint on custodial violation that it
sets is only as strong as the weakest link, namely, that the
least precise component observable determines the true
bound on custodial violation of UV physics.

Our new parameter .7 is a first step only, as it does not
capture loop corrections from the SM or SMEFTIn par-
ticular, modifications to the parameter are required to
account for the known SM violation of custodial symmetry
at the one-loop level (arising mainly from top-loop con-
tributions). Furthermore, incorporating loop-level effects in
SMEFT requires a substantial amount of additional effort
due to an ambiguity that arises from equation-of-motion
(EOM) redundancies. When custodial-symmetric UV
physics is integrated out, it generates custodial-symmetric
operators, but not necessarily in the Warsaw or custodial
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basis of (v)SMEFT. Ordinarily one simply utilizes inte-
gration-by-parts (IBP) and EOM redundancies to rewrite
the UV-generated operators in terms of whatever basis one
prefers, in our case our custodial basis of (v)SMEFT.
However, the EOM redundancy can trade custodial-sym-
metric operators for custodial-violating operators propor-
tional to the SM violation of custodial symmetry. This is
simply because the EFT as a whole does not respect
custodial symmetry, even if the integrated-out UV physics
does. This could have sunk any chance to isolate observ-
ables only sensitive to UV sector violations of custodial
symmetry. Fortunately, from known results about tree/loop
operator generation [47—49], we find that restricting to tree-
level-generated operators, our set of observables, and hence
our .7, parameter, remain faithful in identifying hard
custodial violation of UV physics. This is the main result
of this paper.

The layout of the rest of this paper is as follows. In Sec. I
we establish notation and review the global SU(2),
symmetries of the Higgs and fermion sectors of the SM,
as well as how they are broken by various interactions. This
will help us lay out our working definition of custodial
symmetry. Next, in Sec. III we introduce the custodial basis
for (v)SMEFT and classify operators in that basis accord-
ing to their properties under our custodial symmetry. We
also provide mapping between this basis and conventional
SMEFT bases which will be useful for quickly importing
past results. In Sec. IV we select a set of electroweak
precision observables and determine a particular combina-
tion of them that is sensitive to hard UV custodial violation
at tree level. Our new electroweak precision parameter .7,
arises from this combination, and serves as a generalization
of the T parameter to UV theories with nonoblique
|

corrections. This section contains our main results. The
impact (or lack thereof) of EOM redundancies is the subject
of Sec. V. In Sec. VI we investigate several example UV
theories to demonstrate the validity of our new 7,
parameter constructed in Sec. IV. Finally, we conclude
in Sec. VIL

IL. SU(2), SYMMETRIES IN (»)SM AND
CUSTODIAL SYMMETRY

In this section, we discuss the (approximate) global
SU(2), symmetries in (v)SM (Secs. I A and II B), identify
their breaking sources (Sec. II C), and then introduce our
definition of the custodial symmetry (Sec. II D).

Let us first establish our notation for the group theory
and field content. We use t* = 7§ = 6 witha =1, 2, 3 to
denote Pauli matrices. The SU(2), and SU(2), generators
in the fundamental representation are hence t* = %T” and
14 =17%, respectively. The SU(3). generators in the
fundamental representation are denoted by T4 with
A =1,...,8. The SM covariant derivative is

D,=0,- ig3G,‘:‘TA —ig Wyt —ig By, (2)

with y denoting the hypercharge, G4, W4, B, denoting the
gauge fields, and g3, g5, g; denoting the gauge couplings. A
general field strength is denoted as X, € {G4,, W%, B, }.
For the dual, we adopt the convention X,, =1€,,,X%,
with €pj03 = +1. We use the usual Dirac matrices y*,
and o =L [r*,7"].

Our notation for the SM Lagrangian is

1 1 1 1 2
ESM = —ZG;}”GA” —ZW}WW” _ZBW’B” + |l)1{|2 —ﬂ<|H|2—§112)
+Y wiby — (Y,gHu+Y,gHd + Y IHe + Hc.), (3)
74

where for the SM fermions y we follow Ref. [30] to use
{q,1} for left-handed SU(2), doublets and {u,d, e} for
right-handed SU(2), singlets. In the above, the Yukawa
couplings Y, Y,, Y, are 3 x 3 matrices in the generation
space, but we have suppressed the generation indices for
compactness. We can also extend the SM to include right-
handed neutrinos »—what we refer to as vSM. In this case,
the Lagrangian is augmented as

Lysm = Lsy + 0ibv = (Y, IHv +H.c.). (4)

A Majorana mass for the right-handed neutrinos can be
written, Moy, which is allowed by the gauge symmetries,

|
but violates lepton number by 2 units. For this term to be
present in the low-energy effective theory, the Majorana

mass scale M must be less than the cutoff scale of
vSMEFT.?

A. Higgs sector: SU(2)py

We begin our discussion of global SU(2), symmetries
with the Higgs doublet

3As we will see, none of the observables that we consider
depend on the presence or absence of a Majorana mass smaller
than the cutoff scale of the effective theory.
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G+
H = . 5
((v+h+iG°)/x/§> )

The Higgs potential is invariant under an SO(4) symmetry,
SO(4) ~SU((2);, x SU(2)gpy» (6)

where SU(2), and the #3 generator of SU(2) g, are gauged
in (v)SM. This symmetry is spontaneously broken to
SO(3) ~SU(2), when the Higgs develops a vacuum
expectation value (VEV).

We can reexpress the Higgs field in terms of a (2,2)
bifundamental scalar field that transforms under the
(U, Ug) € SU(2); x SU(2) gy as’

:<(v h—iG°) /2 G*

(v+h+iG°) /2

(7)

In principle, all interactions are built out of %, but it is
sometimes helpful to make use of the identity

bl

ipip =€

iRjReiLjLZijR’ (8)
and write operators with X', where the SU(2) transforma-
tion properties are easier to recognize. For example, the SM
Higgs potential can be written as

V= /1<|H|2 - %) _ % (ZE) - 2, (9)

where the SU(2); x SU(2)gy symmetry is manifest.
Similarly, one can rewrite the Higgs SU(2), and U(1),
currents as

HYiDyH = H't%iD,H + He. = tr(Z'¢4iD,3), (10a)

<~
H'iD,H =H'iD,H+H.c.=-tw(Z'iD,2r}), (10b)

where the SU(2)-preserving/-violating structures are more
explicit.

B. Fermion sector: SU(2)g,., SU(2)g,

Turning to the fermion sector of the SM, there are several
approximate SU(2), symmetries that become exact in the
limit of neglecting hypercharge coupling g, and the
Yukawa couplings. Focusing on one generation of fermions

‘Here = ic*H* = cH *, which transforms in the same way
as H itself under the SU(2), symmetry; €;; = —¢;; is an SU(2)-
invariant tensor, and we take €, = +1.

for the moment, the right-handed up-type quark # and down-
type quark d can be grouped together to form a doublet

de= (d) (1)

which has a U(2), global symmetry. We can break this

symmetry into the baryon number U(1); and a global
SU(2)g quark isospin symmetry that we will call SU(2)g,, :

U(2),, = U(1)g x SU(2)g,, (12)

Similarly, when the SM is extended to vSM, we can build a
right-handed lepton doublet

=("): (13)

which has a global U(2), symmetry that we identify as
consisting of lepton number and isospin:

UQ2)y, = U(1) x SU(2) gy (14)

In the case of three generations, we will get the quark
isospin SU(2)g,, and the lepton isospin SU(2),, for each
generation.

C. SU(2) violation in (v)SM
With the global SU(2), symmetries in (v)SM identified,
we can now classify the symmetry-breaking sources,
namely, Yukawa couplings and the gauging of hypercharge.
For simplicity, we will focus on the one-generation case.
Yukawa couplings play two roles: 1) they tie the Higgs
SU(2)gy symmetry to the isospin symmetries SU(2)g, .
SU(2)g,,» and 2) they break these symmetries. To disen-
tangle these two effects, we can first write the Yukawa
interactions in terms of the bidoublet Higgs X, e.g., for
quarks,
Y, gHu+Y,gHd = qz(

Y, 0 ) (15)
0 Yd qr-

and then split the above Yukawa matrix as

Y, 0 Y.+ Yy Y, - Yy
= 1, u 3. (16
(0 Yd> 5 %2 + 5 'R (16)

This way, the symmetry-breaking pattern becomes clear.
The term proportional to 1,,, leads to SU(2)gzyX%
SU(2)g,, = SU(2), while the 7j term breaks SU(2) g%
SU(2)g,, — U(1). By the same logic, the Yukawa inter-
actions in the lepton sector of ¥SM can be grouped into a
combination that ties SU(2)zy to SU(2)g, and a

>Similar arguments hold for the case of three generations.
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combination that breaks SU(2) gy x SU(2)g,, — U(1). [A
Majorana mass for the right-handed neutrinos explicitly
breaks SU(2)p,, to nothing.] The matrices T, and 73 will

appear often in this work, so we will adopt the convenient
shorthand

P, =T1,,,, P_=1;. (17)

We will use P to apply to both SU(2)g, and SU(2)g,.
spaces; exactly which space we are working with should be
clear from the context.

On the other hand, gauging hypercharge corresponds to
gauging the 73 generators of SU(2)gy, SU(2)g,,> and
SU(2)g,- This breaks all of them simultaneously down to
U(1),—exactly the U(1) left intact by P_ from Yukawa
breaking.

D. Custodial SU(2)g

Now that we have identified the SU(2), symmetries and
violation in (v)SM, we are ready to precisely define
custodial symmetry in this paper:

UV physicsis custodial symmetric when thereisa
global SU(2), symmetry preserved, in thelimit g; — 0,

by all UVinteractions with the Higgs sector of the SM.

Here, the preserved SU(2) symmetry could be either
SU(2)gy itself or a diagonal subgroup of SU(2)gyx
SU(2)rg,> SU2) gy X SU(2) gy, 08 SU(2) gy X SU(2) gy, X
SU(2)g,- Thatis, the SU(2)y group mustinvolve SU(2) gy
in some way. A few important comments are in order about
this definition:

(1) Our definition is exclusively about the UV sector.
Therefore, even in the case where the UV sector
respects custodial symmetry, the identified SU(2)
symmetry is still not an exact symmetry of the whole
Lagrangian [the UV sector plus (¢)SM. In particular,
the hypercharge coupling g, and the mismatch in
Yukawa couplings [V, — Y, and Y, —Y,; see, e.g.,
Eq. (16)] in SM break it. Only in the limits g; — 0,
Y,-Y,—-0, Y,-Y,—0, will the custodial
SU(2)r become an exact symmetry of the entire
UV + SM theory.

(2) Also, because our definition is exclusive to the UV
interactions, whether or not a UV sector is adjudicated
to be custodial symmetric does not depend on the
presence or absence of (v)SM Yukawa couplings. By
contrast, the hypercharge coupling g; could play a
role, as it could participate in the UV interactions
when some UV particles have nonzero hypercharge.

(3) The breaking of custodial SU(2), by the UV
interactions can thus be categorized as follows:

(a) “Soft” breakings that vanish in the limit g; — O.
(b) “Hard” breakings that persist in the limit g; — O.

In our definition above, a UV sector with “soft” custodial
SU(2)g breaking is defined as custodial symmetric. This is
because our interest in this paper is “hard” custodial
violation. In the rest of this paper, we will utilize this
terminology strictly unless explicitly stated otherwise,
namely, that our “custodial-violating UV physics” contains
“hard” custodial breakings, and our “custodial-symmetric
UV physics” allows for soft breakings.

In the above, we have established a definition of the
custodial symmetry for UV physics. However, as explained
in the Introduction, we are not interested in analyzing UV
theories case by case. Instead, we would like to follow the
spirit of the electroweak precision parameters S, 7, U, and
use a general framework to analyze UV physics indepen-
dent of the UV model. In this paper, the framework we use
is dim-6 (v)SMEFT. This motivates us to divide the dim-6
(v)SMEFT operators into two categories: “custodial-
preserving/-violating operators” that can/cannot be pos-
sibly generated by custodial-symmetric UV physics.

Usually, a symmetry possessed by the UV theory gets
inherited by the EFT (as long as the heavy states integrated
out do not break it). In the case of our custodial SU(2)g.,
however, the situation is less straightforward, precisely
because it is not an exact symmetry of the whole UV
Lagrangian. Nevertheless, if we restrict ourselves to the
leading matching order (which could be tree level, one-loop
level, or even higher, depending on the UV theory), there
are only heavy particle propagators in the contributing
diagrams, and hence only UV interactions beyond (v)SM
will participate. In this case, all of the resulting (v)SMEFT
operators will preserve the custodial SU(2), symmetry. For
the rest of the paper, we only consider the leading matching
order unless explicitly stated otherwise. This allows us to
make the above desired (v)SMEFT operator division
simply based on their SU(2), transformation properties,
a task we will tackle in the next section.

III. CUSTODIAL BASIS OF (v)SMEFT

In this section, we introduce a new basis for dim-6
(v)SMEFT—the custodial basis—to facilitate the identi-
fication of operators that preserve/violate the custodial
symmetry. Using this basis, we then identify the operators
that can/cannot be possibly generated by integrating out
custodial-symmetric UV sectors.

Our presentation of the operator basis largely follows
Refs. [30,41,50,51], extended to include right-handed
neutrinos [52]. As preparation, we first present in
Table II all of the independent baryon-number-preserving
and lepton-number-preserving operators in the Warsaw
basis for YSMEFT (suppressing flavor indices).® In addition
to the 76 = 42 + (17 + H.c.) SMEFT operators, there are

®For easy reading/contrasting, we have gathered all of the
tables of operator bases and the relevant translation dictionaries in
Appendix C.
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25 =7+ (9 + H.c.) new operators involving right-handed
neutrinos. Reducing v*SMEFT back to SMEFT is straight-
forward by restricting appropriate Wilson coefficients to
zero, which we show in Table VII.

Now we build the custodial basis. Our basic approach is
to recombine the Warsaw basis operators Q; such that their
transformation properties under the global SU(2)g, and
isospin symmetries SU(2)g, . SU(2)g;, become manifest,
close to what we did for vSM in Egs. (15) and (16). It is also
worth mentioning that a similar rewriting of dim-6 SMEFT
in other bases exists; see, e.g., [53]. Performing this
recombination for all of the operators in Table II, we arrive
at our custodial basis operators O;, summarized in Table III.
An explicit translation dictionary between the two operator
bases is further given in Table IV. Many operators do not
change in going from the Warsaw basis to the custodial
basis. In particular, operators built purely out of SU(2),
singlets translate trivially. All operators that involve exclu-
sively the left-handed fermion fields of the SM fall into this
category. On the other hand, significant differences from
the Warsaw basis can be observed in the operators
involving the right-handed fermion fields.

From the translation dictionary in Table IV, we can also
easily determine the corresponding relations between the
Wilson coefficients in these two bases:

Lgpr — Lsm = Zaioi = ZCiQi‘ (18)

We provide explicit translation dictionaries between the
Wilson coefficients in Tables V and VI. Note that we have
absorbed the scale suppressing the Q; and O; into the Wilson
coefficients, making them dimensionful, [C;] = [a;] = —2.
This is a bit unconventional, but it compactifies the notation.
One can express our results in terms of dimensionless Wilson
coefficients and a new physics scale A by replacing C; —
C;/A? a; — @;/ A* everywhere.

We now wish to identify operators in Table III that can/
cannot be possibly generated by custodial-symmetric UV
physics. Recall that in the limit g; — 0, custodial-sym-
metric UV physics preserves an SU(2)p symmetry.
Consequently, in this limit, only operators that preserve
the same SU(2), symmetry could be generated by match-
ing (at the leading order). However, there are four pos-
sibilities for this SU(2):

(1) SUQ2) gy

(2) The diagonal subgroup of SU(2) gy x SU(2)g

(3) The diagonal subgroup of SU(2)gy x SU(2)g,-

(4) The diagonal subgroup of SU(2)gy x SU(2)g,, %

SUQ2)gy,-
Therefore, if an operator in Table III preserves any of the
four SU(2)g’s above in the limit g; — O, then it can
potentially be generated, and should be categorized as a
“custodial-preserving operator.” For example, in the limit
g1 — 0, the operator

qr*

o) = u(S'iD,Sel) ler't4Pyly)  (19)

preserves the diagonal subgroup of SU(2)gy X SU(2),,
and hence is a custodial-preserving operator. Note in
particular that any operator with an explicit B, should
be understood as accompanied by a power of g,. Therefore,
in the limit g; — O these operators vanish, and so they are
classified as custodial-preserving operators as well.

A. Flavor indices of the Wilson coefficients

In Tables II-VII we have suppressed all of the flavor
indices, but it should be understood that each fermion field
actually comes with a generation index, so are the corre-
sponding Wilson coefficients. For example, the two-
fermion operator QSZ) and four-fermion operator Q;; should
actually read

0l = (H'iD,H)(1,1"="1,).

pr

(20a)

Q 1= (lpntlr)(ls}/ﬂlt)'

prst

(20b)

The EFT Lagrangian therefore has a sum over these
generation indices:

3 3

prst” prst

p.r=1 e o p.rs,t=1
3 3 3 3
= E a,(;I)O,(;,) + anOu. (21)
pr pr prst prst
p.r=1 p.r.st=1

However, we often suppress the flavor indices when it is
clear from the context.

As we will see, most four-fermion operators do not
contribute to the observables to be discussed in Sec. IV.
However, one exception is the mixed first- and second-
generation four-lepton operator, which contributes to Gr.
We give this operator a special name for future conven-
ience:

012 = (Liy,hh) (Ly*1h) = Oy, (22)

Clearly, the corresponding Wilson coefficients are related
to our general notation as

Co=Cy +Cp,=ay +ap=an. (23)

IV. OBSERVABLES SENSITIVE TO CUSTODIAL
SYMMETRY/VIOLATION IN (v)SMEFT

In this section, we study an example set of precision
observables that will allow us to identify whether the UV
physics contain hard custodial violation:
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{&y GFy ﬁl%a ﬁ/l%vy IAﬁZl./LIT/L ’ f‘ZeLEL ’ fZeE}- (24)

In order, these are the (electromagnetic) fine-structure
constant, the Fermi constant, the pole masses of the Z
and W bosons, and the partial decay widths of the Z boson
to left-handed neutrinos, left-handed electrons, and right-
handed electrons.

In what follows, we compute corrections from dim-6
(v)SMEFT operators to these observables in Secs. IV A and
IV B, at leading matching order (tree level in SMEFT), and
then in Sec. IV C we construct from them a 7' parameter
generalization .7, that serves as an indicator of custodial
violation in general (v)SMEFT. Reparametrization invari-
ance (RPI) plays an important role in our construction of
|, which we will explain in Sec. IV D. Our “observables”
here refer to quantities that we can calculate in the
(v)SM/(v)SMEFT that do not depend on the choice of
operator basis, and they can in principle be measured by
experiments. Some of these observables can be directly
measured, such as &, G, m%, M3, while others need to be
inferred from other measurements. In Sec. IV E we discuss
how to extract these observables from experimental mea-
surements. The observable set chosen in Eq. (24) is only a
demonstration example. There are more observables avail-
able in the canonical LEP choice, such as the hadronic
branching ratio, the bottom quark branching ratio, or the
total decay width of Z. We discuss these observables in
Appendix B.

A. Observables in the SM

In the SM, the observables in Eq. (24) are given by
the three Lagrangian parameters g;, ¢, v as’

2.2
A~ 9192
gy = —————, 25a
M 4+ ) (25
N 1
Grsu = Nk (25b)
R 1
My sw =791+ 3)v%, (25¢)
R 1
m%V,SM = 1951’2’ (25d)
o zsug (25¢)
Zv v SM 9% 2 s
A ﬁlz,SM 9% )
FZELEL,SM = 971 C_g 207 (25f)

7Throughout this paper, we neglect the lepton masses in Z
decay widths.

5 2
e _Mzsm 9 4
FZEE,SM - 24” C_g SQ’ (zsg)
where 6 denotes the Weinberg angle
CGZCOSQE%, sgzsinez%.
VIt VIt
(26)

B. Observables in SMEFT

Since the SM has only three inputs, the full set in
Egs. (25a)—(25g) can be completely determined in terms of
any subset of three observables. Typically, the most
precisely measured subset is chosen: {&, 7%, Gr} or
{3, m%,Gp}. Once we include the contributions from
SMEFT operators, three observables are no longer enough,
as all of Egs. (252)—(25g) will be polluted with different
combinations of Wilson coefficients C;. Said another way,
it is still possible to swap out gy, g», and v for {@&, M2, G}
or {3, Mm%, Gr}; however, in the presence of SMEFT
effects, g;, g», and v will be functions of C; rather than
numbers fixed by experiment. This C; dependence is
referred to as the “electroweak input shifts” in the literature.
The exact form of the shifts depends on which three
observables are used to solve for g;, ¢,, and v: either
the & scheme ({&.m% Gp}) or the iy scheme
({3, m%. Gr}).} In this paper, we will exclusively use
the & scheme. Of course, the input shifts are only one place
Wilson coefficients can enter, as every observable will also
carry process-specific factors of C; depending on the fields
and vertices involved.

Removing {@&, m2, GF}, we are left with four observ-
ables: {3, fszDL, fZeLEL, 7.2 }. To make it easier to spot
and quantify the effects from SMEFT, we swap out /3, for
the Veltman p, and divide all partial widths by their SM
values:

L2 fr—
p= A‘;Zl/}(l— 1—x), (278.)
24 4
Fp s =T 27b
Zv vy \/EGF}’?’L% Zv vy ( )
247 N
P — S 27c
Ll = G (1 - &) (27¢)
24
” (27d)

Tres = = r -
Zee \/EGFI/%Z(I—\/T:;OZ Zee

where we have introduced the convenient combination

*Discussions of the strengths and weaknesses of the two
schemes can be found in Ref. [46].
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The four observables in Eqs. (27a)—(27d) are unity in SM, but are modified in SMEFT. Because we are only interested in the
corrections from SMEFT at the dim-6 level, we only need to keep up to the linear terms in the Wilson coefficients C; (see
Table II for definitions of Warsaw basis operators). Assuming universality among fermion generations, we obtain

v? C 1 1
p=1+—|=282(LCphws+CO) ) +=52C1s — = c3Cup | . (29a)
Cog So 2 2
A 1 1
rZyL,;L =1+ UZ |:§ C12 - ECHD - 2C§_]11):| , (29b)
R V2 c 1 1
Pres, =1+ = [—4s5 (S—: Chws + CS}) +5C =3 Cup + 2cz9c2>} , (29¢)
N -1 1}2 ) Co C (3) 1 1 Cop
Tzee = 1 +— —Cuwp+Ch | =5Ci2+5Chp —— Che |- (294d)
Crg So 2 2 Se

More details of deriving these results are explained in Appendix A. We have checked that these results agree with Ref. [54]
(see also Refs. [53,55]). Note that our expression for the Veltman p in Eq. (29a) reduces to the Peskin-Takeuchi expression

in Eq. (1b) in the special case of oblique corrections only where CSI) = C, =0, upon identifying9

asS = 21}2s29CHWB’ (303)
1

al = _EUZCHD, (30b)

aU = 0. (30c)

On the other hand, Eqs. (292)—(29d) hold for general SMEFT in the Warsaw basis. In addition, these results apply to
SMEFT and vSMEFT alike, since we did not consider observables involving right-handed neutrinos."’

C. Constructing .7; for (v)SMEFT to replace Peskin-Takeuchi T

In order to work out a replacement of the 7' parameter in the (¢)SMEFT framework that serves to identify hard UV
custodial symmetry violation, we rewrite the results in Eqs. (292)—(29d) into our custodial basis operators given in Table III.
This is straightforward, utilizing the translation relations provided in Table VI:

v? 2c 1
p=1+ P |:2S§ <_93HWB - aS}) + 535‘112 - ZCf)aHD} , (31a)
20 So
Pz, =1+ 07 Falz —2app + 261(1)} (31b)
17873 2 Hl |»
. v? 2c 3 1 1
rZeLEL =1+ C_%H |:4S(2) <S—:aHWB - a%;) + zalz - 2aHD - 2C29(1£_]):| , (31C)

Note that S, T, U are already linear order in the Wilson coefficients, so the further difference between agy and @ in their
accompanying coefficients is beyond our SMEFT order. For this reason, we simply write the multiplying factor as a. The same holds
for our generalization .7 to be presented below. R

In principle, one could also include the partial width 'z, , in YSMEFT. However, we cannot construct a convenient ratio 7,
because quRuR vanishes in ¥SM. Furthermore, the existence of this partial width also relies on assuming that the mass of the right-
handed neutrino is below the electroweak scale.
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v? 2c, 1 c _ _
fhé:14n__fa(_ﬁﬂHWB_ag).__m2+2am)+_§«43+_ag i ed] G
C20 Sg 2 SH R R R R
In the absence of custodial violation, these observables become
2 2 1
p—1— z {255 (ﬁ agwsp — aS?) + _S%alz] ) (32a)
Cop So 2
1
}ZI/LDL -1-2? <E a12), (32b)
N 112 ) 2C9 (3) 1
rZeLEL -1- -5 4S6‘ ——agwp — Ay + 5(112 s (32C)
C20 So
v 2cy @) |1 € (3)+
Pros—1 > — |2 — — - = - = . 32d
I'Zee - o [ (sg AHwB am) 2“12 Sz ayi, } (32d)

While none of Egs. (32a)—(32d) vanish in the custodially symmetric limit, the first three observables are governed by only
two independent combinations of (custodial-symmetric) Wilson coefficients. Therefore, it is easy to identify the following

linear combination that vanishes when there is no custodial violation:

. [P
(0= 1) +3 (20,5, -

1) - Ecze(f”zBLaL -

! 1) - 0. (33)

Therefore, this combined observable can serve as an indicator of our custodial symmetry/violation. Going back to the
general (v)SMEFT case where custodial violation is present, we see from Egs. (29a)—(29d) and (31a)—(31d) that this

combined observable is given by

. 1, 1
(= 1)+ (15, -

We hence define the Wilson coefficients combination in the
second line as a.7,—a generalization of the Peskin-
Takeuchi T parameter that is valid for general
(v)SMEFT (written in the appropriate basis, i.e., Warsaw
or our custodial basis). Clearly, in the special case of just

oblique corrections, Cg,) =0, our a7, reduces back
to Eq. (30b).

We see from the above that if there is no custodial
violation, ayp = a;l =0, then .7, =0. However, the
converse is not true. Custodial violation can conspire to
yield a vanishing .7;. This is a limitation of our example set
of observables chosen in Eq. (24). As we will explain in
Sec. IV D, adding more observables does not resolve this
issue until we move beyond 2 — 2 fermion experiments.

Our generalization above is named .7, and not just .7.
This is because, in the presence of nonoblique corrections,
one can in fact construct different generalizations of the T
parameter with different flavors of fermions. Our construc-
tion above used lepton partial widths of the Z boson, and

1) - B 029(7’ZeLéL -

1 1
1) = =3 0%[Cap +4Ci)]

= —2U2[CIHD — d(}}l)] = agl. (34)

hence the name .7;. We will discuss quark generalizations
T4, and 7, in Appendix B.

D. The role of RPI in SMEFT

The first three observables in Eqgs. (32a)—(32d) depend
on three custodial-symmetric Wilson coefficients agyp,
aSl), and a,, so in general one would not expect a linear
relation among them like Eq. (33). From this point of view,

it seems that we were lucky to have the two Wilson

coefficients ayyp and agl) feeding into Egs. (32a)-(32d)

only as a single linear combination,

2¢ c
|:—6 agwp — CISZ):| = - |:—0 CHWB + CS>:| . (35)
So So

In fact, this grouping was inevitable due to an important
property of the observables that we consider: the RPI when
restricting to observables that only involve 2 — 2 fermion
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experiments [46]. Observables in 2 — 2 fermion experi-
ments do not receive contributions from the following two
operators outside the Warsaw basis:

igo(D*H)'t¢(D*H)W*

Hv

(36a)

ig (D/‘H)T(D”H)BW. (36b)
These two operators are equivalent to two linear combi-
nations of Warsaw basis operators, which are hence two
free directions that one can shift the Warsaw basis Wilson
coefficients without affecting the 2 — 2 fermion observ-
ables. These are known as RPI shifts in SMEFT [46].

In terms of the Wilson coefficients relevant for
Egs. (292)—(29d), these RPI shifts are

Crws Crws —tan@
Ca)- (e )+a(TF°)
Cii Ch

Chws Crws cotf
C C —4
O I Y B R
Chi Cui 1
CHe CHe 2

where ey, and ep are arbitrary coefficients. The first shift
above is especially strong, as there are only two Wilson
coefficients involved. Staring at Eq. (37a), one can see that

the only RPI combination of Cpyp and C Sl) is what appears
in Eq. (35). This explains why each of our observable’s
dependence on Cyyyp in Egs. (292)—(29d) arises as this RPI
combination.

Of course, one can also check that each of our observ-
able’s expression in Egs. (29a2)—(29d) satisfies the second
RPI above [Eq. (37b)] as well. In fact, if one were to solve
the six unknown Wilson coefficients in Eqgs. (29a)—(29d)
from the four equations given measured values of the four
observables, one would find precisely Egs. (37a)—(37b) as
the two undetermined directions. This means that our
example set of observables chosen in Eq. (24) saturates
the resolving ability of 2 — 2 lepton observables; no
undetermined directions remain beyond the RPI shifts.
Therefore, adding more 2 — 2 fermion observables to
Egs. (29a2)—(29d), such as W decay widths, would not help
pin down the Wilson coefficients.

Finally, we emphasize that our .7, is also an RPI
combination, because it is constructed in Eq. (34) with
RPI observables. This can be readily checked against
Egs. (37a)—(37b). On the other hand, 7, is not the only
SMEFT RPI generalization of the Peskin-Takeuchi T
parameter; there are other .7 ; that can be constructed with
hadronic widths of the Z boson, as we will show in
Appendix B.

E. Experimental measurements of our observables

We have presented our results in terms of the observables

{,57 f‘Z}/LEva‘ZeLZ’L7f‘Ze€’} (38)

and an additional set of hadronic observables in
Appendix B. Let us now consider how to extract these
observables from experimental measurements:
(1) We need the accurately measured &, G F m% as basic
inputs.
(2) The observable p requires a measurement of /3.
(3) The widths {I',, 2, I',.:} are not directly measured
in practice. Instead, we extract them from the
measurements on the total partial width I Zeye, T

fZeE and the forward-backward asymmetry A?p’g.
Direct measurements of the angular distributions
of ete™ — eTe™ on the Z resonance can determine
A% [11. ) )

(4) The partial width into electrons I'z,,;, + 'z, is not
directly measured either. Instead, one uses measure-
ments of the total rate eTe™ — ete™ on the Z
resonance as well as the total width of the Z boson,
I';, determined by separate measurements scanning
the line shape of e*e™ — hadrons [1].

(5) The partial width of Z into neutrinos must be
inferred by subtracting the measured contributions
of the Z partial widths from the measured total width
I, [1]. For this presentation, we assume flavor
universality and neglect the masses of the quarks
and leptons. The Z partial width into neutrinos is

3vaLDL =Iz- IAﬂle - quq’ (39)

where we emphasize that the observable we have
used throughout this paper, quLDL’ is the width into

just one generation of neutrinos, and T, fzqq are
the measured decay widths of Z into leptons and
hadrons, respectively.

We are finally in a position to evaluate Eq. (34) using
experimental data on our observables as determined above.
If one were to evaluate this expression using experimental
measurements matched to just the tree-level relations, one
would obtain a sizable numerical difference from zero. This
is not surprising, since the Weinberg angle determined from
the Veltman p differs substantially from the Weinberg angle
determined from the charged lepton asymmetries [20]. The
main source of the discrepancy is the one-loop contribution
from the top quark to the W and Z self-energies. Including
this loop contribution to the Veltman p parameter will cause
the numerical evaluation of .7, to be nearly 0 within
experimental errors. The more important quantity is thus
the experimental error, i.e., sensitivity, on .7,. This is
determined by including the errors on all of the experimental
inputs p, 7,5, and 7z, ;. The least well-measured
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observable is 7,, ;, , and thus the experimental error on this

quantity dominates the constraint on the custodial-violating

contribution —2v2[ayp, — a')]. We find

—20*[ayp — al))] ~ 0 £ 0.003, (40)
which implies, in the absence of an accidental cancellation,

1

Acy = ~3.1 TeV. (41)

1
2lapp — a5ﬁ)|

This is much smaller than the scale that would be deduced by
doing a global fit to S, T parameters under the assumption
that the new physics contributes only to oblique corrections
APPG ~ 6.6 TeV [20]." This simple analysis illustrates that
“maximal” custodial violation (tree-level contributions to

ayp — agl)) is allowed by precision electroweak data with a
considerably lower scale of new physics than would be
deduced under the assumption of oblique-only contributions.

V. CUSTODIAL-VIOLATING COMPLICATIONS
FROM EOM REDUNDANCIES

There is an intuitive but crucial assumption underlying
our analysis in Sec. IV, as was established in Sec. III:

(i) When the UV sector is custodial symmetric, any
EFT operators generated by matching would pre-
serve the identified custodial SU(2), in the limit
g1 — 0, and therefore all of the custodial-violating
operators in our custodial basis (Table III) are
absent.

Interestingly, this is not completely true. Only the first half
of the above statement is true, while the second half can be
invalidated by the EOM redundancies in (v)SMEFT
After integrating out a custodial-symmetric UV sector, the
resulted EFT operators have to be custodial SU(2),-singlets
(in the limit g; — 0), but may lie outside of an arbitrarily
chosen operator basis. In order to present the entire EFT in the
Warsaw/custodial basis, one may need to apply redundancy
relations to trade outside operators with linear combinations
of Warsaw/custodial basis operators. While IBP and Fierz
redundancies do not change the SU(2)g-preserving/-
violating nature of operators, the EOM redundancies may
mix operators that preserve the custodial SU(2), with those
that do not, because (v)SM Yukawa couplings break it. As a
result, the linear combinations traded from outside operators
may contain custodial-violating operators in our custodial
basis in Table III.

To better illustrate this issue, we take a closer look at a
specific example that we will actually encounter later in
some of our example UV theories in Sec. VI. Consider the

""The number was obtained by taking the upper and lower
bounds on T from the 90% S-T ellipse presented in Ref. [20].

operator Qr = |H|*| DH|*. Upon taking the limit g, — 0,
this operator preserves the global symmetry SU(2)gy-
Therefore, according to our discussions in Sec. III, it can
be possibly generated by custodial-symmetric UV sectors.
For example, itis indeed generated at tree level by integrating
outaheavy W) gauge boson, as we will see in Sec. VI B. The
problem, however, is that Q does not belong to the Warsaw/
custodial basis; we need to use IBP and Higgs EOM
redundancy relations to trade it into Warsaw/custodial basis
operators. From the vSM Lagrangian given in Eqgs. (3) and
(4), we obtain the Higgs EOM relation

H'D?H +H.c.
= 2J0%|H|* —4A|H|*
~ (Y, qHu+Y,qHd +Y,IHv+Y,IHe+Hc.). (42)

Note that in order to make the expression compact, we have
multiplied the EOM by H from the left and also added its
Hermitian conjugate. Combining this with IBP, we can
convert Qp into

Or = |H|2‘DH|2

1 1
=240y +§QHE| +§QY - |H

4, (43)
where we have defined the operator combination

QY = YuQuH + YdeH + YI./QUH + YeQeH + H.c.

1
=1 (Y +Ya)Ogy + (Yy = Y4)Opy

+ (Y, +Y,)0},+ (Y, -Y,)O;] +Hec. (44)

Due to the Yukawa mismatch Y, # Y, and Y, #Y,, this
combination contains custodial-violating operators O, and
O;;- We see that once traded into the Warsaw/custodial basis,
the SU(2)gpy-preserving operator Qp corresponds to a
mixture of custodial-preserving and -violating operators in
our custodial basis. This is a consequence of applying Higgs
EOM redundancies relations in Eq. (42), which breaks
SUQ2)gu-

A. Robustness of our observables and .7; parameter

Our observable results given in Eqgs. (32a)—(32d)
assumed the presence of only custodial-preserving oper-
ators in our custodial basis. Now, given that custodial-
violating operators could also appear from EOM redun-
dancies, our analysis in Sec. IV is potentially incomplete. In
this section, we show that this EOM subtlety does not affect
our results in Sec. IV, provided we restrict to tree-level
matching.

As was originally worked out in Refs. [47,48] and
recently emphasized and generalized in Ref. [49], only a
small subset of dim-6 SMEFT operators can be generated
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TABLE 1. Custodial SU(2), invariants outside of the Warsaw
basis, which could yield custodial-violating operators in the
Warsaw basis upon using H and y EOM redundancies.

Total H*D?> ywH?D H*D* ywD3 GwXD yywHD?

38 1 8 1 4 8 16

by tree-level matching.12 In particular, dim-6 operators with
field strengths X, cannot be generated at tree level. This
immediately removes the EOMs for gluons, the W boson,
and the B boson from consideration. So the only potentially
problematic EOMs are those for the Higgs H and the
fermions . Next, let us find all of the YSMEFT dim-6
custodial SU(2)g-singlet operators containing an EOM
factor of H or y, i.e., containing D*H, Dy, or Diy. Using
the Hilbert series technique [32-36], with these EOM
redundancy relations relaxed,"” we find that there are 38
additional real custodial SU(2), singlets outside of the
Warsaw basis. They can be divided into six classes
according to the field content, as listed in Table I.

When restricted to tree-level matching, again due to the
argument given in Refs. [47-49], only the first two classes
in Table I, i.e., H*D? and ywH?D, can be generated. Let us
examine what custodial-violating operators in our Table III
can be obtained from trading these two classes of operators
into the Warsaw/custodial basis. They contain nine oper-
ators, which are nothing but the vYSMEFT “kinetic terms”
multiplied by |H|*:

|H|*|DH

2 (45a)

|H*WwiDy +H.c., with w=gq,l qg lg. (45b)
We already analyzed the first operator above, and showed
the result of transforming it into the Warsaw basis through
EOM in Egs. (43) and (44). The second operator trans-
formed into the Warsaw basis becomes

|H|2‘_1iDq =Y,0un +YqQuy, fory =g, (46)
and similarly for the others. We see that the custodial-
violating operators obtained through this procedure are all
in “class 5” of Table II: yywH?>. However, it is clear from
Egs. (292)—(29d) that none of these operators would feed
into the observables discussed in Sec. IV, even when they
are present.14 Therefore, our results in Eqgs. (32a)-(32d)
stand, and hence the subsequent analysis presented in

Note that this argument is not limited to the Warsaw basis
operator set.

“This can be achieved by taking H, w, and y (and their
descendants) as “long representations” of the conformal group, as
opposed to “short representations.” See Ref. [36] for details.

Recall that we have neglected the fermion masses in the
decay widths.

Sec. 1V, provided that we limit ourselves to tree-
level matching.15 For example, let us rearrange the EOM
relation in Eq. (43) as

Qy = 2QR - 4AQH - QH|:| + 21U2|H|4.

When restricted to Z-pole observables and also neglecting
the fermion masses as in Sec. IV, the lhs does not
contribute, and so neither does the rhs. Therefore, the
combination on the rhs is a free direction that can be viewed
as a new set of RPI shifts among SU(2), singlets. In this
language, when the outside operator Qp is generated,
one can use this new RPI shift to trade it for other
SU(2), singlets, which will then be in our Warsaw/
custodial basis.

VI. APPLICATION TO UV THEORIES WITH
CUSTODIAL SYMMETRY/VIOLATION

In this section, we examine several UV theories and
demonstrate that our .77; parameter is sensitive to (hard)
custodial symmetry/violation. We consider in Sec. VI A a
real triplet scalar; in Sec. VI B a heavy W/, from embedding
SU(2), into SU(2), x SU(2)g; in Sec. VIC a heavy Z'
from a spontaneously broken U(1),_, theory; in Sec. VID
heavy W’’s and Z'’s from embedding the electroweak group
into SU(2); x SU(2)g x U(1)p_,; and finally in Sec. VIE
two heavy vector-like fermions transforming as SU(2),
singlets. Several highlights of the lessons that we learn
from these UV examples are as follows:

(1) Our 7, parameter works perfectly for all of these
examples. When the UV sector is custodial sym-
metric or violating, our .7, is zero or nonzero
accordingly.

(2) The heavy W/, example in Sec. VI B reminds us that
the Veltman p can possibly deviate from unity in the
case of custodial-symmetric UV physics.

(3) The vector-like fermions theory discussed in
Sec. VIE serves as a striking example that our new
| parameter captures nonoblique custodial violation
of the UV theory while, unsurprisingly, the Peskin-
Takeuchi T parameter fails to do so.

A. Triplet scalar extension

The first UV example we consider is the well-studied
SM extension by a real SU(2), -triplet scalar ¢“; see, e.g.,
Refs. [56—61]. The most general renormalizable Lagrangian
for this model is

15Amusingly, the argument here can also be recast into a (new)
reparametrization-invariance relation among SU(2),-singlet op-
erators, in the same spirit as that in Ref. [46] (see our discussion
in Sec. IV D).
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1 1
Lyy = Lgu + 3 (D) (D, ") — §M2¢“¢“ — AH't“H" — k|H " — Ay( )% (47)

This UV theory has (hard) custodial violatign due to the interaction term H' t* H¢*. It is well known that this custodial violation
shows up already at tree level in the EFTIn what follows below, we check that our new .7, parameter captures this effect.
Integrating out ¢“ at tree level, we obtain a SMEFT up to dim-6,

A? kA2 A2
L =L HI* - _
SMEFT sM YYE |H| RYE Ou Ve
A2 40 A2
=L = (1= )| H -
SM+8M2< M2>| | 4M*

As expected, the custodial-violating operator Qyp 1is
generated. We also see the appearance of the operator
Qr which is outside of the Warsaw basis. In the second line,
we have traded it into combinations of Warsaw basis
operators using Eq. (43), and hence obtained an additional
custodial-violating operator Qy [see Eq. (44) for the
definition]. Reading off the Warsaw basis Wilson coeffi-
cients C; from the above and translating to our custodial
basis a; using Table V, we obtain

ayg = — o (k —42), (49a)
apo 4A—A;, (49b)

aHp _8A—A;4’ (49¢)

iy = %;44 (Y, £7.), (49d)
gy = %A;(Yu +£Y,). (49¢)

Note that in addition to the ayp, the “class 5 (see Table III)
custodial-violating operators a;;; and a also show up due
to the EOM subtlety discussed in Sec. V, but as explained in
Sec. VA, they do not invalidate our analysis.

Now using our definition in Eq. (34), we obtain

v2A?
(191 = —21)2[CZHD - agl)] = W ?é 0. (50)

We see that our .77, parameter captures the hard custodial
violation. Since there is no vertex correction in this example
[see the first line of Eq. (48)], our .7, reduces to the Peskin-
Takeuchi T parameter as explained before. So they work
equally well in this case.

1
<é_l Ouo+ Qup — QR>

1

A? 1
(k—44)0p - <_Z Ouo + Qup — 5 QY)- (48)

2M*

B. A heavy W) gauge boson

In this section, we consider a UV theory of embedding
the SU(2), of the SM into SU(2), x SU(2). Specifically,
the gauge sector of the UV Lagrangian is

1 aw U oauw
Loy D= Wi, Wi = Wi, Wi
1 .
+ Etr[(D”d))’ (D,®@)] = Vg, (51)

where the heavy scalar field @ is a 2 x 2 matrix that
transforms as a bifundamental under (U,,Up) €
SU(2), x SU(2):

O - U, U}, (52)
Therefore, the concrete form of its covariant derivative is
D,® = 0,0 —ig, W3t ® + igg®Wg, 14, (53)

where 1 =Jo“ are the SU(2) generators in the funda-
mental representation.

The symmetry SU(2), x SU(2), is spontaneously bro-
ken by the VEV of the heavy scalar field:

2500w

The unbroken group is the diagonal SU(2) formed by the
generators ¢4 + ¢, which we identify as our SU(2), group
in the SM. The corresponding gauge boson is the W boson.
For the broken generators, the corresponding gauge boson
W' acquires mass from vg:

Sul(D@) (D,®)

1
> 3 va(gaWi' = 9sWi') (9a W3, — 95Wi,)
1
= 3 %a(% + g WL Wy (55)
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We see that m%v,L =5 (g3 + g3)vg, and

1

I a — a a
Lu — (.gAWA¢ _gBWB )7 (568')
VARG ! g
1
Wi = ———=(95W4, + 9.1 W3,). (56b)
H 93\4-923 H u

With the above rotation, we can rewrite the general
covariant derivative as

Dﬂ = aﬂ - igAwatg — igBW%”tg
= 0, — ig, W1 + 15)

% 95
_ iW’L”< - t%), (57)
"\WVaR+5% " VAt

identified.

3 3 — _ 9498

with the SM gauge coupling g, = Jitn

For the UV interactions between the gauge sector in
Eq. (51) and the SM fields, we assume that W, plays the role
of W before the symmetry breaking, namely, that
the SM fields couple to W, exactly the way they couple
to the W boson in SM, and do not couple to Wy at all.'® This
means that for nontrivially SU(2),-charged SM fields,
t4 #0 but ¢4 = 0. From Eq. (57), we see that after the
symmetry breaking, the SM fields couple to both W and W, .

In the following, we will match this UV theory with
SMEEFT by integrating out the heavy W/ gauge boson at
|

the tree level. As is clear from the setup, the UV interactions
in this example respect the symmetry SU(2)gy [as well as
the other SU(2), symmetries discussed in Sec. II], and
hence are custodial symmetric by our definition. We
therefore expect a vanishing .7, in the resulting EFT.

Up to linear power in W’ , the UV interaction is

9a

9i + 95

where Jy denotes the SM SU(2), current:

Luy D Wi e, (58)

a
Ty, =

N[ =

(HUDSM,},H +y 1/7}/,,7“1//) . (59)
174

Integrating out W/ at tree level, we obtain a SMEFT up to
dim-6 as

gh

E —__J4 "~ _Ja J“ll
SMEFT g,%\+912'32m%V’L Wy’ w
2¢4
= =T W (60)
Vo
where we have defined the mixing angle ¢, = —4

Vg
Clearly, this EFT Lagrangian preserves SU(2) gy Plugging
in Eq. (59), we obtain

AN 1 1 1
Lsmprr = _v_é |:_QR +<5Qpn + QS; + QS; +§Q11 +§Q1(13q> + Qg)

2 8

8 4

3 1
= T3 |:/1QH + 500 +_(YuQuH + Y Qi +Y, 0+ Y. Qe + HC)
(]

1 1
+ ) + Qfay + 5 Qu+5 05 + 277 |. (61)

From the first line above, we see that all of the effective
operators are SU(2)gy preserving, as expected from
Eq. (60). However, in the second line, the SU(2)gy-
breaking operator Qy [see Eq. (44) for the definition]
shows up, due to trading Qp for operators in the Warsaw
basis using Eq. (43). Reading off the Warsaw basis Wilson
coefficients C; from the above and translating to our
custodial basis a; using Table V, we obtain

"®While this is the simplest coupling scheme, it is also possible to
split the left-handed fermion generations between coupling to W,
and coupling to Wpg. In this case, after the SU(2), x SU(2)z —
SU(2), breaking all left-handed fermions will couple as usual to
W but the interactions with W}, will be flavor dependent.

ay =—917 (at :—il(Y +7Y,)
H 1)(21)8 [H 1)3) 16 v e/ 62
3| o+ €yl (622)
a0 = —4% aqH:—gl—ﬁ(Yuin),
4
3 3 3 3 Cu
aﬁ,? = al(q; =2a;, = 2a5,q> = agq) = —g. (62b)

Again, we find the appearance of the “class 57 (see
Table III) custodial-violating operators a;; and agy, as
expected from the EOM subtlety discussed in Sec. V.
Nevertheless, they do not invalidate our analysis because
they do not feed into our observables discussed in Sec. IV,
as we explained in Sec. VA.
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From the Wilson coefficients above and Eq. (34), it is
straightforward to see that .77, vanishes,

a7 = =20 [ayp - ayy)] =0, (63)

which demonstrates the consistency with the UV physics
being custodial symmetric.

As a side note, this example also reminds us that the
Veltman p can deviate from 1 in the presence of custodial-
symmetric UV physics.17 To see this point, we can compute
p with Egs. (31a)-(31d). However, we first need to extract
the a;, [defined in Eq. (23)] from the a;; result above. To do
so, we restore the generation indices in Q;; from Eq. (60):

4 3
C - -
Lsmerr D -4 Z (lphfalp)(lﬂ”falr)- (64)

2
205 Pyt

To make this into the form of Q » , we need to also restore

the SU(2), indices being contracted, and use the group
identity:

1 1
T Tkl = 4<2 5!15jk — Z&jj&]d) . (65)

Substituting this in, we get

o4

Lsmerr O — v %DZ (lp?’;ﬂl, )(lkY”Tklll)
p.r=1

3
Z Lyyulp) T 1) = (L b)) (T 1)

= —é Z py,, r]/ o) ) (lpyﬂlp)(zryﬂlr)]'
(66)

To obtain the last line above, we have used the Fierz
identity for the first term in the square brackets, and then
suppressed the SU(2), indices as usual. Now we can read
off the Wilson coefficient with generation indices:

4
C
- —Aé (25pt5rs - 5pr5st)' (67)
[0

ain =

prst

Now from Eq. (23) we get

4
alz—au +au 2—2 . (68)

2112 /U

"This issue is unfortunately quite confusing in Ref. [20],
which suggests that p # 1 implies custodial symmetry violation,
which is not correct in general.

Plugging all of the relevant Wilson coefficients into
Egs. (31a)—(31d), we obtain p as

2 2¢ 1
p=14+— [236 (—eaHWB aS}) + —sgalz - chaHD
Cog So 2
2 4,2
— 140 AT 2, (69)

Cop 11@

Note that p # 1 in this example is from the nonoblique

corrections aSl) and aj,. On the other hand,
agp = agwg =0, so a naive implementation of
Egs. (1b) and (30a)—(30c) would misleadingly predict that
the Veltman p = 1. This highlights one limitation of the
oblique framework (although this is not about custodial
symmetry).

In fact, the UV theory in this example is actually a
“universal theory,” in the sense that one can find an operator
basis (different from the Warsaw/custodial basis) in which
all of the effective operators are oblique corrections.
Concretely, the SMEFT Lagrangian we obtained in
Eq. (60) can be fully written into a single effective operator
(D*W4,)* by using the SM W boson EOM, which is then
obviously oblique (only contributing to the two-point
function of the W boson). However, even in the case of
a universal theory, finding the desired basis and working
out the oblique parameters in that basis requires additional
effort, and must again be done on a case-by-case basis. On
the other hand, restricting to the Warsaw basis and
accommodating the nonoblique corrections provides a
more systematic approach.

C. A heavy Z' associated with the U(1);_, symmetry

In this section, we consider a UV model with a heavy Z’
gauge boson, associated with the U(1)_, symmetry in SM
(see, e.g., Ref. [62]). This classical symmetry can be broken
at the quantum level through triangle anomalies. To
consistently gauge the symmetry, one has to ensure that
the triangle anomaly contributions from different fermion
species are canceled. This can be simply achieved by
introducing three SM-singlet right-handed neutrinos v, a
requirement that is satisfied automatically by vSM
and vSMEFT.

Assuming that this U(1),_, gauge boson Z’ couples to
the B — L current jp_; = jg — j, through a coupling %gz,
our UV Lagrangian is'®

"®In principle, our U (1)p_, gauge boson Zj_, can also mix
with the hypercharge gauge boson B through a coupling
%GB"”ZL,,. We set this coupling to zero for simplicity in this
UV theory example. This is legitimate in our analysis as we only
focus on the tree-level matching and neglect radiative effects.
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1 1
EUV == ESM - ZZ;’”’Z/”U + EMzz;‘Z/”
+92Z, > WYy (70)
w=q.u,d,lv.e

Here the specific values of the charge y), =3 (B — L) are

1
:yu_yd_

Yq for quarks, (71a)

for leptons.

y, = (71b)

VI=Ye=Ye=—5=V
We have also assumed that the Z’ has a large mass M > v.
This can be acquired through the Higgsing from a heavy
scalar in the UV which only couples to Z’, or via a
Stueckelberg mechanism which allows M to be a free
parameter in the model.

This example is trivially custodial symmetric by our
definition, because the UV interactions do not involve the
SM Higgs, and hence the SU(2)gy symmetry is trivially
preserved. The vSMEFT side of the story is similarly
trivial. Only operators not involving the Higgs field can be
generated at the tree level (the four-fermion operators in
this case, as we will see); they are custodial-preserving
operators due to trivially respecting SU(2) . In particular,
no custodial-violating operators can be possibly generated
by this example, so we can already get .7; = 0 without
carrying out the matching calculation.

Nevertheless, this example is still interesting, because
apart from the custodial symmetry [which must involve
SU(2)gy; see Sec. IID], our custodial basis also helps
make manifest the operator structure under the isospin
symmetries SU(2)g, and SU(2)g,, . The UV interactions
|

ap = 2M2 (Y2) ai;; =
1 1
M=2mm Qs ==
1 1
agq) - 2M2 2yly2 ERZI::JF -

No isospin-violating operators in our Table III are gen-
erated, consistent with what we expected from the UV
physics.

D. Heavy W’s and Z’s from a UV theory
with SU(2); x SUQ2)x xU(1)p_,.
In this section, we consider a simple custodial-symmetric
UV embedding of the electroweak sector, by promoting
the electroweak gauge symmetry to SU(2), x SU(2)gxx

in Eq. (70) with the charges given in Egs. (71a)—(71b)
clearly also preserve these two isospin symmetries. Below,
we will check that no isospin-violating operators will be
generated in the resulting ¥SMEFT.

Integrating out the Z' at tree level, we obtain the
vSMEFT Lagrangian

2
['ySMEFT = _% (le_fi/ﬂ)’;ﬂ//) (ZW?"Y@W) ’ (72)
f f

where f = {q,u,d,l, v, e}. We see that only four-fermion
operators of the type (LL)(LL), (RR)(RR), and (LL)(RR)
are generated. In the Warsaw basis, the Wilson coefficients
can be summarized as

2
1 g
cll) =cyl =cl)=2cy) =2c,, zzcdd:—z—lézz(yg)%
(73a)
2
Cue = Clu = Cle = 2'Cll = 2CW = 2Cee = 2M2 (Y2) s
(73b)
Cl) = Cp=Coy=Cou=Coy=Cp =Cy
9
=Cp=Cyp = Y 2yhY;. (73¢c)

Transforming to our custodial basis defined in Table III
(again by applying the dictionary in Table V), we see that
the only nonzero Wilson coefficients are those preserving
both of the isospin symmetries SU(2)g, x SU(2)g,

ajy, = ﬁ%zZ(YQ)Z
2M2<Y2) N
2 lqg 2M2 Yiya
2M2 (yl) + (74)
2y g, = 2M2 2y1y2
2M2 172 1
ahoy = — 25 2(y)

U(1)g_,. which we hence refer to as the 2-2-1 model. The
covariant derivative is now

D, =0, —igWit* —iggRyt% — igky'K,. (75)
where Rf, K, are the gauge bosons and 7%,y are the
corresponding generators for SU(2), and U(1),_,. Note
that the gauge coupling g forces the three different SU(2) 5
symmetries in zSM to be the same; in other words, it breaks
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them down to the diagonal subgroup of SU(2)gyx
SU(2)gg, X SU(2)gy,

In order to break the enlarged symmetry SU(2), x
SU22)g x U(1)p_, down to electroweak symmetry at
low energy, we introduce a new heavy scalar field ©,
which is an SU(2), doublet with yg =1 and an SU(2),
singlet. Upon acquiring a VEV,

d)D\%(UO[ﬁ), (76)

it breaks SU(2)g x U(1)g_, to U(1),, with the hyper-
charge y =13 +y' ! In this example, the custodial sym-
metry is an exact symmetry respected by the UV theory at
the high energy scale. However, it is spontaneously broken
at the scale v,. Once we integrate out the heavy gauge
bosons and ®, this v, gives rise to (all) the custodial-
violating effects in the resulting SMEFT, putting the
hypercharge part of the dim-4 -custodial violations
and those at higher mass dimensions on the same footing.
This is in analogy with the case of minimal flavor
violation [63].”

2
g . ~ _ _
Lgrr = Lsm +—2an [(ZDgMHj)H‘f‘ E wyttgy
R qr-lr

2mycy ol

Here the mixing angle is defined as usual

9r

V& +ax

and the SM gauge coupling for hypercharge is recovered as

Cr = C0slp =

(81)

2 2
2 9rIk
g = =10 (82)
' Gt

We see from the result in Eq. (80) that there are
generically custodial-violating operators, such as Qpp
appearing in the following combinations:

The story is completely in parallel with how the SM Higgs H
breaks SU(2), x U(1)y to U(1)gy, with electric charge
Q=7r+y.

**Note that this example would not account for the Yukawa-
induced custodial violation in the SM.

The UV sector in this example is

1 1 1
ﬁUV D —— W,awWa’lw - ZRZURa'ﬂD - ZKIWKIM

4

+ |[D®|> = Vg + |DH|* + wiDy. (77)
Here we have switched off any possible interactions between
@ and H for simplicity, and hence focus on the effects of
integrating out the heavy gauge bosons. After the symmetry
breaking, we can identify the mass eigenstates of the gauge
bosons

(R,‘L Ku) - (R;Tvowﬂ)’ (78)
among which B, remains massless, but RMi and X, obtain
masses

, 1

m% = Zg%v(z/), (79a)

m% =

3 (79)

(9% + 9%)v5

S —

We then integrate out these heavy gauge bosons (together
with the heavy scalar @) at tree level, and obtain the EFT
Lagrangian up to dim-6,

} { (iDsw,H) Zwﬂtw]
qr-lr

g%e C%e K _ 3 2
o (D) + X - )

w} [%(HWBSM” +qRZIRWﬂ — S%Y) } (80)
|
(Dl YV H)[H (iDsyi, )] = Qup — Q. (83)
(H'iDgyH)(H' iDgy  H) = Qury +4Qup-  (84)

This is simply a reflection of the fact that the SU(2), is
spontaneously broken by v, Next, we carry out the
standard routine of expanding the EFT Lagrangian, trading
operators outside of our desired basis (such as Qp above)
into the Warsaw basis, reading off the Wilson coefficients
C;, and translating them into our custodial basis a;. The end
result contains a large set of Wilson coefficients. The
coefficients relevant for computing our observables in
Egs. (31a)—(31d) are

1 _ 1
app = _Eaggk 3 —(1—cb), (85a)
1 1
ay) = ay)’ = skek, (85b)
¢
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ag, =—5- (85c¢)

First we notice the appearance of a(H,>+ It is generated
because in the 2-2-1 model, the gauging of SU (2)g reduces
the three independent global SU(2)gy x SU(2)g,, %
SU(2)g,;, down to one single gauged SU(2)g. In fact,

aﬁjﬂm and ag Z,

as they do not enter into our observables.

Next, a nonzero ayp and agl) indeed means that the UV
theory violates custodial symmetry. Plugging Eqgs. (85a)—
(85¢) into Eq. (34), our .7, parameter serves as a good
indicator of the custodial symmetry/violation:

are generated as well, but not listed above

2 (1) v 4
a7 ==2v[app — ay] = R (86)
b

Clearly, .7, is generically nonzero in the 2-2-1 model.
However, fixing g; and recalling the relations between ¢,
and the primordial couplings gg, gx in Egs. (81) and (82),
there are two interesting limits: g > gx and gz < gk-
(1) In the limit gg > gx, we have gx — g1, gr > 91,
and sz — 0. Then, .7, —» 0 in this limit. More
specifically, the behavior of the custodial-violating

(1)

2
operators in .7, are ayp, a;; — zg—;z — 0. They are
R

not only small but also proportional to the SM
hypercharge coupling g;. This limit is asymptoti-
cally custodial symmetric.

(2) In the limit of g < gg, we have gr — g1, gx > 91,

2 .
and sp — 1. We see that a.7; — —Z—; approaching

its maximum size allowed. More specifically, the
(1) i

Wilson coefficient a; — ZE
o9k

— 0, while ayp —
21}2 # 0. One may naively think that this limit ought
b

to work precisely as the Zj_, boson model dis-
cussed in Sec. VIC. However, this is not the case.
Although gy is small compared to g, it has not been
completely switched off, and the EFT does not
necessarily imply a light mp, because g,v, should
be viewed as parametrically larger compared to the
electroweak scale (as vy, > v). So in this limit, we
actually decouple my instead of myp, resulting in a
custodial-violating UV theory, as indicated by the
nonzero .7, parameter.

E. Heavy vector-like fermions

In this section, we illustrate an example of integrating out
a UV sector with heavy vector-like fermions that interact
with the Standard Model charged leptons and neutrinos
[64—66]. Such a UV model does not belong to the category
of universal theories [24,42,43], and thus the oblique
assumption is not admissible. Below, we will see explicitly
that the Peskin-Takeuchi 7" parameter fails to detect the

hard custodial violation in the UV interactions, while our
new .7, parameter works perfectly.

Consider a UV model with two vector-like fermions N
and E that are SM SU(2); singlets. They share a common
mass M > v and interact with the SM in the same way as
the vSM right-handed leptons v and e,

Lyy = Ley + N(iD — M)N + E(iD — M)E
— (YNIHN + YgIHE + H.c.). (87)

The new UV Yukawa interactions can be rewritten follow-
ing the same method shown in Eq. (15):

ymzv+yzHE—7z<YN 0><N> (8)
N BT 0 v.)\E)

We see that if |Yy| = |Yg|, the SU(2)gy symmetry can be
preserved by the UV sector”’ in the limit g1 > 0(N and E
have different hypercharges). In this case, the UV sector is
custodial symmetric. Otherwise, it has hard custodial
violation. Let us now check if our .7, parameter can
distinguish these two scenarios.

Integrating the heavy vector-like fermions out at tree
level, we obtain a SMEFT Lagrangian at dim-6 as”

ib

Lsmverr D (YNZH)M (Yy HTl)

(YEZH) iD S (YpH'I). (89a)

Expanding this SMEFT Lagrangian and trading operators
into the Warsaw and custodial basis, we obtain the Wilson
coefficients

1
3
ay) :_W<|YN|2+|YE|2), (90a)
1
1
iyt == (Va2 =¥ P). (90b)
1
ain = gap Vol VnP £ Y [Yel). (90c)
Plugging these into Eq. (34), we get
aT ;= =2vayp — agl)]
2
— sz (Va2 = [VeP). o1)

*'The phase mismatch between Y and Y can be absorbed by
redefining the field N or E.
As is well known, the dim-5 “neutrino mass” operator is also
generated by this UV theory, but it is irrelevant for our current
discussion.
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We see that indeed our .7, parameter vanishes only if
|Yy| = |Yg|, and does not vanish in general. Thus, .7,
serves as a perfect indicator of the UV custodial violation.
In addition, we notice that in this example the SMEFT
framework captures the UV custodial violation through the
Wilson coefficient agl), a nonoblique correction, while
agyp = 0. Therefore, the Peskin-Takeuchi 7 parameter fails
to capture custodial violation in this UV theory. Explicitly,

1
al = —E’UZCHD = —2U2aHD =0. (92)

This example demonstrates the utility of our new .7,
parameter for indicating both oblique and nonoblique
custodial violation arising in (v)SMEFT.

VII. DISCUSSION

We have investigated how to faithfully detect hard
custodial symmetry/violation in the UV physics beyond
the SM, where hard refers to violations that persist in the limit
of vanishing U(1), gauge coupling g; — 0. Working with
dim-6 (v)SMEFT, we introduced a new basis—the custodial
basis—which is simply a rewriting of the Warsaw basis
operators to make manifest the symmetric/breaking struc-
tures of the various SU(2); symmetries in (v)SM. This
custodial basis facilitates the recognition of operators that
can/cannot be generated at tree level by custodial-symmetric
UV physics. With the help of electroweak precision observ-
ables, we then identified several example RPI combinations
of dim-6 SMEFT Wilson coefficients .7, (as well as .7, and
T 4¢» in Appendix B) that serve as generalizations of the
Peskin-Takeuchi T parameter to accommodate nonoblique
corrections from general UV physics.

Given measurements of ¢, GF, ﬁ’l% we showed that the
electroweak precision observables

{,b, ?ZuLEL’ ?ZELEL} (93)

can be used to construct .7, [see Eq. (34)]:

R 1. Crg .
(,0_ 1) +§(rZyLDL - 1) _%(rZeLZ)L - 1)
1
= =2v*|ayp — agl)]
=a7,. (94)

The measurement .7; # 0 implies that the UV sector
violates custodial symmetry at tree level. Importantly,
the converse is not true: 7; = 0 does not immediately
imply no custodial violation in the UV sector. There are
several exceptions that we have highlighted throughout the
paper. For example, our observable has been demonstrated
to capture just hard breaking of custodial symmetry, and is
not sensitive to soft custodial violations arising from the
gauging of hypercharge. In addition, .7, is unable to rule

out the accidental cancellation ayp, = agl). Furthermore, we

have emphasized in Sec. V that .7, is not sensitive to all
custodial-violating (v)SMEFT operators, e.g., it is not
sensitive to Oy or O . As we argued in Sec. V, this is a
good thing since they may be faked by the EOM redundancy
in rewriting custodial-symmetric operators outside our cus-
todial basis. Finally, our .7 is also not sensitive to custodial
violation that appears only at loop level at leading matching
order. Here we should distinguish between two possibilities:
there are well-known loop corrections to our observables
purely from the SM physics, such as the contribution to p
from the custodial-violating difference between the top and
bottom quark Yukawa couplings. These effects could be
incorporated into the framework by redefining our observ-
ables to include the SM loop effects (e.g., the Particle Data
Group provides a prescription to do this for the Veltman p
parameter [20]). However, additional contributions to our
observables that arise from radiative corrections from
(v)SMEFT operators are not included. For some theories,
radiative corrections are known, such as the singlet scalar
model [67,68]. In future work we will investigate if there are
persistent patterns that belie a UV theory with custodial
symmetry even after radiative corrections are included. This
may be more conveniently accomplished by changing to the
input electroweak parameter set G, %, i3y, to simplify the
Wilson coefficient dependence in loop calculations.
Following the same logic used to construct .7, one can
use the hadronic pseudo-observables discussed in
Appendix B to construct two additional parameters, .7,

and .7, [see Egs. (B5) and (B6)]:

3—455 3—2s5

(ﬁ - 1) (?ZHLIT{L - 1) T

1
= _EUZ[CHD - 12C§_11[)]]

= —20%[ayp + 3"221]

=a7,, (95)
(P —1) +255(Pzua — 1) = 55(Fzq2 — 1)
1
= _Evz[CHD —6(Cpyy + Chy)]

= —2vayp + 3a237: + 3a§3}7;}

aT .. (96)

(?ZdLaL - 1)

For the first generation, of course we cannot separately
measure the partial widths into left-handed or right-handed
up and down quarks. If we were to assume flavor
universality, one could use the measurements of the
forward-backward asymmetry of bottom quarks and charm
quarks [1] combined with the partial widths into (sepa-
rately) bottom and charm quarks to construct .7, and .7, .
However, the measurements of the quark partial widths and
asymmetries are somewhat weaker than the lepton partial
widths and asymmetries, and so we expect the actual
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constraints from .7, and .7, to be weaker than .7, that we
focused on in the body of the paper.

We demonstrated the viability and usefulness of our results
by calculating .7, for several example UV theories. In some
cases, the result is trivial. For example, for the heavy Z’
associated with U(1)p_, [Sec. VIC], the prediction is
=0, and more specifically p =7z, ; =7z, =
770, = 1. By itself, this is uninformative, since predicting
that these observables do not deviate from unity is indis-
tinguishable from the SM. However, when combined with
other observables that deviate from the SM prediction, e.g., a
new/modified four-fermion interaction, measuring .7; con-
sistent with zero provides evidence that the UV physics is
custodial symmetric and consistent with a U(1),_, inter-
pretation. Similar arguments applies to the heavy W boson
example [Sec. VI B], which is also custodial symmetric. In
addition, this example also reminded us that the Veltman
p # 1 is possible for custodial-symmetric UV physics.

We also considered UV sectors that (generically) possess
hard custodial violations. In the real SU(2), -triplet scalar
example [Sec. VI A], our .7, works exactly the same as the
Peskin-Takeuchi 7" parameter. Both parameters indicate the
presence of hard custodial violation in the UV sector. In the 2-
2-1 example [Sec. VI D], we embedded the SM into a larger
gauge symmetry, SU(2); X SU2)x x U(1)z_;. In this
case, the gauging of all three global symmetries SU(2) gy X
SU(2)g,, * SU(2)g,, marries them into one single SU(2).
Then, the spontaneous breaking of SU(2)g x U(1)g_, —
U(1), down to the SM generically leads to hard custodial
violation, where we found that .7, is in general nonzero.
Finally, the heavy vector-like fermions [Sec. VIE] are a
striking example where the UV physics is not a “universal”
theory and requires our replacement parameter .7, Hard
custodial violation feeds into SMEFT via the nonoblique

correction aE;,) (but not ayp). As a result, the Peskin-
Takeuchi T parameter fails to detect it, but our new .7,
parameter works perfectly.

In this paper, we have assumed flavor universality in
constructing our .7 ; parameters. One can certainly general-
ize our analysis in Sec. [V and Appendix B to include flavor-
dependent deviations to the observables. This would allow
for a construction of flavor-sensitive .7 ; parameters, which
could be used for probing nontrivial flavor structure in the
UV custodial violation. The SM Yukawa couplings are
examples of flavor-dependent custodial violation. Unlike
the hypercharge coupling, they have no direct linkage with a
general UV sector. However, for UV theories with “minimal
flavor violation” [63], couplings in the UV sector are
proportional to (powers of) the SM Yukawa couplings.
Such UV sectors are necessarily custodial violating (as well
as flavor violating). Nevertheless, with the aforementioned
generalization, our .7, parameters are capable of capturing
this custodial violation, provided that custodial-violating
dim-6 operators (beyond those in “class 5 of our Table III)
are generated at tree level.
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APPENDIX A: DETAILS OF MAPPING ONTO
OBSERVABLES

In this Appendix we provide some details on the
intermediate steps that lead to our results in Egs. (29a)—
(29d). We work with the Warsaw basis of dim-6 v*SMEFT
shown in Table II, assuming flavor universality. We
perform tree-level mapping, and only up to dim-6.

First, we find the corrections to the two-point functions
of electroweak gauge bosons,

HWW(PQ) =2p*0*Cpy. (Ala)
2 L.,
Iz, (p*) = EmZ,SMU Cup
+2p*0*(c;Chw + 55Cus + co56Crwa).
(Alb)
I, (p*) = 2p*v*(s3Cuw + c5Cup — co5¢Chwg). (Alc)

HyZ(PZ) = p*0*[2¢ps9(Cuw — Cug) — (c5 — 55)Crws].
(Ald)

where as usual ITyy (p?) denotes the transverse part of the
full two-point function of the gauge bosons:

; - p'p® .p'p*
lH’xl/yV(pz) :lHVV(Pz) <’7W—7> + (l p2 term |.

(A2)

Next, we move on to the three-point vertices. For the
observables considered in Sec. IV, the relevant vertex
corrections between the electroweak gauge bosons and
the leptons are

VZI/LZ_’L =1- Uz[cl(‘;; - Cgl)}’ <A3a)
v A0
Vs, = 1+—[Ch) +CH)), (A3b)
o Cog
’U2
VZeé =1- 2_5‘5CH6’ (A3C)
Vi = 1+ 02C). (A3d)
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Note that corrections to the four-fermion vertices would not
feed into & due to the lack of pole structure. The only four-
fermion vertex that needs to be considered in our analysis is
C, (as mentioned in Sec. Il A), which will feed into G .

With the above, we would like to find the modifications
to Egs. (25a)—(25g). The first four observables are rela-
tively simple:

s 9% [ p* ]
4”(9% + g%) p2 - H}/y(pz) p2—=0
= agm[l +20*(s3Cuw + c5Cup — co5eCuws)], (Ada)
GF:\/EQ%VZ _|: _1 :|_LC12
8 W p? =gy s —Tlww (P?)] 2] 2v2
R 5 1
= GF,SM[I +2UZCE_H) —5026'12], (A4b)
ﬁl% - m%,SM + HZZ(m%,SM)
1
= ’/h%,SM |:1 + E UchD -+ 21}2(C5CHW
+ 55Cup + CHSHCHWB)] ) (Adc)

gy = My v -+ Mww (7 sp) = My sm(1 4 20°Cry).
(Add)

These will lead us to the p expression in Eq. (29a).

A A ] 2
Kzy o, = KZuLDL.SM(RZ) / VZ!/LDL

A 3
= KZDLDL,SM[l + ”z(CchW + S§CHB + c950Crws) — UZ(CHI - Cﬁﬂ))}

A A~ S$20 1
Rze,2, = Rze,2, sm(Rz)? [VZeLéL + c—wpnyz(l?z)

For the decay widths in Eqs. (25a)—(%5g), we need a bit
more setup. We define the amplitude iM as the strength &
multiplied by the polarization kinematics:

iMZl//lfl = ik(eﬂul/lyﬂPL/Rvy_/)7 (AS)
with €, denoting the polarization vectors for the Z boson, u
and v denoting the Dirac spinors for the fermion legs, and
Prir = # denoting the projector depending on the
chirality of the fermion y. With this, one can compute
the decay width

N 1 — m

r, —=—— M, - P—— Az, A6
200 = Tomi, Mowi | = 24, (46)

where fermion masses are neglected. The 7 observables

defined in Egs. (27b)—(27d) can then be expressed as

~2
N KZL/LDL

"zvo, = A A0
Lo \/EGFm%

~2
~ KZese,

FZete, = mA ~n0/1  an’
z V2G i (1 = %)

(A7a)

(A7b)

~2
A KZee

Pree = —== ,
2 26 e (1 — V1 = %)

(A7c)

where % is defined as before by Eq. (28). In the SM, these
ratios are unity. In the SMEFT dim-6 Warsaw basis, the
above strengths are modified as

o (ASa)

(

. 1 3 53
=Kze,2,.5M [1 + 02 (c5Chw + 55Cup + co5¢Crwg) + Uzc_zg (CHI) + C1(L11)) + ”2% (Cuw — Cyg) — ZUZCHSF)CHW31| ,

A A Co 1
Kzee = KZeE,SM(RZ)l/z[VZeé - S_QFHyZ(PZ)]

= Rzee.sM [1 + v*(ciCpw + 55Cyp + cosoCrws) — v*

where R, is the residue of the Z boson at the pole mass:

dp?

R, =1+ [d sz(pz)}

=1+ 20*(c5Chw + s5Cup + co56Crws)-

(A8b)

1 c
Fcﬁe - ”22‘75(CHW —Cup) + Uz—aczacﬂvw} . (AS8c)
S So

22
Pm=Mz sm

(A9)
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Plugging Eqs. (A8a)-(A8c) and (Ada)-(A4d) into
Eqgs. (A7a)—-(A7c) will lead us to the expressions for the
partial widths in Eqgs. (29a)—(29d).

APPENDIX B: HADRONIC
PSEUDO-OBSERVABLES

In this Appendix we consider a set of four-quark partial
widths—pseudo-observables—in addition to those listed in
Eq. (24):

{FZuLﬁL’FZdLZiL?FZmTUFZdH}' (Bl)
In order, these denote the partial decay widths of the Z
boson to left-handed up-type quarks, left-handed down-
type quarks, right-handed up-type quarks, and right-handed
down-type quarks. Note that in Z decay measurements, the
first two generations of quarks are essentially indistin-
guishable. The measurable observables in practice are fzqq

(which will be needed in measuring lA“ZDL 7, > see discussions
in Sec. IV E) and measurements involving the b quark. For
this reason, we refer to these hadronic partial widths of Z as
pseudo-observables to distinguish them from the observ-
ables discussed in Sec. IV.

We present our results in terms of definite-parity had-
ronic final states in order to most easily compare with the
results in Sec. IV. In the SM they are given by the three
Lagrangian parameters g1, g5, v:

A mZSMg

FZd,‘z_iL,SM 2887 C: (3 2s ) (BZb)
A ”hZ,SMg% 4
Uzuasm = 187 2% (B2c)
A mzsmg
FZd;i.SM 7271_ C% g (B2d)

We then construct the following ratios [similar to
Egs. (27a)-(27d)] to keep track of the deviations from
the SM:

. 2r (B3a)
r up it upiy
Zuy iy, \/_GF ( + 2\/—)2 Z Ly
2r A
oo = = | I B3b
Zd;d; \/iGpﬁ’l%(2-Fﬂ)2 Zd;d; ( )
187 N
r uin = PN r uit» B3C
A G (1 -1 =52 ° (B3¢)
72
” (B3d)

= [
W26 (1 - VT =52 2

where X is defined as before by Eq. (28). These four ratios
are unity in the SM, but will get modified in SMEFT.

- 2
Ty ,.5m = mZ-SMg_g( — 4s2)2, (B2a)  Following the same procedure shown in Appendix A, we
2887 ¢y obtain their general Warsaw basis corrections as
|
s =1 A CHWB +cb) —lc12 —bey( e —c® Lo ) JLao2ye,, —6epc ]
upuy, C29<3 —4S5> % HI HI [ 2 0 q
(B4a)
bna = 14— a2 (€ s+ €D =Ly ) — 6c e e _Le
7d,d; cn(3-252) o\, “Hwe T G m 300 20 Hg ~ g1
— L3 42)Cup + 662 CL) (B4b)
2 9 HD 20~Hgq |°
1)2 Co (3) 1 1 3C29
P =14+—|2(2C Cy—=C C Cru|» B4
T Zui + o [ <s9 aws T Cpj 1 12> +2 HD + 55 252 Hu:| (B4c)
v? c 1 1 3¢
Praa=1+— [2 <—9 Cuws + CSI) - C12> +5Chup — 229 CHd:| (B4d)
Crg So 4 6

Although there are eight Wilson coefficients C; involved in the above, they only come with six different combinations.

Furthermore, recall from Eq. (29a) that we have
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,1}2

p=1- [2s§ C—z Crwg + C5) — % C12> + % cchD] .
We see that in the three quantities {p, 2,7, » 774, 2, }» only
two independent combinations of custodial-preserving
operators show up. Therefore, analogous to the procedure
of constructing .7, from Egs. (32a)—(34), we can construct
anew T parameter generalization .7, using / and the left-
handed partial widths:

3 —4s}
2
1
) v*[Crp = 12C§11;}
= —20%[app + 3‘1%]
=a7

3-2s3

A

(erLZlL -1)

(-1~

(?ZMLL_tL - ]) +

q. (B5)
Similarly, a .7, can be constructed using / and the right-
handed partial widths:

(P —=1)+255(Pzua — 1) = 55(Fzq5— 1)

1
=73 v*[Cyp = 6(Chy + Cpa)

= =2v*ayp + 3ag): + 3ag);]

q q
=a7 (B6)

qr*
In the second lines of Egs. (B5) and (B6), we have used
Table VI to write them in terms of our custodial basis
Wilson coefficients a;, where it becomes manifest that 7,
and .7, receive contributions only from custodial-violat-
ing operators in our Table III.

APPENDIX C: TABLES OF OPERATORS,
COEFFICIENTS, AND TRANSLATIONS

In this Appendix we gather tables of operator bases and
relevant translation relations. Table II summarizes all of the
independent  baryon-number-preserving and lepton-
number-preserving operators in the Warsaw basis for

TABLE II. sSMEFT dim-6 baryon-number-preserving and
lepton-number-preserving operators in the Warsaw basis. In
addition to the 76 = 42 4 (17 + H.c.) SMEFT operators, there
are 25 =7+ (9 + H.c.) new operators involving right-handed
neutrinos v.

1. x3
QG fABCGﬁWGfﬂGgﬂ
QG fABCGﬁVGEﬂGpCH

(Table continued)

TABLE II. (Continued)

1: X3
abe yiyav b C

Ow et WEW, W

_ T rav 7Pl ¢
QW (;‘abCW” Wy/’wﬂll
2: H°
On |H|°
3: H*D?
QHI:I _(a;t‘HP)(a”'le)
Oup (D, H")H][H(D"H)]
5: ywH? + H..
O |H\2(7_H V)
QeH |H‘2(ZI:I€)
Oun |H|2(z] Hu)
Qan |H|*(gHd)
4: X*H?
QHG ‘H|2GﬁDGA’w
Ouc |H |2(~}f}DGA””
QHW |H|2wzuwa/w
Onw |H|* Wi, W
Ons |H|’B,,B"
Ousp \H|*B,,B"
Onws Hiz*HW{,B"
Ous Hit*HW4, B
6: ywXH +H.c.
Ow (Za"”u)r‘ll:lW,”,b
Oew (lo* e)r*HWy,
O, (ZU’”’I/)I:IBHD
O.p (lo**e)HB,,
Q.c (QO"”’TAM)I:IGﬁU
Quc (QO"”’TAd)HGﬁ,,
Ouw (Z]a””u)T“I:IW,‘j,,
OQaw (go**d)r*HW},
QuB (qglwu)HB;w
Qup (go"*d)HB,,
7: ywH*D

1 <~ -

o (H'iD, H)(Iy"1)
3) La s
O (H'iD,H)(Iy"I)

(1) g _
Ohig (H'iD,H)(gr"q)
3) [ Ca _
Qg (H'iD,H)(gr'="q)
Qv (H'iD,H)(iy"v)
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TABLE 1I. (Continued)

TABLE II. (Continued)

7: ywH?D 8: (LR)(LR) + H.c.
<~ 1 =i =]
QH(’ (HTID”H) (éy”e) QE]u)qd (qlu)elj(qjd)
QHI./(’, + H.c. (FITZD”H) (Dy/‘e) Q(qft)qd (qlTAM)Gij(qJTAd)
Qs (H'iD,H)(@p'w) 0L, (I'v)e;;(3/d)
O (HiD, ) Ol (Fe)e, (@)
Qpua + He. (YD, H) @) of), (oup)e; (o™ d)
3) i (7] v
Qle u ( Guue)etj(q o u)
8: (LL)(LL) i
Qu (77’;1 )(7 )
0\ (@r.9)(@r'q)
o) (@r,7q)(ar'=q)
o (Ir,D)(ar*q)
Q(3) (jyﬂfal)(g]yufaq) TABLE 1IIIl. »SMEFT dim-6 baryon-number-preserving and
la lepton-number-preserving operators in our custodial basis.
8: (RR)(RR) 1: X3
Qu (yw)(Er'v) Og FAECGI G GF
_ o -
gee Efyﬂeigfyﬂe; O¢ fABCG:}vaPGEH
ve fyﬂy fy ¢ OW eubcwavwi’ﬂw;‘ﬂ
Quu (uyﬂu)(uy"u) o3 ’ b,
- - OW eabcwaqu/JWCll
Qdd (dylt d) (qyﬂ d) " g
o) (ay,u)(dy*d) > 16
QSZ) (ity, T4 u)(dy"TAd) ’
Ouu (Dyv) (ay*u) Ou [tr(Z72)]3
Qua (r,v)(dy"d) o
Qeu (EY;le)(l?y”u) 3: H'D
Qed (EY/Je) ((f}’”d) OHD [tr(ETiD”E)}Z
deu + H'C' (Dyﬂe)(dy"u) OHD [tr(2+ iDMZT3R)]2
8: (LL)(RR) 5: yywH? + H.c
Ou (ly, ) (@r'v) 0} w(Z'2)(IZP., Ig)
Qe (Irul)(er*e) Oy tr(Z'E)(GZP1qR)
Qlu ({y”l)(bity”u)
O (Ir, 1) (dy*d) 4: X°H*
Ou (ruq)(or'v) YA (A
0,. @na)ere) o e o
0 @) 1 (21D) G G
Eilu) e Onw tr(ZTE)Wa, W
qu (QYﬂQ)(d}/ﬂd) OHW tr(z%z)ﬁ/a warv
Hv
S (éy,,TACI)(ﬁr”TAu) Oup w(S75)B,, B
o (@r, T*q)(dy*T*d)  Opg t(2'2)B,,B"
Ouws tr(E 9% ) We, B
8: (LR)(RL) + H.c. Opivs tr(ZF 7Sy ) Wi, B
Qluuq (rl/) (ﬁql) -
< S5 6: XH + H.c.
Oreay (i) (dq') e e _
0?{)‘/ (l(zﬂbTaZPilR)Wﬂ
8: (LR)(LR) +H.c. 03 (Io"=P-1g)B,
—. —. + = v TA A
Ouie (I'v)e;;(Ve) 04 (qo" T*2P1.qr) G

(Table continued)
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TABLE IIL. (Continued)

TABLE III. (Continued)

6: wyXH + H.c.

Ogw (o 2P L qg)Wj,
Oqu (QO-”DZP%EqR)B;w
7: ywHD

o) w('iD,Ee3) (Iy1)
oY) (774D, %) (I 1)
oy, w(2'iD,253) (@ q)
o5 (2D, %) (qr""q)
O w(Z7iD,273) (e Poly)
o4 w(E7iD, 2e%) (e 4 P ly)
O wr(Z"iD, 273 (rr" P+ 4x)
OSK); tr(Z ’DMZT%)(Q r"T%Piqg)
8: (LL)(LL)

Ou (Iy, 1) (Iy*1)
04y (7,9)(@r"q)
o) (ar,7q)(Gr't"q)
0}, (Ir,1)(@r"q)
o)) (Ire*D(@r'=q)
8: (RR)(RR)

ii (?RY;:PiZR)QRJ/MPilR)
Oy, (Ixy, P Ix) (Txy" P_Ig)
ng)qiki (GrYuP+ar)(qrY"P+qr)
051;)‘;1: (Gr7,P+qr)(GrY"P_qr)
o (Gr miéqR)(Fm"T%qR)

5,13,? Iy, P+lg)(Grr"Pqr)

E,iz);f¥ (IR, P+1r)(qrr" P+qr)
ngﬁ);ii (IR;/” RlR)(f?RV”TRPiQR)
8: (LL)(RR)

Oy, (_77;41) (Ixy"Ply)
OIjt:JR (lyﬂl)(zl_leY”Pﬂ]R)
Og (@r,9) (" Plr)
oL (37,9)(@r7" P+qr)
o~ (@7, T*q)(qrr"T*P.qg)

8: (LR)(RL) + H.c.

+
OlquRq

(It P (@kq')

8: (LR)(LR) + H.c.

O iy

(7’1’1%)61]6,(,(7/15{)

(Table continued)

8: (LR)(LR) + H.c.
)

(1
ququR

)
O(qq)RLILIR
1)+
OHR‘I!IR
3)+
lrqqr

(

(@'q%)eijen(d’ dk)
(@'T gl )ejen(@ T q)
(I'lk)ei;(eP)(@ qk)

loyly)ei(ePy)y (@™ qy)

TABLE IV. A dictionary of the custodial basis operators O; in
terms of Warsaw basis operators Q;.

1 x?
OG QG
O¢ G
OW QW
Oy W
2: H
OH SQH
3: H*D?
Opn Onn
Oup Opo+40up
5: ywH? + H.c.
0;-1 Z(QI/H + QeH)
O 2(Qun £ Qun)
4: X°H?
Opc 20y
OHG 2QHG
Opw 20pw
OHW 2QHW
OHB 2QHB
OHE 2QHB
Opws —20nws
OHWB _ZQHWB
6: ywXH +H.c.
Olw Ouw + OQow
Oljig QI/B + QeB
O 0.6 + Quc
Oyw Ouw £ Qaw
Oqu QuB + QdB
7: gwH?D

1 1
Oyl -0y
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TABLE 1V. (Continued)

7: ywH?D

G)
OHI
1
oy,
3
o5,

(=
Oy,

o)
-0\
q
0
- (QHu + QHe)

BOE +2(Qppe £ Hc) = Oy £ Oppe

Hig
1)+
Oy,

—(Qmu £ Ona)

o+ +2(Qpua £ H.c.) = Oy £ Qpa

Hqg

8: (LL)(LL)

Oy
i
0l

Qu
1
04
(3)
qq9

1
Q§q>

3
Q§q>

Oii Ql./b + QE(? :t 2Ql/€

O+_ Ql/l/ - Qee

OEIIR)[I:‘;i Quu + Qdd + ZQElld)

0(1)+_ Quu - Qdd

ol 801 — 20l + 0, + Qua

oVE: (Quu + Qea) £ (Qua + Qeu)

oE (Quu = Qed) F (Qua = Q.

o)+ 2(Queau £ H.C.) + (Quu = Qeu) F (Qua = Qea)

8)+
OEI‘I)R

Qlu + Qle
O £ Qu
Op = Oy
oh) 0
o4 + 0%

8: (LR)(RL) + H.c.

+
OHRqRq

Qluuq + Qledq

8: (LR)(LR) + H.c.

Oty

OEJI‘])R qaar
OE]Z)R q94r
Ollyaas

(3)+
lrqqr

2011

2000

200,
~Qlin % Qg
~01, % 0y

TABLE V. A translation dictionary: the custodial basis Wilson
coefficients a; in terms of the Warsaw basis Wilson coefficients C;.

1: X3
ClG CG
ag CG
Ay CW
ayy, Cy
2: H
ay %CH
3: H*D?
apn Cho — %CHD
app %CHD
5: yywH? + H.c.
a, 1(Con £ Cept)
a;H % (CuH + CdH)
4: X*H?
ang 1Cue
aye %CHG
apw 1 Chw
Apw %CHW
ayp %CHB
ayp %CHB
aAxwa - % Crws
AHVWB ~2Cni
7 “HWB

6: pwXH + H.c.
aliW %(CI/W + CeW)
a?):g %(CDB + CeB)
ain %(CuG + CdG)
ajw %(CuW + CdW)
ajB 3(Cus + Cap)
7: ywH?D

(1) 0
“ul P
i CH(’)

' 1
Ay, —Chig
) Cit
a(’_}l)Ri _%(CHD + CHe) +%(icH1}e - C;ilbe)
aS[);t %(:tCHDC + C}ilue)
ag[)]f _%(CHu + CHd) + % (iCHud - C;Md)
agz)]f Zi(iCHud + C;Iud)
8: (LL)(LL)
aj Cu
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TABLE V. (Continued)

TABLE VI. (Continued)

8: (LL)(LL) 3: H*D?
aglq) Cﬁilq) gHD ami;r app
a£13<1) C,(f,} HD HD
(1 (1)
afg) CiZ) 5: ywH? + H.c.
“q Cly Cons Con 2(a}y £ ay,)
Cuns Can 2(aty £azy)
8: (RR)(RR) ! ittt
ailik %(Cw +C = Cue) 4: X*H?
a?,;[_k %(CDD - Cee) CHG ZaHG
1)++ 8
aE{R)qR % [(Cuu + Cdd) + Cful) Cfld) ( ﬁ) Cz(ui)] SHG iaHG
Clgilk);;_ % (Cuu Cdd) CHVY 2ZHV~V
(3)++ 1C<8> HW HW
aqRqR ud CHB ZCZHB
5;{)1:i %[(Cuu + Ceu) (Cud + Ced)} CHB 23[-1[;
a(l)_i %[(C C ) (Cud - Cul) + ( Cbedu + Cuedu)] CHWB _ZaHWB
lqu + Chws —2ayywp
5];[);; r (Cuedu + C;Ldu)
6: wyXH + H.c.
8: (LL)(RR) Cow Cow alW +ay,
aj, s(Cu ) Cup: Cep aIB + aj
a?L:IR %(Clu =+ Cld) C”G’ CdG j{G - az
aqilk %(qu + qu) g”W’CCdW atlJXV - Aqw
1)+ 1 1 uB> +a
oy S[ew £ cly) Tt @4 T Cp
8)+ 8 8
L s
. (T D\ D c\ (1)
8: (LR)(RL) + H.c. HI —Ap
+ ) ct? pe)
Dlrqra 2 (Clvuq + Cledq) ZZ) Fﬁ)
Chg “AHq
. (TR\(T (3) 3)
8: (LR)(LR) + H.c. Chy agy,
( ) oD = B+ (3)-
Algliy 1Cute Chu: Che Fa g)l Fa (gl —apy,
1 C +
i o CHM c ) 2[073 _ e | @)
3 _
aEI‘I)R(I(IR 1 CE]u)qd Hu>“~Hd - :F ag)qk + C(lqu quR
1)+ 1 1 C +
aglk)qu % [ Cgez)]u + Cgv;d} Hud 2[01‘1%’ - qu}
(3)+ 1 3) (3)
llrqqr 2 [ Clequ + Clqu] 8 (LL)(Z,L)
Cll ap
TABLE VI. A translation dictionary: the Warsaw basis Wilson C,(,'q) agilq)
coefficients C; in terms of the custodial basis Wilson coefficients a;. c® e
qq aq
1: x3 cy a)
3 3
CG' CG ag, ag CE(I) agq)
Cy.Ciy ay. ay
8: (RR)(RR)
2: H° __ _
C ] CW ;1:;:2 + alRlR + a?I;lR
" “H Cee 71:}: + aZJR - a71;1_R

(Table continued)
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TABLE V1. (Continued)

8: (RR)(RR)
C,. 2(a) —a;7)
D4+ 1)—— 1)+ 3)++
Cuu a%k;qR + a%R))qR + a(EIR))fIR + a(EIR))‘[R
++ 1)— 1)+- 3)++
i o T
++ - ++
Cud 2[a‘1R‘1R ~ Aqpar ] + (Nil - z)aQRQR
8 3)++
C e ol s i gﬁqku o) o)
1)++ 1)—- 1)+— -+ 3)+ 3)4—
v Lgqr + Liggr + Lar + Drar + Drar + Lar
(1)++ (1)—— (1)+- (H)—+ (3)++ (3)+-
or o o o o
1)++ 1)— 1)+- D=+ ()+ ()
Gy ol e ol
D++ 1)—— 1)+— )—+ 3)++ 3)+-
ng aquR + aZRlIR - lgl)k - alR(é];z + alRlIR - alRl]R
+ -
Cvgdu Z[aquR + alk‘]k }
8: (LL)(RR)
Clv ai}[{ + aﬁk
Cle a;R - aﬁk
Ch a%R +ay,,
Cua Dge ~ gy
qu/ a;—lk + a;lR
—+ —
qu Ay — Aqiy
g
1 1)+ 1)-
Cua Aqqr — Qqqg
3
+ -
qu Aqqr — Gqqg
8: (LR)(RL) + H.c.
Clbuq’ Cledq a?;RqRq + aﬁR‘IRq
8: (LR)(LR) + H.c.
Clute 2ay,11,

1 8 1 8
CE]u)qd’ C;u)qd za(q;:equ 2a£1‘1>R’1’1R
(1 A1) (1)+ (1)-
Clqu’ Clequ + Ulgar ~ Yigqqr

(3)  ~3) (3)+ (3)-
Cluqd’ Clequ + a”R‘]‘]R - alquqR

TABLE VII. Reducing vSMEFT to SMEFT: the left (right)
column shows the constraints on the Wilson coefficients in the
Warsaw (custodial) basis.

vSMEFT — SMEFT
in the Warsaw basis

vSMEFT — SMEFT
in the custodial basis

_ + —
Con =0 N Ain = _fZH
Cow=Cp=0 apy = —djysdip = —djp
Cye=Ci =0 G+ _ 0B)- _
Hve Hve aHlR = aHlR =0
Cy =0 M+ _ _ (-
Ay Ay, = ~4yi,
_ _ = 1 -
Czw - Cue =0 alRlR - alRlR - 2alRlR
Cootu = Clygy =0 G+ _ B4 _ g
( e (1)
C=Cy=0 D+t (D=t ()= _ ()=
v v lrgr kar > Ypar = " ggr
— — - + -
Cp=Cp=0 Ay = s Agr, = ~Agl,
Cl””q =0 a”RqRq = _aﬁRqRq
Cie =0 g, =0
(n _ A6 _ M+ _ _ ()= G+ _ _ 0=
Civga = Ciuga =0 Uitngge = ~itgage® Yinaae = ~Yligaay

dim-60SMEFT (suppressing flavor indices). These oper-
ators are recombined to form our custodial basis summa-
rized in Table III. Table IV provides an explicit translation
dictionary between the operators in these two operator
bases. Translation dictionaries between the Wilson coef-
ficients C; and a;, in both directions, are further provided in
Tables V and VI. Table VII summarizes the restrictions on
the Wilson coefficients C; and a; to reduce vSMEFT back
to SMEFT.

Our notations in Table III are also a bit compact. For
example, we sometimes use O to group custodial-pre-
serving/-violating operators together which, respectively,
involves P.. Such examples include O3, O:q‘EH, 07y, 0;6,
Oiw, OSI):E and OSE;: A similar kind of notation is also
applied to some custodial-preserving four-fermion opera-
tors that break the isospin SU(2)g,. or SU(2)g,. In

particular, the notation O™~ implies that the operator
violates both the lepton and quark isospin.
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