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Feasibility of Bell inequality violation at the ATLAS experiment
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We examine the feasibility of the Bell test (i.e., detecting a violation of the Bell inequality) with the
ATLAS detector at the Large Hadron Collider (LHC) at CERN through the flavor entanglement between
the B mesons. After addressing the possible issues that arise associated with the experiment and how they
may be treated based on an analogy with conventional Bell tests, we show in our simulation study that
under realistic conditions (expected from the LHC Run 3 operation) that the Bell test is feasible under mild
assumptions. The definitive factor for this promising result lies primarily in the fact that the
ATLAS detector is capable of measuring the decay times of the B mesons independently, which was
not possible in the previous experiment with the Belle detector at KEK. This result suggests the possibility
of the Bell test in much higher energy domains and may open up a new arena for experimental studies of

quantum foundations.
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I. INTRODUCTION

Entanglement, or nonseparability of quantum states, is
the characteristic trait of quantum mechanics (QM), accord-
ing to Schrodinger [1]. As pointed out in the seminal paper
by Einstein, Podolsky, and Rosen (EPR) [2], entanglement
leads to mutual dependence of the (possible) measurement
outcomes of local observables with respect to the constitu-
ents. This nonclassical correlation inherent in the entangle-
ment is what EPR employed to suggest that QM is
incomplete as a physical theory, but the same correlation
is now seen as a key resource to perform useful information
processing in quantum information science [3].

Entanglement is experimentally confirmed by detecting
a violation of the Bell inequality [4,5] which holds as long
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as the nature is governed by local realism, a principle
deeply rooted in our scientific thought—until the advent of
QM at least. As such, the test of the Bell inequality (or the
Bell test in short) in actual physical phenomena has been an
important subject of research in fundamental physics since
the inequality was reformulated in a form amenable to
experiments [6]. In fact, many experiments have been
conducted in the last four decades and violations have
been reported in various systems: photons [7-14], ions
[15], nucleons [16], superconducting phase qubits [17],
spin systems [18-20], and B mesons observed in the Belle
experiment in KEK [21], to name a few.

Among these tests, the test using the B-meson pairs [21]
is distinguished in that it is performed in a high energy
experiment and invoked arguments [22,23] on its validity.
The theoretical basis of the Bell test using B-meson pairs is
laid on a formal analogy between the decay times of the B
mesons and the measurement angles for the spin measure-
ment of the entangled spin pairs [24]. The experimental
condition and the analogy jointly raise three issues to be
addressed: First, in usual particle physics experiments,
there is no room for a free choice in the decay times [22] as
required for the Bell test. Second, since the B mesons
are unstable, the correlation between the flavors of the
B-meson pairs tends to be too weak to demonstrate the
violation of the Bell inequality unless some renormalization

Published by the American Physical Society
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procedure [24] is employed for the correlation function
[22]. Third, the Belle detector measures only the difference
between the decay times of the B mesons. This changes the
upper bound for the Bell inequality, and makes the
experimental confirmation of the violation extremely diffi-
cult [23].

In this paper, we examine the feasibility of the Bell test
with the ATLAS experiment at the Large Hadron Collider
(LHC) at CERN through the flavor entanglement between
the B mesons. We shall argue that the first issue may be
dealt with by regarding the decay times as none other than a
form of free choice, since they are generated purely
stochastically [25-27] and hence can be treated similarly
as random parameters utilized for conventional Bell tests
(e.g., [9,14]). This stochastic property also allows us to
introduce the necessary renormalization procedure to over-
come the second issue. Above all, the fact that the ATLAS
detector is capable of measuring the decay times of the B
mesons independently gives a decisive advantage over the
previous Bell test using the Belle detector, solving the third
issue almost completely. In brief, with analyses on exper-
imental loopholes [28-30] and simulation studies under
realistic conditions during the LHC Run 3 operation from
2022 to 2026, we conclude that the Bell test is feasible by
using the ATLAS detector under suitable assumptions. Our
result suggests that the ATLAS detector enables the
entanglement detection in an energy scale even higher
than that of the Belle detector.

The rest of this paper is organized as follows. In Sec. II,
we provide a theoretical analysis on the feasibility of the
flavor entanglement detection with the ATLAS detector. In
Sec. 11, after a detailed description of the flavor measure-
ment and the identification process, we present simulation
results which suggest that the B mesons detected by the
ATLAS detector are mutually spacelike separated and,
accordingly, the detection of the violation of the Bell
inequality should be possible. Section IV is devoted to
our conclusion and discussions. To support our analysis, in
the Appendix, we furnish another derivation of the Bell
inequality without relying on the analogy mentioned above.

II. THEORETICAL BASIS

In this section, we develop a formulation to detect the
entanglement by using the Bell inequality with the ATLAS
detector. For a deeper understanding of the outcomes given
in Sec. III, we begin with a brief summary of physics of B-
meson pairs. Next, we introduce a modern approach to
derive the Bell inequality [4]. (For details, see [5].) We
mention the formal analogy between the decay times and
the spin measurements in the usual Bell test, and show that
the Bell inequality [23] suitable to the flavor measurements
of B’BY in the ATLAS experiment takes the same form as
the standard Bell inequality. We further show the quantum
violation of the Bell inequality, and finish this section
with discussions on experimental evaluation of the Bell

inequality and the loopholes thereof. Note that the formu-
lation given in this section can be applied to other meson
pairs such as K°K°. We hereafter work with the natural unit
h = ¢ =1 when no confusion arises.

A. Flavor measurements

The system we deal with is a pair of neutral B mesons
generated in the flavor singlet state,

1

0\| B0 B0\ | RO
w) ﬁ(lB )1B%) = |B%)|B%)), (1)
from pp — bb processes. Here |B°) and |B°) are the
flavor eigenstates of the B meson, which together form a
complete orthonormal basis (flavor eigenbasis) in the two-
dimensional complex Hilbert space C? describing the flavor
internal degrees of freedom of a single meson. The total state
space of the pair of B mesons is given by the tensor product
C? ® C? of the respective Hilbert spaces.

The state |y) is entangled as it cannot be factorized as a
direct product of the one-particle states and, as such, it
exhibits strong correlation between its constituents. One
may thus expect that the correlation between the neutral B
meson in |w) could trigger the violation of the Bell
inequality under suitable measurement setups.

Under the assumption of the unbroken CP symmetry, the
time evolution of a neutral B meson obeys the Schrodinger
equation 4 |y) = H|y) with the phenomenological
Hamiltonian [31],

i ( M-
My =51
written in the flavor eigenbasis [B) = ({) and |B°) = (9).
On account of the symmetry, the Hamiltonian A is invariant
(CP)H(CP) = H under the CP transformation expressed
as |B%) = CP|B°) and |B°) = CP|B") in our convention.
Note that (B°|H|B%) #0 implies that the time
evolution induces the flavor transition called flavor mixing.
Additionally, the non-Hermitian Hamiltonian A describes
the decay of the B meson into other particles, resulting
in the gradual decrease in the probability of remaining as a
B meson.
Let us derive the explicit expression of the joint
probability function in the flavors. The eigenstates of the

phenomenological Hamiltonian A (called the mass eigen-
states) take the forms,

(2)
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with the eigenvalues,
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i i
Ay = My — Ty, A, =My — 1, (4)
2 2
where
My =M+ M, 'y =T+T,,
My =M — M, IL=r-TIp. (5)

Since the difference in the decay width is extremely small

I'y —I'L = 0.001T" [32] and insignificant to the following

discussion, we shall hereafter work on the approximation

I'y =17 =T for simplicity.

The evolution of the mass eigenstates,

Bu(t) = e[By),  |Bu(t) = e i|B), (6)

implies that the entangled state |y) generated at t = 0 will

become

ly(t.1,)) = \/L§(|3H<tl)>|BL<t2)> = [BL(t1))|Bu(t2))),
(7)

when the two mesons decay at the proper times #; and t,,
respectively. By introducing the dichotomic variables A, B
such that A, B = +1 for B® and A, B = —1 for B, we
obtain the quantum joint probability distribution of the
flavor observations A, B at the decay times t;, t,,

e T(ti+n)

——— (1 = ABcos(AMAY)), (8)

PC2(A,B,t),1,) = 1

with A=t —1, and AM = My — M, =3.334 x 1071 MeV
[32] being the mass difference.

B. The Bell inequality for flavor measurements

Prior to discussing the Bell inequality for flavor mea-
surements, let us briefly recall the Bell inequality itself,
which was derived through Bell’s simple but careful
analysis of the EPR argument [2] on QM. In their argument,
EPR claimed that QM is incomplete as a physical theory on
the basis of three assumptions: locality, our ability to freely
choose experimental setups, and the reality of physical
quantities that should be dealt with a complete theory. Here,
the reality means that the values of the physical quantities
are determined or inferred with certainty, at least in
principle.

Bearing the above historical background in mind,
we shall introduce local realistic theories (LRTs) which
fulfill all the assumptions EPR made in their argument.
Consider a measurement of spins of two spin 1/2 particles,
which are spacelike separated and have previously inter-
acted. Suppose that we are allowed to freely choose the
experimental setups specified by parameters a and b,

respectively, for the two particles. More explicitly, we
conduct the spin measurement for one particle along the
measurement axis specified by a and also for the other
particle along the axis specified by b. We then assign the
values A = +1 if the outcome is along the axis measured
(up spin) and A = —1 if it is opposite (down spin), and do
the analogous assignment for B for the second particle.
Performing the above process of measurement many times,
we obtain the probability distribution P, ,(A, B) of finding
the outcomes A, B under the measurement setups a, b.

In the LRT description of the above experiment, asso-
ciated with the reality of the physical quantities, we first
suppose that there exist parameters called hidden variables,
collectively denoted by A, which completely specify the
states of the physical systems with certainty. Making it
explicit that the probability distribution P, (A, B) depends
on A, we write it as

hﬂAm—/meﬁWHWM (9)

where P, (A, B|) is a conditional probability distribution
of the outcomes A, B, given A, and P(1) gives a distribution
of A under the situation of the measurement. Note that LRTs
are also called local hidden variable theories in the
literature.

The locality assumption implies that the choice of the
measurement setup a and the outcome A are independent of
that of » and B, and vice versa. This allows us to
decompose the conditional probability P, (A, B|A) as

Pa,b(A7BM) - Pa(AM)Pb(BM)? (10)
where P,(A|4) and P, (B|A) are the conditional probability
distributions of the outcome A, B with the measurement
setups a, b under the given A.

We are now ready to introduce the Bell inequality. From

Egs. (9) and (10), the correlation between the outcomes A
and B under the setups a and b reads

Cla.b) => ABP,,(A.B)

— /A(a,/I)B(b,A)P(A)d/L (11)

where we have introduced

B(b.2) = P,(B=12)—P,(B=~12).  (12)

From |A(a, )| < 1 and |B(b, 4)| < 1, it is now straightfor-
ward to derive the Bell inequality

S| <2 (13)
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satisfied by the combination of four correlations
S=C(a,b)+C(d,b)+ C(a,b')—C(d,b) (14)

for any a,d’, b, and b’ (see, e.g., [5]).

Many experiments have confirmed the violation of the
Bell inequality [7-20]; the experimental value of the left-
hand side of Eq. (13) exceeds 2 with suitable experimental
setups and state preparation. In addition, these experimental
results are in good agreement with their quantum mechani-
cal descriptions. These observations clearly show that
Nature, and its quantum mechanical description, do not
satisfy at least one of the assumptions EPR made, even
though they look apparently natural to hold.

Now, to accomplish the task of putting the argument of
the Bell inequality into the context of our flavor measure-
ments, we first describe the measurement process of the
flavor measurements and examine the analogy with the
conventional argument leading to the Bell inequality
mentioned above.

In the flavor measurements of a pair of B mesons, one
meson decays at the proper time ¢; and its flavor, denoted
by A, is revealed as either +1 for B® or —1 for B. The other
meson decays at the proper time ¢,, and its flavor B is +1
for B® and —1 for B°. The outcomes of the measurements
are then used to obtain the joint probability distribution
P(A, B, t1, t;). The point here is that the proper times of the
decays 14, t, are determined stochastically. Thus, given the
decay times t4, 15, the statistics of the flavor measurement is
characterized by the conditional probability distribution
P, .,(A,B), which is related to the joint probability dis-
tribution by

P(A,B. 1), 1)

P, . (A,B)= ' :
nnAB) = A B D) "

At this point, one notices the apparent analogy between
the decay times 1, t, and the measurement parameters a, b,
since the latter are also conditioning the probability dis-
tributions obtained under the setup specified by the
parameters. Assuming, for the moment, that this analogy
holds perfectly, we realize that all the arguments we just
have gone through for the Bell inequality apply here as
well. It thus follows that, if we just formally replace a, b
with 7, t,, we end up with the same Bell inequality (13) for
the set of correlations (14) where now we use

C(t.t) = Y _ABP, ,,(A.B) (16)
AB

instead of C(a, b) and the like.

We have seen previously that in QM the joint probability
distribution P9(A, B, 1,,1,) is given by Eq. (8). From the
relation (15), one then finds the corresponding conditional
probability distribution,

1
P¢,(AB) = 7 (1 = AB cos(AMA)), (17)
and also from Eq. (16) the quantum correlation,

CO(t1.1) = > _ABPZ, (A.B) = —cos(AMAr),  (18)
AB

which is the renormalized correlation function introduced
in [24], and free from the exponential decay law that the
joint probability distribution (8) suffers. Note that
C9(t,t) = —1 implies perfect anticorrelation in the flavors
of the B-meson pair decaying at the same proper time ¢.

To proceed, let us consider the special case of the decay
times,

L—th=t—tp=1,— 1t = At, (19)

which corresponds to a typical configuration of the meas-
urement setups for the experimental verification of the Bell
inequality. Indeed, if we denote by S?(At) the combination
Sin Eq. (14) when we use the quantum correlation function
(18) for Eq. (19), we obtain

S(A1) = CO(t1. 1) + CO(1). 1) + CO(11.15) = CO(1}. 1))
= —3cos(AMAt) + cos(3AMATY). (20)

By differentiating S¢(A¢) with respect to At, we easily find
that |S2(Ar)| <22 and the maximum value 2v/2 is
attained at At = n/4AM ~ 1.55 ps. This indicates that
we may observe a violation of the Bell inequality with a
pair of B mesons as well, once the measurement is carried
out properly.

For comparison, as an example of LRT models we
mention the spontaneous disentanglement model [33],
where one obtains the conditional correlation function,

C5(t1, 1) = —cos(AMt,) cos(AM?t,). (21)

Observe that the form (21) fits the formula (11) of LRT
(with a, b replaced by ¢, t,) if we let A(t,4) =
—cos(AMt;) and B(t,,A) = cos(AMt,) under the use of
the normalization condition [ P(1)dA = 1. It thus follows
that the correlation (21) obeys the Bell inequality trivially.

Now, coming back to the question of the validity of
analogy between the parameters a, b and ¢4, t,, it has been
argued [22] that, while the former can be chosen at will by
the experimenter, the latter are determined by nature and
cannot be altered freely. Although this is apparently the
case in reality, one may take the viewpoint that the
experimenter should also be influenced by nature and
hence, logically speaking, one cannot deny completely
the possibility of the parameters a, b being determined by
other sources including the hidden variables 4. To avoid an
impractical impasse, it is customary to accept the choice of
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a, b performed by some random number generator (RNG)
as a result of free will. By the same token, one may accept
the choice of ¢, t, performed by the particles in their
random decays as an act of free will, given that such
random decays have actually been utilized as a source of
quantum RNG [11,12,18,25-27].

To elaborate this idea a little more, we recall the fact that
in our experiment the target system of measurement is the
flavor subspace which is a part of the entire space of
freedoms possessed by the B meson. On the other hand,
the decay times of the B meson are governed and determined
quantum mechanically by a separate part of the system,
which may be regarded as a quantum RNG equipped with
the particle working independently from the flavor part. This
picture then allows us to put our experiment on a par with
preceding Bell tests as far as the free-will (or freedom of
choice) loophole is concerned. This viewpoint has appa-
rently been adopted in the earlier analysis of the Belle
experiment [33], but we shall also mention in the Appendix
an alternative argument to retain the formal structure of the
Bell inequality referring to earlier works [23].

C. Note on experiments and loopholes

The ATLAS experiment can measure the decay times ?,
t, of the B-meson pair (7) independently, which enables us
to evaluate the correlation according to Eq. (16) and
thereby obtain the Bell inequality |S(A¢)| <2 for the
combination (19). This is a crucial advantage over the
Belle experiment where we measure the events only
through their difference At in the decay times, resulting
in the increase in the upper bound of the Bell inequality,
making the Bell test difficult accordingly [23].

Given this prospect, we now wish to address, in addition to
the free-will loophole we have just mentioned, two other
major loopholes [11,12,18] that may hamper the Bell test
with the ATLAS experiment. One is the efficiency loophole,
which is based on concerns that a certain proportion of
unobserved events may enable LRT to exceed the upper
bound of the Bell inequality (13), which can be excluded only
if the detection efficiency is greater than 2v/2 — 2 ~ 82.8%
[29,30]. If not, we are basically forced to make the fair
sampling assumption [28] that the detection probability is
independent of the measurement setups a, b. The combina-
tion of the correlations (14) evaluated from the actually
observed events is then assured to be identical with that
evaluated from the total events including unobserved ones,
and this ensures that the experimental violation of the Bell
inequality implies incompatibility of the assumptions EPR
made. Unfortunately, with the ATLAS experiment, the
detection efficiency is only 2.0% as shown in Sec. III C
due to the loss in event selection processes. This implies that
we need to make the fair sampling assumption that the
probability of the detection of the decay is independent of the
decay times t;, t,, which looks fairly reasonable and has
certainly been the case in usual measurements of decay times.

t
/
t2
; At
1
At
12>
RNG
¢ ’ At (Meas.)
1
RNG
A (Meas.) B

FIG. 1. Minkowski diagrams for the spacetime events related to
the decay of a pair of B mesons considered for the Bell test. After
the pp collision emerge a pair of B mesons, which subsequently
decay at 1, (or 7,) in the region (A) and at #; (or #}) in the region
(B). The red and blue solid lines depict the actual spacetime
trajectories (world lines) of the respective B mesons, while the
shaded zones depict the forward light cones of the activated times
of the RNG embedded in the B mesons in the first two decays.
The flavor measurements, which are to be performed simulta-
neously with the RNG within a typical short period of time
allocated for weak interactions colored in green, are completed
retroactively after the decay modes are determined by identifying
the decayed particles. For the combination of the correlations
S(At) used for the Bell test, the locality condition requires that
the final measurement at , be completed before the information
of the first measurement at 7| reaches. Our simulation indicates
that this condition can be fulfilled with the ATLAS experiment.

The other loophole is the locality loophole [28], which is
based on concerns as to whether the experimental setups
guarantee the locality assumption; if the actual measure-
ment configuration allows the measurement setup a or
outcome A to affect b or B, the locality assumption
no longer holds, invalidating the direct link between
the experimental violation of the Bell inequality and the
incompatibility of the assumptions. On account of the RNG
embedded in the B meson, and also due to the purely
quantum nature of the decay, the operating time of the RNG
is interpreted as the duration of the decay itself, which is of
the order assigned to typical weak interactions. Besides, as
we shall see in Sec. IIL E, it is possible to select the decay
events occurring in the ATLAS detector so that the pair is
mostly spacelike separated (see Fig. 1). This indicates that
the locality loophole can be closed virtually with the
ATLAS experiment.

III. FEASIBILITY STUDY

A. Outline

The ATLAS experiment is performed at the CERN LHC
in order to study phenomena in proton-proton (pp) and
heavy-ion collisions. The ATLAS detector [34], which is
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designed for general physics purposes, consists of a
superconducting solenoid surrounding the inner detector
and a large superconducting toroid magnet system with
muon detectors enclosing the electromagnetic and hadron
calorimeters.

The ATLAS experiment collected 5.1 fb~! of pp colli-
sion data with the total center of mass energy /s = 7 TeV
and 21.3 fb~! with 8 TeV in Run 1 (2010-12), and 149 fb~!
with 13 TeV in Run 2 (2015-2018). The instantaneous
luminosity of pp collisions has been increased during
the operation and reached a maximal value of 2.2 x
103 cm™2s~! in 2017, more than twice that of the LHC
design value (1.0 x 10** cm™2s™"). The experiment called
Run 3 is expected to start with 14 TeV of pp colliding
energy in 2022 after the long-shutdown 2 (2019-2021), and
is expected to collect 180 fb~! of data by the end of 2026.

On the basis of the above specifications, we carried out a
simulation study to evaluate the feasibility of the Bell test
by means of the flavor entanglement of the B-meson pair in
the ATLAS experiment. In this simulation, we assumed that
nature obeys QM, and performed an error analysis of
S9(At) evaluated from the decay modes B® - D* utv
(D~ = D%, D° - K*7~) and their charge conjugate
modes, which were previously employed in the flavor
entanglement detection at the Belle experiment [22,33]. For
B — D*utv events, in practice, the flavor of a neutral B
meson at the decay can be identified from the configuration
of the electric charges of the decay products, i.e.,
urnma Kt (uatatK™) from BY (BY) decay.

Our feasibility study with our custom-made simulation
consists of three steps: (i) event generation, (ii) signal
selection, and (iii) background estimation, each of which is
presented in detail in the following three subsections,
respectively. These three steps as a whole sift the events
coming from the entangled state (1), and enable us to
compute S¢(Ar). The simulation results are given in the
last subsection.

B. Event generation

In the experimental condition to generate the events in
our simulation, 14 TeV of pp colliding energy was
assumed. We used PYTHIA 8.245 [35] to generate
99/qq — bb in pp collisions as well as bb pairs associated
with dijet events of light quarks. The production cross
section of BB pairs is 69 ub in gg and gg interactions,
and 319 ub in dijet events of light quarks. B® generated
in these processes is forced to decay into D* utv
(D*~ = D7z~, D° - K*z™). The cross sections of such
final states are pp — B°B° (4.5 nb), pp — B*'B*0
(21.8 nb), and pp — B°B** (19.8 nb) in gg and qgq
interactions, respectively.

As shown in Sec. IT A, assuming that the initial state is
the entangled state (1) in QM, the flavors of B°B° pair
oscillate, and then those of the remaining B mesons evolve

with the joint probability distribution (8). Then |SC(At)|
attains the maximal value 2v/2 at Af = 1.55 ps (See
Sec. II B).

Measurement of decay time of B is crucial to measure
S¢(Ar). In an ATLAS measurement [36], the resolution of
the proper decay position of B® (L5, = c1) was estimated
as 34 ym in B —» J/wKg and B° — J/wK*" decays,
which are obtained from the vertex fit of the two muons
from a J/y decay. In B - D*~u*v, u* and 7~ from D*~
decay can be used for the vertex fit to measure Lgmp, and
the resolution is expected to be similar. For that reason,

34 um is assumed as Lgmp resolution in this analysis and

accordingly that of decay time (Lffrop /c)is 0.11 ps.

In addition, the special LHC operation with the number
of pp collisions (u) around one per beam bunch crossing
(so-called low-x run) and 1 fb~! of an integrated luminosity
are assumed to suppress combinatorial backgrounds, which
are expected to be the main source of backgrounds in this
study. We describe the detail of the background estimation

in Sec. [II D.

C. Signal selection

We applied acceptance and selection cuts to the truth
level information for two neutral B mesons decaying into
D*Fu*v, by following the procedure used in measurement
to evaluate the b-hadron production cross section from the
decay modes to D**u~ X final states in pp collisions in the
ATLAS experiment with /s =7 TeV [37].

The overall selection efficiency e is given as a product
of the reconstruction efficiency €., muon trigger effi-
CIENCY €yigeer and selection efficiency €gejeciion: We set
€reco = 0.483 by following the evaluations in [37]. In our
analysis, a dimuon trigger with 4 GeV of transverse
momentum (pg) threshold is assumed, in contrast to
6 GeV in a single muon trigger used in [37]. Taking into
account the trigger performance in the ATLAS experi-
ment, we set €yjgger = 0.429.!

For the event selection, pt above, 1 GeV was required to
7~ (z7) and K* (K~) from a D° (D) decay as well as pr
above 250 MeV to 7~ (z%) from a D*~ (D**) decay. In
addition, taking into account that the invariant mass of the
decay modes from two neutral B mesons is within one
sigma interval of the distributions 0.68, we assumed
efficiency of 0.46 (=0.68%) as the invariant mass cut for
each of KTz* and D**uT.

The event selection cuts mentioned above results in
Eselection — 0.097. MUItiplying €recos Cuigger and Eselections WE
obtained ¢ = 0.02.

"The efficiency for the single muon trigger with py > 6 GeV
is evaluated as 0.819 in [37]. We assume that the efficiency drops
by a factor of 0.8 (i.e., 0.819 x 0.8 ~ 0.655) by setting the pt
threshold to 4 GeV, and then €;g0e, becomes 0.429 (x0.655%),

requiring the criteria for two muons.
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As the acceptance cut, the existence of two muons with
pr being above 4 GeV and pseudorapidity || below 2.4 are
required. In addition, the requirement on two D** mesons
with pr > 225 GeV and || < 2.5 were applied. With
these cuts, the acceptance A and cross section times
acceptance ¢ x A become 1.49 x 1073 and 369 pb, respec-
tively, for the signal events.

Summing up, the number of the signal events left after
the acceptance and selection cuts can be evaluated as
(6 xA)xexL=T74L, where L is an integrated lumi-
nosity in unit of pb~!. With this formula, by assuming
L =1 x 10’ pb~!, we obtained the expected number of the
signal events 7.4 x 103.

D. Background estimation

We have considered two possible sources of the back-
ground on our analysis. First, two neutral B mesons can be
created from different gluons and they may contribute as
irreducible background. Our simulation showed that such
background is less than 0.1% with respect to the signal and,
therefore, negligible.

The other possible background is the combinatorial
background that is caused by misreconstructed signals
with particles from different origins. In measurements of
decays to D*tu~X final states in the ATLAS experiment
[37], the background contamination is 6.8 & 0.26%, where
that of the combinatorial backgrounds is 6.2%. One of such
backgrounds is the misidentification of the two decay
modes D** from ¢ — D**X and u~ from ¢ — u~X/,
and those from b — D*Tu~X.

In our analysis, we applied the cuts, which are the same
as [37] except for the p thresholds of 4 GeV and 2.25 GeV
instead of 6 GeV and 4.5 GeV for muon and D**,
respectively. Our analysis assumes approximately one
pp interaction per beam bunch crossing, whereas that is
above two for most of the period during which data for [37]
were collected (between August 2010 and October 2010)
[38]. In addition, the selection cuts are applied to two
neutral B mesons instead of one. For those reasons, the
background contamination is expected to be smaller than
6.8% in our measurement. Only the simulated signal events
are used in our analysis, and the backgrounds are con-
servatively considered as systematic uncertainty as
described in Sec. III E.

E. Analysis results

In our simulation we examined two issues. One is
whether the locality condition is satisfied with the events
detected by the ATLAS detector. The other is how much the
Bell inequality violates, with statistical and systematic
errors considered.

Figure 2 shows the distributions of the squared proper
distance s> = —c?Ar*> + AL? of the B°B° decay events
before and after the acceptance and selection cuts. Most of

10°E & No selection

o After all selection ©
107 X

10°

10°

/1 b

104

D
102

FIG. 2. Distributions of the squared proper distances s> of the
BYB? decay events before and after the acceptance and selection
cuts. The events are spacelike when s> > 0.

the events are spacelike (s> > 0) even without any cuts, and
more than 99% events are spacelike after the cuts. The
locality condition is thus perfectly satisfied in our analysis.

The quantum correlation C9(#,,1,) can be calculated
from the experimental data by using the following formula,

ABN?, (A, B
CQ(Zl, t2) = ZA’B Qtl’lZ( ) ’ (22)
> asNi 1, (A, B)

where N2, (A, B) (A, B are 1 for B’ and —1 for B°) is the
number of the events that two neutral B mesons decay into
the flavor A at t;, and B at t,, respectively. S¢(At) in
Eq. (20) is calculated from the C9(t,, t,) distribution under
the configuration (19).

Figure 3 shows |S¢(|At])| after the acceptance and
selection cuts in the case of QM. As the statistical error,
only that of the signal is taken into account, since the
contribution from the background is negligible as discussed
in Sec. III D.

We evaluated the systematic error, by considering the
worst case where the backgrounds contaminate only one At
bin in C2(#,,1,). Since the combinatorial backgrounds are
the main source and should contribute equally to B and B°,
it is assumed that the same fraction (50%) of the back-
grounds contaminates the same (N2, (A, B) for B°B° or
B°B%) and opposite flavors of two neutral B mesons
(N2, (A, B) for B°B" or B°B®). The amount of the back-
grounds is assumed as 0.26% which is assigned as the
systematic error on the background contamination in [37].
This systematic error is the largest contribution to the
shift from |SC(|At|)| in this treatment. In addition, the
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FIG. 3. |S9(]At|)| after the acceptance and selection cuts in the

case of QM with the theory line. The dotted line at |S(|Af])| = 2
shows the upper bound of the Bell inequality.

systematic error originated from Af resolution, 0.16

(0.11 x \/f) ps, is taken into account.

The significant excess from the upper bound
of the Bell inequality (13) is obtained with [S¢(|At])| =
2.89 £ 0.17(stat.) £ (syst.), where At = 1.5+0.25 ps.
In the systematic error, the contribution from the back-
grounds is (—0.11,40) and that from Az resolution is
40.06. This result demonstrates that the flavor entangle-
ment detection using the Bell inequality—or the Bell test
with the flavor entanglement—is feasible in the ATLAS
experiment.

IV. CONCLUSION AND DISCUSSIONS

The Bell inequality is a principal touchstone of testing
the local realism posited by Einstein at the time of the
formation of quantum theory. As the history shows,
violations of the Bell inequality have been found time
and time again, which reject the local realism with the
measured systems of photons, electrons, or nucleons at low
energies. Extending to systems with higher energies will be
important for establishing the nonlocal nature universally,
and here we present a simulation study on the feasibility of
the Bell test by means of flavor entanglement of a pair of B
mesons in the ATLAS experiment at CERN. Our simu-
lation resulted in the affirmative; we will find the maximal
violation of the Bell inequality at the time difference At ~
1.5 ps in the decays of the two entangled B mesons,
rejecting yet again the local realism at the highest ever
energy scale, 14 TeV.

This will be the first case of violation of the Bell
inequality in the community of particle physics experi-
ments, given that the earlier analysis with the Belle

experiment [21] was found to be inconclusive, due pri-
marily to the lack of selection process of spacelike events
and that of the independent identification of the decay
times. The former leads to the locality loophole, whereas
the latter results in the increase of the upper bound of the
Bell inequality [23]. Furthermore, the experiment [39]
using the neutral K meson pairs are not the Bell test,
because it measures not S¢(Ar), but the correlation
function C2(1,,1,) where |t; — t,| = At.

In contrast, the ATLAS experiment admits independent
measurements of the decay times, allowing for the selection
process to completely close the locality loophole in the Bell
test. The remaining issue, from the viewpoint of the
standard Bell test, is the efficiency loophole, and at the
moment we need to rely on the fair sampling assumption
for it. In this respect, improvement of detection efficiency is
a desideratum, either through increase in the available
decay modes or enhancement of the signal selection
processing.

As a technical remark, in this simulation study, we have
assumed pr above 4 GeV, while the minimum pr threshold
of the dimuon trigger used in normal physics data taking in
the ATLAS Run 2 operation was 13 GeV. Thus, the
feasibility of reducing the threshold to ~4 GeV in low-u
operation has to be studied further in the experiment. Even
in the case that pt threshold has to be set higher, it would
not be an issue for the measurement, if we take the data
more than 1 fb~!, which was assumed in Sec. III.

Despite these remaining issues, it seems almost certain
that the ATLAS experiment offers a promising venue for
the Bell test in the high-energy domains with entanglement
of much heavier particles, and this will open up a new arena
for experimental studies of quantum foundations hitherto
unexplored.
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APPENDIX: BELL INEQUALITY WITH
STOCHASTIC PARAMETERS WITHOUT
FREE WILL

Here, we outline the argument that can still lead to the
Bell inequality formally without using the analogy between
the parameters #;, ¢, and a, b (for details, see [23]).

Assume that ¢, 1, are the parameters characterizing the
state of the B-meson pair and independent of the hidden
variables A but not determined by the free will of the
experimenter. For the sake of distinction and also for our
convenience, below we employ the more standard notation
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P(A, B|t;,t,) for the conditional probability distribution
P, .,(A,B) used in the text.

First, we note that, in the presence of the hidden variables
A, the most basic element in our stochastic theory will be
furnished by the conditional probability distribution
P(A, B|ty, 15, 4) together with P(4|t;, t;). When combined,
they provide the measurable distribution P(A, B|t,, t,) by

P(A, Bt 1)) = /P(A’B|f1,f2,/1)P(/1fhtz)dfl- (A1)

To see this, one just recalls the multiplication law of the
probability,

P(A, Bty 1), A)P(4|t), 15)

P(A,B,t),t5,A) P(t;,15,4)
P(t), 15, 4) ‘ P(t). 1)

P(A,B, 1,1, 1)

o P(h)

= P(A, B, A|ty, 1),

(A2)

to find

/P(A,B|[1,lz,/1)P(/1tl,tz)dj. = /P(A,B,Mtl,l‘z)d/l

:P(A,B|l1,t2), (A3)
which shows (Al).

Next, the locality assumption leads to the following
factorization

P(A,B|t1, tz,/’{) - P(A|t1, tz,ﬂ)P(Bltl, tz,/’{), (A4)

meaning that the flavor of one of the two mesons at f,
makes no influence on that of the other at ¢, and vice versa.
We are now required to impose stronger assumptions both
on the independence of the decay times and locality,
respectively. One of them is that the decay times ?, 7,
have no correlation with the hidden variables

P(A|ty,1;) = P(2). (AS)
In other words, the decay times are statistically independent
of the hidden variables. This condition (A5) is called the
homogeneity condition in [23]. For the locality, we suppose
that the decay time of one meson does not affect the flavor
of the other (the independence condition in [23])

P(Alt), 15, 4) = P(A|t1,A),
P(Blt|,t,,4) = P(B|ty, ). (A06)

Then, we are allowed to proceed formally in a com-
pletely analogous manner as we did in the argument of the
Bell inequality. In fact, we observe that the conditional
correlation function reads

C(t;.ty) = Y ABP(A.Blt;.1y)
A,B

_ / Aty )B(t, WP()di, (A7)
where
Ay, 2) = P(A = 1]1,,2) = P(A = —1]1,, 7).
B(ty,2) = P(B = 1]ty,2) = P(B = —1|1p,2).  (A8)

From this we see immediately that the conditional corre-
lation function C(#y, t,) defined in (A7) formally takes the
same form as C(a, b) in (11) under the identification of #,,
t, with a, b. Consequently, we are able to arrive at the Bell
inequality (13), at least formally, without using free will in
the choice of the parameters. This can be used to argue
similarly that the violation of the formal Bell inequality
implies the incompatibility of our assumptions with QM.
Obviously, the price we paid for this derivation lies in the
additional assumptions required, weakening our statement
considerably.
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