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A pointlike neutron in an external electromagnetic field experiences a shift in energy that mimicks the
effect of an actual structural deformation of an extended neutron, i.e., a proper polarizability. In order to be
able to differentiate between the former and the latter, a Foldy-Wouthuysen transformation is constructed
which yields the energy shift of a pointlike neutron quadratic in the external field in a derivative expansion,
generalizing a long-known result for the dipole electric polarizability due to Foldy. The ten leading Foldy
contributions to the energy are determined for a zero-momentum neutron. In addition, eliminating the
momentum operator in favor of the velocity operator, analogous results are derived for a zero-velocity
neutron. In this case, operator ordering ambiguities are encountered that permit only a determination of
eight of the ten Foldy terms.
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I. INTRODUCTION

Electromagnetic fields polarize nucleons by coupling to
the electric charges of their quark constituents. The degree to
which nucleons are susceptible to these polarization effects
constitutes a basic question about nucleon structure. For
sufficiently weak fields, such effects are quantified through
polarizabilities, which characterize the linear response of the
nucleon to the electromagnetic field; in terms of an effective
Hamiltonian, polarizabilities are coefficients of terms quad-
ratic in the electromagnetic field.
In addition, the fields can be classified according to their

space-time variation, starting with the most basic case of
constant electric and magnetic fields that induce the so-
called dipole polarizabilities; generalizing to space-time
dependent fields, the effective Hamiltonian can then be
organized into a derivative expansion. The leading polar-
izability-related terms of the effective Hamiltonian in the

expansion in space-time derivatives of the electromagnetic
field read1 [1]

Heff ¼ −
1

2

�
αEE2þ βMB2þ γE1σ · ðE× _EÞþ γM1σ · ðB× _BÞ

− 2γE2EijσiBj þ 2γM2BijσiEjþ αEν _E
2þ βMν

_B2

þ 1

6
αE2E2

ij þ
1

6
βM2B2

ijþ � � �
�

ð1Þ

with the quadrupole strengths of the electric and magnetic
fields,

Eij ¼
1

2
ð∇iEj þ∇jEiÞ; Bij ¼

1

2
ð∇iBj þ∇jBiÞ: ð2Þ

Here, αE and βM are the aforementioned dipole electric
and magnetic polarizabilities; further, γE1, γM1, γE2, and
γM2 are the spin polarizabilities, αEν and βMν are the
dispersion polarizabilities, and αE2 and βM2 are the quadru-
pole polarizabilities.
It should be noted that casting the response of nucleons to

external fields in the local, truncated form (1) constitutes a
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1At variance with [1], the present work employs Gaussian
units.
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significant assumption. Ingeneral, theenergyof thenucleon in
the presence of external fields is a nonlocal functional
incorporating information about space-time correlations
between the nucleon wave function and the external field.
Adoptingtheform(1)implies that thenucleonwavefunctionis
sufficiently localized such that the nucleon’s energy only
dependson the local values of the electromagnetic field and its
first derivatives; in (1), those quantities are Taylor coefficients
of an expansion of the external field around the position of the
nucleon, andas sucharenot themselves functionsof spaceand
timeanymore, for agivennucleonposition.On theotherhand,
the assumption of a localized nucleon state quantummechan-
ically clashes with the notion of studying the nucleon at rest,
which is generically associatedwith a spatially extendedwave
function.Theconsequent limitationsontheapplicabilityof the
form (1) will constitute an important aspect of the present
study; extended comments follow further below.
As laid out in detail in [1], the ten polarizabilities in (1)

can be connected to the amplitudes for nucleon Compton
scattering in the low-energy limit. Continued progress in the
phenomenological extraction of electromagnetic polarizabil-
ities, which more recently has begun to encompass not only
the dipole polarizabilities, but also spin polarizabilities, has
been reported in [2–23]. Sensitivity to orders beyond the
ones displayed in (1) was considered in [7,14]. On the other
hand, efforts have been undertaken to evaluate polarizabil-
ities in lattice QCD, by computing hadron mass shifts in the
presence of external electromagnetic fields [24–45]. Chiral
effective theory serves to connect such lattice data, which are
obtained at heavier-than-physical pion masses on finite
volumes, to the physical limit [4,44,46–48]. In the case of
magnetic fields, care must be taken to disentangle the mass
shift from the Landau level structure [40–45,49], and effects
beyond linear response may contaminate the analysis
[50,51]. The subtleties involved in matching the background
field calculations performed in lattice QCD to the effective
field theory description of scattering amplitudes were
examined in detail in [52,53].
The interpretation of hadron mass shifts in terms of

polarizabilities is not bereft of subtlety. Already before the
advent of the current understanding of nucleon structure in
terms of underlying quark and gluon degrees of freedom, it
was noted by Foldy [54] that even a pointlike neutron in the
presence of a constant electric field experiences an energy
shift quadratic in the electric field. The argument can be
made quite succinctly: Writing the Dirac equation for a
neutral point particle with an (entirely anomalous) mag-
netic moment μ as

�
iγμ∂μ −

μ

2
σμνFμν −m

�
ψ ¼ 0; ð3Þ

the corresponding Dirac Hamiltonian reads [cf. Eq. (26)
below for the Dirac structure conventions employed in this
work]

H ¼ α · pþ iμγ · E − μΠ · Bþ βm: ð4Þ

If the external field is purely electric and constant,
½H;p� ¼ 0; then, the energy of a zero-momentum neutron,
Wp¼0, can be extracted by noting that, for p ¼ 0, one has
H2 ¼ m2 þ μ2E2, and hence

Wp¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ μ2E2

q
¼ mþ μ2E2

2m
þ � � � : ð5Þ

The energy shift quadratic in the electric field E mimics the
effect of a polarizability, cf. (1). In effect, αFoldyE ¼ −μ2=m.
However, it is not due to an actual structural deformation of
the neutron; the neutron was treated as a point particle (at
most, one may argue that the anomalous magnetic moment μ
is chiefly a consequence of the neutron’s substructure). It
may therefore be useful to separate this effect from the effect
due to an actual polarization of the neutron [31,55], i.e.,
subtract the term proportional to E2 on the right-hand side of
(5) from the mass shift of the neutron obtained in a constant
external electric field, in order to extract the dipole electric
polarizability proper. Correspondingly, standard phenom-
enological analyses apportion this contribution to the Born,
nonstructure parts of the amplitudes describing nucleon
Compton scattering [8,48].
A constant magnetic field B, for which solutions of the

Dirac equation for particles with and without electric
charge and with anomalous magnetic moment are dis-
cussed in detail in [56], cf. also [57], does not induce a
Foldy-type term analogous to the electric one in (5).
Solutions of the Dirac equation for neutral particles in
more general forms of magnetic field are discussed in [58],
without, however, allowing for a direct identification of
Foldy-type coefficients.
Motivated by the advent of experimental data allowing

one to extract spin polarizabilities [12,20–22], the purpose
of the present work is to expand the treatment of Foldy-type
effects for a neutron from the simple dipole polarizability
cases highlighted above to all ten polarizabilities defined in
Eq. (1). This is achieved by way of constructing an
appropriate Foldy-Wouthuysen transformation [59]. An
additional aspect that will be taken into account is the
one stressed in [55,60], namely, that in the presence of
electromagnetic fields, zero momentum and zero velocity
are not synonymous. The Foldy contributions to the energy
of a neutron in both types of states will be considered. In
the case of a zero-velocity neutron, obstructions will be
encountered that ultimately only allow one to determine
eight of the ten Foldy-type coefficients. These obstructions
appear to be symptoms of the general limitation of the
definition (1) already noted further above, namely, that the
form (1) implies a localization of the neutron wave function
that clashes with the notion of studying the neutron at rest,
be it in the sense of zero momentum or zero velocity.

SAENZ, ENGELHARDT, and HÖLLWIESER PHYS. REV. D 104, 056002 (2021)

056002-2



Further expanding upon this latter point, in extracting a
local result of the form (1) from an initial description of the
neutron in terms of a Dirac Hamiltonian, cf. (4), with
external fields depending on space and time, one must take
care when invoking the localization assumption. At first
sight, a neutron state can certainly become localized despite
its momentum being limited to negligible magnitudes as
long as it is sufficiently heavy. As one takes the local limit,
corrections due to the residual extent of the neutron wave
function will vanish as an inverse power of the neutron
mass. However, also the Foldy terms at issue here vanish as
an inverse power of the neutron mass. Therefore, it is
necessary to compare the behavior of the two effects
carefully as the local limit is taken. This is explored in
Sec. III B and, indeed, the two effects are of the same order.
Therefore, the aforementioned corrections due to the
residual extent of the neutron wave function must be taken
into account in any comprehensive analysis of a concrete
physical setting, such as, say, a lattice QCD calculation of
the neutron energy (along with, of course, the many other
systematic effects arising in such a setting). Nevertheless, it
should be emphasized that these corrections depend on
further details of the environment in which the neutron is
placed, such as boundary conditions, and thus do not
constitute intrinsic electromagnetic properties of the neu-
tron on the same footing as the Foldy contributions.
As indicated by this preliminary discussion, the empha-

sis of the present study lies as much on ascertaining the
boundaries of a description in terms of a local effective
Hamiltonian of the form (1) as it does on extracting
concrete results for the Foldy contributions associated with
the polarizabilities in (1) to the extent possible. These
limitations will become apparent in more than one aspect,
and to exhibit them is as much a goal of this investigation as
is the determination of those Foldy-type effects that are
accessible in a such a framework.

II. FOLDY-WOUTHUYSEN TRANSFORMATION

A. General form of the transformation

The Foldy-Wouthuysen transformation [59,61] serves to
decouple the dynamics of the particle and antiparticle
components of a Dirac spinor, at least to a given order
in an expansion scheme. Expansion in the inverse particle
mass, 1=m, yields the relativistic corrections to the non-
relativistic Hamiltonian; here, the expansion parameters
will instead be the external electromagnetic field strengths
along with their derivatives. To achieve this expansion, the
following treatment will largely follow the scheme laid out
in [61]. Consider a Hamiltonian of the form

H ¼ βmþ E þO; ð6Þ

with even and odd operators characterized by βE ¼ Eβ,
βO ¼ −Oβ, inducing an equation of motion

�
−i

∂
∂tþH

�
ψ ¼ 0: ð7Þ

The goal is to transform this (for the purpose of mitigating
the effects of O) as

U†
�
−i

∂
∂tþH

�
Uψ 0 ¼ 0; ð8Þ

where ψ 0 ¼ U†ψ . The new Hamiltonian can now be
extracted by observing that

�
−i

∂
∂tþ U†

�
−i

∂U
∂t

�
þ U†HU

�
ψ 0 ¼ 0; ð9Þ

i.e., one has the new Hamiltonian

H0 ¼ U†
�
−i

∂U
∂t

�
þ U†ðβmþOÞU þU†EU: ð10Þ

In [61], the following transformation is constructed:

U ¼ ϵþm − βOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵðϵþmÞp ; ð11Þ

where ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þO2

p
. Note that one is largely free in the

ordering of the different parts of this operator; merely the
relative ordering of the β and O factors in the numerator
matters. Otherwise, the different parts commute. Further
more, ϵ is positive definite, so there are no problems defining
square roots and inverses. One can easily check unitarity,
U†U ¼ 1, and also

U†ðβmþOÞU ¼ βϵ ¼ βmþ βðϵ −mÞ: ð12Þ

Hence, one has succeeded in eliminating the odd term O in
the Hamiltonian in favor of the even term βðϵ −mÞ; the new
Hamiltonian now reads

H0 ¼ βmþ βðϵ −mÞ þ U†
�
−i

∂U
∂t

�
þU†EU: ð13Þ

However, the other two terms in H0 may reintroduce new
odd terms, i.e., in general, this transformation is not exact.
Nonetheless, ifO and E are in some sense small, i.e., if one is
content with a power expansion, the induced new odd terms
may be of higher order, and it will be sufficient to iterate the
transformation a finite number of times, until the remaining
odd terms are of sufficiently high order to be dropped. For
present purposes, it will be necessary to keep only terms
of up to second order in E, or second order in ∂=∂t, or
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altogether fourth order in the objects E, O, ∂=∂t. This
specification will be justified below as more concrete
expressions become available from which one can read
off the required order. Also the second derivative Ö can be
dropped. Note that, here and in the following, the dot denotes
the partial derivative ∂=∂t. Expanding

ϵ ¼ m

�
1þ 1

2

O2

m2
−
1

8

O4

m4
þ � � �

�
ð14Þ

U¼1−
1

2m
βO−

1

8m2
O2þ 3

16m3
βO3þ 11

128m4
O4þ���

ð15Þ

U†
�
−i

∂U
∂t

�
¼ i

2m
β _Oþ i

8m2
½ _O;O�

−
i

16m3
βð3O2 _Oþ 2O _OOþ 3 _OO2Þ þ � � � ð16Þ

U†EU ¼ E þ 1

2m
β½O; E� þ 1

8m2
½½O; E�;O�

þ 1

16m3
βð3½E;O3� þ ½O;OEO�Þ þ � � � ð17Þ

and classifying the terms with respect to their even/odd
character, the new Hamiltonian is

H0 ¼ βmþ E0 þO0 ð18Þ

with

E0 ¼ 1

2m
βO2 −

1

8m3
βO4 þ i

8m2
½ _O;O� þ E

þ 1

8m2
½½O; E�;O� ð19Þ

O0 ¼ i
2m

β _O−
i

16m3
βð3O2 _Oþ2O _OOþ3 _OO2Þ

þ 1

2m
β½O;E�þ 1

16m3
βð3½E;O3�þ½O;OEO�Þ: ð20Þ

The odd termO0 now starts at one order higher in E,O, ∂=∂t
than the original O. This is not yet sufficient to preclude
additional contributions to the even term up to the desired
order upon further iteration. Repeating the procedure, one
has the new Hamiltonian

H00 ¼ βmþ E00 þO00 ð21Þ

with

E00 ¼ 1

2m
βO02−

1

8m3
βO04þ i

8m2
½ _O0;O0�þE0

þ 1

8m2
½½O0;E0�;O0�

¼ 1

2m
βO2−

1

8m3
βO4þ i

8m2
½ _O;O�þEþ 1

8m2
½½O;E�;O�

þ 1

8m3
β _O2−

1

8m3
β½O;E�2− i

8m3
β _O½O;E�

−
i

8m3
β½O;E� _O ð22Þ

O00 ¼ i
2m

β _O0−
i

16m3
βð3O02 _O0 þ2O0 _O0O0 þ3 _O0O02Þ

þ 1

2m
β½O0;E0�þ 1

16m3
βð3½E0;O03�þ½O0;O0E0O0�Þ

¼ i
2m2

½ _O;E�þ i
4m2

½O; _E�− i
8m3

βðO2 _Oþ _OO2Þ

−
1

4m2
½E; ½O;E��− 1

8m3
βðO2½O;E�þ½O;E�O2Þ: ð23Þ

The odd termO00 now starts at third order in E,O, ∂=∂t. This
means that subsequent iterations will only contribute new
terms to the even part that are of too high order to be
retained, while successively increasing the order of the odd
part until it can be completely dropped. Thus, to the desired
order, the final Foldy-Wouthuysen Hamiltonian has been
obtained:

HFW ¼ βmþ E00

¼ βmþ 1

2m
βO2 −

1

8m3
βO4 þ i

8m2
½ _O;O� þ E

þ 1

8m2
½½O; E�;O� þ 1

8m3
β _O2 −

1

8m3
β½O; E�2

−
i

8m3
βð _O½O; E� þ ½O; E� _OÞ: ð24Þ

B. Evaluation in terms of background fields and
momenta

The Dirac Hamiltonian for the neutron with anomalous
magnetic moment μ is of the form (6), with, cf. (4),

O ¼ α · pþ iμγ · E; E ¼ −μΠ · B: ð25Þ

Here, the position representation is adopted, where
p ¼ −i∇, and the Dirac representation is used, in which

β ¼
�
1 0

0 −1

�
; αi ¼

�
0 σi

σi 0

�
; γi ¼ βαi;

Πi ¼ βσi; γ5 ¼
�
0 1

1 0

�
ð26Þ
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with σi denoting the Pauli matrices. The goal is to present
the Foldy-Wouthuysen Hamiltonian HFW in a form
in which:

(i) All momentum operators p have been commuted
through to the right.

(ii) The Dirac structures have been simplified to a
manifestly block-diagonal form, upon which HFW
can be restricted to the upper components, leaving at
most Pauli matrix structures.

(iii) Terms higher than quadratic in the external fields E,
B have been dropped.

(iv) Terms containing higher than first derivatives of
external fields have been dropped.

(v) Terms of higher than altogether fourth order in the
objects E, B, ∂=∂t, ∇, p have been dropped (where
∂=∂t,∇ are always acting only on a specific external
field, whereas p stands as an operator on its own).

(vi) At most one power of p is kept in terms already
quadratic in the external fields E, B.

(vii) At most three powers of p are kept in terms linear in
the external fields E, B.

Again, the reasoning leading to this specification will
become fully apparent below as the treatment unfolds;
of course, the third and fourth points are already clear from

the stated objectives of the calculation, i.e., expansion to
second order in the external fields, up to first derivatives of
those fields. Note that this specification justifies the
truncation imposed in the previous section, as stated after
Eq. (13): Since E is proportional to B, only up to second
order in E is required; since only one derivative each of at
most two external fields is allowed, only up to second order
in ∂=∂t is required; and since both E andO each supply one
order in the objects E, B, ∇, p, only up to fourth order in E,
O, ∂=∂t is required.
Treating the terms appearing in (24) in turn, one has

O2 ¼ −μ∇ · E − iμσ · ð∇ × EÞ þ μ2E2

− 2μσ · ðE × pÞ þ p2; ð27Þ

where, having restricted to the upper components, one can
set β ¼ 1. Also, here and in the following, the derivative ∇
only acts on the field immediately to its right, whereas the
momentum operator p ¼ −i∇ acts on all objects to its
right. The term O4, which is the most complex one
appearing in HFW, can be obtained by squaring (27),

O4 ¼ −μ2
1

2
ð∇iEj þ∇jEiÞ2 − μ2ð∇iEj −∇jEiÞ2 þ μ2ð∇ · EÞ2 þ 2μ2iσ · ð∇ × EÞð∇ · EÞ þ 4μ2σjEi∇jElϵilmpm

− 4μ2ðσ · EÞð∇ × EÞ · p − 12μ2iEi∇jEipj þ 4μ2iEi∇iEjpj þ 4μ2ð∇ · EÞσ · ðE × pÞ þ 4μ2ið∇ · EÞE · p

þ 4μiσkϵkij∇lEiplpj − 2μiσ · ð∇ × EÞp2 − 2μð∇ · EÞp2 − 4μσ · ðE × pÞp2 þ p4: ð28Þ

Arriving at this result requires only standard, if lengthy, Pauli
matrix and ϵ-symbol algebra, apart, perhaps, from the not
immediately apparent identity ð∇ × EÞjð∇iEj −∇jEiÞ ¼ 0.
One furthermore has

½ _O;O� ¼ −2μ2iσ · ðE × _EÞ þ 2μi _E · p ð29Þ

_O2 ¼ μ2 _E2: ð30Þ

Turning to the terms containing E, apart from the original
even operator

E ¼ −μσ · B ð31Þ

all other terms involve the intermediate odd operator

½O;E�¼μβγ5σ ·ð∇×BÞþ2μβγ5B ·pþ2μ2iγ5E ·B; ð32Þ

where Maxwell’s equations for the external fields have been
used to drop ∇ · B ¼ 0. From this, one obtains

½½O; E�;O� ¼ −μ2Ejσið3ð∇iBj −∇jBiÞ þ ð∇iBj þ∇jBiÞÞ
− 2μ2Biσjð∇iEj þ∇jEiÞ þ 2μð∇ × BÞ · p
− 2μiσj∇jBipi þ 4μσjBipjpi ð33Þ

½O; E�2 ¼ −μ2ð∇ × BÞ2 þ 4μ2iBi∇iBjpj

− 4μ2σ · ð∇ × BÞB · p ð34Þ

_O½O; E� þ ½O; E� _O ¼ −2μ2ið∇ × BÞ · _E − 4μ2iðσ · _EÞB · p:

ð35Þ
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Inserting (27)–(35) into (24) yields the Foldy-Wouthuysen Hamiltonian expressed in terms of background fields and
momenta. For further use, it is convenient to gather the aggregate expression,2

HFW ¼ m − μσ · Bþ 1

2m
ð−μ∇ · E − iμσ · ð∇ × EÞ þ μ2E2 − 2μσ · ðE × pÞ þ p2Þ þ 1

8m3
μ2 _E2

−
1

8m3

�
−μ2

1

2
ð∇iEj þ∇jEiÞ2 − μ2ð∇iEj −∇jEiÞ2 þ μ2ð∇ · EÞ2 þ 2μ2iσ · ð∇ × EÞð∇ · EÞ

þ 4μ2σjEi∇jElϵilmpm − 4μ2ðσ · EÞð∇ × EÞ · p − 12μ2iEi∇jEipj þ 4μ2iEi∇iEjpj

þ 4μ2ð∇ · EÞσ · ðE × pÞ þ 4μ2ið∇ · EÞE · pþ 4μiσkϵkij∇lEiplpj − 2μiσ · ð∇ × EÞp2

−2μð∇ · EÞp2 − 4μσ · ðE × pÞp2 þ p4

�

þ 1

8m2
ð2μ2σ · ðE × _EÞ − 2μ _E · pÞ − 1

8m3
ð2μ2ð∇ × BÞ · _Eþ 4μ2ðσ · _EÞB · pÞ

þ 1

8m2
ð−μ2Ejσið3ð∇iBj −∇jBiÞ þ ð∇iBj þ∇jBiÞÞ − 2μ2Biσjð∇iEj þ∇jEiÞ

þ2μð∇ × BÞ · p − 2μiσj∇jBipi þ 4μσjBipjpiÞ

−
1

8m3
ð−μ2ð∇ × BÞ2 þ 4μ2iBi∇iBjpj − 4μ2σ · ð∇ × BÞB · pÞ: ð36Þ

III. ENERGY OF ZERO-MOMENTUM NEUTRON
STATES

A. Zero momentum and local limit

In the Foldy-Wouthuysen Hamiltonian (36), the electric
and magnetic fields are still functions of space and time. As
already indicated in the preliminary discussion at the end of
Sec. I, one must take care in reducing this to a result of the
form (1) for the energy of a zero-momentum neutron, in
which the fields and their derivatives are taken to be local
constants at the position of a localized neutron state. For any
finite neutron mass, the neutron wave function must feature a
residual extent to allow the neutron momentum to be
bounded to negligible magnitudes. This residual extent
probes the external field in the neighborhood of the neutron,
leading to corrections to the neutron energy compared to the
one obtained by simply replacing all fields in (36) directly by
their local values. It should be emphasized that these
corrections depend on further details of the environment
in which one places the neutron, which influence its spatial
wave function. They are therefore not purely intrinsic
properties of the neutron that could be discussed in full
generality; instead, they require a model for the environment.

Thus, in order to exemplify these effects, in the detailed
evaluation in Sec. III B, the neutron will be placed in a box
with periodic boundary conditions, with the goal of ulti-
mately expressing the neutron energy in terms of the values
of the external fields at the center of the box. This choice of
model is relevant, e.g., for the analysis of lattice QCD
calculations of neutron energies; furthermore, it allows one
to maintain the notion of an exact zero-momentum state, i.e.,
one can simply set p ¼ 0 when applying (36) to such a state.
The p ¼ 0 state moreover is symmetric about the center of
the box, such that, placing the origin at the center of the box,
one has hp ¼ 0jxijp ¼ 0i ¼ 0 in any direction i; this
reduces the number of corrections that must be considered.
In fact, only two terms in (36) require closer scrutiny to the
order being pursued here, namely, the terms −μσ · B and
1
2m μ

2E2. Expanding the spatial dependence of the fields to
linear order around the origin, one has

−μσ · Bðx; tÞ ¼ −μσ · B − μσið∇jBiÞxj þ � � � ð37Þ

μ2

2m
ðEðx;tÞÞ2¼ μ2

2m
ðE2þð∇jEi∇kEiÞxjxkÞþ���; ð38Þ

where fields without space-time arguments are evaluated at
the origin (the temporal dependence will be commented
upon presently). The space-dependent terms on the right-
hand sides of (37) and (38) spoil the eigenstate character of
the p ¼ 0 state. Their effects can, however, be taken into
account in perturbation theory around the p ¼ 0 state. This
will be pursued in Sec. III B.

2The difference in sign between the term − 1
2m μ∇ · E in (36)

and the corresponding term in [55] should be noted. This
difference can be traced back to a corresponding difference in
sign of the electric field term in the original Dirac Hamiltonian (4)
compared to the one used in [55]. To compare expressions
between here and [55], one must change the sign of the magnetic
moment μ; Foldy contributions to polarizabilities, which are
proportional to μ2, are not affected.
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In addition to their spatial dependence, the external fields
also are time dependent. The time dependence must be
treated on a different footing than the spatial dependence: As
far as the latter is concerned, there is a direct tension between
the localization assumption and using a p ¼ 0 state, with the
uncertainty relation limiting the accuracy to which both of
these specifications can be maintained. Consequently, taking
the spatial dependences in (37) and (38) into account
perturbatively cannot be avoided. On the other hand, there
is no analogous direct clash in the temporal direction; if the
temporal dependence of the external fields is sufficiently
slow, an adiabatic treatment becomes applicable, in which
transitions to excited states are absent and the fields can

indeed simply be evaluated at the expansion point t ¼ 0. In
fact, on the contrary, such an adiabatic treatment is the
furthest one can go while remaining consistent with the
notion of a state with a well-defined energy embodied in the
initial form (1) under consideration. Once transitions to
excited states are induced via time-dependent perturbation
theory, the form (1) loses its meaning.
In summary, the temporal evolution will be assumed to

be adiabatic; the evaluation of the spatial perturbative
corrections is deferred to the next section. Before taking
these corrections into account, one obtains the neutron
energy in a zero-momentum state by simply setting p ¼ 0
in the Foldy-Wouthuysen Hamiltonian (36),

Wp¼0
FW ¼ m − μσ · B −

μ

2m
iσ · ð∇ × EÞ − μ

2m
∇ · Eþ μ2

2m
E2 þ

�
μ2

4m2
σ · ðE × _EÞ − 3μ2

8m2
σ · ðE × ð∇ × BÞÞ

�

−
μ2

8m2
σiEjð∇iBj þ∇jBiÞ −

μ2

4m2
σiBjð∇iEj þ∇jEiÞ þ

μ2

16m3
ð∇iEj þ∇jEiÞ2 þ

μ2

4m3
ð∇ × EÞ2

þ
�
μ2

8m3
_E2 þ μ2

8m3
ð∇ × BÞ2 − μ2

4m3
ð∇ × BÞ · _E

�
−

μ2

8m3
ð∇ · EÞ2 − μ2

4m3
iσ · ð∇ × EÞð∇ · EÞ: ð39Þ

It is clear that the specification of terms to be kept given at
the beginning of Sec. II B is sufficient to guarantee that (39)
is complete to the desired order, i.e., up to second order in
the external fields, with up to first derivatives of those
fields: All terms up to second order in the fields were kept;
in the p ¼ 0 case, only terms containing no p operators are
relevant; from among these, only terms up to altogether
fourth order in E, B, ∂=∂t, ∇ are needed, since each of the
at most two external fields can absorb at most one
derivative.
In the form (39), it has not yet been assumed that electric

charges or currents are absent; it includes, e.g., the ∇ · E
structure that embodies the influence of an external electric
charge density which enters effects such as the Darwin
term. If one specializes to the vacuum, the terms grouped in
square brackets can be combined using the vacuum
Maxwell equations for the external fields,

∇ ·E¼0; ∇ ·B¼0; ∇×E¼− _B; ∇×B¼ _E ð40Þ
yielding

Wp¼0
FW ¼ m − μσ · Bþ μ

2m
iσ · _Bþ μ2

2m
E2

−
μ2

8m2
σ · ðE × _EÞ − μ2

8m2
σiEjð∇iBj þ∇jBiÞ

−
μ2

4m2
σiBjð∇iEj þ∇jEiÞ

þ μ2

16m3
ð∇iEj þ∇jEiÞ2 þ

μ2

4m3
_B2: ð41Þ

The terms quadratic in the external fields can now be
directly compared to the form of the effective Hamiltonian
defining the corresponding polarizabilities. They constitute
the Foldy contributions that have to be separated out in the
effective Hamiltonian to isolate the proper polarizabilities
that arise as a consequence of the extended, composite
character of the neutron. These results generalize the well-
known Foldy term that is associated specifically with the E2

structure.

B. Perturbative corrections to the local limit

It remains to evaluate the perturbative corrections to (39)
or (41) due to the spatially dependent terms on the right-hand
sides of (37) and (38). As motivated in the preceding section,
this will be accomplished in a model setting where the
neutron is placed in a box ½−L=2; L=2�3 with periodic
boundary conditions. The unperturbed Hamiltonian is taken
to be the term H0 ¼ p2=ð2mÞ from (36). The unperturbed
spatial wave functions are

ψ0
n⃗ðx⃗Þ ¼

1

L3=2 e
i2πn⃗·x⃗=L ð42Þ

with integer ni and energies W0
n⃗ ¼ 2π2ðn⃗Þ2=ðmL2Þ. For

the following, it is not necessary to specify a spin
quantization axis, since the perturbations are proportional
to the unit matrix in the p ¼ 0 subspace; one could, e.g.,
choose to diagonalize (39) to completely decouple the
entire Hamiltonian in that subspace. Starting with the
electric field term from (38),
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HE ¼ μ2

2m
ð∇jEi∇kEiÞxjxk; ð43Þ

first-order perturbation theory is sufficient, yielding

WE;1¼hp¼0jHEjp¼0i¼ðmLÞ2 μ2

24m3
∇jEi∇jEi: ð44Þ

Note that the strength of this contribution relative to
analogous terms in (39) or (41) is controlled by the
parameter mL, making explicit the dependence of these
perturbative corrections on model assumptions about the
environment. Additional remarks on this point follow
further below. The magnetic field term from (37),

HB ¼ −μσið∇jBiÞxj; ð45Þ

on the other hand requires second-order perturbation
theory (it does not contribute at first order; indeed,
HBjp¼0 ¼ 0). Summed over a complete set of intermediate
spins S, the moduli squared of the transition matrix
elements are

X
S

jhn⃗;SjHBjp¼0ij2¼
X
j

μ2ð∇jBi∇jBiÞ
�

L
2πnj

�
2

δn⃗;nje⃗j

ð46Þ

and hence, the resulting perturbative correction is

WB;2 ¼
X
n⃗≠0;S

jhn⃗; SjHBjp ¼ 0ij2
W0

0 −W0
n⃗

¼ −ðmLÞ4 μ2

360m3
∇jBi∇jBi ð47Þ

with a strength again controlled by the parameter mL.
Of course, the formal limit mL → 0 in which the

correction terms (44) and (47) vanish is not compatible
with the notion of a well-defined one-particle neutron state.
A natural lower bound is provided by equating L with the
Compton wavelength, i.e., mL ¼ 2π. On the other hand,
the derivative expansion employed here is best applicable
when keeping L as small as possible. In typical lattice QCD
calculations, mL ranges between values of about 10–30; in
this range, the perturbative effects (44) and (47) are
considerably stronger than the analogous terms in (39)
or (41). This also remains the case if one replaces the
nonrelativistic unperturbed energies in (47) with their
relativistic counterparts; at mL ¼ 2π, the result (47) is
then enhanced by a factor 1.25, and the factor approaches
unity with rising mL. Of course, in any complete analysis
of, e.g., a lattice QCD calculation, these perturbative
corrections constitute only one among many systematic
effects that must be accounted for in order to extract
physical results.

IV. NEUTRON AT ZERO VELOCITY

A. Velocity operator

Since, in a gauge theory, zero momentum is not
synonymous with zero velocity, it is interesting to consider
separately the energy of a neutron at rest in the sense of
being in a zero-velocity state [55,60]. The velocity operator
is defined as the total time derivative of the position
operator, which can be obtained from the commutator of
the position with the Hamiltonian,

vn ¼ −i½xn;HFW� ¼
∂HFW

∂pn
: ð48Þ

Note that the position operator commutes with the external
fields, which are treated as given functions of position
and time.
The concept of a zero-velocity state is not unproblematic.

The starting point of the following discussion is the
assumption that there is a state jv ¼ 0i that is annihilated
by all components of the velocity operator, vnjv ¼ 0i ¼ 0,
and explore how far this assumption carries. As one might
already suspect from (48), and as will become more clear
from the explicit expressions below, the individual compo-
nents vn do not in general commute, and therefore one
cannot in general expect to construct simultaneous eigen-
states of these operators. However, this by itself does not
exclude the possibility of a state with, specifically,
vnjv ¼ 0i ¼ 0, similar to the case of the standard angular
momentum algebra, for which one does have Jnjj ¼ 0i ¼ 0.
No attempt will be made to construct a state jv ¼ 0i
explicitly. Rather, to the extent that such a state exists, the
results obtained will apply to it.
Certainly, although the concept of a zero-velocity neu-

tron is a priori physically meaningful, such a state can in
general only be of a transitory nature in the presence of
external electromagnetic fields. Already at the classical
level, a magnetic moment is accelerated in an inhomo-
geneous magnetic field. In that case, one can only expect a
consistent treatment in terms of such a state up to a limited
order in a derivative expansion such as pursued in this
work. To the order considered here, however, no incon-
sistency related to the inhomogeneity of the magnetic field
will become apparent.
On the other hand, a zero-velocity quantum state pre-

sumably requires a certain spatial extension, and, as already
discussed in previous sections, a derivative expansion of the
external fields can only capture a limited range of spatial
behavior. This likewise maymanifest itself in inconsistencies
beyond a certain order in the derivative expansion. Such an
inconsistency will in fact emerge in the treatment below,
specifically with respect to the terms in the neutron mass
proportional to ∇iEj∇iEj and ð∇ · EÞ2. The coefficients of
these terms will be seen to be ambiguous, and no completely
cogent scheme has become apparent within the calculational
framework employed here that would permit a definite
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determination of these terms. Presumably, this would require
going beyond the derivative expansion (1) from the very
beginning.
An alternative definition of a zero-velocity state can be

contemplated in which one considers only the velocity
squared, and one assumes only the existence of a state
jv2 ¼ 0i with v2jv2 ¼ 0i ¼ 0. This will likewise be
explored further below; while it does circumvent the issue
of the individual components vn not commuting, this
approach has its own difficulties and does not finally
resolve the aforementioned ambiguity.
In [60], a definition of a zero-velocity state is considered

for which only the considerably weaker condition hvi ¼ 0
is posited. Such a treatment requires a construction of the
state, which is beyond the scope of the present work. It
should be noted, however, that also this definition does not

eliminate the transitory nature of a zero-velocity state.
Taken by itself, this condition would encompass generic
bound states, presumably including highly excited ones
that may be interpreted in terms of classical orbits. In that
limit, it becomes questionable whether the neutron can still
be viewed as being truly at rest, and it may be necessary to
supply a supplementary characterization of the states to be
considered.
For HFW given by (36), the velocity operator takes the

form

vn ¼
1

m
pn −

1

2m3
p2pn þGn; ð49Þ

where Gn summarizes all the terms that are at least linear in
the external fields,

Gn ¼ −
μ

m
ðσ × EÞn þ

μ

4m2
ð− _En þ ð∇ × BÞn − iσi∇iBnÞ þ

μ2

2m3
ð−σjEi∇jEkϵikn þ ðσ · EÞð∇ × EÞn þ 3iEi∇nEi

− iEi∇iEn − ð∇ · EÞðσ × EÞn − ið∇ · EÞEn − iBi∇iBn þ σ · ð∇ × BÞBn − ðσ · _EÞBnÞ
þ μ

2m3
ð−iσjϵjin∇kEipk − iσkϵkij∇nEipj þ iσ · ð∇ × EÞpn þ ð∇ · EÞpnÞ

þ μ

2m2
ðσiBnpi þ σnB · pÞ þ μ

2m3
ð2σ · ðE × pÞpn þ ðσ × EÞnp2Þ: ð50Þ

B. Action of Foldy-Wouthuysen Hamiltonian on a
jv= 0i state

To derive the action of HFW on a zero-velocity state
jv ¼ 0i, the momentum operator can be eliminated in favor
of the velocity operator using the following iterative
scheme. Rearranging (49) into

pn ¼
�
1 −

p2

2m2

�−1
mðvn −GnÞ

¼
�
1þ p2

2m2
þ � � �

�
mðvn −GnÞ; ð51Þ

where higher orders in p can be neglected in the right-hand
expression, it follows that the action of pn on a zero-
velocity state jv ¼ 0i yields

pn ¼ −m
�
1þ p2

2m2

�
Gn ð52Þ

thus generating at least one power of an external field. With
HFW given by (36), i.e., with all momentum operators
commuted through to the right, one can let the rightmost
momentum operator act on the zero-velocity state and
therefore substitute it with (52). This yields an expression
in which the momentum operators are not all ordered to the

right; one then has to commute all momentum operators to
the right again. At that point, one can iterate the procedure,
i.e., again let the rightmost momentum operator act on the
zero-velocity state, etc. This procedure has to be performed
at most twice, since every iteration generates an additional
power of an external field.
Before proceeding, it is convenient at this point to revisit

the specification given at the beginning of Sec. II B of the
terms that were to be kept in deriving the Foldy-Wouthuysen
Hamiltonian (36). Consider first terms quadratic in the
external fields. To begin with, as far as HFW itself is
concerned, no additional factor of p (which, as always,
would be ordered to the right) needs to be taken into account,
since such a factor of p, applied to the zero-velocity state,
would generate an additional external field. However, one
must also ensure that terms inGn are kept to sufficiently high
order; deriving Gn from HFW removes one factor of p. As a
result, also terms in HFW quadratic in the external fields and
linear in p must be kept, since the corresponding term in Gn
is then simply quadratic in the external fields with no further
factors of p. However, if there were yet one more factor of p,
then Gn would be quadratic in the external fields with an
additional factor p which, acting on the zero-velocity state,
would generate an additional external field. Such terms can
therefore be discarded.
Similarly, consider terms linear in the external fields. As

far as HFW itself is concerned, only two factors of p need to
be taken into account; the rightmost of them generates a

ENERGY OF A POINTLIKE NEUTRON IN AN EXTERNAL … PHYS. REV. D 104, 056002 (2021)

056002-9



second external field when applied to the zero-velocity state,
and this external field can absorb the other factor of p as a
derivative. However, any additional factor pwould commute
through to the right and generate a third external field when
applied to the zero-velocity state. Again, however, one has to
also ensure that sufficiently many terms in Gn are kept.
Keeping three powers of p in HFW corresponds to having
two powers of p inGn; the rightmost one generates a second
external field, which can absorb the other factor of p as a
derivative, rendering Gn simply quadratic in the external
fields with no further factors of p. However, if there were yet
one more factor of p, then it would commute through to the
right and generate a third external field.
Finally, consider the overall order in E, B, ∂=∂t, ∇, p.

Certainly, as far asHFW itself is concerned, altogether fourth
order is sufficient: Every factor p generates either an external
field or a derivative; the desired limitation to at most two
external fields, which each can absorb at most one derivative,
implies that only terms up to fourth order in these objects
collectively are relevant. Now, keeping terms up to fourth
order inHFW corresponds to consistently keeping only terms
up to third order in Gn. This is nevertheless sufficient,
because in HFW, any rightmost factor p always comes
multiplied with external fields or further factors of p. Thus,
after applying said rightmost factor p to the zero-velocity
state, generating a factor Gn, that factor Gn always comes
multiplied with another factor of p or an external field.
Therefore, the fourth order terms in Gn are in fact irrelevant
and it is indeed sufficient to constructGn consistently only to
third order. Thus, in HFW only altogether fourth order in E,
B, ∂=∂t, ∇, p is required.
Continuing with the above scheme of eliminating the

momentum operator to derive the action of HFW on a zero-
velocity state, note that the identification (52) in general
introduces an ambiguity: Since the operators pi and Gj do

not commute, the order in which one applies momentum
operators can make a difference, i.e., in general it can happen
that, effectively, ½pi; pj� ≠ 0. However, zero-velocity states
on which this occurs presumably should not be viewed as
acceptable solutions of the present small-field perturbative
expansion. If ½pi; pj� ≠ 0 when applied to a wave function,
this implies that the wave function contains singular vor-
ticity. It thus differs strongly from zero-momentum states,
which are spatially constant. However, the present small-
field expansion presupposes that zero-velocity states are
perturbations of zero-momentum states, with corrections
suppressed by powers of the small external fields. For zero
external field, zero momentum and zero velocity coincide.
Thus, states with singular vorticity that yield ½pi; pj� ≠ 0

ought to be excluded from consideration a priori in order to
preserve a consistent perturbative small-field expansion
scheme. Thus, the requirements for a consistent treatment
would appear to include treating products of momentum
operators as

pipj ¼
1

2
fpi; pjg þ

1

2
½pi; pj� ð53Þ

and setting ½pi; pj� ¼ 0. This working assumption will be
explored further below and a concluding critique will be
given in Sec. IV D.
To exhibit clearly the emergence of the ambiguities

discussed above, it is useful to proceed as follows.
Consider, to begin with, the operator p2 ¼ pnpn appearing
in HFW. In this operator, no ordering ambiguity arises
regarding an initial application of the identification (52).
Multiplying (52) from the left with pn and commuting all
momentum operators through to the right yields (as above,
in the following, ∇ · B ¼ 0 will be dropped by virtue of
Maxwell’s equations for the external fields)

p2¼ iμσ ·ð∇×EÞþμσ ·ðE×pÞþ μ2

2m2
ð−3∇iEj∇iEjþ∇iEj∇jEiþ iσ ·ð∇×EÞ∇ ·Eþð∇ ·EÞ2þ∇iBj∇jBiÞ

þ μ

2m2
ð2iϵijkσk∇lEiplpj− iσ ·ð∇×EÞp2−∇ ·Ep2Þþ μ

4m
ð _E ·p−ð∇×BÞ ·pþ3iσi∇iBjpj−4σjBipjpiÞ: ð54Þ

In this form, one now observes potential ordering ambiguities in the third and fourth lines. However, instead of
contemplating further manipulations of this form on its own, one can proceed by inserting it into the full HamiltonianHFW,
upon which one observes several cancellations of these potential ambiguities,

HFW ¼ m − μσ · B −
μ

2m
∇ · Eþ μ2

2m
E2 þ μ2

8m2
ð2σ · ðE × _EÞ − 3σ · ðE × ð∇ × BÞÞ − σiEjð∇iBj þ∇jBiÞ

− 2σiBjð∇iEj þ∇jEiÞÞ þ
μ2

32m3
ð4 _E2 − 8ð∇ × BÞ · _Eþ 2ð∇ × BÞ2 þ ð∇iBj þ∇jBiÞ2 − 12∇iEj∇iEj

þ 4∇iEj∇jEi þ 4ð∇ · EÞ2Þ − μ

2m
σ · ðE × pÞ þ μ

8m2
ðð∇ × BÞ · p − _E · pþ iσi∇iBjpjÞ −

1

8m3
p4: ð55Þ

SAENZ, ENGELHARDT, and HÖLLWIESER PHYS. REV. D 104, 056002 (2021)

056002-10



Fortuitously, only one ambiguous term remains, namely the
term proportional to p4, which will be considered sepa-
rately below. Aside from that term, there are only ones
containing at most one power of momentum, and therefore
no ordering ambiguities. Since the terms containing one
power of momentum already exhibit one power of the
external fields, only a few of the terms appearing in (52) in

conjunction with (50) remain relevant when eliminating
that momentum operator; the other terms only contribute at
the third order in the external fields or higher. Namely, only
the first four terms in (50) must be retained, and also the p2

operator in the parentheses in (52) can be dropped.
Carrying out this elimination yields

HFW ¼ m − μσ · B −
μ

2m
∇ · E −

μ2

2m
E2 þ μ2

64m3
ð6 _E2 − 3ð∇ × BÞ2 − 12ð∇ × BÞ · _EÞ þ 7μ2

128m3
ð∇iBj þ∇jBiÞ2

þ μ2

8m3
ðð∇ · EÞ2 − 3∇iEj∇iEj þ∇iEj∇jEiÞ −

μ2

4m2
ðσ · ðE × ð∇ × BÞÞ þ σiBjð∇iEj þ∇jEiÞÞ −

1

8m3
p4: ð56Þ

It remains to treat the operator p4. Multiplying the form
(54) for the operator p2 by another factor p2 from the left,
one may discard the majority of the terms because they only
contribute at orders that are dropped in the expansion
pursued here. The remaining relevant terms are

p4 ¼ p2½iμσ · ð∇ × EÞ þ μσ · ðE × pÞ�: ð57Þ

Two ways of proceeding suggest themselves: On the one
hand, one may view p4 as the successive application of two
p2 operators, i.e., first fully resolve the term in the square
brackets by applying the remaining momentum operator to
the zero-velocity state; on the other hand, one may follow the
general scheme laid out above, commuting all momentum
operators to the right in (57) immediately, and then treating
them in a symmetrized fashion as suggested by (53). Note
that the fully symmetrized form p4 ¼ ð1=3Þðpipipjpj þ
pipjpipj þ pipjpjpiÞ corresponds to a weighted average
of these two alternatives.
Starting with the former procedure, by inserting (52) and

only keeping relevant terms, one obtains

p4 ¼ p2½iμσ · ð∇ × EÞ þ μ2σ · ðE × ðσ × EÞÞ� ð58Þ
¼ p2½iμσ · ð∇ × EÞ þ 2μ2E2� ð59Þ

¼ iμσ · ð∇ × EÞp2 − 4μ2∇iEj∇iEj ð60Þ

¼ ½iμσ · ð∇ × EÞ�2 − 4μ2∇iEj∇iEj ð61Þ

¼ −5μ2∇iEj∇iEj þ μ2∇iEj∇jEi: ð62Þ

On the other hand, immediately commuting momentum
operators to the right in (57), one has

p4 ¼ iμσ · ð∇ × EÞp2 − iμϵijkσi∇lEjfpl; pkg ð63Þ
exhibiting the ambiguity in ordering momentum operators
in the last term, treated as suggested by (53). Again
inserting (52) and only keeping relevant terms, one has

p4 ¼ μ2ð∇ · EÞ2 − 4μ2∇iEj∇iEj þ μ2∇iEj∇jEi ð64Þ

having used ð∇ × EÞjð∇iEj −∇jEiÞ ¼ 0. The expressions
(62) and (64) disagree; evidently, varying the ordering
of momentum operators corresponds to trading off
terms ð∇ · EÞ2 and −∇iEj∇iEj in the Foldy-Wouthuysen
Hamiltonian. The coefficients of these terms in HFW are
ambiguous unless a cogent rationale for choosing a particu-
lar ordering can be constructed. This will be revisited in
Sec. IVD. The term∇iEj∇jEi does appear to be determined
with a unique coefficient, such that the ∇iEj∇jEi contri-
bution completely cancels in HFW. With the ambiguous
terms unresolved, the energy of the neutron in a zero-
velocity state jv ¼ 0i takes the form

Wv¼0
FW ¼m−μσ ·B−

μ

2m
∇ ·E−

μ2

2m
E2

þ μ2

64m3
½6 _E2−3ð∇×BÞ2−12ð∇×BÞ · _E�

þ 7μ2

128m3
ð∇iBjþ∇jBiÞ2−

μ2

4m2
ðσ ·ðE×ð∇×BÞÞ

þσiBjð∇iEjþ∇jEiÞÞþOðð∇ ·EÞ2ÞþOð∇iEj∇iEjÞ:
ð65Þ

Specializing to the vacuum and using the vacuum
Maxwell equations for the external fields, which allows
one to combine the terms grouped in the square brackets,
one arrives at

Wv¼0
FW ¼ m − μσ · B −

μ2

2m
E2 −

9μ2

64m3
_E2

þ 7μ2

128m3
ð∇iBj þ∇jBiÞ2 −

μ2

4m2
σ · ðE × _EÞ

−
μ2

4m2
σiBjð∇iEj þ∇jEiÞ

þOðð∇iEj þ∇jEiÞ2Þ þOð _B2Þ ð66Þ
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taking into account the decomposition ∇iEj∇iEj ¼
ð1=4Þ½ð∇iEj þ∇jEiÞ2 þ ð∇iEj −∇jEiÞ2� as well as
ð∇iEj −∇jEiÞ2 ¼ 2ð∇ × EÞ2 ¼ 2 _B2. Compared to the
p ¼ 0 case, the E2 term changes sign, as has been
previously observed in [55]. Also the higher order terms
are modified substantially, some disappearing entirely and
new ones appearing. Two terms remain undetermined in
the v ¼ 0 case.

C. Action of Foldy-Wouthuysen Hamiltonian on a
jv2 = 0i state

Before considering the relative merits of the different
schemes of treating the ordering of momentum operators
exhibited in the previous section, it is useful to also have at
hand the expressions resulting when acting on a jv2 ¼ 0i
state, for which only the property v2jv2 ¼ 0i ¼ 0 is
assumed. Proceeding in analogy to the argument leading
to Eq. (52), taking the square of Eq. (49) yields

v2 ¼ p2

m2

�
1 −

p2

m2

�
þ F ð67Þ

with F summarizing all the terms that are at least linear in
the external fields,

F¼pn

m

�
1−

p2

2m2

�
GnþGn

pn

m

�
1−

p2

2m2

�
þGnGn: ð68Þ

This can be rearranged to construct an iterative scheme for
eliminating p2 in favor of v2,

p2 ¼ m2

�
1 −

p2

m2

�−1
ðv2 − FÞ

¼ m2

�
1þ p2

m2
þ � � �

�
ðv2 − FÞ ð69Þ

and thus, applied to a jv2 ¼ 0i state,

p2 ¼ −ðm2 þ p2ÞF ð70Þ

¼ −mpn

�
1þ p2

2m2

�
Gn −m

�
1þ p2

m2

�
Gnpn

− ðm2 þ p2ÞGnGn: ð71Þ

Note that the first term in (71) corresponds to Eq. (52) with
an extra pn applied from the left; i.e., the expression for p2

obtained here, acting on a jv2 ¼ 0i state, differs from the
one obtained when acting on a jv ¼ 0i state, cf. (54), by the
two additional terms in (71). For the discussion in the next
section, it is useful to observe that these additional terms
can also be cast as follows:

p2 ¼ −mpn

�
1þ p2

2m2

�
Gn − ðm2 þ p2ÞGnvn ð72Þ

as can be verified by inserting (49), again discarding terms
that are of too high order. Note that any jv ¼ 0i state is also
a jv2 ¼ 0i state, and therefore the expressions for p2

derived in the two cases must be consistent with one
another when applied to jv ¼ 0i states. Indeed, the addi-
tional terms vanish when one uses vnjv ¼ 0i ¼ 0. On the
other hand, for jv2 ¼ 0i states that are not also known to be
jv ¼ 0i states, there is no a priori guarantee that the
additional terms vanish.
To assemble the Foldy-Wouthuysen Hamiltonian acting

on jv2 ¼ 0i states, one can reuse the result (55), merely
supplementing it with the additional terms entering p2

[multiplied by the appropriate prefactor, 1=ð2mÞ]. Using
(50), commuting momentum operators to the right, and
dropping terms that are of too high order, these terms read

−mGnpn ¼ μðσ × EÞ · p
−

μ

4m
ð− _E · pþ ð∇ × BÞ · p − iσi∇iBnpnÞ

−
μ

2m2
ð−2iσjϵjin∇kEipkpn þ iσ · ð∇ × EÞp2

þ ð∇ · EÞp2Þ − μ

m
σiBnpipn ð73Þ

−
p2

m
Gnpn ¼ −2i

μ

m2
ϵijkσj∇lEkplpi ð74Þ

−m2GnGn ¼ −m2

�
−
μ

m
σ × Eþ μ

4m2
ð− _Eþ∇ × B − iσi∇iBÞ

�
2

þ μ2

2m2
ð−4∇iEj∇iEj þ∇iEj∇jEi

þ ð∇ · EÞ2 þ ð∇ · EÞiσ · ð∇ × EÞÞ þ μ2

2m
ð3σjBi∇iEj − ð∇ · EÞðσ · BÞ − iB · ð∇ × EÞÞ ð75Þ

−p2GnGn ¼ 4
μ2

m2
∇iEj∇iEj: ð76Þ

In addition, in the operator p4 ¼ p2p2, one can likewise
substitute the right-hand p2 with (71); after commuting the
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other p2 operator to the right and discarding terms of too
high order, the remaining terms are

p4 ¼ iμσ · ð∇ × EÞp2 − 4iμϵijkσi∇lEjpkpl

þ 4μ2∇iEj∇iEj: ð77Þ

Consider, to begin with, the terms now appearing in HFW
that are linear in B and contain no E. These read

HFWjE¼0; linear inB¼−μσ ·B

þ μ

4m2
ðiσi∇iBjpj−2σiBjpipjÞ: ð78Þ

This form implies that one reaches an impasse in the
treatment of external magnetic fields; the present scheme of
acting on a jv2 ¼ 0i state only allows one to eliminate the
operator p2, but not individual components pn. The above
terms thus cannot be evaluated any further. The jv2 ¼ 0i
state scheme therefore has the significant drawback of not
permitting a well-defined treatment of external magnetic
fields. In the following, only the case B ¼ 0 will therefore
be considered.
Fortuitously, when one assembles the terms containing

electric fields, all problematic terms cancel and one is left at
most with additional factors p2 to resolve. Note that, when
already multiplied by one power of an external field from the
left, the only term in p2 that remains relevant to the desired
order is iμσ · ð∇ × EÞ. Carrying out the remaining evalu-
ation, one arrives at the Foldy-Wouthuysen Hamiltonian:

HFWjB¼0 ¼ m −
μ

2m
∇ · E −

μ2

2m
E2 þ 3μ2

32m3
_E2

þ 3μ2

8m3
ð∇ · EÞ2 þ μ2

2m3
∇iEj∇iEj: ð79Þ

This reproduces the form obtained for jv ¼ 0i states, except
for the ambiguous ð∇ · EÞ2 and ∇iEj∇iEj terms, which
appear here with yet different coefficients than in either of
the alternative schemes discussed in the previous section.

D. Inconsistencies in defining a jv= 0i state
at order Oð∇E∇EÞ

As has been argued already further above, a consistent
zero-velocity state jv ¼ 0i ought to satisfy ½pi; pj�jv ¼
0i ¼ 0 in order to represent a bona fide small-field
perturbation of a zero-momentum state. This condition
was used to resolve the ordering ambiguity in products of
momentum operators, cf. (53); whenever a product of
momentum operators acts on a zero-velocity state, the
product is to be symmetrized.
However, this prescription cannot be consistently main-

tained under all circumstances. Recalling the discussion of
Eqs. (71) and (72), since any jv ¼ 0i state is also a jv2 ¼ 0i
state, the expression (71) for the operator p2 acting on a

jv2 ¼ 0i state must equal the expression obtained when
acting on a jv ¼ 0i state, which only includes the first term
in (71). Indeed, as exhibited in Eq. (72), the additional
terms vanish on jv ¼ 0i states, since they can be written in
terms of an operator that includes a factor vn on the right.
This, however, supposes a definite ordering of operators
that is inconsistent with a symmetrization prescription: In
the product

Gnvn ¼ Gn

�
pn

m
þ Gn

�
ð80Þ

the operator pn must be kept to the right of any momentum
operators appearing in the Gn outside of the parentheses. If
one instead were to symmetrize the product of pn with
momentum operators occurring to its left, one would alter
the product Gnvn, which vanishes when acting on jv ¼ 0i
states, into a different operator Γ that is not anymore a
product of two factors Gn and vn, but represents a new
composite operator that does not vanish when acting on
jv ¼ 0i states. One could, in effect, come to the absurd
conclusion that

0 ¼ Gnvnjv ¼ 0i ¼ Gn

�
pn

m
þ Gn

�
jv ¼ 0i

≕Γjv ¼ 0i ≠ 0; ð81Þ

where the nonvanishing terms again involve ð∇ · EÞ2 and
∇iEj∇iEj. It appears, therefore, that, once one attempts to
determine its energy to an accuracy including the order
Oð∇E∇EÞ, there exists no jv ¼ 0i state consistently
defined to that accuracy. One may speculate that this is
a signature of a conflict between the necessarily extended
nature of a zero-velocity state in space and the limited
spatial range of a description in terms of a derivative
expansion. Ultimately, it does not appear feasible within
the present framework to determine unambiguously con-
tributions to the energy of a neutron at rest that are
proportional to ð∇ · EÞ2 and ∇iEj∇iEj. It remains unclear
whether retreating to a calculational scheme based on
jv2 ¼ 0i states can provide a resolution of the ambiguities
associated with these terms, or whether it merely hides
them through its relative inflexibility in exploring differ-
ent operator orderings. In any case, the jv2 ¼ 0i scheme
does not allow one to treat magnetic background fields, as
seen in the previous section.

V. CONCLUSIONS

By constructing an appropriate Foldy-Wouthuysen
transformation, the energy of a pointlike neutron in an
external electromagnetic field was determined in a com-
bined expansion in powers of the external field and
derivatives thereof. Both the case of a zero-momentum
state as well as the case of a zero-velocity state were
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considered, leading to the results (41) and (66), respec-
tively, in the absence of external charges or currents. The
obtained terms mirror the ones appearing in the effective
Hamiltonian (1), mimicking the effects of the polar-
izabilities defined there. This generalizes the long-known
result of Foldy [54] pertaining specifically to the dipole
electric polarizability αE. In order to separate the dipole
electric polarizability proper, i.e., the effect of an actual
structural deformation of an extended neutron, from the
energy shift already experienced by a pointlike neutron,
the contribution αFoldyE ¼ −μ2=m (in a zero-momentum
state) must be subtracted from the coefficient αE found in
the effective Hamiltonian (1). Comparing the zero-
momentum result (41) with (1), the ten Foldy contribu-
tions for a zero-momentum neutron are

αFoldy;p¼0
E ¼−

μ2

m
; βFoldy;p¼0

M ¼0; αFoldy;p¼0
Eν ¼0;

βFoldy;p¼0
Mν ¼−

μ2

2m3
; αFoldy;p¼0

E2 ¼−
3μ2

m3
; βFoldy;p¼0

M2 ¼0;

γFoldy;p¼0
E1 ¼ μ2

4m2
; γFoldy;p¼0

M1 ¼0; γFoldy;p¼0
E2 ¼−

μ2

2m2
;

γFoldy;p¼0
M2 ¼ μ2

4m2
: ð82Þ

On the other hand, eliminating the momentum operator in
favor of the velocity operator, one can construct analogous
contributions in the zero-velocity case. In the course of
this construction, operator-ordering ambiguities were
encountered that appear to signal an inconsistency in
defining a zero-velocity state to order Oð∇E∇EÞ. This is
presumably due to a conflict between the spatially
extended nature of such a state and the limitation of a
derivative expansion in capturing the associated spatial
behavior. The ambiguities specifically arise in the treat-
ment of the p4 term representing a relativistic correction to
the kinetic energy. They are, therefore, a relativistic effect,
but understanding these relativistic effects is evidently
necessary for a proper treatment of Oð∇E∇EÞ terms.
These ambiguities precluded a determination of the Foldy
contributions for αE2 and βMν. It should be emphasized
that, in view of the exhaustive treatment presented in
Sec. IVof the consequences of assuming the existence of a
zero-velocity state, the ambiguities appear to be a conse-
quence already of the initial assumption of the neutron
energy being represented by an expansion of the form (1).
To remove them would require abandoning the form (1)
rather than merely improving upon the calculational
scheme employed here. The study of forms more general
than (1) lies beyond the scope of this work. Comparing the
result (66) with (1), the remaining eight Foldy contribu-
tions for a zero-velocity neutron are

αFoldy;v¼0
E ¼μ2

m
; βFoldy;v¼0

M ¼0; αFoldy;v¼0
Eν ¼ 9μ2

32m3
;

βFoldy;v¼0
M2 ¼−

21μ2

8m3
; γFoldy;v¼0

E1 ¼ μ2

2m2
; γFoldy;v¼0

M1 ¼0;

γFoldy;v¼0
E2 ¼−

μ2

2m2
; γFoldy;v¼0

M2 ¼0: ð83Þ

As already noted in [55], the sign of the Foldy contribu-
tion for αE is inverted going from the zero-momentum to
the zero-velocity case. Also the majority of the other
contributions changes.
An application of these results that suggests itself is the

analysis of lattice QCD calculations of hadron mass shifts
in the presence of external electromagnetic fields. Which of
the scenarios investigated here is relevant for such an
analysis depends sensitively on the details of the lattice
setup; there is no simple, unique prescription for disen-
tangling the mass shift due to the genuine polarization of
the hadron’s internal structure from the Foldy-type con-
tributions discussed here, additional perturbative effects
such as the ones exhibited in Sec. III B, and a variety of
other systematic corrections.
The calculational scheme employed in [28,29,32] pre-

serves spatial translational invariance and thereby is able to
place the neutron in a zero-momentum state. To correct for
Foldy-type effects, the p ¼ 0 results (82) are therefore
relevant; in addition, the perturbative corrections discussed
in Sec. III B apply. It should be noted that this relative
simplicity of the spatial setup comes at the price of using
explicitly time-dependent external electromagnetic gauge
fields that induce a complicated nonstationary time evolu-
tion; the extraction of the neutron mass shift requires a
delicate analysis of the resulting transitory neutron state.
In order to avoid such complications, the scheme

employed in [33–37,39] instead uses Dirichlet boundary
conditions for the valence quarks in some space-time
directions, which permits one to introduce arbitrarily weak,
temporally constant external gauge fields. However, one
consequence of using Dirichlet boundary conditions is that
the hadron cannot be in a zero-momentum state, but instead
acquires a nontrivial spatial wave function with typical
momenta of the order of π=L (where L denotes the spatial
extent of the lattice), including also distortions of the
hadron’s structure through interactions with the hard walls.
Analysis of the resulting data requires a detailed study of the
dependence on L. In this setup, the expectation value of the
hadron velocity vanishes for some directions i, hvii ¼ 0.
Keeping in mind the caveat already raised in Sec. IVA, that
hvi ¼ 0 is a considerably weaker condition than the pres-
ence of a true jv ¼ 0i or jv2 ¼ 0i state, the resulting hadron
wave functions have the character of anisotropic, hybrid
zero-velocity/zero-momentum states. While the v ¼ 0
results (83) are thus not directly applicable, the develop-
ments in Sec. IV provide a calculational scheme that can be
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adapted to treat such more specialized scenarios, together
with an indication of their possible limitations.
More complicated spatial structures are induced for

charged particles in a magnetic background field, which
are described by Landau levels in the plane perpendicular to
the magnetic field. Significant effort is required to achieve a
good overlap with these states in lattice calculations,
through an SUð3Þ ×Uð1Þ eigenmode projection technique
]42 ], along with a hadronic Landau eigenmode projection

to the lowest Landau level, to extract polarizabilities for
charged pions and the proton [43–45]. Due to the locali-
zation of the Landau levels in the directions perpendicular
to the magnetic field (whereas propagation along the
direction of the field is free), the charged hadron wave
functions again have the character of hybrid zero-velocity/
zero-momentum states, and the analysis of possible Foldy-
type effects would require further, more specific study that
lies beyond the scope of the present work.
In view of the manifold details characterizing any

particular lattice setup, no exhaustive conclusions can be

drawn concerning the accounting for Foldy-type effects in
lattice QCD polarizability calculations. Nonetheless, we
anticipate the two scenarios studied here to be relevant for
the analysis of selected computations, a case in point being
further developments within the zero-momentum scheme
developed to study the dipole [28,29] and spin polar-
izabilities [32].
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