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An exact expression is derived for the meson production current off the nucleon for real and virtual
photons which cleanly separates, in a model-independent manner, a tree-level expression that manifestly
preserves local gauge invariance in terms of a generalized Ward-Takahashi identity from transverse final-
state-interaction (FSI) terms. As discussed in some detail, this exact formulation is particularly well suited
for implementing approximation schemes of exchange-current and FSI contributions (which in practice
generally will be necessary) at any level of sophistication without violating local gauge invariance.
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I. INTRODUCTION

Local gauge invariance—the requirement that physical
observables are invariant under local U(1) transformations
of fields—implies the very existence of the electromagnetic
gauge field Aμ and thus it is one of the fundamental
symmetries of electromagnetic physics [1]. Conversely, any
violation of this symmetry in theoretical reaction models
means that damage has been done to the underlying
description of the electromagnetic field. For problems with
complex reaction dynamics, in particular, where approx-
imations generally are unavoidable, local gauge invariance
is oftentimes lost and some effort must be made to repair
this damage.
For pion photoproduction off the nucleon, the necessary

and sufficient condition for local gauge invariance was
established by Kazes [2] in terms of a generalized Ward-
Takahashi identity for the four-divergence of the corre-
sponding production current. This identity is easily verified
for the tree-level description of the process for structureless
particles without form factors, but it fails for more realistic
descriptions with form factors. To our knowledge, the
earliest suggestion how to remedy the situation was given
by Drell and Lee [3] who proposed an additional non-
singular contact current as a way to summarily account
phenomenologically for all higher-order contributions (like
final-state interactions etc.) neglected at the tree level.
Gross and Riska [4] presented a repair scheme for gauge
invariance that reinterprets vertex dressing effects as

self-energy contributions for propagators connected to
the vertex and modifies electromagnetic single-particle
currents such that this self-energy change is reflected in
their Ward-Takahashi identities. The ad hoc Drell-Lee
recipe was later rediscovered independently by Ohta [5]
in a constructive procedure implementing the electromag-
netic interaction at the pion-nucleon vertex utilizing expan-
sions and making use of the minimal-substitution rule.
In these gauge-invariance-fixing schemes kinematic
singularities are avoided for the contact current by con-
structing suitable nonsingular 0=0 expressions whose four-
divergences cancel gauge-invariance-violating terms. A
seemingly different method proposed by Nagorny and
Dieperink [6] in terms of a contact current written as a
nonsingular interpolating integral can in fact be shown to
be functionally equivalent to the Drell-Lee-Ohta procedure.
A generalization of the latter approach was put foward by
Haberzettl [7,8] within a consistent field-theory framework
for describing electromagnetic meson production off bary-
ons, including exchange currents and hadronic final-state
interactions (FSI), with mesons and baryons as the relevant
degrees of freedom.This framework also suggested a flexible
method for maintaining gauge invariance in a manifest
manner, even when approximating mechanisms like FSI
or incorporating Regge exchanges [9–12]. The generaliza-
tion also avoids the “violation of scaling behavior” [3] of the
original Drell-Lee-Ohta recipe at high energies.
In all of these approaches the problem of maintaining

gauge invariance and approximating higher-order dynami-
cal mechanisms are intricately linked. In the present work,
we will revisit the question of preserving local gauge
invariance even for problems with rich internal dynamics
that generally require approximations in practice by cleanly
separating the issue of gauge invariance from approxima-
tions of reaction dynamics. We will provide a novel
formulation of the production current that separates out,
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in a model-independent, exact manner, manifestly gauge-
invariance-preserving (GIP) tree-level expressions from
transverse final-state-interaction (FSI) terms. This formu-
lation thus allows devising efficient approximations to
account for microscopic reaction mechanisms like
exchange-current contributions and final-state interactions
independent of gauge invariance. Local gauge invariance
will always be preserved and never be at issue.
In Sec. II, we will briefly recapitulate expressions for the

production current relevant for the present approach.
Section III will then address local gauge invariance and
provide the desired reformulation, including a discussion of
possible approximations that all maintain manifest gauge
invariance. The final Sec. IV provides a summarizing
assessment.

II. PRODUCTION CURRENT

Taking nucleons (N) and pions (π) as generic place-
holders for baryons and mesons, the meson-production
process

γðkÞ þ NðpÞ → πðqÞ þ Nðp0Þ; ð1Þ

for real or virtual photons, is described by a production
current

Mμ ¼ Mμðq; p0; k; pÞ ð2Þ

that may be decomposed as [7]

Mμ ¼ Mμ
s þ Bμ þ XG0Bμ; ð3Þ

represented by the diagrams of Fig. 1(a). Here, Mμ
s is the

s-channel production current and Bμ is the 2-particle-
irreducible Born mechanism,

Bμ ¼ Mμ
u þMμ

t þMμ
c; ð4Þ

depicted in Fig. 1(b), that contains the usual u- and
t-channel contributions and the interaction current

Mμ
c ¼ mμ

c þ UμG0F ð5Þ

given by a Kroll-Ruderman-type elementary contact cur-
rent mμ

c (which may be absent depending on the underlying
hadronic coupling scheme) and a loop integration over the
pion-nucleon vertex F and exchange currentsUμ. The final-
state interaction X for meson-nucleon scattering is deter-
mined by the integral equation

X ¼ U þUG0X; ð6Þ

shown in Fig. 2(a), driven by the 2-particle-irreducible
exchanges U of Fig. 2(b). (The exchange currents Uμ

occurring in Eq. (5) are given by attaching a photon to this
driving term U, as depicted in Fig. 3.) The amplitude X is
not the full physical meson-nucleon scattering amplitude T;
the latter is obtained by adding a fully dressed s-channel
pole term to X [7].1 The intermediate free meson-nucleon
Green’s function is given by

G0 ¼ tπðqπÞ ∘ SðP − qπÞ; ð7Þ

where tπ describes the meson propagator with four-momen-
tum qπ and S provides the nucleon propagator depending
on the remaining four-momentum P − qπ , where P ¼ kþ
p ¼ qþ p0 is the total four-momentum of the system. The
symbol “∘” stands for the convolution integral over the loop
momentum qπ . Recalling that the terms pion and nucleon
(and the respective indices π and N) are just representative
placeholders for all possible mesons and baryons, Eq. (3) is
to be read as a system of equations for all intermediate
meson-baryon states compatible with the external states,
with all summation indices suppressed. As written, there-
fore, the form of Eqs. (3) and (6) is deceptively simple to
provide notational clarity. In reality, this is a highly

FIG. 1. (a) Production current Mμ of Eq. (3). (b) Born-type
mechanisms Bμ of Eq. (4). The last two diagrams provide the
interaction current Mμ

c of Eq. (5). Labels s, u, and t refer to
Mandelstam variables for the respective kinematic situations of
hadronic vertices. Time proceeds from right to left to maintain
one-to-one correspondence between equations and diagrams.

FIG. 2. (a) Integral equation for the hadronic meson-baryon
scattering amplitude X of Eq. (6), with (b) nonpolar driving terms
U; ellipses indicate higher-order loop contributions [7]. Solid and
dashed double lines subsume summations over all possible
intermediate baryons and mesons compatible with external
meson-baryon states.

1In general, a splitting into pole and nonpole terms is not
unique, however, consistency requirements of the field-theory
approach of Ref. [7] make it well defined here. Note in this
context that while it is possible to write the FSI for the production
current directly in terms of T, this will be at the expense of a very
complicated, unusual s-channel contribution [7,10].
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complex coupled-channel problem that generally cannot be
solved exactly without efficient approximation schemes.

III. LOCAL GAUGE INVARIANCE

Assuming that the description of the production current
Mμ as given is complete at the level of meson and baryon
degrees of freedom, the necessary and sufficient condition
for its local gauge invariance is the generalized Ward-
Takahashi identity (gWTI) [2,7],

kμMμ ¼ −FsSQ̂NS−1 þ S−1Q̂NSFu þ t−1π Q̂πtπFt; ð8Þ

where the functions Fx, for x ¼ s, u, t, describe the pion-
nucleon vertices F in s-, u-, and t-channel kinematics,

Fs ≡ Fðq; p0;pþ kÞ;
Fu ≡ Fðq; p0 − k;pÞ;
Ft ≡ Fðq − k; p0;pÞ; ð9Þ

including hadronic coupling operators and isospin struc-
tures, with the order of momentum arguments given as
outgoing pion and nucleon momenta on the left of the
semicolon and incoming nucleon momentum on the right.
In the notation here, the operators with hats, Q̂N and Q̂π ,
indicate the charge operators QN and Qπ for the nucleon
and pion, respectively, that also inject the incoming photon
four-momentum k for the particle they pertain to into the
equation at their respective locations. With external four-
momenta given as in Eq. (1), this means that all momenta
can be recovered easily and unambiguously and do not
need to be spelled out explicitly, thus providing, for
example,

FsSQ̂NS−1 ≡ Fðq; p0;pþ kÞSðpþ kÞQNS−1ðpÞ; ð10Þ

and similar expressions for u- and t-channel terms. In other
words, the charge operators Q̂n (n ¼ N, π) as used here
cannot be moved through the expressions; they must
remain at the locations where written. The inverse propa-
gators appearing in the gWTI (8) imply that kμMμ ¼ 0 for
external on-shell hadrons thus providing current conserva-
tion. In general, however, Eq. (8) holds true irrespective of
whether hadrons are on-shell and whether the photon is real
or virtual.

Using the Ward-Takahashi identities [13,14] for the
electromagnetic single-particle currents of nucleons (JμN)
and pions (Jμπ),

kμJ
μ
N ¼ S−1Q̂N − Q̂NS−1; ð11aÞ

kμJ
μ
π ¼ t−1π Q̂π − Q̂πt−1π ; ð11bÞ

and defining a longitudinal current

Cμ
L ¼ kμ

k2
ð−FsQ̂N þ Q̂NFu þ Q̂πFtÞ; ð12Þ

the four-divergence of this current and of the s-, u-, and
t-channel Born terms produces

kμðMμ
s þMμ

u þMμ
t þ Cμ

LÞ
¼ −FsSQ̂NS−1 þ S−1Q̂NSFu þ t−1π Q̂πtπFt; ð13Þ

equal to the right-hand side of the gWTI (8). Hence,
rewriting the production current (3) equivalently as

Mμ ¼ Mμ
s þMμ

u þMμ
t þ Cμ

L

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

GIP

þ ðMμ
c − Cμ

LÞ þ XG0ðMμ
u þMμ

t þMμ
cÞ; ð14Þ

the terms labeled GIP already produce the gWTI. The
remaining terms, therefore, must vanish when taking their
four-divergence. Formally, we may then equate the current
Cμ

L of (12) with

Cμ
L ¼ ½Mμ

c þ XG0ðMμ
u þMμ

t þMμ
cÞ�L; ð15Þ

where the bracket ½� � ��L denotes the longitudinal part of the
enclosed current. The entire production current now reads
equivalently

Mμ ¼ Mμ
s þMμ

u þMμ
t þ Cμ

L

þ ½Mμ
c þ XG0ðMμ

u þMμ
t þMμ

cÞ�T; ð16Þ

where ½� � ��T indicates that only transverse parts of the
bracketed current enter here, which do not contribute to the
gWTI (8).
For practical purposes and to circumvent the technical

issues associated with the 1=k2 singularity in Cμ
L, we may

rewrite Eq. (16) equivalently as

Mμ ¼ Mμ
s þMμ

u þMμ
t þ Cμ

þ ½Mμ
c − Cμ þ XG0ðMμ

u þMμ
t þMμ

cÞ�T; ð17Þ

where Cμ is the phenomenological, nonsingular
gauge-invariance-preserving (GIP) current constructed in
Refs. [7,9] which reproduces the necessary condition

FIG. 3. Exchange currents Uμ obtained by coupling photons to
the vertices and propagators of the driving term U of Fig. 2(b).
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kμCμ ¼ −FsQ̂N þ Q̂NFu þ Q̂πFt ð18Þ

to ensure the gWTI (8). The particular details of the
construction in Refs. [7,9] are omitted here because they
are not relevant for the present considerations.2 In fact, any
(contact-type, nonsingular) current Cμ that satisfies (18)
will imply the manifest preservation of local gauge invari-
ance. The gauge-invariance-preserving tree-level part of
Eq. (17) is depicted in Fig. 4. Because of the subtraction of
Cμ within ½� � ��T, the exact equation (17) does not depend on
the transverse part of Cμ which is the only part that is model
dependent. The subtraction thus avoids double-counting of
mechanisms already accounted for explicitly in Cμ outside
of the ½� � ��T bracket. This becomes particularly relevant
when one considers approximations of Mμ

c or final-state
interactions—which generally will be necessary in practi-
cally applications. Some straightforward approximation
schemes are discussed in Sec. III A.
Equation (17) is the main result of the present paper. By

construction, it provides an exact expression for the
production current that is manifestly gauge invariant.
Most importantly for practical purposes, the gauge invari-
ance will remain true for any approximation within the
transverse brackets ½� � ��T. The construction, in particular,
shows that explicit final-state interactions occur here only
in manifestly transverse contributions. This is similar to
what was suggested by the approximation scheme of
Ref. [9]. However, the present result shows that this
property is generally true, independent of any approxima-
tion because of the Cμ subtraction in ½� � ��T. Implicit
longitudinal FSI contributions are subsumed in Cμ

L of
Eq. (12) via its formal equivalence with Eq. (15) requiring
the necessary condition (18).
Physical on-shell matrix elements,

M ¼ ϵμMμ; ð19Þ

are formed with transverse states ϵμ, either as the transverse
photon polarization four-vector for real photons or, in the
case of electroproduction, as the Dirac current of the

electron between on-shell spinors times the photon propa-
gator, ϵμ ¼ ūðp0

eÞγμuðpeÞ=k2, where k ¼ pe − p0
e is the

momentum difference transferred from the incoming and
outgoing electron momenta to the photon. In both cases, the
transversality condition kμϵμ ¼ 0 holds true and thus only
transverse parts of the production current contribute for
physical matrix elements,

ϵμMμ ¼ ϵμ½Mμ
s þMμ

u þMμ
t þMμ

c

þ XG0ðMμ
u þMμ

t þMμ
cÞ�T; ð20Þ

irrespective of whether the photon is real or virtual.
For the physical amplitudeM, therefore, the fact that the

gWTI (8) was explicitly enabled via the tree-level con-
tribution of Eq. (17) by adding and subtracting the trans-
verse parts of the GIP current Cμ is quite irrelevant here
since the current in the transverse brackets ½� � ��T of (20) is
still the full production currentMμ stipulated to provide the
gWTI. The situation will change, however, if any of the
mechanisms of ½� � ��T in the exact equation (17) is approxi-
mated—which in practice generally will be unavoidable
because of the complexity of the contributing mechanisms.

A. Approximations

By construction, any approximation of the transverse
current ½� � ��T in (17) will preserve full local gauge invari-
ance. In general, however, such approximations will make
the dependence on the GIP current Cμ manifest, in contrast
to the exact amplitude (20).
The simplest approximation in (17) is to drop the entire

½� � ��T current and replace the full current by the tree-level
expression

Mμ ¼ Mμ
s þMμ

u þMμ
t þ Cμ ð21Þ

depicted in Fig. 4. This approximation thus complies with
the generic topological structure of a single-meson pro-
duction current [15] and it provides the minimal structure
necessary for producing the gWTI (8). Effectively, this
corresponds to the replacement Mμ

c þ XG0Bμ → Cμ, with
the contact-type GIP current Cμ providing here a phenom-
enological description for all exchange-current and FSI
contributions depicted in Fig. 1. As the description in the
Appendix of Ref. [12] shows, if necessary, Cμ will also
account for a Kroll-Ruderman-type elementary contact
current, as required, for example, for pseudovector
pion-nucleon coupling in pion production. Moreover,
additional phenomenological transverse contributions Tμ

may be added without affecting gauge invariance, Cμ →
Cμ þ Tμ, to better model the problem at hand [9]. Examples
of applications of this tree-level approximation are given in
Refs. [8,16–24].
A much more sophisticated approximation is to let

Mμ
c → Cμ, resulting in

FIG. 4. Gauge-invariance-preserving tree-level part of Eq. (17),
with the last diagram representing the contact-type GIP current
Cμ. These diagrams also correspond to the lowest-level approxi-
mation of the production current Mμ given in Eq. (21).

2A concise description of the construction procedure for the
GIP current Cμ is given in the Appendix of Ref. [12]. In this
context, note that the notation in Refs. [7,9,12] is slightly
different from the one employed here. Note in particular that
Cμ here is called Mμ

int in Ref. [12] Appendix, and that Cμ there is
only the scalar coupling part of Cμ here.
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Mμ ¼ Mμ
s þMμ

u þMμ
t þ Cμ

þ ½XG0ðMμ
u þMμ

t þ CμÞ�T; ð22Þ

where the dynamical details of the exchange-current con-
tributions UμG0F depicted in Fig. 1(b) are frozen out and
summarily accounted for by the phenomenological current
Cμ. However, hadronic final-state interactions are fully
incorporated. A variant of this approach was used for pion
photoproduction in Ref. [11].
At a still more sophisticated level, one needs to explicitly

consider the exchange currents Uμ contained in Mμ
c of

Eq. (5), as depicted in Figs. 1(b) and (3). Structurally this
results in

Mμ ¼ Mμ
s þMμ

u þMμ
t þ Cμ

þ ½M̃μ
c − Cμ þ XG0ðMμ

u þMμ
t þ M̃μ

cÞ�T ð23Þ

where M̃μ
c indicates the level of approximation ofMμ

c. Details
for expanding Mμ

c in terms of various exchange-current
contributions are discussed in Ref. [9]. The subtraction ofCμ

in the transverse part ½� � ��T avoids double-counting because,
as Eq. (22) shows, Cμ already provides a phenomenological
account for themechanisms contained in M̃μ

c. This necessary
corrective term that follows from the exact equation (17) is
not present in any of the previous approximate treatments of
gauge invariance. Its importance is seen from the following
considerations. The on-shell matrix element for this approxi-
mation, for both real and virtual photons, can be written
simply as

ϵμMμ ¼ ϵμ½Mμ
s þMμ

u þMμ
t þ M̃μ

c

þ XG0ðMμ
u þMμ

t þ M̃μ
cÞ�T; ð24Þ

as can be seen from (20), and thus becomes independent of
Cμ. Without the subtraction, there would be an additional
currentCμ in the transverse bracket ½� � ��T of (24) leading to an
unwarranted double counting of contributions. Struc-
turally, Eq. (24) is similar to Eq. (22) with Cμ → M̃μ

c. In
other words, the focus is shifted from constructing a
phenomenological GIP current Cμ to finding an acceptable
approximation for the exchange current contributions con-
tained in Mμ

c. Even though Cμ does not appear explicitly in
(24), this on-shell matrix element may still be considered
fully compliant with local gauge invariance because of the
underlying construction procedure in terms of (23). This is
particularly relevant if Mμ in the form of Eq. (23) serves as
(off-shell) input for other reactions like, for example, two-
meson production processes [25], as explained in the
subsequent discussion.

IV. DISCUSSION

In summary, we have presented here an equivalent
reformulation of the exact expressions for the production

current Mμ that cleanly separates, in a model-independent
manner, manifestly gauge-invariance-preserving tree-level
expressions from transverse final-state interaction (FSI)
terms, with microscopic reaction dynamics that are con-
sistent for both real and virtual photons. Since the tech-
nically challenging parts of the dynamics—exchange
currents and FSI in a coupled-channel framework—that
generally require approximations appear here only in the
transverse part, approximations will have no bearing on
gauge invariance, for any level of sophistication of such
approximations.
This separation of tree-level GIP terms and transverse

remainder may look deceptively similar to what was
suggested already in Ref. [9], however, there it was derived
as an integral part of an elaborate approximation scheme.
The present findings show now that this splitting is an exact
consequence of the fact that local gauge invariance is
equivalent to an implied (model-independent) longitudinal
contact current Cμ

L given by Eq. (15). Hence, any phenom-
enological GIP current Cμ that satisfies the necessary
condition (18) will provide a manifestly gauge-invariant
amplitude provided one subtracts its transverse part as in
the ½� � ��T bracket of Eq. (17) to make it model-independent
and avoid double counting when considering approxima-
tions ofMμ

c. This necessary subtraction is a new finding not
present in previous approximate treatments. As a conse-
quence, the dependence on a GIP current Cμ will only
become manifest for approximations of the kind discussed
in the context of Eqs. (21) and (22). For more sophisticated
approximations like in Eq. (23) that explicitly take into
account final-state interactions and exchange currents,
the model-independent logitudinal part of Cμ is implied
but it does not appear explicitly in the physical matrix
element (24).
However, if one employs the single-meson production

current Mμ as a contributing off-shell mechanism for two-
meson production [25], one must necessarily use the (off-
shell) form (23) thus making the dependence on Cμ

manifest as an internal current mechanism. This will ensure
the overall local gauge invariance of electromagnetic two-
meson production because, as shown in Ref. [25], the proof
of the latter necessarily relies on the validity of the gWTI
(8) for all contributing single-meson production currents.
More generally, off-shell single-meson production cur-

rentsMμ and their contributing mechanisms are required as
input for many reactions. Examples including strangeness
production and NN bremsstrahlung processes are given in
Refs. [26–30]. Rendering each one of these processes
gauge invariant in a consistent manner necessarily requires
that contributing single-meson production currents repro-
duce the gWTI (8) irrespective of the level of sophistication
that goes into determining Mμ in practice.
Maintaining local gauge invariance is an important and

indispensable ingredient for the consistent description of all
electromagnetic processes. As we have shown here, doing
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so for the single-meson production current Mμ is a
straightforward matter, in particular, when written in the
form of Eq. (17) since the GIP part involves only the tree-
level diagrams of Fig. 4. In practice, the real issue is finding
useful approximations of all complex reaction mechanisms
beyond the tree level to provide meaningful results with
reasonable effort.
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