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An efficient algorithm is developed for compactly weaving all the Lorentz-covariant three-point vertices
in relation to the decay of a massive particle X of mass mX and spin J into two particles M1;2 with equal
mass m and spin s. The closely related equivalence between the helicity formalism and the covariant
formulation is utilized so as to identify the basic building blocks for constructing the covariant three-point
vertex corresponding to each helicity combination explicitly. The massless case with m ¼ 0 is worked out
straightforwardly and the (anti)symmetrization of the three-point vertex required by the spin statistics of
identical particles is made systematically. We show that the off-shell electromagnetic photon coupling to
the statesM1 andM2 can be accommodated in this framework. The power of the algorithm is demonstrated
with a few typical examples with specific J and s values.
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I. INTRODUCTION

The Standard Model (SM) [1–4] of particle physics has
been firmly established by the discovery of the spin-0
resonance of about 125 GeV mass at the Large Hadron
Collider (LHC) at CERN [5,6]. However, even though a
lot of high-energy experiments have searched for new
phenomena beyond the SM (BSM) and they have tested
the SM with great precision for decades, none of any BSM
particles and phenomena have been observed so far at
the TeV scale (see Ref. [7] for a comprehensive summary
of hypothetical particles and concepts). In this present
situation, considered to be unnatural, one meaningful
strategy that can be taken in new physics searches
is to keep our theoretical studies as model-independent
as possible and to search for new particles with even
more exotic characteristics including spins higher
than unity.
Recently, the theory and phenomenology of high-spin

particles [8–18] have drawn considerable interest. Various
high-spin particles, although composite, exist in hadron
physics (see Ref. [7] for several high-spin hadrons) so that
the solid theoretical calculations of all the rates and
distributions involving such high-spin states are required
for correctly interpreting all the relevant experimental
results [8–10]. A popular spin-3=2 particle is the gravitino

appearing as the supersymmetric partner of the massless
spin-2 graviton in supergravity [19–23]. The discovery of
gravitational waves [24–26] strongly indicates the exist-
ence of massless spin-2 gravitons at the quantum level.
The massive spin-2 particles as the Kaluza-Klein (KK)
excitations of the massless graviton have been studied in
the context of extra dimensional scenarios [27–29]. In
addition, whether the dark matter (DM) of the Universe is
formed with high-spin particles has been addressed in
various recent works [11–17]. The relic density of the
high-spin DM particles and their low-energy interactions
with the SM particles have to be evaluated precisely for
the plausibility of their indirect and direct observations.
For studying all of these theoretical and phenomenologi-
cal aspects, it is crucial to systematically investigate all
the allowed effective interactions of high-spin particles as
well as the SM spin-0, 1=2, and 1 particles in a model-
independent way.
In the present work, we focus on developing an efficient

algorithm for compactly weaving all the three-point vertices
consistent with Lorentz invariance and locality.1

Specifically, we consider the decay of an on-shell massive
particle of mass mX and spin J into two on-shell massive
particles,M1 andM2, of equalmassm and spin s. This study
is a natural extension of the previous work [30] having dealt
with the massless (m ¼ 0) case with the identical particle
(IP) condition imposed, and an intermediate bridge to the
general case where all three particles have different masses
and spins. We note in passing that the Lorentz-covariant
structure of P and T symmetric scalar (J ¼ 0), vector
(J ¼ 1), and tensor (J ¼ 2) currents of the on-shell massive
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and massless particles of any spin s, which can be applied
even in the case of off-shell X particles, has been studied
recently in Refs. [31,32].
We adopt the conventional description of the integer and

half-integer wave tensors [33–39] and we effectively utilize
the closely related equivalence between the helicity for-
malism in the Jacob-Wick (JW) convention [40,41] and the
standard covariant formulation. Their one-to-one corre-
spondence enables us to identify every basic building block
for constructing the covariant three-point vertex corre-
sponding to each helicity combination explicitly.2 We show
that the massless (m ¼ 0) case treated previously [30] can
be worked out straightforwardly and the (anti)symmetriza-
tion of the vertex required by the spin statistics of identical
particles [43] can be made systematically. The extension of
the algorithm to the case where all three particles have
different masses and spins is briefly touched upon.
This paper is organized as follows. In Sec. II, we

discuss the key aspects of the two-body decay process
X → M1M2 in the helicity formalism which allows us to
treat any massive and massless particles on an equal
footing. Section III is devoted to explicitly deriving and
characterizing the integer and half-integer spin-s wave
tensors and the spin-J wave tensor based on the conven-
tional combination of spin-1 wave vectors and spin-1=2
spinors. In particular, the wave vectors and spinors in the
X rest frame (XRF) are presented explicitly in the JW
convention. Utilizing the close interrelationship between
the helicity formalism and the covariant formulation we
derive all the covariant basic and composite three-point
operators both in the bosonic and fermionic case in
Sec. IV. In Sec. V, the composite operators are shown
to enable us to explicitly write down all the helicity-
specific three-point vertices through which the covariant
three-point vertex for any spin J and spin s can be weaved
efficiently both in the massive and massless cases. In
addition, we show that the relation valid in the case with
two identical particles in the final state is systematically
and straightforwardly derived and that the off-shell
electromagnetic photon coupling to the states M1 and
M2 can be accommodated in this framework. In order to
demonstrate the power of the developed algorithm for
constructing the covariant three-point vertices, we work
out in detail several examples with specific J and s values,
which are expected to be useful for various phenomeno-
logical investigations, in Sec. VI. Finally, we summarize
our findings and conclude the present work by mentioning
a few topics under study in Sec. VII.

II. CHARACTERIZATION IN THE HELICITY
FORMALISM

The helicity formalism [40,41] allows us to efficiently
describe the two-body decay of an on-shell spin-J particle
X of mass mX into two on-shell massive particles, M1

and M2, with equal mass m and spin s. For the sake of a
transparent and straightforward analytic analysis, we
describe the two-body decay X → M1M2 in the XRF,

Xðp; σÞ → M1ðk1; λ1Þ þM2ðk2; λ2Þ; ð2:1Þ

in terms of the momenta, fp; k1; k2g, and helicities,
fσ; λ1; λ2g, of the particles, as depicted in Fig. 1.
The helicity amplitude of the decay X → M1M2 is

decomposed in terms of the polar and azimuthal angles,
θ and ϕ, defining the momentum direction of the particle
M1 in a fixed coordinate system as

MX→M1M2

σ;λ1;λ2
ðθ;ϕÞ ¼ CJλ1;λ2d

J
σ;λ1−λ2ðθÞeiðσ−λ1þλ2Þϕ

with jλ1 − λ2j ≤ J; ð2:2Þ

in the JW convention [40,41] (see Fig. 1 for the kinematic
configuration). Here, the helicity σ of the spin-J massive
particle X takes one of the 2J þ 1 values between −J and J.
In contrast, each of the helicities, λ1;2, can take one of the
2sþ 1 values between −s and s in the massive (m ≠ 0)
case but they can take just two values of �s in the massless
(m ¼ 0) case, as only the maximal-magnitude helicity
values identical to the spin in magnitude are allowed
physically for a massless particle of any spin. The reduced
helicity amplitudes CJλ1;λ2 in Eq. (2.2) do not depend on the
X helicity σ due to rotational invariance and the polar-angle
dependence is fully encoded in the Wigner d function
dJσ;λ1−λ2ðθÞ given in the convention of Rose [44].
If two particles, M1 and M2, are identical, the Bose or

Fermi symmetry in the integer or half-integer case leads to
the IP relation for the reduced helicity amplitudes,

FIG. 1. Kinematic configuration for the helicity amplitude
MX→M1M2

σ;λ1;λ2
ðθ;ϕÞ of the two-body decay X → M1M2 of a massive

particle X into two massive particles, M1 and M2, in the XRF.
The notations, fp; k1;2g and fσ; λ1;2g, are the momenta and
helicities of the decaying particle X and two particles, M1 and
M2, respectively. The polar and azimuthal angles, θ and ϕ, are
defined with respect to an appropriately chosen coordinate
system.

2Another convenient procedure for describing the three-point
vertex of on-shell massive particles of any spin is to use a spinor
formalism developed in Ref. [42].
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CJλ1;λ2 ¼ ð−1ÞJCJλ2;λ1 with jλ1 − λ2j ≤ J; ð2:3Þ

due to the (anti)symmetrization of the two identical final-
state particles.3

First, in the massive (m ≠ 0) case, the number n½J; s� of
independent reduced helicity amplitudes for specific J and
s is given by

n½J; s� ¼
� ð2sþ 1Þ2 for J ≥ 2s;

2sþ 1þ ð4sþ 1ÞJ − J2 for J < 2s;
ð2:4Þ

valid for both integer and half-integer s. For example, we
have n½J; 0� ¼ 1, n½1; 1� ¼ 7, and n½2; 1� ¼ 9. We note
that the expression (2.4) is consistent with that derived for
the case with two arbitrary integer spin particles [37], if
their spin values are set to be identical. On the other hand,
the number of independent terms in the IP case reduces to

n½J;s�IP

¼
�1

2
ð2sþ1Þ½1þð−1ÞJ�þsð2sþ1Þ for J≥2s;

1
2
ð2sþ1Þ½1þð−1ÞJ�þ 1

2
½ð4sþ1ÞJ−J2� for J<2s;

ð2:5Þ

which depends crucially on whether the X spin J is
even or odd. For instance, n½J; 0�IP ¼ ½1þ ð−1ÞJ�=2,
n½1; 1�IP ¼ 2, and n½2; 1�IP ¼ 6. Therefore, any particle
with an odd spin J cannot decay into two identical spinless
particles.
In contrast, in the massless (m ¼ 0) case, the number

n½J; s� of independent reduced helicity amplitudes is
reduced to

n½J; s� ¼
�
4 for J ≥ 2s

2 for J < 2s
for s > 0 and n½J; 0� ¼ 1;

ð2:6Þ

because only the maximal-magnitude helicity values
of �s are allowed for every massless particle of any spin
s. The number of independent terms in the case with s ¼ 0
is one, irrespective of the X spin J. On the other hand the
number of independent terms in the IP case is further
reduced to

n½J; s�IP ¼
�
2þ ð−1ÞJ for J ≥ 2s

1þ ð−1ÞJ for J < 2s
for s > 0 and n½J; 0�IP ¼

1

2
½1þ ð−1ÞJ�; ð2:7Þ

due to the Bose or Fermi symmetry. One immediate
consequence is that any odd-J particle cannot decay into
two identical massless particles of spin s larger than J=2
[30]. One well-known example is the decay of a spin-1
particle into two identical spin-1 massless particles like two
photons [45,46].

III. SPIN-J AND SPIN-s WAVE TENSORS

Generically, the decay amplitude of one spin-J particle X
of massmX into two particles,M1 andM2, of equal massm
and spin s, can be written in terms of the three-point vertex
tensor Γ (see Fig. 2 for its diagrammatic description),

MX→M1M2

σ;λ1;λ2

¼ ūα1���αn1 ðk1;λ1ÞΓμ1���μJ
α1���αn;β1���βnðp;kÞv

β1���βn
2 ðk2;λ2Þϵμ1���μJðp;σÞ;

ð3:1Þ

with the non-negative integer n ¼ s or n ¼ s − 1=2 in the
integer or half-integer spin-s case, respectively. p and σ are

the momentum and helicity of the particle X, and k1;2 and
λ1;2 are the momenta and helicities of two particles,M1 and
M2, respectively. Here, p ¼ k1 þ k2 and k ¼ k1 − k2 are
symmetric and antisymmetric under the interchange of two
momenta, k1 and k2.

FIG. 2. Feynman rules Γμ
α;βðp; kÞ for the general XM1M2 three-

point vertex of a spin-J particle X of mass mX and two massive
particles,M1 andM2, of equal mass m and spin s. The indices, μ,
α, and β, stand for the sequences of μ ¼ μ1 � � � μJ , α1 � � � αn, and
β1 � � � βn collectively with the non-negative integer n ¼ s or n ¼
s − 1=2 in the integer or half-integer spin-s case. The symmetric
and antisymmetric momentum combinations, p ¼ k1 þ k2 and
k ¼ k1 − k2, are introduced for systematic classifications of the
three-point vertex tensor in the following.

3Other discrete symmetries, like parity invariance, put their
corresponding constraints on the reduced helicity amplitudes,
although none of them are considered in the present work.
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If the spin s is an integer, then the bosonic wave tensors
ūα1���αs1 ðk1; λ1Þ and vβ1���βs2 ðk2; λ2Þ for the particles with
nonzero mass m are given by

ūα1���αs1 ðk1; λ1Þ ¼ ϵ�α1���αs1 ðk1; λ1Þ; ð3:2Þ

vβ1���βs2 ðk2; λ2Þ ¼ ϵ�β1���βs2 ðk2; λ2Þ; ð3:3Þ

each of which is explicitly given by [33–39]

ϵ�α1���αs1 ðk1; λ1Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sðsþ λ1Þ!ðs − λ1Þ!

ð2sÞ!

s X1
fτg¼−1

δτ1þ���þτs;λ1

Ys
i¼1

ϵ�αi1 ðk1; τiÞffiffiffi
2

p jτij ;

ð3:4Þ

ϵ�β1���βs2 ðk2; λ2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sðsþ λ2Þ!ðs − λ2Þ!

ð2sÞ!

s X1
fτg¼−1

δτ1þ���þτs;λ2

Ys
i¼1

ϵ�βi2 ðk2; τiÞffiffiffi
2

p jτij ;

ð3:5Þ

with the convention fτg ¼ τ1;…; τs as a linear combina-
tion of products of s polarization vectors with appropriate
Clebsch-Gordon coefficients. We note that the bosonic
wave tensors are totally symmetric, traceless, and diver-
gence-free,

εμναiαjϵ
α1���αi���αj���αs
a ðka; λaÞ ¼ 0; ð3:6Þ

gαiαjϵ
α1���αi���αj���αs
a ðka; λaÞ ¼ 0; ð3:7Þ

kαiϵ
α1���αi���αs
a ðka; λaÞ ¼ 0; ð3:8Þ

with a ¼ 1 and 2, and both of them satisfy the same on-
shell wave equation ðk21;2 −m2Þϵα1���αs1;2 ðk1;2; λ1;2Þ ¼ 0 for
any helicity value of λ1;2 taking an integer between −s and
s. In contrast, if m ¼ 0, the wave tensors with two allowed
helicities �s are given simply by a direct product of s spin-
1 polarization vectors, each of which carry the same helicity
of �1, as

ūα1ðk1;�sÞ¼ ϵ�α1���αs1 ðk1;�sÞ¼ ϵ�α11 ðk1;�1Þ���ϵ�αs1 ðk1;�1Þ;
ð3:9Þ

vβ2ðk2;�sÞ¼ ϵ�β1���βs2 ðk2;�sÞ¼ ϵ�β12 ðk2;�1Þ���ϵ�βs2 ðk2;�1Þ;
ð3:10Þ

which are totally symmetric, traceless, and divergence-free
in the four-vector indices, α ¼ α1 � � � αs and β ¼ β1 � � � βs,
as well.

On the other hand, for a half-integer s ¼ nþ 1=2 with a
non-negative integer n, the fermionic wave tensors for the
particles with nonzero mass are given by [33–36,38,39]

ūα1���αn1 ðk1;λ1Þ¼
X
τ¼�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ2τλ1

2s

r
ϵ�α1���αn1 ðk1;λ1−τÞū1ðk1;τÞ;

ð3:11Þ

vβ1���βn2 ðk2;λ2Þ¼
X
τ¼�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ2τλ2

2s

r
ϵ�β1���βn2 ðk2;λ2−τÞv2ðk2;τÞ;

ð3:12Þ

where ū1ðk1;� 1
2
Þ ¼ u†1ðk1;� 1

2
Þγ0 with the spin-1=2 par-

ticle spinor u1ðk1;� 1
2
Þ, and v2ðk2;� 1

2
Þ is the spin-1=2

antiparticle spinor. The spin-1=2 spinors satisfy their
own on-shell equations, ð=k1 −mÞu1ðk1;� 1

2
Þ ¼ 0 and

ð=k2 þmÞv2ðk2;� 1
2
Þ ¼ 0. In contrast, if m ¼ 0, the wave

tensors with two allowed helicities �s are given by a
product of a u or v spinor and n spin-1 wave vectors with
n ¼ s − 1=2 as

ūα1ðk1;�sÞ ¼ ϵ�α11 ðk1;�1Þ � � � ϵ�αn1 ðk1;�1Þū1
�
k1;�

1

2

�
;

ð3:13Þ

vβ2ðk2;�sÞ ¼ ϵ�β12 ðk2;�1Þ � � � ϵ�βn2 ðk2;�1Þv2
�
k2;�

1

2

�
;

ð3:14Þ

which are totally symmetric, traceless, and divergence-free
in the four-vector indices, α ¼ α1 � � � αn and β ¼ β1 � � � βn,
as well.
Similarly, the on-shell boson X of an integer spin J, mass

mX, momentum p, and helicity σ is represented by a totally
symmetric, traceless, and divergence-free rank-J bosonic
wave tensor, ϵμ1���μJðp; σÞ [33–39]. The explicit form of the
bosonic wave tensor is given by

ϵμ1���μJðp; σÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JðJ þ σÞ!ðJ − σÞ!

ð2JÞ!

s X1
fτg¼−1

δτ1þ���þτJ;σ

YJ
i¼1

ϵμiðp; τiÞffiffiffi
2

p jτij ;

ð3:15Þ

with the convention fτg ¼ τ1;…; τs, which satisfies the on-
shell equation of motion ðp2 −m2

XÞϵμ1���μJðp; σÞ ¼ 0 for
any helicity value of σ taking an integer value between −J
and J.
For calculating the reduced helicity amplitudes in the

following, we show the explicit expressions for the wave
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vectors and spinors of the particle X and two particlesM1;2
in the XRF with the kinematic configuration as shown in
Fig. 1. The JW convention of Refs. [40,41] is adopted for
expressing the vectors and spinors. For the sake of notation,
we introduce three unit vectors,

n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ; ð3:16Þ

θ̂ ¼ðcos θ cosϕ; cos θ sinϕ;− sin θÞ; ð3:17Þ

ϕ̂ ¼ð− sinϕ; cosϕ; 0Þ; ð3:18Þ

expressed in terms of the polar and azimuthal angles, θ and
ϕ. The three unit vectors are mutually orthonormal, i.e.,
n̂ · θ̂ ¼ θ̂ · ϕ̂ ¼ ϕ̂ · n̂ ¼ 0 and n̂ · n̂ ¼ θ̂ · θ̂ ¼ ϕ̂ · ϕ̂ ¼ 1.
The four-momentum sum p ¼ k1 þ k2 and the four-
momentum difference k ¼ k1 − k2 read

p ¼ mXp̂ ¼ mXð1; 0⃗Þ and k ¼ mXκk̂ ¼ mXκð0; n̂Þ;
ð3:19Þ

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=m2

X

p
is the speed of the particlesM1;2

in the XRF. In the following, we use the normalized
momenta p̂ ¼ ð1; 0⃗Þ and k̂ ¼ ð0; n̂Þ for calculating all
the reduced helicity amplitudes in the XRF.
The spin-1 wave vectors for the particle X with

momentum p and two particles M1;2 with momenta
k1;2 ¼ ðp� kÞ=2 ¼ mXð1;�κn̂Þ=2 are given in the JW
convention by

ϵðp;�1Þ ¼ 1ffiffiffi
2

p ð0;∓1;−i; 0Þ; ϵðp; 0Þ ¼ ð0; 0; 0; 1Þ;

ð3:20Þ

ϵ1ðk1;�1Þ ¼ 1ffiffiffi
2

p e�iϕð0;∓ θ̂ − iϕ̂Þ;

ϵ1ðk1; 0Þ ¼
mX

2m
ðκ; n̂Þ; ð3:21Þ

ϵ2ðk2;�1Þ ¼ 1ffiffiffi
2

p e∓iϕð0;�θ̂ − iϕ̂Þ;

ϵ2ðk2; 0Þ ¼
mX

2m
ð−κ; n̂Þ; ð3:22Þ

in the XRF, among which the transverse wave
vectors satisfy the relation ϵ2ðk2;�1Þ ¼ ϵ1ðk1;∓ 1Þ ¼
−ϵ�1ðk1;�1Þ ¼ −ϵ�2ðk2;∓ 1Þ in the JW convention.
The spin-1=2 u1 and v2 spinors of the particles M1;2 are

given in the JW convention by

u1

�
k1;�

1

2

�
¼

ffiffiffiffiffiffiffi
mX

2

r � ffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ κ

p
χ�ðn̂Þffiffiffiffiffiffiffiffiffiffiffi

1� κ
p

χ�ðn̂Þ

�
and

v2

�
k2;�

1

2

�
¼ �

ffiffiffiffiffiffiffi
mX

2

r � ffiffiffiffiffiffiffiffiffiffiffi
1� κ

p
χ�ðn̂Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ κ

p
χ�ðn̂Þ

�
; ð3:23Þ

where the 2-component spinors χ�ðn̂Þ are written in terms
of the polar and azimuthal angles, θ and ϕ, as

χþðn̂Þ ¼
�
cos θ

2

sin θ
2
eiϕ

�
and χ−ðn̂Þ ¼

�− sin θ
2
e−iϕ

cos θ
2

�
;

ð3:24Þ

being mutually orthonormal, i.e., χ†aðn̂Þχbðn̂Þ ¼ δa;b, with
a; b ¼ �, in the XRF.

IV. BASIC COVARIANT THREE-POINT
VERTICES

In this section, we derive all the Lorentz-covariant
operators corresponding to the reduced helicity amplitudes
for three values of J ¼ 0, 1, 2 and a fixed value of s ¼ 1
and to those for two values of J ¼ 0, 1 and a fixed value of
s ¼ 1=2. These covariant operators constitute the backbone
for weaving the covariant three-point vertices for arbitrary
J and s.

A. Bosonic vertex operators (s= 1)

First, we consider the decay of a spin-0 particle X into
two spin-1 bosons,M1 andM2. The number of independent
terms involving the 0 → 1þ 1 decay is n½0; 1� ¼ 3,
accounting for the three reduced helicity amplitudes,
C0�1;�1 and C00;0, in the XRF. After a little manipulation,
we can find the three covariant three-point vertex operators
defined as

S�αβ ¼
1

2
½g⊥αβ � ihαβp̂ k̂i� ↔ C0�1;�1 ¼ 1; ð4:1Þ

S0αβ ¼
4m2

m2
X
p̂αp̂β ↔ C00;0 ¼ −κ2; ð4:2Þ

with the orthogonal tensor g⊥αβ ¼ gαβ − p̂αp̂β þ k̂αk̂β and
hαβp̂ k̂i ¼ εαβρσp̂ρk̂σ in terms of the totally antisymmetric
Levi-Civita tensor with the sign convention ε0123 ¼ þ1.
Each of the three covariant three-point vertices generates
solely its corresponding reduced helicity amplitude in the
JW convention, as shown in Eqs. (4.1) and (4.2).4

Second, there are in general n½1; 1� ¼ 7 independent
terms for the 1 → 1þ 1 decay mode, among which three
generate the same helicity combinations, as in the case with

4In a convention different from the JW convention, every
reduced helicity amplitude is modified simply by a proper phase.
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J ¼ 0. The corresponding covariant three-point vertices are
simply k̂μS�αβ and k̂μS0αβ generating their corresponding
reduced helicity amplitudes, C1�1;�1 ¼ −1 and C10;0 ¼ κ2,
which are identical to −C0�1;�1 and −C00;0, respectively. The
remaining four covariant vertices and their corresponding
reduced helicity amplitudes are given by

V�
1αβ;μ ¼

m
mX

p̂β½g⊥αμ � ihαμp̂ k̂i� ↔ C1�1;0 ¼ κ; ð4:3Þ

V�
2αβ;μ ¼

m
mX

p̂α½g⊥βμ ∓ ihβμp̂ k̂i� ↔ C10;�1 ¼ −κ; ð4:4Þ

with the orthogonal tensors g⊥αμ ¼ gαμ − p̂αp̂μ þ k̂αk̂μ
and g⊥βμ ¼ gβμ − p̂βp̂μ þ k̂βk̂μ.

5

Third, the decay of a spin-2 particle X into two spin-1
particles,M1 andM2, is in general described by n½2; 1� ¼ 9
independent terms. Seven of them can be constructed
simply by multiplying the seven vertices participating in
the spin-1 case by k̂, i.e., k̂μ2 k̂μ1S

�;0
αβ , k̂μ2V

�
1αβ;μ1

, and

k̂μ2V
�
2αβ;μ1

, generating the reduced helicity amplitudes,
C2�1;�1 ¼ 1, C20;0 ¼ −κ2, and C2�1;0 ¼ −C20;�1 ¼ −κ, identi-
cal to −C1�1;�1, −C10;0, −C1�1;0, and −C10;�1, respectively. The
two remaining covariant vertices and their corresponding
reduced helicity amplitudes are

T�
αβ;μ1μ2

¼ 1

4
½g⊥αμ1 � ihαμ1p̂ k̂i�½g⊥βμ2 � ihβμ2p̂ k̂i�

↔ C2�1;∓1 ¼ 1: ð4:5Þ

Note that the number of independent terms does not
increase any more for J larger than 2, i.e., n½J; 1� ¼ 9
for J ≥ 2. Generally, the covariant three-point vertex
Γαβ;μ1μ2���μJ ¼ Γαβ;μ1μ2 k̂μ3 � � � k̂μJ for J ≥ 2.
Scrutinizing the structure of all the scalar, vector, and

tensor composite vertex operators carefully listed in
Eqs. (4.1)–(4.5), we realize that any nontrivial helicity
shifts in the XRF are generated essentially by two basic
vector operators, Uþ

1;2, and their complex conjugates, U−
1;2,

responsible for the positive and negative one-step transition
of the M1 and M2 helicity states as

U�
1αμ ¼

1

2
½g⊥αμ � ihαμp̂ k̂i� ⇔ ½λ1; λ2� → ½λ1 � 1; λ2�;

ð4:6Þ

U�
2βμ ¼

1

2
½g⊥βμ ∓ ihβμp̂ k̂i� ⇔ ½λ1; λ2� → ½λ1; λ2 � 1�;

ð4:7Þ

respectively. In the operator form, the scalar and tensor
composite three-point vertex operators in Eqs. (4.1) and
(4.5) can be expressed in an inner product and an outer
product of the operators U�

1 and U�
2 , as

S�αβ ¼ gμ1μ2U�
1αμ1

U�
2βμ2

≡ ½U�
1 ·U�

2 �αβ ⇔ ½λ1; λ2� → ½λ1 � 1; λ2 � 1�; ð4:8Þ

T�
αβ;μ1μ2

¼ U�
1αμ1

U∓
2βμ2

≡ ½U�
1 ⋆U∓

2 �αβ;μ1μ2 ⇔ ½λ1; λ2� → ½λ1 � 1; λ2 ∓ 1�;
ð4:9Þ

respectively. Furthermore, in addition to the normalized
momentum k̂μ, the momenta, p̂α;β, can be used for match-
ing the numbers of μ-, α-, and β-type indices for given J
and s, while keeping the helicity values intact, and for
defining the scalar and vector three-point vertices as

S0αβ ¼
2m
mX

p̂α
2m
mX

p̂β; V�
1αβ;μ ¼

2m
mX

p̂βU�
1αμ; and

V�
2αβ;μ ¼

2m
mX

p̂αU�
2βμ: ð4:10Þ

Clearly, these five composite operators in Eq. (4.10) do not
contribute to the decay dynamics in the massless case with
m ¼ 0, consistent with the point that all the helicity-zero
longitudinal modes are absent for any massless states.
In order to clarify the characteristics of the basic and

composite operators, let us introduce an integer-helicity-
lattice space consisting of ð2sþ 1Þ × ð2sþ 1Þ in order for
each point ½λ1; λ2� to stand for its corresponding reduced
helicity amplitude CJλ1;λ2 existing only when jλ1 − λ2j ≤ J
and jλ1;2j ≤ s. As shown in the left panel of Fig. 3, the one-
step increasing horizontal and vertical transitions are
dictated by the basic operators, Uþ

1 and Uþ
2 , from the

point ½λ1;λ2� to the point ½λ1 þ 1; λ2� and the point
½λ1; λ2 þ 1� in the helicity-lattice space, respectively. By
combining the normalized momenta p̂ and k̂ and the basic
transition operators properly, we can construct nine differ-
ent transitions consisting of three scalar composite oper-
ators S�;0, four vector composite operators V�

1 and V�
2 , and

two tensor composite operators T�, as shown in the right
panel of Fig. 3. Properly combining the nine composite
operators enables us to reach every integer-helicity-lattice
point. To summarize, for any given integer J and integer s
we can weave the covariant three-point vertex correspond-
ing to every integer-helicity combination of ½λ1; λ2� effi-
ciently and systematically. The explicit form of every

5Making suitable use of Schouten identities, we can check that
the set of seven three-point vertices listed above are equivalent to
that of the seven VWþW− three-point vertex terms listed in
Ref. [47].
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covariant three-point vertex constructed by weaving the
covariant composite operators is to be presented in Sec. V.

B. Fermionic vertex operators ðs= 1=2Þ
First, we consider the decay of a spin-0 particleX into two

spin-1=2 fermions,M1 andM2. The number of independent
terms involving the 0 → 1=2þ 1=2 two-body decay is
n½0; 1=2� ¼ 2, accounting for the two reduced helicity
amplitudes, C0�1=2;�1=2. After a little manipulation, we can
find the following two covariant three-point operators:

P� ¼ 1

2mX
ð1 ∓ κγ5Þ ↔ C0�1=2;�1=2 ¼ κ; ð4:11Þ

with the M1;2 speed κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=m2

X

p
in the XRF.

Second, there are, in general, n½1; 1=2� ¼ 4 independent
terms for the 1 → 1=2þ 1=2 decay mode, among which
two terms take the same helicity combinations as in the
J ¼ 0 case. The corresponding covariant three-
point vertices are simply k̂μP� generating their corre-
sponding reduced helicity amplitudes, C1�1=2;�1=2 ¼ −κ,
identical to −C0�1=2;�1=2. The remaining two covariant
vertices and their corresponding reduced helicity ampli-
tudes are given by

W�
μ ¼ 1

2
ffiffiffi
2

p
mX

ð�κγ⊥μþγμγ5Þ↔C1�1=2;∓1=2¼�κ; ð4:12Þ

with the orthogonal Dirac gamma matrix γ⊥μ ¼ γμþ
2m
mXκ

k̂μ.
Properly combining the fermionic transition operators

in Eqs. (4.11) and (4.12), depicted diagrammatically in

Fig. 4, and the bosonic transition operators in Eqs. (4.1)–
(4.5) enables us to reach every half-integer-helicity-lattice
point. To summarize, for any given integer J and half-
integer s, we can weave the covariant three-point vertex
corresponding to every half-integer-helicity combination
of ½λ1; λ2� efficiently and systematically. The explicit form
of the covariant fermionic three-point vertex constructed
by weaving the fermionic as well as bosonic operators is
to be presented in Sec. V.

V. WEAVING THE COVARIANT THREE-POINT
VERTICES

Before building up all the covariant three-point vertices
explicitly, we demonstrate that any covariant three-
point vertex is indeed composed by the nine composite
bosonic operators in the bosonic case and four basic
fermionic operators in the fermionic case, as well as the
normalized momentum k̂μ, as worked out in Sec. IV. For the
demonstration, it is crucial to take into account the following
points, valid for the on-shell X and M1;2 particles:

(i) All the bosonic wave tensors are totally symmetric,
traceless, and divergence-free in their four-vector
indices, and the fermionic spinors satisfy

γαiu
α1���αi���αn
1 ðk1;λ1Þ¼γβjv

β1���βj���βn
2 ðk2;λ2Þ¼0; ð5:1Þ

with the non-negative integer n ¼ s − 1=2. There-
fore, any fermionic vertices involving γαi or γβj with
i; j ¼ 1;…; n can be effectively excluded. Any pair
of μ, α, or β four-vector indices in any covariant
three-point vertex can be shuffled freely due to the
totally symmetric property of each wave tensor, and
any term including pμi for i ¼ 1; � � � J can be
excluded effectively due to the divergence-free
condition of thewave tensor of the decaying particle
X with momentum p. On the other hand, the
divergence-free condition of the M1 and M2 wave
tensors allows us to replace k2αj and k1βj effectively
by pαj and pβj for j ¼ 1; � � � n with n ¼ s in the
bosonic case and n ¼ s − 1=2 in the fermionic case.

FIG. 4. A diagrammatic description of the half-step transitions
by the four fermionic operators, P� and W�, from the original
point [0, 0] to the four half-integer-helicity points ½� 1

2
;� 1

2
� and

½� 1
2
;∓ 1

2
�, respectively.

FIG. 3. (Left) A diagrammatic description of the basic oper-
ators, Uþ

1 and Uþ
2 , moving the integer-helicity point ½λ1; λ2� to the

integer-helicity point ½λ1 þ 1; λ2� horizontally and to the integer-
helicity point ½λ1; λ2 þ 1� vertically in the helicity-lattice space,
respectively. Although not presented, the transitions moving
down the integer-helicity point by one step horizontally
and vertically are dictated by the complex-conjugate operators,
U−

1 ¼ ðUþ
1 Þ� and U−

2 ¼ ðUþ
2 Þ�, respectively. (Right) A graphical

description of the nine different transitions by the three scalar
composite operators S� and S0, four vector composite operators
V�
1 and V�

2 , and two tensor composite operators T�.
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(ii) In principle, the two nonvanishing operators,
hαβμp̂i and hαβμk̂i, linking all the μ, α, and β
four-vector indices, could be included for construct-
ing in the covariant three-point vertices. However, it
turns out that the operators can be replaced effec-
tively by the three operators, p̂βhαμp̂ k̂i, p̂αhβμp̂ k̂i,
and hαβp̂ k̂i, through the relations

hαβμp̂i ¼ p̂αhβμp̂ k̂i=κ þ p̂βhαμp̂ k̂i=κ − hαβp̂ k̂i;
ð5:2Þ

hαβμk̂i ¼ p̂αhβμp̂ k̂i − p̂βhαμp̂ k̂i; ð5:3Þ

derived by use of the Schouten identity reflecting
that no rank-5 completely antisymmetric tensor
exists in four dimensions.

(iii) Any product of more than two gamma matrices can
be reduced to a linear combination of products with
two or less numbers of gamma matrices by con-
secutively using the following relation:

γλγμγν ¼ gλμγν þ gμνγλ − gλνγμ − iϵλμνργργ5: ð5:4Þ
The totally symmetric and traceless properties of the
X wave tensor enable us to exclude the product of
two μ-indexed gamma matrices with the relation
γμiγμj þ γμjγμi ¼ 2gμiμj . Moreover, the Gordon iden-
tities for the on-shell M1 and M2 spinors,

ūðk1; λ1Þ½iσμνp̂ν�vðk2; λ2Þ

¼ 2m
mX

ūðk1; λ1Þ
�
γ⊥μ −

mX

2mκ
k̂μ

�
vðk2; λ2Þ; ð5:5Þ

ūðk1; λ1Þ½iσμνk̂ν�vðk2; λ2Þ ¼ 0; ð5:6Þ

ūðk1; λ1Þ½iσμνp̂νγ5�vðk2; λ2Þ

¼ −
k̂μ
κ
ūðk1; λ1Þ½γ5�vðk2; λ2Þ; ð5:7Þ

ūðk1; λ1Þ½iσμνk̂νγ5�vðk2; λ2Þ

¼ 2m
mXκ

ūðk1; λ1Þ½γμγ5�vðk2; λ2Þ; ð5:8Þ

guarantee exploiting the gamma matrix set
D ¼ f1; γ5; γμ; γμγ5g consisting of two scalar oper-
ators, 1 and γ5, and two vector operators, γμ and
γμγ5, for constructing the fermionic three-point
vertices effectively and completely.

With all the effective replacement and exclusion proce-
dures described above, we end up with the conclusion that
the independent fundamental operators appearing in the
covariant three-point vertices simply consist of the follow-
ing three scalar-type operators:

p̂αp̂β; gαβ; hαβp̂ k̂i; ð5:9Þ

and the following four vector-type operators:

p̂αgβμ; p̂βgαμ; p̂αhβμp̂k̂i; p̂βhβμp̂k̂i; ð5:10Þ

with the normalized momentum k̂μ used in increasing
solely the number of the μ indices. Since all the seven
fundamental bosonic operators and the four fermionic
operators of the gamma matrix set D are expressed as
linear combinations of the three scalar and four vector
bosonic operators in Eqs. (4.1)–(4.4) and the four basic
fermionic operators in Eqs. (4.11) and (4.12), it is guar-
anteed that no further operators are required for construct-
ing the covariant three-point vertices.
As many indices of different types are involved in

expressing a covariant three-point vertex, especially for
high-spin particles, we introduce the following compact
square-bracket notations:

½k̂�n → ðk̂nÞμ1���μn ¼ k̂μ1 � � � k̂μn ; ð5:11Þ

½S0�n → ðS0Þnα1���αn;β1���βn ¼ S0α1β1 � � � S0αnβn ; ð5:12Þ

½S��n → ðS�Þnα1���αn;β1���βn ¼ S�α1β1 � � �S�αnβn ; ð5:13Þ

½V�
a �n → ðV�

a Þnα1���αn;β1���βn;μ1���μn
¼ V�

aα1β1;μ1
� � �V�

aαnβn;μn
with a ¼ 1; 2; ð5:14Þ

½T��n → ðT�Þnα1���αn;β1���βn;μ1μ2���μ2n−1μ2n
¼ T�

α1β1;μ1μ2
� � �T�

αnβn;μ2n−1μ2n
; ð5:15Þ

for a non-negative integer n. Obviously, the zeroth power
(n ¼ 0) of any operator or normalized four momentum is
set to be 1. We emphasize once more that any permutation
of the α, β, and μ four-vector indices can be regarded as
equivalent as eventually the vertex operators are to be
coupled with the X and M1;2 wave tensors totally sym-
metric in the four-vector indices.

A. Bosonic three-point vertices

In the integer s case, any helicity-lattice point where
both λ1 and λ2 are even or odd can be reached through
a sequence of diagonal transitions by the scalar
composite operators S� and S0 and the tensor composite
operators T�. In fact, a little algebraic manipulation leads
to the following expression for the covariant three-point
vertex

½HJ;s
ii½λ1;λ2�� ¼ ½k̂�J−2jλ−j½S0�s−jλþj−jλ−j½Sλ̂þ�jλþj½T λ̂− �jλ−j; ð5:16Þ

in an operator form with two helicity combinations,
λþ ¼ ðλ1 þ λ2Þ=2 and λ− ¼ ðλ1 − λ2Þ=2, and their signs,
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λ̂þ ¼ signðλþÞ and λ̂− ¼ signðλ−Þ. We note that both λþ
and λ− take integer values. The subscript ii implies that
both λþ and λ− take integer values.
On the other hand, any helicity-lattice point

where λ1 and λ2 are even and odd and vice versa can
be reached through a sequence of diagonal transitions by
the scalar composite operators S� and S0 and the tensor
composite operators T� followed by a proper vertical or
horizontal transition with the vector composite operators
V�
1 or V�

2 . Explicitly, we have the following expression
with half-integer λþ and λ− for the three-point vertex

½HJ;s
hh½λ1;λ2�� ¼ ½k̂�J−2jλ−j½S0�s−jλþj−jλ−j½δλ̂þ;λ̂−V

λ̂þ
1 þ δλ̂þ;−λ̂−V

λ̂þ
2 �

× ½Sλ̂þ�jλþj−1=2½T λ̂− �jλ−j−1=2; ð5:17Þ

with two non-negative integer values of jλ�j − 1=2 in this
case. The subscript hh implies that both λþ and λ− take
half-integer values.

B. Fermionic three-point vertices

In the half-integer s case with two fermions M1 and M2,
the helicity combinations can be categorized into two
classes. One is when the helicity sum ½λ1 þ λ2� and the
helicity difference ½λ1 − λ2� are odd and even with a half-
integer λþ and an integer λ−, to be denoted by the notation
hi. The other is when the helicity sum and difference are
even and odd with an integer λþ and a half-integer λ−, to be
denoted by the notation ih. Taking a proper half-integer-

helicity transition as described in Fig. 4 followed by a
sequence of integer-helicity transitions, we can obtain the
following expression of the fermionic three-point vertex
with the helicities λ1 and λ2,

½HJ;s
hi½λ1;λ2�� ¼ ½k̂�J−2jλ−j½S0�s−jλþj−jλ−j½Pλ̂þ�½Sλ̂þ�jλþj−1=2½T λ̂− �jλ−j;

ð5:18Þ

involving a fermionic scalar operator P� for half-integer λþ
and integer λ− and

½HJ;s
ih½λ1;λ2�� ¼ ½k̂�J−2jλ−j½S0�s−jλþj−jλ−j½W λ̂− �½Sλ̂þ�jλþj½T λ̂− �jλ−j−1=2;

ð5:19Þ

with a fermionic vector operator W� for integer λþ and
half-integer λ−. The subscript hi (ih) implies that λþ takes
a half-integer (integer) value and λ− an integer (half-
integer) value.

C. General form of three-point vertices

Wrapping up all the previous results in both the integer
and half-integer spin-s cases, the general form of any
covariant three-point vertex Γαβ;μ for given J and s can be
expressed as a linear combination of all the allowed
helicity-specific three-point vertices. The succinct operator
form of the covariant three-point vertex is given by

½Γ� ¼
8<
:

P
s
λ1;2¼−s½cJ;sii½λ1;λ2�½H

J;s
ii½λ1;λ2�� þ cJ;shh½λ1;λ2�½H

J;s
hh½λ1;λ2��� for an integer s;P

s
λ1;2¼−s½cJ;shi½λ1;λ2�½H

J;s
hi½λ1;λ2�� þ cJ;sih½λ1;λ2�½H

J;s
ih½λ1;λ2��� for a half-integer s;

ð5:20Þ

with the constraint jλ1 − λ2j ≤ J, i.e., J − 2jλ−j ≥ 0,
where the helicity-specific coefficients, cJ;sx½λ1;λ2� with

x ¼ ii; hh; hi; hi, depend only on the X and M1;2 masses.
We claim that the expression (5.20), along with the helicity-
specific vertices in Eqs. (5.16)–(5.19), is the key result of
the present work. Although they are originally deduced
from the comparison with the helicity amplitudes in the
XRF, the Lorentz-covariant three-point vertices can be used
in every reference frame because in any given reference
frame the totally symmetric, traceless, and divergence-free,
as well as on-shell conditions of the spin-J and spin-s wave
functions, are valid, and also every helicity amplitude is
expressed completely as a linear combination of the helicity
amplitudes in the XRF through the so-called Wick helicity
rotation [48–50].

D. Massless case

In the case with massless M1;2 of spin s, the physically
allowed helicity values are �s. Furthermore, the five scalar
and vector operators S0 and V�

1;2 are vanishing as they
are proportional to m2 and m, respectively. Therefore, the
helicity-specific vertices could survive only when λ1 ¼
λ2 ¼ �s or λ1 ¼ −λ2 ¼ �s. These combinations satisfy
s − jλþj þ jλ−j ¼ 0. In addition, in the opposite helicity
case, the X spin J cannot be smaller than 2s. Consequently,
in the m ¼ 0 case, there could exist at most four indepen-
dent terms in both the bosonic and fermionic cases, as
counted in Eq. (2.6).
In the bosonic case with an integer s, the bosonic

covariant three-point vertex is given in an operator form by
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½Γ� ¼ cJ;sii½þs;þs�½k�J½Sþ�s þ cJ;sii½−s;−s�½k�J½S−�s

þ θðJ − 2sÞfcJ;sii½þs;−s�½k�J−2s½Tþ�s

þ cJ;sii½−s;þs�½k�J−2s½T−�sg; ð5:21Þ

where the last two terms survive only when J ≥ 2s, as
denoted by the step function θðJ − 2sÞ ¼ 1 for J ≥ 2s and
0 for J < 2s. On the other hand, in the fermionic case with a
half-integer s, the fermionic covariant three-point vertex is
given in an operator form as

½Γ�¼cJ;shi½þs;þs�½k�J½Pþ�½Sþ�s−1=2þcJ;shi½−s;−s�½k�J½P−�½S−�s−1=2

þθðJ−2sÞfcJ;sih½þs;−s�½k�J−2s½Wþ�½Tþ�s−1=2

þcJ;sih½−s;þs�½k�J−2s½W−�½T−�s−1=2g: ð5:22Þ

The results in Eqs. (5.21) and (5.22) are consistent with
those derived in Ref. [30].

E. Identical particle relation: Bose or Fermi symmetry

If two particles M1 and M2 are identical, the state of the
two-particle system must be symmetric or antisymmetric
under the interchange of two integer or half-integer spin
particles. In this subsection we work out the constraints on
the covariant three-point vertex imposed by the Bose or
Fermi symmetry.
In the bosonic case with two identical particles of an

integer spin s, the covariant three-point vertex tensor Γαβ;μ

must be symmetric under the interchange of M1 and M2

due to Bose symmetry as

Γα1���αs;β1���βs;μ1���μJðp;kÞ¼Γβ1���βs;α1���αs;μ1���μJðp;−kÞ; ð5:23Þ

under the transformations

αi ↔ βj and k1 ↔ k2; ð5:24Þ

for any pair of i; j ¼ 1;…; s, leaving p ¼ k1 þ k2 invariant
but changing the sign of k as k → −k. Combining the
index and momentum interchanges with the inter-
change of the M1 and M2 helicities, the helicity-specific
three-point vertices transform under the Bose symmetriza-
tion as

½HJ;s
ii½λ1;λ2�� ↔ ð−1ÞJ½HJ;s

ii½λ2;λ1�� and

½HJ;s
hh½λ1;λ2�� ↔ −ð−1ÞJ½HJ;s

hh½λ2;λ1��; ð5:25Þ

leading to the constraints on the helicity-specific coeffi-
cients as

cJ;sii½λ1;λ2� ¼ ð−1ÞJcJ;sii½λ2;λ1� and cJ;shh½λ1;λ2� ¼ −ð−1ÞJcJ;shh½λ2;λ1�:

ð5:26Þ

One observation is that the diagonal ii and hh elements
with λ1 ¼ λ2 vanish for odd J and even J, respectively.
Another observation is that any spin-1 (J ¼ 1) particle
cannot decay into two identical massless spin-1 particles, as
the coefficient of the only allowed terms c1;1ii½λ;λ� vanish, as
proven more than seventy years ago [45,46]. We note that
the so-called Landau-Yang theorem is generalized to the
case with any values of J and s [30].
In the fermionic case with two identical fermions of a

half-integer spin s, interchanging two identical massless
fermions, i.e., taking the opposite fermion flow line
[51,52], we can rewrite the helicity amplitude of the decay
X → ff with a massless fermion M ¼ f as

M̃X→ff
σ;λ1;λ2

¼ ūβ2ðk2; λ2ÞΓμ
β;αðp;−kÞvα1ðk1; λ1Þϵμðp; σÞ

¼ vαT1 ðk1; λ1ÞΓμT
β;αðp;−kÞūβT2 ðk2; λ2Þϵμðp; σÞ;

ð5:27Þ

with the superscript T denoting the transpose of the matrix.
Introducing the charge-conjugation operator C satisfying
C† ¼ C−1 and CT ¼ −C and relating the v spinor to the u
spinor as

vαðk; λÞ ¼ CūαTðk; λÞ; ð5:28Þ

with ū ¼ u†γ0, we can rewrite the amplitude as

M̃X→ff
σ;λ1;λ2

¼ −ūβ1ðk1; λ1ÞCΓμT
β;αðp;−kÞC−1vα2ðk2; λ2Þϵμðp; σÞ:

ð5:29Þ

Since Fermi statistics requires M̃ ¼ −M, the three-point
vertex tensor must satisfy the relation

CΓμT
β;αðp;−kÞC−1 ¼ Γμ

α;βðp; kÞ; ð5:30Þ

which enables us to classify all the allowed terms system-
atically [43,53,54].
The basic relation for the charge-conjugation invariance

of the Dirac equation is CγTμC−1 ¼ −γμ with a unitary
matrix C. Repeatedly using the basic relation, we can
derive

Γc≡CΓTC−1¼ ϵCΓ with ϵC¼
�þ1 for Γ¼1;γ5;γμγ5;

−1 for Γ¼ γμ:

ð5:31Þ

There are no further independent terms as any other
operator can be replaced by a linear combination of 1,
γ5, γμ, and γμγ5 by use of the so-called Gordon identities,
when coupled to the u and v spinors as shown in
Eqs. (5.5)–(5.8).
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Consequently, according to all the transformation prop-
erties of covariant three-point vertex operators worked out
above, the helicity-specific three-point vertices transform
under the Fermi symmetrization as

HJ;s
hi½λ1;λ2�↔ð−1ÞJHJ;s

hi½λ2;λ1� and HJ;s
ih½λ1;λ2�↔−ð−1ÞJHJ;s

ih½λ2;λ1�;

ð5:32Þ

leading to the constraints on the helicity-specific coeffi-
cients as

cJ;shi½λ1;λ2� ¼ ð−1ÞJcJ;shi½λ2;λ1� and cJ;sih½λ1;λ2� ¼ −ð−1ÞJcJ;sih½λ2;λ1�:

ð5:33Þ

One observation is that the diagonal hi and ih elements
with λ1 ¼ λ2 vanish for odd J and even J, respectively, as in
the bosonic case.

F. Off-shell electromagnetic gauge-invariant vertices

Due to the electromagnetic (EM) gauge invariance, any
off-shell photon couples to a conserved current. Therefore,
in any timelike photon exchange process involving the
γ�M1M2 vertex, the off-shell photon can be treated as a
spin-1 particle of mass mX ¼

ffiffiffiffiffi
p2

p
. Moreover, the covar-

iant three-point γ�M1M2 vertex can be cast into a mani-
festly EM gauge-invariant form [36,43] as

Γμ
EMα;β ¼ p2Γμ

α;β − ðp · Γα;βÞpμ; ð5:34Þ

automatically satisfying the current conservation condi-
tion pμΓ

μ
EMα;β ¼ p · ΓEMα;β ¼ 0.

The IP condition on the redefined EM gauge-invariant
three-point vertex is identical to that on the original three-
point vertex as the momentum p is invariant under Bose or
Fermi symmetry. Note that the case with an off-shell spin-J
particle coupled to a conserved tensor current can be treated
in a similar manner as in the off-shell photon case.

VI. VARIOUS SPECIFIC EXAMPLES

In order to check the validity of our algorithm for weaving
the three-point covariant vertices explicitly, we investigate
the helicity-specific three-point vertices for three spinvalues
J ¼ 0, 1, 2, which can be directly employed for performing
model-independent analyses in the context of various
phenomenological aspects in this section.

A. J = 0 three-point vertices

We consider the decay of a spin-0 particle into two spin-s
particles. In this case, the restriction jλ1 − λ2j ≤ J ¼ 0
forces λ1 ¼ λ2 ¼ λ to be satisfied so that the three-point
vertex consists of the n½0; s� ¼ 2sþ 1 independent terms of
the form

½H0;s
ii½λ;λ�� ¼ ½S0�s−jλj½Sλ̂�jλj; ð6:1Þ

with λ varying from −s to s and λ̂ ¼ signðλÞ in the bosonic
case with a non-negative integer s, and

½H0;s
hi½λ;λ�� ¼ ½S0�s−jλj½Pλ̂�½Sλ̂�jλj−1=2; ð6:2Þ

in the fermionic case with a positive half-integer s. Note
that the three-point vertices do not change in number and
form even in the IP case with J ¼ 0, as all the scalar
composite operators, S0, S�, and P�, are symmetric under
Bose and Fermi symmetry transformations. We check that,
if P and T symmetries are imposed, the covariant form of
the J ¼ 0 scalar three-point vertices is perfectly consistent
with that of the scalar current of massive as well as massless
on-shell states of any spin presented in Refs. [31,32].

B. J = 1 three-point vertices

Let us now consider the case with J ¼ 1. There exist
n½1; s� ¼ 6sþ 1 independent terms decomposed into two
classes. One class with 2sþ 1 terms is when two helicities
are identical, i.e., λ1 ¼ λ2. The corresponding helicity-
specific vertex is given by

½H1;s
ii½λ;λ�� ¼ ½k̂�½S0�s−jλj½Sλ̂�jλj ¼ ½k̂�½H0;s

ii½λ;λ�� ð6:3Þ

in the bosonic case, and

½H1;s
hi½λ;λ�� ¼ ½k̂�½S0�s−jλj½Pλ̂�½Sλ̂�jλj−1=2 ¼ ½k̂�½H0;s

hi½λ;λ�� ð6:4Þ

in the fermionic case. It is noteworthy that all the helicity-
specific vertices in Eqs. (6.3) and (6.4) vanish in the IP
case, as the operator ½k̂� is antisymmetric under Bose and
Fermi symmetrization. The other class with 4s independent
terms is when the difference of two helicities are �1, i.e.,
λ1 ¼ λ2 � 1. The corresponding helicity-specific bosonic
vertex is given by

½H1;s
hh½λ;λ∓1��¼ ½S0�s−jλþj−1=2½δλ̂þ;�V�

1 þδλ̂þ;∓V
∓
2 �½Sλ̂þ�jλþj−1=2;

ð6:5Þ

with λþ ¼ λ ∓ 1=2 and the constraint jλþj ≤ s − 1=2, and
the helicity-specific fermionic vertex by

½H1;s
ih½λ;λ∓1�� ¼ ½S0�s−jλþj−1=2½W��½Sλ̂þ�jλþj; ð6:6Þ

with λþ ¼ λ ∓ 1=2 and the constraint jλþj ≤ s − 1=2. In
the IP case with two identical particles (M1 ¼ M2), the
covariant three-point vertex in the bosonic case is
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½H1;s
hh½λ;λ∓1��IP ¼ 1

2
½S0�s−jλþj−1=2½δλ̂þ;�ðV�

1 þ V�
2 Þ

þδλ̂þ;∓ðV
∓
1 þ V∓

2 Þ�½Sλ̂þ�jλþj−1=2; ð6:7Þ

with ðV�
1 þ V�

2 Þα;β;μ ¼ ðm=mXÞ½ðg⊥αμp̂β þ g⊥βμp̂αÞ�
iðhαμp̂ k̂ip̂β − hβμp̂ k̂ip̂αÞ�, and the covariant three-point
vertex in the fermionic case is

½H1;s
ih½λ;λ∓1��IP ¼

1

2
½S0�s−jλþj−1=2½Wþ þW−�½Sλ̂þ�jλþj; ð6:8Þ

with ðWþ þW−Þμ ¼ γμγ5=
ffiffiffi
2

p
mX, which is of a typical

axial-vector type. These results are consistent with those in
Ref. [43]. Explicitly, for J ¼ 1 and s ¼ 1=2, the surviving
three-point vertex is simply proportional to γμγ5.
For J ¼ 1 and s ¼ 1, the three-point vertex, which

can be applied to the model-independent description
of the anomalous VZZ vertices with virtual V ¼ γ, Z
or on-shell Z0 [47,55–58], is composed of two
independent terms, ðV�

1 þ V�
2 Þαβ;μ, proportional to the

mass m so that it is vanishing in the massless limit. Again,
it turns out to be that, with the P and T symmetries
imposed, the covariant form of the J ¼ 1 vector three-
point vertices is perfectly consistent with that of the vector
current of massive as well as massless on-shell states of
any spin presented in Refs. [31,32], when the current is
assumed to be coupled to an on-shell spin-1 vector
particle.

C. J = 2 three-point vertices

In this subsection we consider the case with J ¼ 2. The
number of independent terms are n½2; 0� ¼ 1 for s ¼ 0 and
n½2; s� ¼ 10s − 1 for s > 0, which are decomposed into
two classes. The first class with 6sþ 1 terms is when two
helicities are identical, i.e., λ1 ¼ λ2 and when the difference
of two helicities is 1. The corresponding helicity-specific
vertices are given by

½H2;s
ii½λ;λ�� ¼ ½k̂�2½H0;s

ii½λ;λ�� and ½H2;s
hh½λ;λ�1�� ¼ ½k̂�½H1;s

hh½λ;λ�1��
ð6:9Þ

in the bosonic case, and

½H2;s
hi½λ;λ�� ¼ ½k̂�2½H0;s

hi½λ;λ�� and ½H2;s
ih½λ;λ�1�� ¼ ½k̂�½H1;s

ih½λ;λ�1��
ð6:10Þ

in the fermionic case. They constitute 2sþ 1 and 4s
independent covariant three-point vertices both in
the bosonic and fermion cases. The second class with
2ð2s − 1Þ independent terms appear for the helicity differ-
ence of λ1 − λ2 ¼ �2. The corresponding helicity-specific
vertices are given by

½H2;s
ii½λ;λ∓2�� ¼ ½S0�s−jλþj−1½Sλ̂þjjλþj½T�� ð6:11Þ

in the bosonic case with λþ ¼ λ ∓ 1, and

TABLE I. Specific examples in the integer spin-s case. Listed are the number of independent terms n½J; s�, the allowed helicity
assignments ðλ1; λ2Þ, the helicity-specific covariant three-point vertices ½HJ;s

½λ1;λ2�� in an operator form and their corresponding reduced

helicity amplitudes CJλ1;λ2 , the helicity-specific covariant three-point vertex ½H
J;s
IP½λ1;λ2�� in an operator form, and the number of independent

terms n½J; s�IP in the IP case for a few integer J and integer s assignments. This table is presented for demonstrating the effectiveness of
the algorithm for weaving and characterizing the covariant triple vertices.

Integer spin-s case

ðJ; sÞ n½J; s� ðλ1; λ2Þ ½HJ;s
½λ1;λ2�� CJλ1;λ2 ½HJ;s

IP½λ1;λ2�� n½J; s�IP
(0,0) 1 (0,0) [1] 1 [1] 1
(0,1) 3 ð�1;�1Þ ½S�� 1 ½S�� 3

(0,0) ½S0� −κ2 ½S0�
(1,1) 7 ð�1;�1Þ ½k̂�½S�� −1 � � � 2

(0,0) ½k̂�½S0� κ2 � � �
ð�1; 0Þ ½V�

1 � κ
1
2
½V�

1 þ V�
2 �ð0;�1Þ ½V�

2 � −κ
(2,1) 9 ð�1;�1Þ ½k̂�2½S�� 1 ½k̂�2½S�� 6

(0,0) ½k̂�2½S0� −κ2 ½k̂�2½S0�
ð�1; 0Þ ½k̂�½V�

1 � −κ
1
2
½k̂�½V�

1 − V�
2 �ð0;�1Þ ½k̂�½V�

2 � κ

ð�1;∓ 1Þ ½T�� 1 1
2
½Tþ þ T−�
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½H2;s
hi½λ;λ∓2�� ¼ ½S0�s−jλþj−1½Pλ̂þ�½Sλ̂þ�jλþj−1=2½T�� ð6:12Þ

in the fermionic case with λþ ¼ λ ∓ 1.
The J ¼ 2 covariant three-point vertices can be adopted

for studying the massive KK graviton or off-shell graviton
interactions with two spin-s particles of equal mass m.
Again, with the P and T symmetries imposed, the covariant
form of the J ¼ 2 tensor three-point vertices is perfectly
consistent with that of the spin-2 tensor currents of massive
as well as massless on-shell states of any spin presented in
Refs. [31,32], when the tensor current is coupled to an on-
shell spin-2 particle.

D. Specific decay modes

Now, we demonstrate the power of the algorithm by
explicitly working out all the characteristic features
of four specific decay modes with the ½J; s� values of [0,
0], [0, 1], [1, 1], and [2, 1] in the integer spin-s case. We
fully write down the number of independent terms
n½J; s�, the allowed helicity assignments ðλ1; λ2Þ, the
helicity-specific covariant three-point vertices ½HJ;s

½λ1;λ2�� in
an operator form and their corresponding reduced helicity
amplitudes CJλ1;λ2 , as well as the helicity-specific covariant

three-point vertices ½HJ;s
IP½λ1;λ2�� in an operator form, and the

number of independent terms n½J; s�IP in the IP case. The
results are summarized succinctly in Table I.
The algorithm for weaving the general covariant three-

point vertices in the half-integer spin-s case is demonstrated
by explicitly evaluating three specific decay modes with the
½J; s� values of ½0; 1=2�, ½1; 1=2�, and ½2; 1=2�. The results
are summarized in Table II.

VII. CONCLUSIONS

We have developed an efficient algorithm for compactly
weaving all the covariant three-point vertices for the

decay of an on-shell spin-J particle X of mass mX into
two on-shell particles, M1;2, with equal mass m and spin s.
For this development, we have made good use of the
closely related equivalence between the helicity formalism
and the covariant formulation for identifying the basic
building blocks and composite three-point vertex operators
for constructing all the effective covariant three-point
vertices. All the helicity-specific covariant three-point
vertices are presented in an operator form in Eqs. (5.16)
and (5.17) in the bosonic case and in Eqs. (5.18) and (5.19)
in the fermionic case, respectively. The massless (m ¼ 0)
case could be worked out straightforwardly and the (anti)
symmetrization of the covariant three-point vertices
required by Bose or Fermi spin statistics of two identical
final-state particles could be made systematically in the
context of this efficient algorithm.
This general algorithm for constructing the effective

covariant three-point vertices is expected to be useful in
studying various phenomenological aspects such as the
indirect and direct searches of high-spin DM particles and
the pair production of high-spin particles at present and
future high-energy colliders.
Naturally, it will be valuable to extend our algorithm for

dealing with the general case when all three particles have
different masses and spins. It is also an interesting question
as to whether the bosonic and fermionic cases can be
synthesized in a unified framework, covering various forms
of wave tensors for particles of any spin. These generali-
zation and synthesis are presently under study and the
results will be reported separately.
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TABLE II. Specific examples in the half-integer spin-s case. Listed are the number of independent terms n½J; s�, the allowed helicity
assignments ðλ1; λ2Þ, the helicity-specific covariant triple vertices ½HJ;s

½λ1;λ2�� in an operator form and their corresponding reduced helicity

amplitudes CJλ1;λ2 , the helicity-specific covariant three-point vertex ½H
J;s
IP½λ1;λ2�� in an operator form, and the number of independent terms

n½J; s�IP in the IP case for a few integer J and half-integer s assignments.

Half-integer spin-s case

ðJ; sÞ n½J; s� ðλ1; λ2Þ ½HJ;s
½λ1;λ2�� CJλ1;λ2 ½HJ;s

IP½λ1;λ2�� n½J; s�IP
ð0; 1=2Þ 2 ð�1=2;�1=2Þ ½P�� κ ½P�� 2
ð1; 1=2Þ 4 ð�1=2;�1=2Þ ½k̂�½Pþ� −κ � � � 1

ð�1=2;∓ 1=2Þ ½W�� �κ ½Wþ þW−�
ð2; 1=2Þ 4 ð�1=2;�1=2Þ ½k̂�2½P�� κ ½k̂�2½P�� 3

ð�1=2;∓ 1=2Þ ½k̂�½W�� ∓ κ ½k̂�½Wþ −W−�
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