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We consider gauged U(1) extensions of the standard model of particle physics with three right-handed
sterile neutrinos and a singlet scalar. The neutrinos obtain mass via the type I seesaw mechanism.
We compute the one-loop corrections to the elements of the tree-level mass matrix of the light neutrinos and
show explicitly the cancellation of the gauge-dependent terms. We present a general formula for the gauge-
independent, finite one-loop corrections for arbitrary number new U(1) groups, new complex scalars, and
sterile neutrinos. We estimate the size of the corrections relative to the tree-level mass matrix in a particular
extension, the superweak model.
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I. INTRODUCTION

The standard model (SM) of particle interactions is one
of the most successful physics models with unprecedented
precision for predicting physical quantities, for instance, for
the anomalous magnetic moment of the electron. However,
it does not contain right-handed neutrinos as they are sterile
under the SM gauge group. This in turn leads to the
prediction that neutrinos are massless, which is in conflict
with the now well-established experimental result, that at
least two neutrinos are massive [1,2], and therefore, signals
that the SM requires an extension to explain the origin of
the neutrino masses. There are lots of models attempting to
explain neutrino masses. Among those, perhaps the most
economical one that requires the least extension of the SM
is the type I seesaw mechanism where neutrinos acquire

masses after spontaneous symmetry breaking (SSB) of one
or more scalar fields [3–10].
Recently, there has been a lot of interest in gauged

U(1)-extended models in particle physics phenomenology
motivated by the observed difference between the measured
and SM predicted values of the anomalous magnetic
moment of the muon [11] and also anomalies in short-
baseline neutrino oscillations [12]. Gauged B − L,
B − 3Lτ, Le − Lμ, and Lμ − Lτ have been considered
[13–19], as well as a general gauged U(1) not related to
flavor [20]. In these models, both seesaw and radiative one-
loop neutrino mass generation mechanisms have been
considered.
As the effects of new physics are typically much smaller

than those of the SM interactions, computations in theories
beyond the SM are often considered only at tree level. Yet,
the loop corrections may be sizable and can affect signifi-
cantly the validity region in the parameter space of the
model. For instance, the lightness of active neutrinos
requires that the loop corrections to the mass matrix of
those particles must also be small in order to have a
phenomenologically viable model. Computations of radi-
atively induced neutrino masses were performed first
within the standard model in Ref. [21], while one-loop
corrections to tree-level masses have been obtained pre-
viously in Refs. [22–24] for the canonical seesaw case, in
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Ref. [25] for the inverse seesaw case, and in the context of
multi-Higgs doublet models [26–29]. In the cases of
gauged U(1) models, we are not aware of a computation
of the one-loop corrections to the active neutrino mass
matrix.
In this article, we consider gauged U(1) extensions of the

SM and derive a general formula for the one-loop correc-
tions of the mass matrix of the active neutrinos. The mass
matrix of the active neutrinos emerges after SSB due to the
type I seesaw mechanism. Our goal is to derive the one-
loop corrections to that mass matrix and estimate their sizes
relative to the tree level for a particular example called the
superweak force [30]. The superweak model contains three
additional right-handed sterile (under the SM interactions)
neutrinos and one complex scalar field in addition to the
fields of the SM. The loop corrections involve all the gauge
and scalar bosons which couple to neutrinos.
In order to obtain the one-loop corrections to the

elements of the light neutrino mass matrix, we perform
our computations in the Rξ gauge and show explicitly the
intricate cancellation of the gauge fixing parameters from
the corrections. In addition, we also demonstrate the
cancellation of the ϵ poles when the loop integrals are
regulated by dimensional regularization in d ¼ 4 − 2ϵ
dimensions. These cancellations are highly nontrivial,
and therefore provide strong checks on the correctness
of the computations.
The paper is composed as follows. We introduce the

model to the extent needed for the present work in Sec. II.
We define and compute the one-loop correction to the mass
matrix of the active neutrinos in Sec. III. In Sec. IV, we
provide numerical estimates of the one-loop corrections
and show that those are very small. Finally, we summarize
our findings in Sec. V. We collect auxiliary formulas in the
Appendixes and also provide an auxiliary zip file contain-
ing the SARAH model, parameter, and particle files.

II. PARTICLE MODEL, MIXINGS, AND
INTERACTIONS

We consider an extension of the standard model by a
Uð1Þz gauge group with particle content and charge assign-
ment defined in Ref. [30]. The superweak model is an
economical extension of the standard model that provides a
framework to explain the origin of (i) neutrino masses and
oscillations [31], (ii) dark matter [32], (iii) cosmic inflation
and stabilization of the electroweak vacuum [33], and
(iv) matter-antimatter asymmetry of the Universe. The
complete model including Feynman rules in the unitary
gauge was presented fully in Ref. [30]. As we are to
compute one-loop corrections to neutrino masses, we recall
the details relevant to such computations, with Feynman
rules in the Rξ gauge. We generated those Feynman rules
with SARAH [34–36], but here we present simpler forms for
the rules needed in our computations to make those more
comprehensive. We also recall some of the conventions that

are different in SARAH and the original definition of the
model. We stick to the SARAH conventions throughout this
work [37].

A. Mixing of neutral gauge bosons

The particle content of the standard model is extended by
three right-handed neutrinos νRi, a new scalar χ, and the
Uð1Þz gauge boson B0. As the field strength tensors of the
U(1) gauge groups are gauge invariant, kinetic mixing is
allowed between the gauge fields belonging to the hyper-
charge Uð1Þy and the new Uð1Þz gauge symmetries, whose
strength is measured by ϵ in

L ⊃ −
1

4
FμνFμν −

1

4
F0μνF0

μν −
ϵ

2
FμνF0

μν;

DUð1Þ
μ ¼ −iðygyBμ þ zgzB0

μÞ; ð2:1Þ

where Bμ is the Uð1Þy gauge field. The charge assignments
are shown in Table I (cf. Ref. [30]). The new fields are
neutral under the standard model gauge interactions. The y
charges are the eigenvalues of half of the hypercharge
operator. The z charges are assigned such that gauge and
gravity anomalies cancel in each family.
Equivalent to the kinetic mixing, we can choose the

basis—the convention in SARAH—in which the gauge-field
strengths do not mix, while the couplings are given by a
2 × 2 coupling matrix in the covariant derivative

DUð1Þ
μ ¼ −ið y z Þ

�
ĝyy ĝyz
ĝzy ĝzz

��
B̂μ

B̂0
μ

�
; ð2:2Þ

where y and z are the Uð1Þy and Uð1Þz charges. We can
parametrize the coupling matrix as

TABLE I. Particle content and charge assignment of the
superweak model, where ϕ and χ are complex scalars and the
others are Weyl fermions. For SUð3Þc ⊗ SUð2ÞL, the represen-
tations are given, while for Uð1Þy ⊗ Uð1Þz, the charges (y and z)
of the respective fields are given. Note that for Uð1Þy, the
eigenvalues of the half-hypercharge operator are given.

SUð3Þc SUð2ÞL Uð1Þy Uð1Þz
QL 3 2 1=6 1=6
UR 3 1 2=3 7=6
DR 3 1 −1=3 −5=6
LL 1 2 −1=2 −1=2
NR 1 1 0 1=2
eR 1 1 −1 −3=2
ϕ 1 2 1=2 1
χ 1 1 0 −1
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ĝ¼
�
ĝyy ĝyz
ĝzy ĝzz

�
¼
�
gy −ηg0z
0 g0z

��
cosϵ0 sinϵ0

−sinϵ0 cosϵ0

�
: ð2:3Þ

The coupling mixing matrix containing η is equivalent to
the kinetic mixing in the Lagrangian (2.1), and the
parameters of the two representations are related by
g0z ¼ gz=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
and η ¼ ϵgy=gz. In this paper, it will be

convenient to use the kinetic mixing representation defined
by (2.1).
The rotation with angle ϵ0 is unphysical, as it can be

absorbed into the mixing of the neutral gauge fields Bμ, B0μ,
andW3μ to the mass eigenstates Aμ, Zμ, and Z0μ, which then
can be described by a rotation matrix

0
B@

B̂μ

W3μ

B̂0μ

1
CA ¼

0
B@

cos θW − cos θZ sin θW − sin θZ sin θW
sin θW cos θZ cos θW cos θW sin θZ

0 − sin θZ cos θZ

1
CA

×

0
B@

Aμ

Zμ

Z0μ

1
CA: ð2:4Þ

This matrix depends on two mixing angles: θW is the weak
mixing (or Weinberg) angle and θZ is the Z − Z0 mixing
angle [38]. In terms of the coupling parameters

κ ¼ cos θWðγ0y − 2γ0zÞ and τ ¼ 2 cos θWγ0z tan β ð2:5Þ

introduced in Ref. [30], this new mixing angle is given
implicitly by tanð2θZÞ ¼ 2κ=ð1 − κ2 − τ2Þ. In Eq. (2.5),
tan β ¼ w=v is the ratio of the vacuum expectation
values (VEVs) of the scalar fields (see below) and
γ0y ¼ ðϵ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
Þðgy=gLÞ, γ0z ¼ g0z=gL; i.e., the couplings

are normalized by the SUð2ÞL coupling.
We can express the elements of the Z − Z0 mixing matrix

explicitly,

sin θZ ¼ sgnðκÞ
�
1

2

�
1 −

1 − κ2 − τ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ2 þ τ2Þ2 − 4τ2

p ��
1=2

;

cos θZ ¼
�
1

2

�
1þ 1 − κ2 − τ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ κ2 þ τ2Þ2 − 4τ2
p ��

1=2

; ð2:6Þ

which also appear in the neutral currents Γμ
Vf̄f

¼
−ieγμðCR

Vf̄f
PR þ CL

Vf̄f
PLÞ where e is the electromagnetic

coupling and PR=L ≡ P� ¼ 1
2
ð1� γ5Þ are the usual chiral

projections. In particular, for neutrinos

eCL
Zνν ¼

gL
2 cos θW

½cos θZ − ðγ0y − γ0zÞ sin θZ cos θW�;

eCR
Zνν ¼ −

gL
2
γ0z sin θZ;

eCL
Z0νν ¼

gL
2 cos θW

½sin θZ þ ðγ0y − γ0zÞ cos θZ cos θW�;

eCR
Z0νν ¼

gL
2
γ0z cos θZ; ð2:7Þ

i.e., CL=R
Z0νν can be obtained from CL=R

Zνν by the replacement

ðZ → Z0Þ ⇒ ðcos θZ; sin θZÞ → ðsin θZ;− cos θZÞ: ð2:8Þ

B. Mixings of scalar and Goldstone bosons

In addition to the usual SUð2ÞL-doublet Brout-Englert-
Higgs field

ϕ ¼
�
ϕþ

ϕ0

�
¼ 1ffiffiffi

2
p

�
ϕ1 þ iϕ2

ϕ3 þ iϕ4

�
; ð2:9Þ

there is another complex scalar χ in the model with charges
specified in [30]. The Lagrangian of the scalar fields
contains the potential energy

Vðϕ;χÞ¼V0−μ2ϕjϕj2−μ2χ jχj2

þðjϕj2; jχj2Þ
�
λϕ

λ
2

λ
2

λχ

�� jϕj2
jχj2

�
⊂−L; ð2:10Þ

where jϕj2 ¼ jϕþj2 þ jϕ0j2. In the Rξ gauge, we para-
metrize the scalar fields after spontaneous symmetry
breaking as

ϕ ¼ 1ffiffiffi
2

p
�

−i
ffiffiffi
2

p
σþ

vþ h0 þ iσϕ

�
;

χ ¼ 1ffiffiffi
2

p ðwþ s0 þ iσχÞ; ð2:11Þ

where v and w denote the VEVs of the fields, whose
values are

v ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λχμ

2
ϕ − λμ2χ

4λϕλχ − λ2

s
;

w ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λϕμ

2
χ − λμ2ϕ

4λϕλχ − λ2

s
: ð2:12Þ

Using the VEVs, we can express the quadratic couplings as

μ2ϕ ¼ λϕv2 þ
λ

2
w2; μ2χ ¼ λχw2 þ λ

2
v2: ð2:13Þ

The fields h0 and s0 are two real scalars, and σϕ and σχ
are the corresponding Goldstone bosons that are weak
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eigenstates. We shall denote the mass eigenstates with h, s
and σZ, σZ0 . These different eigenstates are related by the
rotations

�
h

s

�
¼ ZS

�
h0

s0

�
≡

�
cos θS − sin θS
sin θS cos θS

��
h0

s0

�
ð2:14Þ

and

�
σZ

σZ0

�
¼ZG

�
σϕ

σχ

�
≡
�
cosθG −sinθG
sinθG cosθG

��
σϕ

σχ

�
; ð2:15Þ

where θS and θG are the scalar and Goldstone mixing
angles that can be determined by the diagonalization of the
mass matrix of the real scalars and that of the neutral
Goldstone bosons.
The scalar mixing angle θS is related to the potential

parameters by [30]

tanð2θSÞ ¼ −
λvw

λϕv2 − λχw2
: ð2:16Þ

The condition θS ∈ ð− π
4
; π
4
Þ implies that the scalar mass

eigenstates are not labeled by mass hierarchy.
The mass matrix of the Goldstone bosons is given in

principle by the sum of gauge-independent and gauge-
dependent terms. However, the gauge-independent terms
vanish by Eq. (2.13):

� 1
2
λw2 þ λϕv2 − μ2ϕ 0

0 1
2
λv2 þ λχw2 − μ2χ

�
¼ 0; ð2:17Þ

so the mass matrix contains only gauge-dependent terms,

m2
A ¼ ξZm2

AZ
þ ξZ0m2

AZ0
; ð2:18Þ

where ξZ and ξZ0 are the gauge parameters. The mass matrix
is symmetric, so we can write it formally as

m2
Ax

¼
�m2

Ax;11
m2

Ax;12

m2
Ax;12

m2
Ax;22

�
ð2:19Þ

for both x ¼ Z and Z0. Explicitly,

m2
AZ;11

¼ v2e2ðCL
Zνν−CR

ZννÞ2

¼
�

MW

cosθW

�
2

ðcosθZ− κ sinθZÞ2;

m2
AZ;12

¼ 2vwe2ðCL
Zνν−CR

ZννÞCR
Zνν

¼
�

MW

cosθW

�
2

ðcosθZ− κ sinθZÞð−τ sinθZÞ;

m2
AZ;22

¼w2e2ð2CR
ZννÞ2¼

�
MW

cosθW

�
2

ð−τ sinθZÞ2; ð2:20Þ

where MW ¼ vgL
2

is the mass of the W bosons, and the
elements of m2

AZ0
can be obtained by the replacement

Z → Z0 in the chiral couplings, which implies the replace-
ment (2.8) in the second forms of the matrix elements. The
latter are the most convenient ones for the diagonalization
of the mass matrix. Using Eq. (2.6), one can check that the
matrix

ZGm2
AZ

T
G ¼ m2

diag;A

is indeed diagonal provided we have for the Goldstone
mixing angle

cos θG ¼ cos θZ − κ sin θZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos θZ − κ sin θZÞ2 þ ðτ sin θZÞ2

p ð2:21Þ

and

sin θG ¼ τ sin θZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos θZ − κ sin θZÞ2 þ ðτ sin θZÞ2

p : ð2:22Þ

C. Masses of neutral gauge bosons

As expected, the elements of the diagonal matrix m2
diag;A

coincide with the squares of the masses of the neutral gauge
bosons [30],

M2
Z ¼

�
MW

cosθW

�
2

½ðcosθZ− κ sinθZÞ2þðτ sinθZÞ2� ð2:23Þ

and

M2
Z0 ¼

�
MW

cosθW

�
2

½ðsinθZþκcosθZÞ2þðτcosθZÞ2�; ð2:24Þ

which can also be expressed conveniently with the chiral
couplings and Goldstone mixing angle. First we note that
using Eq. (2.23), we find the simple relation

sin θG ¼ τ
sin θZ
cos θW

MW

MZ
ð2:25Þ

between the Goldstone and neutral boson mixing angles,
and also
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cos θG ¼ τ
cos θZ
cos θW

MW

MZ0
: ð2:26Þ

Next, we can substitute the relations found in Eq. (2.20)
into Eqs. (2.23) and (2.24) together with the definition of
the right-handed couplings defined in Eq. (2.7), resulting in

M2
Z ¼ v2e2ðCL

Zνν − CR
ZννÞ2 þ w2g02z sin2 θZ ð2:27Þ

and also using Eq. (2.8),

M2
Z0 ¼ v2e2ðCL

Z0νν − CR
Z0ννÞ2 þ w2g02z cos2 θZ: ð2:28Þ

From Eqs. (2.25) and (2.26), we can express

wg0z sin θZ ¼ MZ sin θG and wg0z cos θZ ¼ MZ0 cos θG;

ð2:29Þ

which after substitution and simple rearrangement leads to

M2
Z ¼ v2e2

cos2 θG
ðCL

Zνν − CR
ZννÞ2;

M2
Z0 ¼ v2e2

sin2 θG
ðCL

Z0νν − CR
Z0ννÞ2: ð2:30Þ

D. Mass terms and mixing of neutrinos

The masses of the neutrinos are generated by the leptonic
Yukawa terms in the Lagrangian [30],

−Ll
Y ¼ 1

2
νRYNðνRÞcχ þ νRYνεabLLaϕb þ H:c:; ð2:31Þ

where LL is the left-handed lepton doublet, εab is the
Levi-Civita symbol, a and b are SUð2ÞL indices,YN andYν

are 3 × 3 matrices, and the superscript c denotes charge
conjugation, νc ¼ iγ2ν�. After SSB, this Lagrangian
becomes

−Ll
Y ¼ wþ s0 þ iσχ

2
ffiffiffi
2

p νRYNðνRÞc

þ vþ h0 þ iσϕffiffiffi
2

p νRYννL þ H:c:; ð2:32Þ

and the terms proportional to the VEVs provide the mass
matrices

MN ¼ wffiffiffi
2

p YN; MD ¼ vffiffiffi
2

p Yν; ð2:33Þ

where we chose a basis such that the Majorana mass matrix
MN is real, positive, and diagonal, while the Dirac mass
matrix MD is complex.
In the flavor basis, the 6 × 6 mass matrix for the

neutrinos can be written in terms of 3 × 3 blocks as

M0 ¼
�

03 MT
D

MD MN

�
: ð2:34Þ

Theweak (flavor) eigenstates ðνe; νμ; ντ; νcR;1; νcR;2; νcR;3Þ can
be transformed into the basis of νi (i ¼ 1–6) mass eigen-
states with a 6 × 6 unitary matrix [39] U where the mass
matrix is diagonal,

UTM0U ¼ M ¼ diagðm1; m2; m3; m4; m5; m6Þ: ð2:35Þ

It is helpful to decompose the matrix U into two 3 × 6
blocks UL and U�

R,

U ¼
�
UL

U�
R

�
; ð2:36Þ

so UT ¼ ðUT
L;U

†
RÞ where both blocks are 6 × 3 matrices. It

may be worth emphasizing that despite what might be
implied by the notation, the matrices UL and U�

R are only
semiunitary. Useful relations of these matrices are collected
in Appendix A.

E. Gauge boson–neutrino interactions

As the neutral currents are written in terms of flavor
eigenstates, the interactions between the neutral gauge
bosons and the propagating mass eigenstate neutrinos
include also the neutrino mixing matrices:

Γμ
Vνiνj

¼ −ieγμðΓL
VννPL þ ΓR

VννPRÞij; ð2:37Þ

where

ΓL
Vνν ¼ CL

VννU
†
LUL − CR

VννU
T
RU

�
R ð2:38Þ

and

ΓR
Vνν ¼ −CL

VννU
T
LU

�
L þ CR

VννU
†
RUR ¼ −ðΓL

VννÞ� ð2:39Þ

for both V ¼ Z and V ¼ Z0.

F. Scalar boson–neutrino and Goldstone
boson–neutrino interactions

The terms containing the scalar and Goldstone bosons in
Eq. (2.32) provide interactions between those and the
neutrinos. These interactions have the same structure with
small differences. For the propagating scalar states Sk or σk
(k ¼ 1 denoting h or the Goldstone boson belonging to Z
and k ¼ 2 referring to s or the Goldstone boson belonging
to Z0), such interactions can be decomposed into left- and
right-chiral terms

ΓSk=σkνiνj ¼ ðΓL
Sk=σkνν

PL þ ΓR
Sk=σkνν

PRÞij; ð2:40Þ
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where the matrices ΓL=R contain both the mixing matrix of
the neutrinos and the mixing matrix of the scalar or
Goldstone bosons. The left-chiral coefficients are

ΓL
Skνν

¼ −i
�
ðMU†

LUL þ UT
LU

�
LMÞ ðZSÞk1

v

þ U†
RMNU�

R
ðZSÞk2
w

�
ð2:41Þ

and

ΓL
σkνν ¼ −

�
ðMU†

LUL þ UT
LU

�
LMÞ ðZGÞk1

v

þ U†
RMNU�

R
ðZGÞk2

w

�
; ð2:42Þ

and the right-chiral ones are related by complex conjuga-
tion, ΓR

Sk=σkνν
¼ −ðΓL

Sk=σkνν
Þ�.

III. NEUTRINO MASS MATRIX AT
ONE-LOOP ORDER

We are interested in the one-loop correction δML to the
tree-level mass matrix of the light neutrinos. In perturbation
theory, we deal with propagating states which are mass
eigenstates. Hence, we can compute loop corrections to
self-energies of mass eigenstates of neutrinos. The neutrino
mass matrix at one-loop order is then obtained from
Eq. (2.35), with diagonal mass matrix substituted at one
loop, Mþ δM where

δM ¼ diagðδm1; δm2; δm3; δm4; δm5; δm6Þ: ð3:1Þ

Hence, the correction is obtained by

δM0 ¼
�
δML δMT

D

δMD δMN

�
¼ U�δMU†: ð3:2Þ

Using Eq. (2.36), we can compute the 3 × 3 blocks as

δML ¼ U�
LδMU†

L; δMD ¼ URδMU†
L;

δMN ¼ URδMUT
R: ð3:3Þ

In the following subsections, we prove that the one-loop
correction to the mass matrix of the active neutrinos has the
form

δML ¼ 1

16π2
X
k¼1;2

�
3ðZGÞ2k1

M2
Vk

v2
FðM2

Vk
Þ

þ ðZSÞ2k1
M2

Sk

v2
FðM2

Sk
Þ
�
; ð3:4Þ

where we introduced the finite matrix valued function

FijðM2Þ ¼
X6
a¼1

ðU�
LÞiaðU†

LÞaj
m3

a

M2

ln m2
a

M2

m2
a

M2 − 1
ð3:5Þ

of dimension mass and with summation running over all
neutrinos.

A. Self-energy decomposition

The neutrino self-energy is a 6 × 6 matrix that can be
decomposed as

iΣðpÞ ¼ ALðp2ÞpPL þARðp2ÞpPR þBLðp2ÞPL

þ BRðp2ÞPR: ð3:6Þ
Using this decomposition, δML is given by [26]

δML ¼ U�
LBLð0ÞU†

L: ð3:7Þ
The matrix BLð0Þ receives contributions involving a

neutrino and either a neutral vector boson Z, Z’, or a scalar
boson σZ, σZ0 (Goldstone boson), h, s (Higgs-like scalar) in
the loop. The relevant Feynman graphs that give contri-
butions to the neutrino self-energies at one-loop order are
shown in Fig. 1. There are also tadpole contributions to
BLð0Þ. Those are proportional to the scalar-neutrino
coupling ΓL

Skνiνj
given in Eq. (2.40), which vanishes when

sandwiched betweenU�
L andU

†
L; see Eq. (A5). The charged

vector boson together with a charged lepton in the loop
(bottom right diagram in Fig. 1) contributes only to AL=R.
Thus, we compute the first three graphs explicitly. For a
given boson x in the loop, the matrix BLð0Þ depends on the
mass Mx and also the tree-level masses of the neutrinos
fmag, BLð0Þ ¼ Bx

LðMx; fmagÞ.

B. Contributions with neutral gauge bosons
in the loop

The contribution of the neutral gauge boson V is1

ðBV
LðMV;fmag;ξVÞÞijPL

¼ i
Z

ddl
ð2πÞd

X6
a¼1

Γμ
Vνiνa

p−=lþma

ðp−lÞ2−m2
a
Γν
Vνaνj

Pμνðl;M2
V ;ξVÞ;

ð3:8Þ
where ξV is the gauge parameter and

Pμνðl;M2
V ; ξVÞ

¼ gμν
l2 −M2

V
− ð1 − ξVÞ

lμlν

ðl2 −M2
VÞðl2 − ξVM2

VÞ
: ð3:9Þ

Introducing the 6 × 6 matrix

1We suppress μ2ε in the following integrals until Eq. (3.18)
where it is shown explicitly. μ is the mass parameter of dimen-
sional regularization.
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mðnÞ
l ¼ diag

�
mn

1

l2 −m2
1

;…;
mn

6

l2 −m2
6

�
; ð3:10Þ

and using the result of Appendix B, we obtain the following
expression for a neutral vector boson in the loop:

δMV
L ¼ ie2ðCL

Vνν−CR
VννÞ2

Z
ddl
ð2πÞd

×U�
L

�
dmð1Þ

l

l2−M2
V
þmð3Þ

l

M2
V

�
1

l2−ξVM2
V
−

1

l2−M2
V

��
U†

L:

ð3:11Þ

C. Contributions with neutral Goldstone bosons
in the loop

The contribution of the neutral Goldstone boson σV
(V ¼ 1means the Goldstone boson belonging to the Z field
and V ¼ 2 refers to the Z0 field) is

ðBσV
L ðmσV ; fmag; ξVÞÞijPL

¼ −i
Z

ddl
ð2πÞd

X6
a¼1

ΓσVνiνa

ma

l2 −m2
a
ΓσVνaνj

1

l2 − ξVM2
V
:

ð3:12Þ
Using the matrix notation, we can write

U�
LB

σV
L ð0ÞU†

LPL

¼−i
Z

ddl
ð2πÞdU

�
LΓσVννm

ð1Þ
l ΓσVννU

†
L

1

l2−ξVM2
V
: ð3:13Þ

Substituting the vertex functions of Eq. (2.40) and employ-
ing the matrix relations in Eqs. (A2) and (A5), we obtain
the correction to the mass matrix as

δMσV
L ¼−i

Z
ddl
ð2πÞdU

�
LMmð1Þ

l MU†
L

�ðZGÞV1
v

�
2 1

l2−ξVM2
V
:

ð3:14Þ

We now substitute Mmð1Þ
l M ¼ mð3Þ

l and using Eq. (2.30),
we obtain

δMσV
L ¼−ie2ðCL

Vνν−CR
VννÞ2

Z
ddl
ð2πÞdU

�
L
mð3Þ

l

M2
V
U†

L
1

l2−ξVM2
V
:

ð3:15Þ

D. Contributions with scalar bosons in the loop

The scalar–neutrino vertex is very similar to the
Goldstone boson neutrino vertex, so the contribution with
a scalar boson Sk in the loop can be written immediately in
analogy with Eq. (3.14):

δMSk
L ¼ i

Z
ddl
ð2πÞdU

�
LMmð1Þ

l MU†
L

�ðZSÞk1
v

�
2 1

l2−M2
Sk

¼ i

�ðZSÞk1
v

�
2
Z

ddl
ð2πÞdU

�
Lm

ð3Þ
l U†

L
1

l2−M2
Sk

: ð3:16Þ

E. The complete one-loop mass correction

Combining Eqs. (3.11), (3.15), and (3.16), we find that
that the gauge-dependent pieces of the vector boson
contribution cancel exactly with the Goldstone boson
contribution, and obtain

FIG. 1. One-loop graphs contributing to the neutrino self-energy. Top left: Goldstone boson contribution. Top right: scalar
contribution. Bottom left: neutral gauge boson contribution. Bottom right: charged gauge boson contribution. Note that the W boson
loop does not contribute to the matrix BL.
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δML¼
X

V¼Z;Z0
ðδMV

LþδMσV
L Þþ

X
k¼1;2

δMSk
L

¼
X

V¼Z;Z0
ie2ðCL

Vνν−CR
VννÞ2

Z
ddl
ð2πÞd

×U�
L

�
dmð1Þ

l

l2−M2
V
−
mð3Þ

l

M2
V

1

l2−M2
V

�
U†

L

þ
X
k¼1;2

i

�ðZSÞk1
v

�
2
Z

ddl
ð2πÞdU

�
L

mð3Þ
l

l2−M2
Sk

U†
L: ð3:17Þ

Introducing the integral

I0ðM2; m2
a; μ

2; ϵÞ

¼ μ2ϵ
Z

ddl
ð2πÞd

1

ðl2 −M2Þðl2 −m2
aÞ
; ð3:18Þ

the matrix IðnÞ with elements

IðnÞij ðM2Þ¼ i
X6
a¼1

ðU�
LÞiamn

aðU†
LÞajI0ðM2;m2

a;μ
2;ϵÞ; ð3:19Þ

and using the relations (2.30) allows us to recast Eq. (3.17)
into a neatly condensed form

δML ¼
X
k¼1;2

��ðZGÞk1
v

�
2

ðdM2
Vk
Ið1ÞðM2

Vk
Þ − Ið3ÞðM2

Vk
ÞÞ

þ
�ðZSÞk1

v

�
2

Ið3ÞðM2
Sk
Þ
�

ð3:20Þ

with V1 ¼ Z and V2 ¼ Z0. In Eq. (3.18), 2ϵ ¼ 4 − d and μ
is the regularization scale.

F. Finiteness and scale independence of δML

We show here that the one-loop mass correction δML is
finite and independent of the scale μ. Evaluating the
integral (3.18) yields

I0ðM2;m2;μ2;ϵÞ¼IðsÞ0 ðϵÞþIðfÞ0

�
m2

M2
;
μ2

M2

�
þOðϵÞ; ð3:21Þ

where “s” stands for the singular and “f” for the finite
functions

IðsÞ0 ðϵÞ ¼ i
16π2

�
1

ϵ
− γE þ ln 4π þ 1

�
;

IðfÞ0 ðx; xμÞ ¼
i

16π2

�
x ln x
1 − x

þ ln xμ

�
ð3:22Þ

with γE ≃ 0.5722 being the Euler-Mascheroni constant. It is
also convenient to split the matrix (3.19) in a similar
fashion

IðnÞðM2Þ ¼ Iðs;nÞ þ Iðf;nÞðM2Þ; ð3:23Þ

such that

Iðs;nÞ ¼ iU�
LM

nU†
LI

ðs;nÞ
0 ;

ðIðf;nÞðM2ÞÞij ¼ i
X6
a¼1

ðU�
LÞiamn

aðU†
LÞajIðf;nÞ0

�
m2

a

M2
;
μ2

M2

�
:

ð3:24Þ

Then the one-loop correction to the mass matrix of the light
neutrinos can also be decomposed as

δML ¼ δMðsÞ
L þ δMðfÞ

L þ OðϵÞ; ð3:25Þ

where

δMðsÞ
L ¼

X
k¼1;2

�
dM2

Vk

�ðZGÞk1
v

�
2

Iðs;1Þ

þ ðZSÞ2k1 − ðZGÞ2k1
v2

Iðs;3Þ
�

ð3:26Þ

and

δMðfÞ
L ¼

X
k¼1;2

��ðZGÞk1
v

�
2

ðdM2
Vk
Iðf;1ÞðM2

Vk
Þ − Iðf;3ÞðM2

Vk
ÞÞ

þ
�ðZSÞk1

v

�
2

Iðf;3ÞðM2
Sk
Þ
�
: ð3:27Þ

In order to prove that δML is finite, one has to show that

δMðsÞ
L is free from ϵ poles. We prove that it in fact vanishes

because the matrix Iðs;1Þ is a zero matrix due to the identity
(A5), while the coefficient in the second term cancels
because the matrices ZS and ZG are orthogonal, so

X2
k¼1

ðZSÞ2k1 −
X2
k¼1

ðZGÞ2k1 ¼ 0: ð3:28Þ

Hence, the mass-independent terms, including the diver-
gent pieces of the light neutrino one-loop mass correction

cancel, and we can set ϵ ¼ 0, which yields δML ¼ δMðfÞ
L .

Furthermore, the terms depending on the regularization

scale in δMðfÞ
L cancel in an identical way as the second term

does in δMðsÞ
L [using Eq. (3.28)].

The remaining finite terms give the final, regularization-
scale-independent and finite one-loop correction to the light
neutrino mass matrix as given in Eq. (3.4). It is the linear
combination of the matrix valued function F given in
Eq. (3.5) with different arguments and coefficients corre-
sponding to the different one-loop contributions. The
function F gives the mass correction corresponding to a
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one-loop diagram before coupling suppression; see Fig. 4
in Sec. IV for details where we shall also give a numerical
estimate for its eigenvalues δmν

i;0. It is well defined for any
non-negative x because

lim
x→0

x ln x
1 − x

¼ 0 and lim
x→1

x ln x
1 − x

¼ −1: ð3:29Þ

G. Generalization to arbitrary number of neutral
bosons and neutrinos

Our predictions for the one-loop correction to the light
neutrino mass matrix can easily be generalized to any
number of nV massive neutral gauge bosons originating
from an extension by a Uð1ÞnV Abelian gauge group, nS
neutral real scalars coupling to na active and ns sterile
neutrinos. Clearly, the matrix form of gauge-dependent
parts in Eqs. (3.11) and (3.15) is unchanged, and they
cancel in the same way.
The correction without gauge parameters ξV in Eq. (3.4)

is straightforwardly generalized to a case where the sums
go over an arbitrary positive integer nV and nS.

The neutrino mass and mixing matrices with arbitrary na
and ns are written identically in the block form, differing
only on the block shape: UL is an na × ðna þ nsÞ matrix
and UR is an ns × ðna þ nsÞ matrix. The finite correction
presented in Eq. (3.4) is then immediately generalized to

δML ¼ 1

16π2

�
3
XnV
k¼1

ðZGÞ2k1
M2

Vk

v2
FðM2

Vk
Þ

þ
XnS
k¼1

ðZSÞ2k1
M2

Sk

v2
FðM2

Sk
Þ
�
; ð3:30Þ

where the upper limit in the summation in the matrix F is
na þ ns. The factor 3 in front of the first term in the
brackets of Eq. (3.30) stems from the three polarization
states of the propagating massive neutral gauge bosons.
The corresponding factor is, of course, one in the case of
the scalars. This formula is also independent of the new
U(1) charge assignments.

FIG. 2. Absolute values of sin θG (top) and mass of Z0 boson (bottom) in the logarithmic ðg0y; g0zÞ plane. For θG the contour labels n
correspond to value 10n. Left plots: w ¼ 100 GeV. Right plots: w ¼ 750 GeV.
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IV. NUMERICAL ESTIMATE
OF THE CORRECTIONS

We are now ready to estimate the order of magnitude of
the corrections. We assume large mixing in the scalar
sector: θS ¼ Oð1Þ. The Z0 mass and mixing angle θG are
fixed by the gauge couplings g0y ¼ γ0ygL and g0z and ratio of
VEVs, tan β≡ w=v. We plot their magnitudes in Fig. 2,
scanning the parameters g0y; g0z ∈ ½10−6; 1� and for w ¼ 100,
750 GeV. Note that larger tan β corresponds to a larger
Goldstone angle. Smaller tan β distorts theMZ0 contours so
that the same Z0 mass can be achieved with larger gauge
couplings g0y and g0z compared to large tan β. In addition, we
set Ms=v ¼ Oð1Þ; that is, only the mass of the Z0 boson is
free, and may be far from electroweak scale. The relevant
gauge couplings can then be estimated as from Fig. 2 after
identifying the region in the ðg0y; g0zÞ plane corresponding to
MZ0 ∈ ½20; 200� MeV, which is the relevant mass region
for the superweak model to reproduce the dark matter relic
density allowed by experimental constraints [32].
Then we identify the order-of-magnitude estimate for

j sin θGj by comparing the regions relevant to the mass
range ofMZ0 . For w ¼ 100 GeV, we have j sin θGj < 10−6,
which we take as a conservative upper limit. Then the
prefactors in the gauge boson contributions to δML are

e2ðCL
Zνν − CR

ZννÞ2 ¼ cos2θG
M2

Z

v2
∼ Oð10−1Þ ð4:1Þ

and

e2ðCL
Z0νν − CR

Z0ννÞ2 ¼ sin2θG
M2

Z0

v2

∼ Oð10−19Þ ×
�

MZ0

100 MeV

�
2

: ð4:2Þ

Then the numerical estimate for the total correction in
Eq. (3.4) can be written as

ðδMLÞij < Oð10−7Þ eV

þ Oð10−21Þ ×
�

MZ0

100 MeV

�
2

FijðM2
Z0 Þ: ð4:3Þ

The elements of the matrix F are plotted as a function of the
mass of the boson of the loop mloop in Fig. 3 and the
eigenvalues of the matrix corresponding to corrections to
active neutrino species in Fig. 4. The eigenvalues of F
themselves exceed the active neutrino tree-level masses, as
the latter are at most about O(1) eV for the MeV-scale
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FIG. 4. Eigenvalues of the matrix F as a function of the mass
of the boson in the loop mloop, assuming mtree

1 ¼ 0.01 eV,
mtree

4 ¼ 30 keV, mtree
5 ≈mtree

6 ¼ 2.5 GeV, and normal neutrino
mass hierarchy.

FIG. 3. Matrix elements Fij as a function of the mass mloop of the boson in the loop are confined to the blue band, assuming normal
neutrino mass hierarchy. We have highlighted with vertical bands the relevant mass regions where the masses of the bosons in the loop
lie. The scalar s is required to have mass between 144 and 558 GeV requiring stability of the vacuum [40]. Left plot: mtree

1 ¼ 0.01 eV,
mtree

4 ¼ 30 keV, mtree
5 ≈mtree

6 ¼ 2.5 GeV. Right plot: mtree
1 ¼ 0.001 eV, mtree

4 ¼ 7.1 keV, mtree
5 ≈mtree

6 ¼ 3.0 GeV.
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Z0 boson. However, the coupling suppressions in Eq. (4.3)
are sufficient to tame the relative correction to the tree-level
mass below the percent level. Assuming the active neutrino
masses to be Oð10−3Þ eV, a rough estimate for the relative
correction to active neutrino masses is of Oð10−4Þ.
We may maximize the effect of the Z0 loop by allowing

the Z0 mass to be free and setting large j sin θGj ¼ Oð10−1Þ,
which is obtained when g0y and g0z are Oð10−1Þ. This
corresponds to MZ0 ¼ OðMZÞ, which is, of course,
excluded. Yet, even in this case, the correction from the
Z and Z0 loops is small and has the same order of
magnitude, Oð10−7Þ eV . Thus, the individual contribu-
tions from beyond SM loops cannot be significantly larger
than the SM contributions.

V. CONCLUSIONS

In this paper, we have computed the one-loop corrections
to the mass matrix of the active neutrinos in a gauged U(1)
extension of the standard model of particle interactions.
The field content of the model consists of a new complex
scalar field and three right-handed neutrinos—sterile under
the standard model interactions—in addition to the fields in
the standard model and the new gauge field. The neutrino
masses are generated by Dirac- and Majorana-type Yukawa
terms, which after spontaneous symmetry breaking of both
scalar fields give rise to neutrino masses in the way of the
type I seesaw mass generation. We have used the Rξ gauge
and have shown that the one-loop corrections are (i) inde-
pendent of the gauge fixing parameters, (ii) finite, and
(iii) independent of the regularization scale. We have also
demonstrated how the formula for the one-loop mass
corrections can be generalized to the case of an arbitrary
number of new U(1) groups, complex scalars, and right-
handed neutrinos.
We have provided a numerical estimate of the size of the

mass corrections in the context of the superweak model, in
which the new neutral gauge boson Z0 is much lighter than
the Z boson of the standard model. We have found that in
the mass range of MZ0 ∈ ½20; 200� MeV, motivated by a
possible explanation of the relic density of dark matter
in the Universe, the relative mass corrections to the tree-
level mass matrix elements do not exceed the per mill
level. Hence, the model is stable against higher-order
corrections in the neutrino sector, which motivates further
studies to explore the viable parameter space of the model
regarding the mixings between the active and sterile
neutrinos [31].
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APPENDIX A: SOME PROPERTIES OF
NEUTRINO MASS AND MIXING MATRICES

In this Appendix, we derive some useful relations among
the neutrino mass and mixing matrices. The matrix U that
diagonalizes the neutrino mass matrix is unitary, hence,

UU† ¼
�
UL

U�
R

�
ðU†

L;U
T
RÞ ¼

�
ULU

†
L ULUT

R

U�
RU

†
L U�

RU
T
R

�

¼
�
13 03
03 13

�
; ðA1Þ

from which we obtain the following important relations:

ULU
†
L ¼ 13; URU

†
R ¼ 13; ðA2Þ

and

ULUT
R ¼ U�

RU
†
L ¼ 03; ðA3Þ

where 1n denotes the n × n unit matrix. The second
unitarity conditions gives

U†U ¼ ðU†
L;U

T
RÞ
�
UL

U�
R

�
¼ U†

LUL þ UT
RU

�
R ¼ 16: ðA4Þ

Using Eq. (2.35), we derive

U�
LMU†

L ¼ U�
LðUT

L;U
†
RÞ
�

03 MT
D

MD MN

��
UL

U�
R

�
U†

L

¼ U�
LU

T
LMDU�

RU
†
L þ U�

LU
†
RMDULU

†
L

þ UT
LU

†
RMNU�

RU
†
L;

and then with relations in Eq. (A3), we obtain

U�
LMU†

L ¼ 03: ðA5Þ

Analogous calculations yield

URMU†
L ¼ MD: ðA6Þ

Multiplying Eq. (A6) with U†
R from the left and using

Eq. (A4), we find

U†
RMD ¼ U†

RURMU†
L ¼ ð16 − UT

LU
�
LÞMU†

L

¼ MU†
L − UT

LU
�
LMU†

L; ðA7Þ

where the last term vanishes by Eq. (A5), so

U†
RMD ¼ MU†

L: ðA8Þ

Finally,

ONE-LOOP CORRECTIONS TO LIGHT NEUTRINO MASSES IN … PHYS. REV. D 104, 055042 (2021)

055042-11



URMUT
R ¼ URðUT

L;U
†
RÞ
�

0 MT
D

MD MN

��
UL

U�
R

�
UT

R

¼ URðUT
LM

T
DU

�
R þ U†

RMDUL þ U†
RMNU�

RÞUT
R:

Expanding the factors into the parentheses, the first two
terms give vanishing contribution by Eq. (A4), while
utilizing Eq. (A2), the last one is simply MN, so

URMUT
R ¼ MN: ðA9Þ

Now Eq. (A4) allows us to derive

U†
RMN ¼ U†

RURMUT
R ¼ ð16 − UT

LU
�
LÞMUT

R

¼ MUT
R − UT

LU
�
LMUT

R; ðA10Þ

where the second term on the right does not vanish
this time.

APPENDIX B: EVALUATION OF THE VECTOR
BOSON EXCHANGE DIAGRAM

The vector boson exchange diagrams shown in the
bottom row of Fig. 1 contribute gauge-dependent terms
to the neutrino self-energy. In order to show that the gauge-
dependent terms cancel once contributions from all par-
ticles are considered, it is useful to eliminate the loop
momentum from the one-loop integral corresponding to the
vector boson exchange diagram. A decomposition to
achieve this was used in Ref. [41], and we shall derive
it here as well. In Ref. [42], Eq (4.4) contains the self-
energy,

iΣVðpÞ¼−
Z

ddl
ð2πÞdΓ

μ†Pðp−lÞΓνPμνðl;M2
V ;ξVÞ; ðB1Þ

where the 6 × 6matrices are defined as follows. The matrix
P is the fermion propagator, diagonal in the mass eigen-
states,

Pðp − lÞ ¼ ½ðp − lÞ1 −M�−1; while Γμ ¼ −ieγμA;

with A ¼ ΓLPL þ ΓRPR: ðB2Þ

In the following, we shall write P for Pðp − lÞ. The matrix
A is self-adjoint, A† ¼ A, and so is ΓL=R. We also
introduce the abbreviation

Ã ¼ ΓRPL þ ΓLPR; ðB3Þ

which will simplify our calculations. In order to compute
the loop integral easily containing the neutral vector boson
propagator in the neutrino self-energy loop, in this
Appendix we perform tensor reduction of the matrix
product

lA†PlA; ðB4Þ

such that the numerator factor be at most linear in the loop
momentum l.
When the fermion momentum p appears as p at the

extreme left or right of the expression, it satisfies the Dirac
equation p16 ¼ M (both Dirac and Majorana fermions do
so); thus, we can replace formally p with M. Let us first
write the identity

lA† ¼ ðl − pþMÞA† ¼ MA† − ðp − lÞA†: ðB5Þ

The chiral coupling matrix A anticommutes with the Dirac
matrices γμ, hence,

lA† ¼ MA† − Ã†ððp − lÞ1 −MþMÞ
¼ MA† − Ã†P−1 − Ã†M; ðB6Þ

and similarly,

PlA ¼ −A − PMAþ PÃM: ðB7Þ

Multiplying Eqs. (B6) and (B7), we obtain the expression
(B4), and its expansion yields

lA†PlA ¼ −MA†A −MA†PMAþMA†PAM

þ Ã†P−1Aþ Ã†MA − Ã†ÃMþ Ã†MA

þ Ã†MPMA − Ã†MPÃM: ðB8Þ

Using that pA ¼ Ãp, the fourth term can rearranged as

Ã†P−1A ¼ Ã†ððp − lÞ1 −MÞA

¼ 1

2
Ã†pAþ 1

2
Ã†pA − Ã†lA − Ã†MA

¼ 1

2
pA†Aþ 1

2
Ã†Ãp − Ã†lA − Ã†MA: ðB9Þ

The p is on extreme left and right; hence, can be replaced
with M, giving

Ã†P−1A¼ 1

2
MA†Aþ1

2
Ã†ÃM− Ã†lA− Ã†MA: ðB10Þ

Substituting Eq. (B10) into Eq. (B8), we obtain

lA†PlA ¼ M0 þM1 þM2; ðB11Þ

where we introduced the abbreviations

M0 ¼ −Ã†lA;

M1 ¼ −
1

2
MA†A −

1

2
Ã†ÃMþ Ã†MA; ðB12Þ
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and

M2 ¼ −MA†PMAþMA†PÃM

þ Ã†MPMA − Ã†MPÃM

¼ ðMA† − Ã†MÞPðÃM −MAÞ; ðB13Þ

which correspond to constant, linear, and quadratic terms in
the neutrino mass matrix M. We now discuss the contri-
bution from each term in Eq. (B11) separately.
The first constant term gives vanishing contribution to

the loop integral as it is odd in the loop momentum. The
other two terms can be decomposed into left- and right-
chiral pieces:

Mi ¼ ML
i PL þMR

i PR: ðB14Þ

Our goal is to compute the one-loop correction (3.7) to the
tree-level mass matrix of the light neutrinos. In order to
obtain it, one sandwiches the left-handed pieces ML

i

between the matrices U�
L and U†

L. Using the properties
of the neutrino mixing matrices of Appendix A, we
immediately see that

U�
LM

L
1U

†
L ¼ 0; ðB15Þ

while lengthy computations yield

U�
LM

L
2U

†
L ¼ −ðCL

Vνν − CR
VννÞ2U�

LMPMU†
L

þ terms that do not contribute to BLð0Þ:
ðB16Þ

Here we outline the steps needed to reach Eq. (B16).
First, in order to find the left-chiral part ML

2 , we
substitute A and Ã into Eq. (B13). We write the denom-
inator of the fermion propagator as

ðPÞij ¼ δij
p − =lþmi

ðp − lÞ2 −m2
i
; ðB17Þ

and use the following relations for the Dirac projectors:

PL=RðqþmÞPL=R ¼ mPL=R;

PL=RðqþmÞPR=L ¼ qPR=L ðB18Þ

valid for any momentum q and mass m. Hence,

PL=RðPÞijPL=R ¼
�
ðPÞij − δij

p − =l
ðp − lÞ2 −m2

i

�
PL=R;

PL=RðPÞijPR=L ¼ δij
p − =l

ðp − lÞ2 −m2
i
PR=L; ðB19Þ

and therefore, we obtain

ML
2 ¼ −MΓL†PMΓL þMΓL†PΓRMþ ΓR†MPMΓL

− ΓR†MPΓRMþ D; ðB20Þ

where the last term is proportional to ðp − lÞ:

D ¼ ½MðΓL† − ΓR†Þ − ðΓL† − ΓR†ÞMÞ�ðp − lÞ
× ½ðp − lÞ216 −M2�−1ðΓRM −MΓLÞ:

Then using the matrix relations derived in Appendix A, we
can compute the following identities:

U�
LMΓL†¼−CR

VννU
�
LM; U�

LΓR†¼−CL
VννU

�
L; ðB21Þ

ΓRMU†
L ¼ CR

VννMU†
L; ΓLU†

L ¼ CL
VννU

†
L: ðB22Þ

Finally, sandwiching Eq. (B20) gives us

U�
LM

L
2U

†
L ¼−ðCL

Vνν−CR
VννÞ2U�

LMPMU†
L

þU�
LDU

†
L: ðB23Þ

As mentioned, the last term is proportional to ðp − lÞ, but
only the term with l contributes to BLðp ¼ 0Þ. That piece
being an odd function of l vanishes upon integration,
which completes the proof of Eq. (B16).
The charged vector bosons W� also contribute to the

neutrino self-energy. The corresponding Feynman rules are

Γμ
W−l̄ν

¼−ieγμΓL
W−l̄ν

PL; Γμ
Wþνl¼−ieγμΓL

WþνlPL; ðB24Þ

where

ΓL
W−l̄ν ¼ CWlνðUl

LULÞij; ðB25Þ

with Ul
L being the charged lepton mixing matrix and

ΓL
W−l̄ν

¼ ðΓL
WþνlÞ†. The charged vector boson contribution

to (3.7) is proportional to U�
LMU†

L, which vanishes
identically as shown in Appendix A.
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