PHYSICAL REVIEW D 104, 055042 (2021)

One-loop corrections to light neutrino masses in gauged U(1) extensions
of the standard model

Sho Iwamoto®  and Timo J. Kiirkkiinen

+

Institute for Theoretical Physics, ELTE Eétvos Lordnd University,
Pdzmdny Péter sétany 1/A, 1117 Budapest, Hungary

Zoltdn Péli*
ELKH-DE Particle Physics Research Group, 4010 Debrecen, P.O. Box 105, Hungary

Zoltan Trocsanyi

§

Institute for Theoretical Physics, ELTE Edtvos Lordnd University, Pdzmdny Péter sétdany 1/A,
1117 Budapest, Hungary and ELKH-DE Particle Physics Research Group,
4010 Debrecen, P.O. Box 105, Hungary

® (Received 10 May 2021; accepted 19 August 2021; published 28 September 2021)

We consider gauged U(1) extensions of the standard model of particle physics with three right-handed
sterile neutrinos and a singlet scalar. The neutrinos obtain mass via the type I seesaw mechanism.
We compute the one-loop corrections to the elements of the tree-level mass matrix of the light neutrinos and
show explicitly the cancellation of the gauge-dependent terms. We present a general formula for the gauge-
independent, finite one-loop corrections for arbitrary number new U(1) groups, new complex scalars, and
sterile neutrinos. We estimate the size of the corrections relative to the tree-level mass matrix in a particular

extension, the superweak model.
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I. INTRODUCTION

The standard model (SM) of particle interactions is one
of the most successful physics models with unprecedented
precision for predicting physical quantities, for instance, for
the anomalous magnetic moment of the electron. However,
it does not contain right-handed neutrinos as they are sterile
under the SM gauge group. This in turn leads to the
prediction that neutrinos are massless, which is in conflict
with the now well-established experimental result, that at
least two neutrinos are massive [1,2], and therefore, signals
that the SM requires an extension to explain the origin of
the neutrino masses. There are lots of models attempting to
explain neutrino masses. Among those, perhaps the most
economical one that requires the least extension of the SM
is the type I seesaw mechanism where neutrinos acquire
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masses after spontaneous symmetry breaking (SSB) of one
or more scalar fields [3—10].

Recently, there has been a lot of interest in gauged
U(1)-extended models in particle physics phenomenology
motivated by the observed difference between the measured
and SM predicted values of the anomalous magnetic
moment of the muon [11] and also anomalies in short-
baseline neutrino oscillations [12]. Gauged B -—L,
B-3L,, L,—L,, and L,— L, have been considered
[13-19], as well as a general gauged U(1) not related to
flavor [20]. In these models, both seesaw and radiative one-
loop neutrino mass generation mechanisms have been
considered.

As the effects of new physics are typically much smaller
than those of the SM interactions, computations in theories
beyond the SM are often considered only at tree level. Yet,
the loop corrections may be sizable and can affect signifi-
cantly the validity region in the parameter space of the
model. For instance, the lightness of active neutrinos
requires that the loop corrections to the mass matrix of
those particles must also be small in order to have a
phenomenologically viable model. Computations of radi-
atively induced neutrino masses were performed first
within the standard model in Ref. [21], while one-loop
corrections to tree-level masses have been obtained pre-
viously in Refs. [22-24] for the canonical seesaw case, in

Published by the American Physical Society


https://orcid.org/0000-0002-4600-626X
https://orcid.org/0000-0002-2885-2235
https://orcid.org/0000-0001-6528-4380
https://orcid.org/0000-0002-2129-1279
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.055042&domain=pdf&date_stamp=2021-09-28
https://doi.org/10.1103/PhysRevD.104.055042
https://doi.org/10.1103/PhysRevD.104.055042
https://doi.org/10.1103/PhysRevD.104.055042
https://doi.org/10.1103/PhysRevD.104.055042
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

IWAMOTO, KARKKAINEN, PELI, and TROCSANYI

PHYS. REV. D 104, 055042 (2021)

Ref. [25] for the inverse seesaw case, and in the context of
multi-Higgs doublet models [26-29]. In the cases of
gauged U(1) models, we are not aware of a computation
of the one-loop corrections to the active neutrino mass
matrix.

In this article, we consider gauged U(1) extensions of the
SM and derive a general formula for the one-loop correc-
tions of the mass matrix of the active neutrinos. The mass
matrix of the active neutrinos emerges after SSB due to the
type I seesaw mechanism. Our goal is to derive the one-
loop corrections to that mass matrix and estimate their sizes
relative to the tree level for a particular example called the
superweak force [30]. The superweak model contains three
additional right-handed sterile (under the SM interactions)
neutrinos and one complex scalar field in addition to the
fields of the SM. The loop corrections involve all the gauge
and scalar bosons which couple to neutrinos.

In order to obtain the one-loop corrections to the
elements of the light neutrino mass matrix, we perform
our computations in the R; gauge and show explicitly the
intricate cancellation of the gauge fixing parameters from
the corrections. In addition, we also demonstrate the
cancellation of the e poles when the loop integrals are
regulated by dimensional regularization in d =4 —2¢
dimensions. These cancellations are highly nontrivial,
and therefore provide strong checks on the correctness
of the computations.

The paper is composed as follows. We introduce the
model to the extent needed for the present work in Sec. II.
We define and compute the one-loop correction to the mass
matrix of the active neutrinos in Sec. III. In Sec. IV, we
provide numerical estimates of the one-loop corrections
and show that those are very small. Finally, we summarize
our findings in Sec. V. We collect auxiliary formulas in the
Appendixes and also provide an auxiliary zip file contain-
ing the SARAH model, parameter, and particle files.

II. PARTICLE MODEL, MIXINGS, AND
INTERACTIONS

We consider an extension of the standard model by a
U(1), gauge group with particle content and charge assign-
ment defined in Ref. [30]. The superweak model is an
economical extension of the standard model that provides a
framework to explain the origin of (i) neutrino masses and
oscillations [31], (ii) dark matter [32], (iii) cosmic inflation
and stabilization of the electroweak vacuum [33], and
(iv) matter-antimatter asymmetry of the Universe. The
complete model including Feynman rules in the unitary
gauge was presented fully in Ref. [30]. As we are to
compute one-loop corrections to neutrino masses, we recall
the details relevant to such computations, with Feynman
rules in the R gauge. We generated those Feynman rules
with SARAH [34-36], but here we present simpler forms for
the rules needed in our computations to make those more
comprehensive. We also recall some of the conventions that

are different in SARAH and the original definition of the
model. We stick to the SARAH conventions throughout this
work [37].

A. Mixing of neutral gauge bosons

The particle content of the standard model is extended by
three right-handed neutrinos vg;, a new scalar y, and the
U(1), gauge boson B’. As the field strength tensors of the
U(1) gauge groups are gauge invariant, kinetic mixing is
allowed between the gauge fields belonging to the hyper-
charge U(1), and the new U(1), gauge symmetries, whose
strength is measured by € in

1 /22 1 Tuv ! € Y2 2% nll
L= Py = FWF, =S FYF,,

U

1 .
DY = —i(yg,B, + 29.B),), (2.1)

where B* is the U(1), gauge field. The charge assignments
are shown in Table I (cf. Ref. [30]). The new fields are
neutral under the standard model gauge interactions. The y
charges are the eigenvalues of half of the hypercharge
operator. The z charges are assigned such that gauge and
gravity anomalies cancel in each family.

Equivalent to the kinetic mixing, we can choose the
basis—the convention in SARAH—in which the gauge-field
strengths do not mix, while the couplings are given by a
2 x 2 coupling matrix in the covariant derivative

G o))
by 0./ \B,)

where y and z are the U(1), and U(1)
parametrize the coupling matrix as

Dy :—i(y Z)

. charges. We can

TABLE 1. Particle content and charge assignment of the
superweak model, where ¢ and y are complex scalars and the
others are Weyl fermions. For SU(3), ® SU(2),, the represen-
tations are given, while for U(1), ® U(1),, the charges (y and z)
of the respective fields are given. Note that for U(1),, the
eigenvalues of the half-hypercharge operator are given.

SUQB). SU@2), u(t), u(l),
O 3 2 1/6 1/6
Ur 3 1 2/3 7/6
Dy 3 1 -1/3 -5/6
Ly, 1 2 -1/2 -1/2
Ny 1 1 0 1/2
er 1 1 -1 -3/2
¢ 1 2 1/2 1
X 1 1 0 -1
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Jyy Gy -4, cose/  sine
§=<f}” ?”>=(gy ”,gz>( Ny ,>. (2.3)
92y Yz 0 g —sine’ cose

The coupling mixing matrix containing # is equivalent to
the kinetic mixing in the Lagrangian (2.1), and the
parameters of the two representations are related by
¢, =g./V1—¢€* and n = eg,/g,. In this paper, it will be
convenient to use the kinetic mixing representation defined
by (2.1).

The rotation with angle ¢’ is unphysical, as it can be
absorbed into the mixing of the neutral gauge fields B#, B'#,
and W3 to the mass eigenstates A#, Z#, and Z'*, which then
can be described by a rotation matrix

B* cosOy —cosf,sinfy, —sinf, sin Oy
W3k | = | sinfy cos@,cosfy  cosby sinb,
B 0 —sinfy, cos 0,
AH
x | zZ¢ (2.4)
A

This matrix depends on two mixing angles: fyy is the weak
mixing (or Weinberg) angle and 6 is the Z — Z' mixing
angle [38]. In terms of the coupling parameters

kK =cosOy(yy —2y.) and 7=2cosfyy.tanf (2.5)

introduced in Ref. [30], this new mixing angle is given
implicitly by tan(20,) = 2x/(1 —x* —7?). In Eq. (2.5),
tanf = w/v is the ratio of the vacuum expectation
values (VEVs) of the scalar fields (see below) and
!/ 2 /) .3 :
vy = (e/V1=€)(gy/9), v: = g-/9L; i.e., the couplings
are normalized by the SU(2); coupling.

We can express the elements of the Z — Z’' mixing matrix
explicitly,

0 1 | 1 -« =72 1/2
sinfz = sgn(k) |5 Tl .

1 1—K2—T2 >:|1/2
cos@, = [= |1+ , 2.6
? [2< V(I + K2 +72)? -4 2:6)

which also appear in the neutral currents F"‘/? =

. R L . i .
—1ey”(CVf fPR + Cvf fPL) where e is the electromagnetic
coupling and Pg/;, = P, =1 (1 & y°) are the usual chiral
projections. In particular, for neutrinos

gL .
eCy,, = 2 cos Oy [cos 07 — (yy —7-) sin @7 cos Oy ],
€C§W =~ %}//z sin 927
g .
eCL, = ZCosLGW [sin@; + (¥, — 7.) cos O cos Oy,
eCy,, = ‘%72 cos 6z (2.7)

ie., Cé,/y’z can be obtained from C%f by the replacement

(Z - Z') = (cosOy,sin0;) — (sinfz, —coshz). (2.8)

B. Mixings of scalar and Goldstone bosons
In addition to the usual SU(2); -doublet Brout-Englert-

Higgs field
. (W) 1 (r/)l +i¢2)
¢° V2 \¢s+idy )
there is another complex scalar y in the model with charges

specified in [30]. The Lagrangian of the scalar fields
contains the potential energy

V() =Vo—pglol — gl
o (e 5\ (1P
+(|¢|,|)(|)<§Z(><M2)C—L, .10

where |¢> = |¢T|* +|¢°]%. In the R: gauge, we para-
metrize the scalar fields after spontaneous symmetry
breaking as

(2.9)

. < —iv/20" )
2\t tis, )
1 .
x=—7=Ww+s +io,),

V2

where v and w denote the VEVs of the fields, whose
values are

(2.11)

20,12 — M2
4y, — A

22415 — M
=V2/——" 2.12
w=v2 440, = 12 (2.12)
Using the VEVs, we can express the quadratic couplings as

A A
py = Apv* + 5w, 1 :/IZW2+§112. (2.13)

2

The fields 4’ and s’ are two real scalars, and o, and o,
are the corresponding Goldstone bosons that are weak
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eigenstates. We shall denote the mass eigenstates with £, s
and o, 0. These different eigenstates are related by the

rotations
h n cosfg —sinfy n
= Zg =(" (2.14)
s s sinflg  cosfyg s
and

c cosfg —sinf c
oy o, sinfg cosfg o,

where Oy and 6g are the scalar and Goldstone mixing
angles that can be determined by the diagonalization of the
mass matrix of the real scalars and that of the neutral
Goldstone bosons.

The scalar mixing angle 6y is related to the potential
parameters by [30]

Avow

tan(20g) = (2.16)

B Agv* = A w*’

The condition g € (—7%,%) implies that the scalar mass
eigenstates are not labeled by mass hierarchy.

The mass matrix of the Goldstone bosons is given in
principle by the sum of gauge-independent and gauge-
dependent terms. However, the gauge-independent terms

vanish by Eq. (2.13):

(%ZW2+/1,/,02—M§5 0
0 A0+ AW — i

> =0, (2.17)

so the mass matrix contains only gauge-dependent terms,

2

m? = &ymy + gz,mf,z/, (2.18)

where £, and £, are the gauge parameters. The mass matrix
1S symmetric, so we can write it formally as

2 2
m m
An My
2 X X
m; ——( ) 5 ) (2.19)
my 2

My 12

for both x = Z and Z'. Explicitly,

2 _22,2(L _ R )2
mAZ,ll =ve (CZI./I./ Zvv

Mo \2
= <cosgw> (cos@; —ksind,)?,

2 _ 2 L R R
mAZ,IZ =2vwe (CZI/I/ - CZDD)CZI/I/

My \2 . .
= osty (cos@, —ksin@y)(—zsinby),

My
cos Oy

2

mizﬂ =w?e(2CE )= ( ) (-sin@)?,  (2.20)
where My, = - is the mass of the W bosons, and the
elements of mf‘Z, can be obtained by the replacement
Z — 7' in the chiral couplings, which implies the replace-
ment (2.8) in the second forms of the matrix elements. The
latter are the most convenient ones for the diagonalization
of the mass matrix. Using Eq. (2.6), one can check that the
matrix

2T _ 2
ZemyZs = mg;,, 4

is indeed diagonal provided we have for the Goldstone
mixing angle

cosf, —ksinfy,
\/(cos 0, — ksinfy)? + (zsin@)>

cosfg = (2.21)

and

78in 0,
V/(cos0; —ksin0;)2 + (zsin6;)%

sinfg = (2.22)

C. Masses of neutral gauge bosons

As expected, the elements of the diagonal matrix mﬁiagv N

coincide with the squares of the masses of the neutral gauge
bosons [30],

M 2
M%:( W ) [(cosO, —ksind,)? + (zsind,)?] (2.23)
cos By

and

M 2
M%,:( ;" ) [(sinf; +xkcosb;)? + (tcoshy)?], (2.24)
cosOy

which can also be expressed conveniently with the chiral
couplings and Goldstone mixing angle. First we note that
using Eq. (2.23), we find the simple relation

—w (2.25)

between the Goldstone and neutral boson mixing angles,
and also
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cos@, My,

cosg =1 (2.26)

cosOw My~

Next, we can substitute the relations found in Eq. (2.20)
into Egs. (2.23) and (2.24) together with the definition of
the right-handed couplings defined in Eq. (2.7), resulting in

M% (CZUU Zm/)2 + W g sin HZ (227)
and also using Eq. (2.8),
M% = v?e*(CL,  — CB )2 +w?g?cos? 0. (2.28)

From Egs. (2.25) and (2.26), we can express

wg,sinf; = M,sinfg and wg. cos, = M, cos g,

(2.29)
which after substitution and simple rearrangement leads to

2,2
) v-e

= — C y
VA C052 9 ( Zvv Zl/l/)
2 et R \2
M = aror (Cou = Chu)* (2.30)

D. Mass terms and mixing of neutrinos

The masses of the neutrinos are generated by the leptonic
Yukawa terms in the Lagrangian [30],

1 .
—L5 = zvrYy(vr)x + Vg Y. eaLray + Hec.,

5 (2.31)

where L; is the left-handed lepton doublet, ¢, is the
Levi-Civita symbol, @ and b are SU(2), indices, Yy and Y,
are 3 x 3 matrices, and the superscript ¢ denotes charge

conjugation, v“ =1iy,v*. After SSB, this Lagrangian
becomes
w+ s +io,
L) =—— LYy
Y 2\/5 R N( R)
v+ N +ioy
——F=gY, v, +Hec, 2.32
\/§ R L ( )

and the terms proportional to the VEVs provide the mass
matrices

w v

— Yy, M, = —
V2 P2

where we chose a basis such that the Majorana mass matrix
My, is real, positive, and diagonal, while the Dirac mass
matrix M, is complex.

In the flavor basis, the 6 x 6 mass matrix for the
neutrinos can be written in terms of 3 x 3 blocks as

M, = Y, (2.33)

T
M = ( 05 MD). (2.34)
M, My
The weak (flavor) eigenstates (v, 1, Uz, Vg 1, Vg 5, Vg 3) Can
be transformed into the basis of v; (i = 1-6) mass eigen-
states with a 6 x 6 unitary matrix [39] U where the mass
matrix is diagonal,

UTM/U =M= diag(ml,mz,m3,m4,m5,m6). (235)

It is helpful to decompose the matrix U into two 3 X 6
blocks U; and Uy,
U
o= ()
Ug

so UT = (U7, U},) where both blocks are 6 x 3 matrices. It
may be worth emphasizing that despite what might be
implied by the notation, the matrices U; and U} are only
semiunitary. Useful relations of these matrices are collected
in Appendix A.

(2.36)

E. Gauge boson—neutrino interactions

As the neutral currents are written in terms of flavor
eigenstates, the interactions between the neutral gauge
bosons and the propagating mass eigenstate neutrinos
include also the neutrino mixing matrices:

rl\l/u,-bj = _ieyﬂ(r‘L/WPL + FéyszR)ij’ (237)
where
rl‘}w = C{‘/WUZUL VWUTUR (238)
and
r@w = VWUZUL + CVIJDUT UR = _(F‘L/w)* (239)

forbothV=Zand V=2.

F. Scalar boson—-neutrino and Goldstone
boson—neutrino interactions

The terms containing the scalar and Goldstone bosons in
Eq. (2.32) provide interactions between those and the
neutrinos. These interactions have the same structure with
small differences. For the propagating scalar states S; or o,
(k =1 denoting & or the Goldstone boson belonging to Z
and k = 2 referring to s or the Goldstone boson belonging
to Z'), such interactions can be decomposed into left- and
right-chiral terms

rsk/!’kl/i’/f = <F5k/meL + rSk/ﬂknyR)ij’ (240)
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where the matrices I'*/® contain both the mixing matrix of
the neutrinos and the mixing matrix of the scalar or
Goldstone bosons. The left-chiral coefficients are

I, = -i {(MUZUL +UIU;M) (ZS%
UM (s W)kz] 241
and
rs,, =- {(MUZUL +UTU; M) (Z(;)kl
+ UMyU %} ’ (2.42)

and the right-chiral ones are related by complex conjuga-

tion, IT'R —(Fék Joun)

NY 7 =
III. NEUTRINO MASS MATRIX AT
ONE-LOOP ORDER

We are interested in the one-loop correction 6M; to the
tree-level mass matrix of the light neutrinos. In perturbation
theory, we deal with propagating states which are mass
eigenstates. Hence, we can compute loop corrections to
self-energies of mass eigenstates of neutrinos. The neutrino
mass matrix at one-loop order is then obtained from
Eq. (2.35), with diagonal mass matrix substituted at one
loop, M + 6M where

M = diag(ém,, dm,, Sms, Smy, dms, dmg). (3.1)
Hence, the correction is obtained by
SM; oM7E
SM/ = < L D> =UsSMU'". (3.2
SMp My

Using Eq. (2.36), we can compute the 3 x 3 blocks as

M, = U;sMUJ,

M, = UpsMU] ,
(3.3)
In the following subsections, we prove that the one-loop

correction to the mass matrix of the active neutrinos has the
form

1 M3,
— 2 k 2
oM, = 1622 k;z [3(Ze)k1 2 F(M7,)

(3.4)

M2
+ (@} "2 FO0R).

where we introduced the finite matrix valued function

(3.5)

of dimension mass and with summation running over all
neutrinos.

A. Self-energy decomposition

The neutrino self-energy is a 6 x 6 matrix that can be
decomposed as
iZ(p) = AL(p?

)PPL + Ag(p?)pPr + BL(p?)P,,

Using this decomposition, 6M; is given by [26]
sM; = U:B,(0)U]. (3.7)

The matrix B (0) receives contributions involving a
neutrino and either a neutral vector boson Z, Z’, or a scalar
boson ¢, 6, (Goldstone boson), /1, s (Higgs-like scalar) in
the loop. The relevant Feynman graphs that give contri-
butions to the neutrino self-energies at one-loop order are
shown in Fig. 1. There are also tadpole contributions to
B;(0). Those are proportional to the scalar-neutrino
coupling I’ given in Eq. (2.40), which vanishes when

Siviv;
sandwiched between U and U] 1.5 see Eq. (A5). The charged
vector boson together with a charged lepton in the loop
(bottom right diagram in Fig. 1) contributes only to A; /r.
Thus, we compute the first three graphs explicitly. For a
given boson x in the loop, the matrix B; (0) depends on the
mass M, and also the tree-level masses of the neutrinos

{ma}’ BL<0) = B{(Mm {ma}>'

B. Contributions with neutral gauge bosons
in the loop

The contribution of the neutral gauge boson V is'

(B‘L/(MV {ma}'fv))up

=i [ o & Z o ol T, Pl M),
(3.8)
where &y is the gauge parameter and
Pﬂv(f’ M%/;fv)
S S p—L (3.9)

22— Mj, (€2 = MY)(£* = EyM3,)

Introducing the 6 x 6 matrix

'"We suppress 2 in the following integrals until Eq. (3.18)
where it is shown explicitly. u is the mass parameter of dimen-
sional regularization.
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Va

FIG. 1.

*
UL,ia h,s UL,aj

by

One-loop graphs contributing to the neutrino self-energy. Top left: Goldstone boson contribution. Top right: scalar

contribution. Bottom left: neutral gauge boson contribution. Bottom right: charged gauge boson contribution. Note that the W boson

loop does not contribute to the matrix B; .

n n
my ng

(n) .
m,’ =d , 3.10
‘ 1ag <f2 - m% - m%) ( )

and using the result of Appendix B, we obtain the following
expression for a neutral vector boson in the loop:

dé¢
(C\L/W—C\liuu) /(2

1
Ul.
( —EyM?, fZ—M%ﬂ g

(3.11)

MY =

dmf

xU*{

C. Contributions with neutral Goldstone bosons
in the loop

The contribution of the neutral Goldstone boson oy
(V = 1 means the Goldstone boson belonging to the Z field
and V = 2 refers to the Z’ field) is

(Biv(mav, {ma}; fv))ijPL

B i/ di¢ r My 1
- (277,')d i OvEiva p2 _ mg ovValj p2 _ va%/ :

(3.12)
Using the matrix notation, we can write
U; B (0)Ul P,
=— uU;r r, uUu—————. 3.13
1\/(2 ) L+ oywv f oy LfZ_éVM%/ ( )

Substituting the vertex functions of Eq. (2.40) and employ-
ing the matrix relations in Eqs. (A2) and (AS5), we obtain
the correction to the mass matrix as

- . d9¢ (1) + (ZG)VI 2 1
oM, =— U; Mm ,' MU .
L 1/(2 )d L 4 L v fz §VM%/

(3.14)

We now substitute Mm(fl)M = mif) and using Eq. (2.30),
we obtain

, diz  m® .1
5M " =—ie (C\L/w Vw) / (271’) UL UL Lp2 é:VMZ
(3.15)

D. Contributions with scalar bosons in the loop

The scalar-neutrino vertex is very similar to the
Goldstone boson neutrino vertex, so the contribution with
a scalar boson Sy, in the loop can be written immediately in
analogy with Eq. (3.14):

di¢ s (Zg)\2 1
Se - * (1) i Skl
5MLk1/(2”)dULMmL,, MUL< . ),;z_ T

((Zs) % 1
_1< vkl (2 ) UL f)Usz MZ .

E. The complete one-loop mass correction

Combining Egs. (3.11), (3.15), and (3.16), we find that
that the gauge-dependent pieces of the vector boson
contribution cancel exactly with the Goldstone boson
contribution, and obtain

(3.16)
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oy Sk
SMy= Y (sM}+5M;")+ k;;sM;

V=27
di¢
= Z lez(CVw Vw) /—d
V=27 (27)
U dm,(/,) m?) 1 Ul
Her-m3 M3 2-m3) "

Ul. (3.17)

. (ZS)kl)Z d’¢ m}(fs)
+ i U;
kzlz ( v (2r)? sz—Mék

Introducing the integral

Lo(M?,m2; 42, €)

di¢ 1
= y% , 3.18
v | e G
the matrix I with elements
6
) (M?) = Z Jajlo(M?.m2;p2 ),  (3.19)

and using the relations (2.30) allows us to recast Eq. (3.17)
into a neatly condensed form

ow, = 5 { (P ) @, 10083 - 100, )

k=12
(Zs)i )
+ < ) 1000 (3.20)
with V, =Zand V, = Z'.InEq. (3.18),2¢ =4 —d and u

is the regularization scale.

F. Finiteness and scale independence of 6M

We show here that the one-loop mass correction 6M; is
finite and independent of the scale u. Evaluating the
integral (3.18) yields

2 0.0 (s) o (m> ¥
Io(M ,m=u ,6)210 (6)"’[0 <W,W> +O(€>, (321)
where “s” stands for the singular and “f” for the finite
functions

s i 1
I(()‘)(e) =16 (——yE +1Indz + 1),

f i xInx
IE))(x,xﬂ) =1 (1 _x+lnx )

(3.22)
with yg ~ 0.5722 being the Euler-Mascheroni constant. It is
also convenient to split the matrix (3.19) in a similar
fashion

100 (M?) = 16m) 4 10 (Af2), (3.23)
such that
167 = jU; MPU; 157,

Then the one-loop correction to the mass matrix of the light
neutrinos can also be decomposed as

sM,, = oMY + MY + O(e), (3.25)
where
oy = 3 [aws (e e
k v
k=172
2 2
L @)= 2ok I(s,ﬂ (3.26)
v
and

= 3 (B ) cams 1) - 10 o )
k=1,2

+ (B ) ro0s,)|

In order to prove that M, is finite, one has to show that

(3.27)

5MS) is free from e poles. We prove that it in fact vanishes
because the matrix 1) is a zero matrix due to the identity
(AS5), while the coefficient in the second term cancels
because the matrices Zg and Z; are orthogonal, so

2
Zzsu ZZle_O
k=1

2

k=1
Hence, the mass-independent terms, including the diver-
gent pieces of the light neutrino one-loop mass correction
cancel, and we can set € = 0, which yields 6M; = 5M(Lf).
Furthermore, the terms depending on the regularization

(3.28)

scale in 5M(Lt) cancel in an identical way as the second term

does in 5M [using Eq. (3.28)].

The remaining finite terms give the final, regularization-
scale-independent and finite one-loop correction to the light
neutrino mass matrix as given in Eq. (3.4). It is the linear
combination of the matrix valued function F given in
Eq. (3.5) with different arguments and coefficients corre-
sponding to the different one-loop contributions. The
function F gives the mass correction corresponding to a
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one-loop diagram before coupling suppression; see Fig. 4
in Sec. IV for details where we shall also give a numerical
estimate for its eigenvalues om? . It is well defined for any

non-negative x because

xInx xInx

=-1.

lim =0 and lim (3.29)

=01 —x x=>11 —Xx

G. Generalization to arbitrary number of neutral
bosons and neutrinos

Our predictions for the one-loop correction to the light
neutrino mass matrix can easily be generalized to any
number of ny massive neutral gauge bosons originating
from an extension by a U(1)"v Abelian gauge group, ng
neutral real scalars coupling to n, active and n, sterile
neutrinos. Clearly, the matrix form of gauge-dependent
parts in Egs. (3.11) and (3.15) is unchanged, and they
cancel in the same way.

The correction without gauge parameters &y in Eq. (3.4)
is straightforwardly generalized to a case where the sums
go over an arbitrary positive integer ny and ng.

w =100 GeV

log, ,, Isin(d)l,

log,, g,

!

Iog10 gy
mz,IMeV, w = 100 GeV
0 T T T T
100000 100000
-1k N
30000 30000 /
-2 8 -
8
\mN ‘O_
2-3 ]
(2]
kel
-4 i
=
& |
-6 -5 4 -3 2 1 0

log,, 9

The neutrino mass and mixing matrices with arbitrary n,,
and n, are written identically in the block form, differing
only on the block shape: U, is an n, x (n, + n,) matrix
and Uy is an ng x (n, + n,) matrix. The finite correction
presented in Eq. (3.4) is then immediately generalized to

1 S 2 M%/k 2
oM, = 162 3 ;(ZG)kl 7F(ka)

ng M%
+ Y2 08, (330
k=1

where the upper limit in the summation in the matrix F is
n, + n,. The factor 3 in front of the first term in the
brackets of Eq. (3.30) stems from the three polarization
states of the propagating massive neutral gauge bosons.
The corresponding factor is, of course, one in the case of
the scalars. This formula is also independent of the new
U(1) charge assignments.

w =750 GeV

log, , Isin(0)l,

/
r4

Iog10 a

>
. L .
) 5 -4 3 2 - 0

log,, 9}

mz,IMeV, w = 750 GeV
0 - - - ; ;

7

log,, 9,

log,, g;:

FIG. 2. Absolute values of sin 6 (top) and mass of Z’ boson (bottom) in the logarithmic (g}, ¢;) plane. For 6 the contour labels
correspond to value 10". Left plots: w = 100 GeV. Right plots: w = 750 GeV.
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10°

o B

Matrix element (eV)

10710F z s

10°® 107 1072 10° 102
m GeV)

loop

FIG. 3.

z
h a
=
= 10 1
| =
[0}
3
© 10
%
g
10-8 3
1070¢ z s |1
1078 107 1072 10° 102

m GeV)

loop

Matrix elements F;; as a function of the mass 11,4, of the boson in the loop are confined to the blue band, assuming normal

neutrino mass hierarchy. We have highlighted with vertical bands the relevant mass regions where the masses of the bosons in the loop
lie. The scalar s is required to have mass between 144 and 558 GeV requiring stability of the vacuum [40]. Left plot: m{*® = 0.01 eV,
mye® =30 keV, mi* ~ m{* = 2.5 GeV. Right plot: m{* = 0.001 eV, m§e = 7.1 keV, m{*® ~ mf* = 3.0 GeV.

IV. NUMERICAL ESTIMATE
OF THE CORRECTIONS

We are now ready to estimate the order of magnitude of
the corrections. We assume large mixing in the scalar
sector: € = O(1). The Z' mass and mixing angle 6 are
fixed by the gauge couplings ¢, = )¢, and g and ratio of
VEVs, tanf = w/v. We plot their magnitudes in Fig. 2,
scanning the parameters ¢}, ¢, € [107°, 1] and for w = 100,
750 GeV. Note that larger tan f corresponds to a larger
Goldstone angle. Smaller tan g distorts the M, contours so
that the same Z’ mass can be achieved with larger gauge
couplings ¢, and g. compared to large tan 4. In addition, we
set M/v = O(1); that is, only the mass of the Z’ boson is
free, and may be far from electroweak scale. The relevant
gauge couplings can then be estimated as from Fig. 2 after
identifying the region in the (g, g) plane corresponding to
M, € [20,200] MeV, which is the relevant mass region
for the superweak model to reproduce the dark matter relic
density allowed by experimental constraints [32].

Then we identify the order-of-magnitude estimate for
|sinf;| by comparing the regions relevant to the mass
range of M. For w = 100 GeV, we have | sinfg| < 107°,
which we take as a conservative upper limit. Then the
prefactors in the gauge boson contributions to 6M; are

M2
e*(CL,, — CE )? = cos?f 722 ~0(107")  (4.1)
and
M2,
e*(CL, — CR ) =sin*6;—%
v

Then the numerical estimate for the total correction in
Eq. (3.4) can be written as

(6My),; < O(1077) eV

M, \2
10721 —Z ) F.(M%). (4
+0(107%) x (100 MeV> i(Mz)- (43)

The elements of the matrix F are plotted as a function of the
mass of the boson of the loop my,, in Fig. 3 and the
eigenvalues of the matrix corresponding to corrections to
active neutrino species in Fig. 4. The eigenvalues of F
themselves exceed the active neutrino tree-level masses, as
the latter are at most about O(1) eV for the MeV-scale

S
o
C
S
°
o
3
O
........ omY
108 F 5mx1/0 1
- 2,0
v
—dmg
10.10 L L e L
10 107 102 10° 102
m, (GeV)
oop

FIG. 4. FEigenvalues of the matrix F as a function of the mass
of the boson in the loop g, assuming m{* = 0.01 eV,
mye =30 keV, m§* = m{® = 2.5 GeV, and normal neutrino
mass hierarchy.
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Z' boson. However, the coupling suppressions in Eq. (4.3)
are sufficient to tame the relative correction to the tree-level
mass below the percent level. Assuming the active neutrino
masses to be O(1072) eV, a rough estimate for the relative
correction to active neutrino masses is of O(107#).

We may maximize the effect of the Z’' loop by allowing
the Z' mass to be free and setting large | sin 65| = O(1071),
which is obtained when ¢, and ¢, are O(107'). This
corresponds to Mz = O(M), which is, of course,
excluded. Yet, even in this case, the correction from the
Z and Z' loops is small and has the same order of
magnitude, O(10~7) eV . Thus, the individual contribu-
tions from beyond SM loops cannot be significantly larger
than the SM contributions.

V. CONCLUSIONS

In this paper, we have computed the one-loop corrections
to the mass matrix of the active neutrinos in a gauged U(1)
extension of the standard model of particle interactions.
The field content of the model consists of a new complex
scalar field and three right-handed neutrinos—sterile under
the standard model interactions—in addition to the fields in
the standard model and the new gauge field. The neutrino
masses are generated by Dirac- and Majorana-type Yukawa
terms, which after spontaneous symmetry breaking of both
scalar fields give rise to neutrino masses in the way of the
type I seesaw mass generation. We have used the R gauge
and have shown that the one-loop corrections are (i) inde-
pendent of the gauge fixing parameters, (ii) finite, and
(iii) independent of the regularization scale. We have also
demonstrated how the formula for the one-loop mass
corrections can be generalized to the case of an arbitrary
number of new U(1) groups, complex scalars, and right-
handed neutrinos.

We have provided a numerical estimate of the size of the
mass corrections in the context of the superweak model, in
which the new neutral gauge boson Z’ is much lighter than
the Z boson of the standard model. We have found that in
the mass range of M, € [20,200] MeV, motivated by a
possible explanation of the relic density of dark matter
in the Universe, the relative mass corrections to the tree-
level mass matrix elements do not exceed the per mill
level. Hence, the model is stable against higher-order
corrections in the neutrino sector, which motivates further
studies to explore the viable parameter space of the model
regarding the mixings between the active and sterile
neutrinos [31].
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APPENDIX A: SOME PROPERTIES OF
NEUTRINO MASS AND MIXING MATRICES

In this Appendix, we derive some useful relations among
the neutrino mass and mixing matrices. The matrix U that
diagonalizes the neutrino mass matrix is unitary, hence,

, U U, Ul U, UL
UUT_< j)(UT,U,Q)_< et ’;)
Ug UxU;, UpUg

(13 03>
0, 13/

from which we obtain the following important relations:

(A1)

U,U; =1, UpUp = 15, (A2)

and

U, U; = URU; =05, (A3)

where 1, denotes the n x n unit matrix. The second
unitarity conditions gives

- U
v wp(®

L> =UlU, +ULU; =15, (A4)
R

Using Eq. (2.35), we derive
L /05 ML\ /U .
v vz (& ) (%)
M, My / \Ug
= U;UIM,U3U; + U, UM, U, U
+ UTULM, UL UYL,

and then with relations in Eq. (A3), we obtain

U;MU] =0,. (A5)
Analogous calculations yield
UxMU} = M,,. (A6)

Multiplying Eq. (A6) with U}Le from the left and using
Eq. (A4), we find

UM, = U, UxMU] = (15— U'U; ) MU}

= MU] - UlU;MU;, (A7)
where the last term vanishes by Eq. (AS), so
UM, = MUj. (A8)

Finally,
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. 0 MJ\/U
UxMU}, = Ug (UL, Up) ( M MD) (Uf )U,E
D N R

= Up(UIMLU; + URM, U, + UyM, Uy U,
Expanding the factors into the parentheses, the first two

terms give vanishing contribution by Eq. (A4), while
utilizing Eq. (A2), the last one is simply My, so

UxMU}% = My, (A9)
Now Eq. (A4) allows us to derive
UMy = UUxMU% = (15 — UTU; )MU}
= MU}, - UTU; MUE, (A10)

where the second term on the right does not vanish
this time.

APPENDIX B: EVALUATION OF THE VECTOR
BOSON EXCHANGE DIAGRAM

The vector boson exchange diagrams shown in the
bottom row of Fig. 1 contribute gauge-dependent terms
to the neutrino self-energy. In order to show that the gauge-
dependent terms cancel once contributions from all par-
ticles are considered, it is useful to eliminate the loop
momentum from the one-loop integral corresponding to the
vector boson exchange diagram. A decomposition to
achieve this was used in Ref. [41], and we shall derive
it here as well. In Ref. [42], Eq (4.4) contains the self-
energy,

H ddf T v 2
IZV(p):_ I P(p—f)r Puy(f,MV;fv),

(2m)? (BI)

where the 6 x 6 matrices are defined as follows. The matrix
P is the fermion propagator, diagonal in the mass eigen-
states,

while

P(p—¢)=|(p-£)1-M",
Wlth A:rLPL +FRPR.

I = —ieytA,
(B2)

In the following, we shall write P for P(p — ¢). The matrix
A is self-adjoint, A" = A, and so is I'"/F. We also
introduce the abbreviation

A =TRp, +TLPy, (B3)
which will simplify our calculations. In order to compute
the loop integral easily containing the neutral vector boson
propagator in the neutrino self-energy loop, in this
Appendix we perform tensor reduction of the matrix
product

/ATP/A, (B4)

such that the numerator factor be at most linear in the loop
momentum 7.

When the fermion momentum p appears as p at the
extreme left or right of the expression, it satisfies the Dirac
equation plg = M (both Dirac and Majorana fermions do
s0); thus, we can replace formally p with M. Let us first
write the identity

AT = (/- p+MAT=MA" - (p-£A)AT. (B5)

The chiral coupling matrix A anticommutes with the Dirac
matrices y,, hence,
AT =MAT —AT((p—£)1 - M + M)

=MAT - AP —ATM, (B6)

and similarly,

P/A = —A — PMA + PAM. (B7)

Multiplying Egs. (B6) and (B7), we obtain the expression
(B4), and its expansion yields

ATPAA = —-MATA - MATPMA + MATPAM
+ATP'A + ATMA — ATAM + ATMA
+ ATMPMA — A'TMPAM. (B8)

Using that pA = Ap, the fourth term can rearranged as

AP 'A=AT((p-£)1-M)A
= %AWA + %AVA - AT/A —ATMA
1 | P .
= EprA"'A + 5ATAp— A"/A —ATMA. (BY)

The p is on extreme left and right; hence, can be replaced
with M, giving

< | A R . .
A*P—IAZEMATAJFEATAM—AT/A—ATMA. (B10)

Substituting Eq. (B10) into Eq. (B8), we obtain

ATPAA =My + M, + M,, (B11)
where we introduced the abbreviations
M, = -ATZA,
M, = —%MATA—%ATAMJH&TMA, (B12)
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and

M, = —-MA'PMA + MATPAM
+ A"TMPMA - ATMPAM

= (MA"—A™)P(AM - MA), (B13)
which correspond to constant, linear, and quadratic terms in
the neutrino mass matrix M. We now discuss the contri-
bution from each term in Eq. (B11) separately.

The first constant term gives vanishing contribution to
the loop integral as it is odd in the loop momentum. The
other two terms can be decomposed into left- and right-
chiral pieces:

M, = MEP, + MEPg. (B14)
Our goal is to compute the one-loop correction (3.7) to the
tree-level mass matrix of the light neutrinos. In order to
obtain it, one sandwiches the left-handed pieces MiL
between the matrices U; and Uz. Using the properties
of the neutrino mixing matrices of Appendix A, we
immediately see that

U;MiU; =0, (B15)
while lengthy computations yield
UZM%UTL = _(C€/w - C‘R;W)2U2MPMU£
+ terms that do not contribute to B, (0).
(B16)

Here we outline the steps needed to reach Eq. (B16).
First, in order to find the left-chiral part M%, we

substitute A and A into Eq. (B13). We write the denom-
inator of the fermion propagator as

r—7+m

P).. =5, -2 7 T
( )l/ lj(p_bﬂ)z_miz’

(B17)

and use the following relations for the Dirac projectors:

Prir(g+m)Ppjg = mPp g,

Prr(q+m)Pri. = qPg) (B18)

valid for any momentum ¢ and mass m. Hence,

r—7
Pun(®)yugn = (g =05 T
r—7
Prjr(P);jPr/L = 8ij 7(19 Z PP —m? Pr/rs (B19)

1

and therefore, we obtain

M} = —-MI'Y"PMIt + MI'ETPTEM + TRYMPMIE
—I’R"MPI'*M + D, (B20)

where the last term is proportional to (p — £):

D = [M(I'*' — TR — (P — T*M)] (7 - £)
x [(p = 1)1 — M2|"/(TRM — MI'L).

Then using the matrix relations derived in Appendix A, we
can compute the following identities:

U;MI'tt=-CcR UM, U;I'*=-CL U;, (B21)
*MU} = Ck MU;, TrtU} =cCk Ui, (B22)
Finally, sandwiching Eq. (B20) gives us
UzMgUz = _<C€/UU - C\IEDD)ZUzMPMUz
+U;DU;. (B23)

As mentioned, the last term is proportional to (p — #), but
only the term with # contributes to B, (p = 0). That piece
being an odd function of £ vanishes upon integration,
which completes the proof of Eq. (B16).

The charged vector bosons W* also contribute to the
neutrino self-energy. The corresponding Feynman rules are

U, . =—ieyTy . Py, Ty,  =—ieyTy,. P., (B24)
where
Tl . = Cya(U7UL),, (B25)

with U{ being the charged lepton mixing matrix and
rL_, = (T}.,,)" The charged vector boson contribution
to (3.7) is proportional to UZMUZ, which vanishes
identically as shown in Appendix A.
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