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Modular symmetry offers the possibility to provide an origin of discrete flavor symmetry and to break it
along particular symmetry preserving directions without introducing flavons or driving fields. It is also
possible to use a weighton field to account for charged fermion mass hierarchies rather than a Froggatt-
Nielsen mechanism. Such an approach can be applied to flavored grand unified theories (GUTs) which can
be greatly simplified using modular forms. As an example, we consider a modular version of a previously
proposed S4 × SUð5Þ GUT, with Gatto-Sartori-Tonin and Georgi-Jarlskog relations, in which all flavons
and driving fields are removed, with their effect replaced by modular forms with moduli assumed to be at
various fixed points, rendering the theory much simpler. In the neutrino sector there are two right-handed
neutrinos constituting a Littlest Seesaw model satisfying constrained sequential dominance where the
two columns of the Dirac neutrino mass matrix are proportional to ð0; 1;−1Þ and ð1; n; 2 − nÞ respectively,
and n ¼ 1þ ffiffiffi

6
p

≈ 3.45 is prescribed by the modular symmetry, with predictions subject to charged lepton
mixing corrections. We perform a numerical analysis, showing quark and lepton mass and mixing
correlations around the best fit points.

DOI: 10.1103/PhysRevD.104.055034

I. INTRODUCTION

The mystery of the three families of quarks and leptons,
and their patterns of masses and mixings, including in
particular the origin of tiny neutrino mass with large
mixing, remains a good motivation for studying physics
beyond the Standard Model (BSM). The quest for uni-
fication, in order to understand the quantum numbers of
quarks and leptons within a family, including charge
quantization and anomaly cancellation, and the desire to
unify the three gauge forces, also motivates BSM studies.
The combination of family symmetry and grand unified

theories (GUTs) [1] provides a powerful and constrained
framework [2]. The minimal SUð5Þ GUT symmetry [1]
allows neutrino mass and mixing to be included by the
addition of any number of right-handed neutrinos, where
the type I seesaw mechanism [3–9] explains the smallness

of neutrino masses compared to charged lepton masses. For
example, SUð5Þ can be combined with the minimal type I
seesaw mechanism which includes just two right-handed
neutrinos (2RHN) [10,11].
A class of highly predictive 2RHN models are based on

constrained sequential dominance (CSD) [12–21]. The
CSD scheme (also called Littlest Seesaw [15]) assumes
that the two columns of the Dirac neutrino mass matrix are
proportional to ð0; 1;−1Þ and ð1; n; 2 − nÞ respectively in
the RHN diagonal basis, where n may take any value,
giving rise to a large class of CSDðnÞ models. In all such
models, the lepton mixing matrix is predicted to be the
trimaximal TM1 pattern, in which the first column of the
lepton mixing matrix follows the tribimaximal mixing
pattern while allowing for a nonzero Ue3, and the neutrino
masses are normal ordered with the lightest neutrino being
massless with m1 ¼ 0. The phenomenologically successful
cases include CSD(3) [14–18] and CSD(4) [19,20]. For
example CSD(3) has been shown to originate from S4 [16].
It has been suggested that flavor symmetry groups

such as S4 could originate from the quotient group of
the modular group SLð2;ZÞ over the principal congruence
subgroups [22], where the leptons are assigned to have
modular weights, the Yukawa and mass parameters
are modular forms, namely holomorphic functions of a

*dinggj@ustc.edu.cn
†king@soton.ac.uk
‡yaocy@nankai.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 055034 (2021)

2470-0010=2021=104(5)=055034(19) 055034-1 Published by the American Physical Society

https://orcid.org/0000-0002-3366-0756
https://orcid.org/0000-0002-1345-3098
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.055034&domain=pdf&date_stamp=2021-09-24
https://doi.org/10.1103/PhysRevD.104.055034
https://doi.org/10.1103/PhysRevD.104.055034
https://doi.org/10.1103/PhysRevD.104.055034
https://doi.org/10.1103/PhysRevD.104.055034
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


complex modulus τ, with even (or odd) modular weights.
The modular forms of level N and integer weight k can be
arranged into some modular multiplets of the inhomo-
geneous finite modular group ΓN ≡ Γ̄=Γ̄ðNÞ if k is an even
number [22]. For example, Γ2 ≅ S3 [23–26], Γ3 ≅ A4

[22–24,27–52], Γ4 ≅ S4 [40,53–60], Γ5 ≅ A5 [58,61,62].
and Γ7 ≅ PSLð2; Z7Þ [63] cases have been studied. We
shall be interested in the Γ4 ≅ S4 modular symmetry in the
present work. If the modular weight k is an odd positive
number, the modular forms can be decomposed into
multiplets of the homogeneous finite modular group
Γ0
N ≡ Γ=ΓðNÞ which is the double cover of ΓN [64].

Notice that top-down constructions in string theory usually
give rise to Γ0

N [65,66]. All modular forms of integral
weight are polynomials of weight one modular forms; the
odd weight and even weight modular forms are in the
representations ρrðS2Þ ¼ −1 and ρrðS2Þ ¼ þ1, respec-
tively. The modular invariant approach based on Γ0

3 ≅ T 0

[64,67], Γ0
4 ≅ S04 [68,69], and Γ0

5 ≅ A0
5 [70,71] has been

studied to understand the flavor structure of quarks
and leptons. Furthermore, the case that the modular weight
k is a rational number has been explored [71,72], then
ðcτ þ dÞk is not the automorphy factor and certain multi-
plier is necessary. As a consequence, the modular sym-
metry and finite modular groups should be extended to their
metaplectic covers [71,72]. The predictive power of the
modular invariance can be considerably improved by
including the generalized CP symmetry [65,66,73]. The
framework of modular-invariant supersymmetric theory has
been extended to incorporate several moduli for both
factorizable [55] and nonfactorizable [74,75] cases.
The complex modulus τ is restricted to complex values in

the upper-half complex plane, but it can take special values,
associated with residual symmetries of the finite modular
group, where such values are called stabilizers [31,40,
54,76]. In the framework of string theory, there may be
enhanced symmetries at various points in moduli space,
which allows for various different stabilizers occurring
simultaneously within the low-energy effective theory [77].
This is known as “local flavor unification”. Another
ingredient in realistic models is to include quark mass
and mixing, which has been addressed in non-GUT models
in [33,45,67,69,71]. It is remarkable that modular invari-
ance can also address the origin of mass hierarchies without
introducing an additional Froggatt-Nielsen (FN) Uð1Þ [78]
symmetry. The role of the FN flavon is played by a singlet
field called the weighton [45], which carries a nonzero
modular weight, but no other charges. The question of
quark and lepton mass and mixing in the context of
modular SUð5Þ GUTs was first studied in an ðΓ3 ≃ A4Þ ×
SUð5Þ model in [29], then ðΓ2 ≃ S3Þ × SUð5Þ [25,79], and
ðΓ4 ≃ S4Þ × SUð5Þ [80,81]. Most recently, a comprehen-
sive analysis has been performed on ðΓ3 ≃ A4Þ × SUð5Þ
models [82], without restricting the modulus τ to take any
special values.

In this paper, we shall propose a new modular model
based on ðΓ4 ≃ S4Þ × SUð5Þ which exploits the large range
of stabilizers studied in [40]. In particular, we shall show
that the minimal 2RHN seesaw model based on CSD(n)
with n ¼ 1þ ffiffiffi

6
p

≈ 3.45, intermediate between CSD(3) and
CSD(4), can be incorporated into an SUð5Þ GUT, where it is
however subject to charged lepton corrections. We shall also
include a weighton field [45] to ameliorate the large
hierarchies in the charged fermion mass matrices, although
some tuning will remain at the percent level. Using the
stabilizers, we are able to reproduce some of the classic
features of GUT models such as the Gatto-Sartori-Tonin
(GST) [83] and Georgi-Jarlskog (GJ) [84] relations, although
we shall see that these relations apply in a more generalized
form as the limiting cases of a choice of parameters. Indeed
in the case of GJ, this is to bewelcomed, since those relations
do not work if strictly imposed.
It is interesting to compare the present model with the

S4 × SUð5Þ ×Uð1Þ GUT model of Hagedorn, King, and
Luhn (HKL) [85,86] (see also [87,88]) where the GST and
GJ relations are used. Many features of the HKL model
may be reproduced without any flavon fields, by replacing
the flavons by modular forms of S4 with several moduli
assumed to be at their fixed points, thereby drastically
simplifying the model. In particular the HKL model
requires nine flavons as compared to the single weighton
ϕ in the modular model. The HKL model also requires
13 driving fields, to drive and align the flavon vacuum
expectation values (VEVs), while the modular model only
requires one driving field χ, illustrating the dramatic
simplification of the family of GUT models in the frame-
work of modular symmetry.
The layout of the remainder of the paper is as follows. In

Sec. II we review modular invariance, while in Sec. III we
focus on modular forms of Γ4 ≅ S4 at level four. In Sec. IV
we present the model based on modular S4 × SUð5Þ GUT,
including the fields and the fixed points that we assume, as
well as the resulting Yukawa matrices and the neutrino
mass matrices satisfying CSD(3.45). In Sec. V we discuss
the numerical results of the model, based on a weighton
expansion parameter of 0.1, which ameliorates the hier-
archies in the quark and charged lepton masses, leaving a
residual fine tuning at the percent level, and perform a scan
about a best-fit point, focusing on the charged lepton
corrections to CSD(3.45) neutrino mixing. Section VI
concludes the main body of the paper. In Appendix A
we summarize some relevant aspects of the group theory of
Γ4 ≅ S4. The results of fit at two local minima of χ2 are
given in Appendix B.

II. THE MODULAR INVARIANCE APPROACH

In this section we recapitulate the concept of modular
symmetry and the formalism of modular invariant super-
symmetric theories [22,89,90]. The modular group
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SLð2;ZÞ often denoted as Γ is the group of 2 × 2 matrices
with integer coefficients and unit determinant under matrix
multiplication [91],

SLð2;ZÞ ¼
��

a b

c d

�����a; b; c; d ∈ Z; ad − bc ¼ 1

�
:

ð1Þ
The modular group SLð2;ZÞ is an infinite discrete group,
generated by two generators S and T with

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
; ð2Þ

which satisfy the multiplication rules

S4 ¼ ðSTÞ3 ¼ 1; S2T ¼ TS2: ð3Þ
Under the modular group Γ, the complex modulus τ in the
upper half-plane with ImðτÞ > 0 transforms as

τ → γτ ¼ aτ þ b
cτ þ d

¼ γðτÞ; γ ¼
�
a b

c d

�
∈ Γ: ð4Þ

It is easy to show

γγ0ðτÞ ¼ γðγ0ðτÞÞ; ImðγτÞ ¼ ImðτÞ
jcτ þ dj2 : ð5Þ

Since� γ induce the same transformation on τ, we get a
transformation group SLð2;ZÞ=f1; S2g≡ Γ̄ which is
called an inhomogeneous modular group. The pair of
matrices γ and −γ are considered to be identical. For
N ¼ 1 global supersymmetry, the most general form of the
action is

S ¼
Z

d4xd2θd2θ̄KðΦ; Φ̄; τ; τ̄Þ þ ½WðΦ; τÞ þ H:c:�; ð6Þ

where K is the Kähler potential, W is the superpotential,
and Φ collectively denotes chiral superfields of the theory
and they are separated into sectors φðIÞ. Under the action of
modular group Γ, the supermultiplets φðIÞ of each sector are
assumed to transform as following

φðIÞ → ðcτ þ dÞ−kIρIðγÞφðIÞ; ð7Þ

where −kI is the modular weight, and ρIðγÞ is the unitary
representation of the quotient group ΓN ¼ Γ̄=Γ̄ðNÞ [22] or
its double cover Γ0

N ¼ Γ=ΓðNÞ [64]. Here ΓðNÞ is the
principal congruence subgroup of level N,

ΓðNÞ¼
��

a b

c d

�����a¼d¼1ðmodNÞ;b¼c¼0ðmodNÞ
�
:

ð8Þ

The groups Γ̄ðNÞ are slightly different from ΓðNÞ with
Γ̄ðNÞ ¼ ΓðNÞ=f1; S2g for N ¼ 1, 2 and Γ̄ðNÞ ¼ ΓðNÞ for
N > 2. Notice that TN ∈ ΓðNÞ and consequently the
homogeneous finite modular group Γ0

N can be expressed
in terms of the modular generators S and T satisfying
the relations in Eq. (3) together with TN ¼ 1, while the
multiplication rules of ΓN are S2 ¼ ðST3Þ ¼ TN for N ≤ 5.
The Kähler potential K is a real gauge-invariant function of
the chiral superfields Φ, the modulus field τ, and their
conjugates. Following [22], we choose a minimal form of
the Kähler potential,

KðΦ; Φ̄; τ; τ̄Þ ¼ −hΛ2 logð−iτ þ iτ̄Þ
þ
X
I

ð−iτ þ iτ̄Þ−kI jφðIÞj2; ð9Þ

where h is a positive constant and Λ is the cutoff scale.
After the modulus τ gets a vacuum expectation, this Kähler
potential gives the kinetic terms for the scalar components
of the supermultipletΦI and the modulus field τ as follows:

hΛ2

h−iτ þ iτ̄i2 ∂μτ̄∂μτ þ
X
I

∂μφ̄
ðIÞ∂μφðIÞ

h−iτ þ iτ̄ikI : ð10Þ

Notice that the Kähler potential can not be fixed by
the modular symmetry [92]; for instance, the operators

ð−iτ þ iτ̄Þk−kIðφðIÞ†YðkÞ†
r YðkÞ

r φðIÞÞ1 for any integer k and
irreducible representation r are always compatible with
modular symmetry. The additional terms with additional
parameters in the Kähler potential can reduce the predictive
power of the modular invariance approach [92]. In top-
down construction, the modular symmetry always appears
with traditional flavor symmetry, and the modular weights
and Kähler potential, as well as the superpotential, would
be strongly constrained. In particular, the Kähler potential
is found to coincide with the minimal one in Eq. (9) after
the rescaling of fields is considered [65,66,77,93]. The
superpotential W is a holomorphic gauge-invariant func-
tion of the chiral superfields φðIÞ and τ. It can be expanded
into a power series of supermultiplets ΦI

WðΦ; τÞ ¼
X
n

YI1…InðτÞφðI1Þ…φðInÞ: ð11Þ

Each term of the superpotential should be invariant
under the modular transformation, thus YI1…InðτÞ should
be modular forms of weight kY and level N and it
transforms in the representation ρY of the finite modular
group ΓN or Γ0

N,

YðτÞ → YðγτÞ ¼ ðcτ þ dÞkYρYðγÞYðτÞ: ð12Þ

If the finite modular group is ΓN , kY must be an even
integer while odd kY is allowed for the double-cover groups
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Γ0
N [64]. The modular forms of level N span a linear space

of finite dimension for each non-negative weight k. The
integral (even) weight modular forms can be generated
from the tensor products of modular forms of weight one
(two). Modular invariance of the superpotential requires
that the modular weights and representations should fulfill
the conditions

kY ¼ kI1 þ � � � þ kIn ; ρY ⊗ ρI1 ⊗ … ⊗ ρIn ∋ 1: ð13Þ

III. MODULAR FORMS OF Γ4 ≅ S4
AT LEVEL FOUR

In this section we review the construction of the modular
forms of level four from the products of ηðτÞ [40], where
ηðτÞ is the Dedekind eta function,

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; q ¼ e2πiτ: ð14Þ

It is easy to compute numerically by writing the eta
function in power series,

ηðτÞ ¼ q1=24
Xþ∞

n¼−∞
ð−1Þnqnð3n−1Þ=2: ð15Þ

The linear space of modular forms of weight k and level
four has dimension 2kþ 1. In the present work, we are
concerned with the inhomogeneous finite modular group
Γ4 ≅ S4; the weights of the modular forms have to be even.
There are five independent weight 2 modular forms at level
four and they can be arranged into a doublet 2 and a triplet 3
of the finite modular group S4 [40],

Yð2Þ
2 ðτÞ ¼

�
Y1ðτÞ
Y2ðτÞ

�
; Yð2Þ

3 ðτÞ ¼

0
B@

Y3ðτÞ
Y4ðτÞ
Y5ðτÞ

1
CA; ð16Þ

where

Y1ðτÞ ¼ 16ω2e1ðτÞ − 8ð2þ ω2Þe3ðτÞ þ ω2e5ðτÞ;
Y2ðτÞ ¼ 16e1ðτÞ þ 8i

ffiffiffi
3

p
e3ðτÞ þ e5ðτÞ;

Y3ðτÞ ¼ −ω2½16e1ðτÞ þ 16ð1 − iÞe2ðτÞ þ 4ð1þ iÞe4ðτÞ − e5ðτÞ�;
Y4ðτÞ ¼ −ω½16e1ðτÞ þ 8ð1 −

ffiffiffi
3

p
Þð−1þ iÞe2ðτÞ − 2ð1þ

ffiffiffi
3

p
Þð1þ iÞe4ðτÞ − e5ðτÞ�;

Y5ðτÞ ¼ −16e1ðτÞ þ 8ð1þ
ffiffiffi
3

p
Þð1 − iÞe2ðτÞ þ 2ð1 −

ffiffiffi
3

p
Þð1þ iÞe4ðτÞ þ e5ðτÞ; ð17Þ

with ω ¼ e2πi=3 and

eiðτÞ ¼
η12−4ið4τÞη6i−10ð2τÞ

η2i−2ðτÞ : ð18Þ

The modular forms of weight two and level four can also
be constructed from the linear combinations of η0ðτ=4Þ

ηðτ=4Þ ,
η0ððτþ1Þ=4Þ
ηððτþ1Þ=4Þ ,

η0ððτþ2Þ=4Þ
ηððτþ2Þ=4Þ ,

η0ððτþ3Þ=4Þ
ηððτþ3Þ=4Þ ,

η0ð4τÞ
ηð4τÞ and η0ðτþ1=2Þ

ηðτþ1=2Þ [53,54],
where η0ðτÞ denotes the derivative of ηðτÞ with respect to τ.
The two construction methods give the same q-expansion
of modular forms up to an overall factor. Note that the two
triplets, 3 and 30 in our basis, correspond to 30 and 3 of
[53,54], respectively. The higher-weight modular forms can
be expressed as polynomials of Y1;2;3;4;5ðτÞ. The linearly
independent weight four modular forms can be arranged
into a singlet 1, a doublet 2 and two triplets 3, 30 of S4 as
follows:

Yð4Þ
1 ¼

�
Yð2Þ
2 Yð2Þ

2

	
1
¼ 2Y1Y2;

Yð4Þ
2 ¼

�
Yð2Þ
2 Yð2Þ

2

	
2
¼
�
Y2
2

Y2
1

�
;

Yð4Þ
3 ¼

�
Yð2Þ
2 Yð2Þ

3

	
3
¼

0
B@

Y1Y4 þ Y2Y5

Y1Y5 þ Y2Y3

Y1Y3 þ Y2Y4

1
CA;

Yð4Þ
30 ¼

�
Yð2Þ
2 Yð2Þ

3

	
30
¼

0
B@

Y1Y4 − Y2Y5

Y1Y5 − Y2Y3

Y1Y3 − Y2Y4

1
CA: ð19Þ

There are 13 linearly independent weight six modular
forms which decompose as 1 ⊕ 10 ⊕ 2 ⊕ 3 ⊕ 3 ⊕ 30
under S4,
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Yð6Þ
1 ¼

�
Yð2Þ
2 Yð4Þ

2

	
1
¼ Y3

1 þ Y3
2;

Yð6Þ
10 ¼

�
Yð2Þ
2 Yð4Þ

2

	
10
¼ Y3

1 − Y3
2;

Yð6Þ
2 ¼

�
Yð2Þ
2 Yð4Þ

1

	
2
¼
�
2Y2

1Y2

2Y1Y2
2

�
;

Yð6Þ
3;I ¼

�
Yð2Þ
3 Yð4Þ

1

	
3
¼

0
B@

2Y1Y2Y3

2Y1Y2Y4

2Y1Y2Y5

1
CA;

Yð6Þ
3;II ¼

�
Yð2Þ
3 Yð4Þ

2

	
3
¼

0
B@

Y2
1Y5 þ Y2

2Y4

Y2
1Y3 þ Y2

2Y5

Y2
1Y4 þ Y2

2Y3

1
CA;

Yð6Þ
30 ¼

�
Yð2Þ
3 Yð4Þ

2

	
30
¼ −

0
B@

Y2
1Y5 − Y2

2Y4

Y2
1Y3 − Y2

2Y5

Y2
1Y4 − Y2

2Y3

1
CA: ð20Þ

Higher-weight modular forms can be built in the same
fashion, see Refs. [53,54] for modular forms of weight
eight and weight ten. Note that in our working basis the
representation matrices are different from those of [53,54],
and they are related to the choices of [53,54] by unitary
transformations. The allowed and forbidden representations
for modular forms of a given (even) weight are summarized
in Table I, not only for kY ¼ 2, 4, 6 above, but also for
kY ¼ 8, 10 [54].
If a modulus parameter τ0 is invariant under the action of

a nontrivial SLð2;ZÞ transformation γ0 ≠ �I, we call τ0
the fixed point of γ0, where γ0 is the stabilizer of τ0, i.e.,

γ0τ0 ¼ τ0: ð21Þ
We show the alignments of the modular forms for three
nontrivial fixed points in the fundamental domain in
Table II,

τS¼ i; τST ¼ω¼−
1

2
þ i

ffiffiffi
3

p

2
; τTS¼−ω2¼1

2
þ i

ffiffiffi
3

p

2
:

ð22Þ

In addition, we shall be interested in using the
following fixed point outside the fundamental domain, at
γτS ¼ 2þ i [40],

Yð4Þ
3 ð2þ iÞ∝ ð0;1;−1Þ; Yð6Þ

30 ð2þ iÞ∝ ð0;1;−1Þ: ð23Þ
There are many more possible fixed points [40], but these
shown in Eq. (23) and Table II are the only ones that we
shall need for the model construction, to which we turn in
the next section.

IV. MODULAR S4 × SUð5Þ GUT

In this section we construct a SUð5Þ GUT model based
on S4 modular symmetry, and no flavon field other than the
modulus τ is used.

A. Fields and symmetries

The model is based on the grand unified group SUð5Þ
combined with modular S4 family symmetry, with the field
content shown in Table III. The left-handed quarks and
leptons are unified into the representations 5̄, 10 and 1 of
SUð5Þ according to

Fα∼ 5̄∼

0
BBBBBB@

dcr
dcb
dcg
e−

−ν

1
CCCCCCA

α

; Tα∼10∼

0
BBBBBB@

0 ucg −ucb ur dr
: 0 ucr ub db
: : 0 ug dg
: : : 0 ec

: : : : 0

1
CCCCCCA

α

;

Na;s∼1; ð24Þ
where the fields with superscript c stands for CP con-
jugated fields (which would be right-handed without the c
operation), and α ¼ 1;…; 3 is the family index. The three
families are controlled by a family symmetry S4, with F
forming a triplet and the first two families of T forming a
doublet, while the third family T3 (containing the top
quark) is a singlet, as summarized in Table III. The choice
of the third family T3 being a singlet, permits a renorma-
lizable top-quark Yukawa coupling to the singlet Higgs
discussed below. There are two (CP conjugated) right-
handed neutrinos which transform under S4 as Na;s ∼ 10; 1.
The S4 singlet Higgs fieldsH5; H5̄ andH45

, each contain
a doublet SUð2ÞL ×Uð1ÞY representation that eventually
form the standard up (Hu) and down (Hd) Higgses of the
minimal supersymmetric standard model, where the Hd
emerges as a linear combination of doublets from the H5̄

and H
45
) [94].1 The VEVs of the two neutral Higgses are

TABLE I. Summary of the allowed and forbidden modular
forms YðkY Þ

r for a given (even) weight kY ¼ 0, 2, 4, 6, 8, 10. The
allowed and forbidden S4 representations r ¼ 1; 10; 2; 3; 30 are
shown in each case. Explicit modular forms are given in the main
text for weights kY ¼ 2, 4, 6.

Weight kY Allowed r Forbidden r

0 1 10, 2, 3, 30
2 2; 3 1, 10, 30
4 1; 2; 3; 30 10
6 1; 10; 2; 3; 30 � � �
8 1; 2; 3; 30 10
10 1; 10; 2; 3; 30 � � �

1As H5̄ and H45 transform differently under Uð1Þ, it is clear
that the mechanism which spawns the low energy Higgs doublet
Hd must necessarily break Uð1Þ. Although the discussion of any
details of the SUð5Þ GUT symmetry breaking (which, e.g., could
even have an extra dimensional origin) are beyond the scope of
our paper, we remark that a mixing of H5̄ and H45 could be
induced by introducing the pair H�

24 with Uð1Þ charges �1 in
addition to the standard SUð5Þ breaking Higgs H0

24.
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υu ¼
υffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2β

q tβ; υd ¼
υffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2β

q ; ð25Þ

where tβ ≡ tan β ¼ υu
υd
and υ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2u þ υ2d

q
¼ 174 GeV.

B. The weighton

The weighton was introduced in [45] as a means of
naturally generating fermion mass hierarchies. The
weighton will develop a vacuum expectation value which
may be driven by a leading order superpotential term

Wdriv ¼ χ0
�
Yð4Þ
1

ϕ4

M2
fl

−M2

�
; ð26Þ

where χ0 is an S4 singlet-driving superfield with zero
modular weight, whileM is a free dimensionful mass scale,
where we assume M ≪ Mfl. This is similar to the usual
driving field mechanism familiar from flavon models
[2,95–100], except for the presence of the lowest-weight

singlet modular form Yð4Þ
1 listed in Eq. (26), where the

quadratic term ϕ2 is forbidden since Yð2Þ
1 does not exist, and

we have dropped higher powers such as ϕ6, and so on. As
usual [2,95–100], the structure of the driving superpotential
Wdriv may be enforced by a Uð1ÞR symmetry, with the
driving superfield χ0 having R ¼ 2, the weighton ϕ and
Higgs superfields having R ¼ 0 and the matter superfields
having R ¼ 1, which prevents other superpotential terms
appearing.2 The F-flatness condition gives

∂Wdriv

∂χ0 ¼ Yð4Þ
1

ϕ4

M2
fl

−M2 ¼ 0; ð27Þ

which leads to the following VEV of the weighton ϕ,

hϕi ¼ ðM2M2
fl=Y

ð4Þ
1 Þ1=4: ð28Þ

After the weighton ϕ develops a VEV, the nonrenormaliz-
able terms are suppressed by powers of

ϕ̃≡ hϕi
Mfl

∼
�

M
Mfl

�
1=2

; ð29Þ

where Mfl is a dimensionful cutoff flavor scale.

TABLE III. The modular S4 × SUð5Þ model with matter and
Higgs fields and their associated representations and modular
weights given by −kI. We have also included a weighton field ϕ,
and a driving field χ0.

Field T3 T ¼ ðT2; T1ÞT F Na Ns H5 H5̄ H
45

ϕ χ0

SUð5Þ 10 10 5̄ 1 1 5 5̄ 45 1 1
S4 1 2 3 1 10 10 1 1 1 1
kI 4 1 3 4 −1 −2 1 1 1 0

TABLE II. The values of the modular forms with weights kY ¼ 2, 4, 6 and level four at the fixed points τS, τST and
τTS, where YS ≃ −1.045 − 0.603i, YST ≃ 1.793 and YTS ≃ −0.896 − 1.553i. Notice that there are two linearly-

independent modular forms in the representations 3 and 30 at weight 8 [53,54], and both Yð8Þ
3 ðτSTÞ and Yð8Þ

30 ðτSTÞ are
proportional to ð0; 1; 0ÞT . Analogously there are three independent triplet modular forms Yð10Þ

3 aligned in the
direction (0,0,1) at the point τ ¼ τST .

τS ¼ i τST ¼ ω τTS ¼ −ω2

Yð2Þ
2

YSð1;−1Þ YSTð0; 1Þ YTSð1; 0Þ
Yð2Þ
3

− ωffiffi
3

p YSð1; 1þ
ffiffiffi
6

p
; 1 −

ffiffiffi
6

p Þ ffiffiffi
3

p
ωYSTð0; 1; 0Þ − 2ωffiffi

3
p YTSð1; 1;− 1

2
Þ

Yð4Þ
1

−2Y2
S 0 0

Yð4Þ
2

Y2
Sð1; 1Þ Y2

STð1; 0Þ Y2
TSð0; 1Þ

Yð4Þ
3

−2
ffiffiffi
2

p
ωY2

Sð1;− 1
2
;− 1

2
Þ ffiffiffi

3
p

ωY2
STð0; 0; 1Þ − 2ωffiffi

3
p Y2

TSð1;− 1
2
; 1Þ

Yð4Þ
30 − 2ωffiffi

3
p Y2

Sð1; 1 −
ffiffi
3
2

q
; 1þ

ffiffi
3
2

q
Þ −

ffiffiffi
3

p
ωY2

STð0; 0; 1Þ − 2ωffiffi
3

p Y2
TSð1;− 1

2
; 1Þ

Yð6Þ
1

0 Y3
ST Y3

TS

Yð6Þ
10

2Y3
S −Y3

ST Y3
TS

Yð6Þ
2

−2Y3
Sð1;−1Þ (0,0) (0,0)

Yð6Þ
3;I

2ωffiffi
3

p Y3
Sð1; 1þ

ffiffiffi
6

p
; 1 −

ffiffiffi
6

p Þ (0,0,0) (0,0,0)

Yð6Þ
3;II − 2ωffiffi

3
p Y3

Sð1; 1 −
ffiffi
3
2

q
; 1þ

ffiffi
3
2

q
Þ

ffiffiffi
3

p
ωY3

STð1; 0; 0Þ ωffiffi
3

p Y3
TSð1;−2;−2Þ

Yð6Þ
30

−2
ffiffiffi
2

p
ωY3

Sð1;− 1
2
;− 1

2
Þ ffiffiffi

3
p

ωY3
STð1; 0; 0Þ − ωffiffi

3
p Y3

TSð1;−2;−2Þ

2At the low-energy scale, after the inclusion of SUSY breaking
effects, the Uð1ÞR symmetry will be broken to the usual discrete
R-parity [95]. Such SUSY breaking effects may also modify the
predictions from modular symmetry [22]. However the study of
SUSY breaking is beyond the scope of this paper.
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C. Yukawa matrices

In this subsection we consider the leading-order Yukawa
operators, allowed by modular symmetry. There are no
flavons, but we shall assume that there are several moduli
which are located at different fixedpoints, as discussed earlier.
As shown in [65,66,77], different residual symmetries are
preserved at different points in multidimensional moduli
space such that fields which live at different locations in
moduli space feel a different amount of modular symmetry.
However, constructing a model with four different moduli in
the up-type quarks, down-type quarks, and neutrino sectors is
beyond the scope of the present work, and our approach is
purely phenomenological here. Furthermore, concrete mod-
els with several moduli frozen at distinct fixed points could be
constructed, and certain flavons which are bitriplets of the
multiple finite modular groups are generally necessary
[55,57,81]. For the up-type quarkswewrite down the allowed
nonrenormalizable operators, and allow all possible group
contractions, making use of the weighton field to generate
mass hierarchies of the up and charm quarks as compared to
the top quarkmass which appears at the renormalizable level.
For the down-type quarks and charged leptons, the weighton
field can also help to generate themass hierarchies, and amild
fine tuning is necessary to obtain the measured Cabibbo
angle. There is a texture zero in the (1,1) element such that the
GST relation is approximately satisfied. The neutrino masses
and mixing arise from having two right-handed neutrinos
with CSD(3.45).

1. Up-type quarks

The Yukawa matrix of the up-type quarks can be con-
structed by considering the nonrenormalizable operators
TTH5, T3TH5, and the renormalizable operator T3T3H5

for the (33) element. The nonrenormalizable operators are
suppressed bypowers of a commonmass scaleMfl leading to
powers of the flavor factor ϕ̃ as in Eq. (29). We assume that
the modular symmetry is broken down to the Z3 subgroup
generated by TS. We shall use the modular forms at the fixed
point τTS ¼ −ω2, namely the weight-two modular form

Yð2Þ
2 ¼ YTSð1; 0ÞT , the weight four modular form Yð4Þ

2 ¼
Y2
TSð0; 1ÞT , and theweight sixmodular formYð6Þ

10 ¼ −Y3
ST , as

shown in Table II. The most important operators which
generate a contribution to the up-quark Yukawa matrix are3

αuϕ̃
4Yð4Þ

2 ðTTÞ2H5 þ βuϕ̃
2Yð2Þ

2 ðTTÞ2H5 þ γuY
ð6Þ
10 T3T3H5

þ ϵuϕ̃T3ðTYð4Þ
2 Þ10H5: ð30Þ

Note that the lowest nontrivial modular weight containing the
singlet is weight four and that is zero at the fixed point

Yð4Þ
1 ðτTSÞ ¼ 0. This implies that the doublet contraction

ðTTÞ2 plays an important role, leading to a diagonal up-type
Yukawa matrix, using the Clebsch-Gordan coefficients for
2 ⊗ 2 in Appendix A, and the fixed point values of the
modular forms above, we have

Yu
GUT ≈

0
BB@

αuϕ̃
4 0 0

0 βuϕ̃
2 ϵuϕ̃

0 ϵuϕ̃ γu

1
CCA; ð31Þ

where the factorsY2
TS,YTS,Y

ð6Þ
10 , andY

2
TS have been absorbed

into the coupling constants αu, βu, γu, and ϵu, respectively.
The parameters βu and γu can be taken as real by exploiting
the field redefinitions of T and T3. Moreover, the phase of αu
is irrelevant to both quark masses and CKM mixing matrix,
and its phase can be absorbed into the right-handed charm
quark. However, ϵu is generally a complex parameter. The
suppression factor in Eq. (29) generates the up and charm
quark mass hierarchy naturally, with mu;c;t ∝ ϕ̃4; ϕ̃2; 1,
assuming αu ∼ βu ∼ γu ∼Oð1Þ. It is well known that mass
hierarchy among the up quarks ismu∶mc∶mt ≃ λ8∶λ4∶1with
λ ≃ 0.22 being theWolfenstein parameter. As a consequence,
the weighton VEV ϕ̃ is expected to be of order λ2.

2. Down-type quarks and charged leptons

We assign the three generations of the matter fields F to
an S4 triplet 3, the first two generations of the 10-plet
transform as a doublet 2 under S4. Thus there are two
options: ðT1; T2ÞT ∼ 2 and ðT2; T1ÞT ∼ 2.
a. ðT1; T2ÞT ∼ 2

We have the following contractions for T and F

ðTFÞ3 ∼

0
BB@

T1F2 þ T2F3

T1F3 þ T2F1

T1F1 þ T2F2

1
CCA;

ðTFÞ30 ∼

0
BB@

T1F2 − T2F3

T1F3 − T2F1

T1F1 − T2F2

1
CCA ð32Þ

We see that T1F1 and T2F2, which are related to the
down and strange quark masses respectively, appear
simultaneously as the third component of both con-
tractions ðTFÞ3 and ðTFÞ30 . The operators TFH5̄ and
TFH45 combining with modular form Y3 or Y30,
generate the masses of the down quarks and charged
leptons. As a result, the down and strange quark
messes would be of the same order except for the
case that the contributions of ðTFÞ3 and ðTFÞ30 cancel
with each other.

3The term ðTTÞ10H5 is exactly vanishing because the S4
contraction rule for 2 ⊗ 2 → 10 implies ðTTÞ10 ¼ ð0; 0ÞT .
Although the term ϕ̃6Yð6Þ

10 ðTTÞ1H5 would lead to nonvanishing
(12) and (21) entries of up-type quark mass matrix, its contri-
bution is suppressed by ϕ̃6.
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b. ðT2; T1ÞT ∼ 2
We have the following contractions for T and F

ðTFÞ3 ∼

0
B@

T2F2 þ T1F3

T2F3 þ T1F1

T2F1 þ T1F2

1
CA;

ðTFÞ30 ∼

0
B@

T2F2 − T1F3

T2F3 − T1F1

T2F1 − T1F2

1
CA: ð33Þ

We see that T2F2 and T1F1 appear in the first and
second components of these contractions respectively.
Hence fine tuning is not necessary to explain the mass
hierarchies between the down and strange quarks. This
is the reason why the assignment ðT2; T1ÞT ∼ 2 is
chosen in the model [101].

Then the Yukawa matrices of the down-type quarks and the
charged leptons can be deduced from the leading super-
potential operators4

αd1ϕ̃
3ðYð8Þ

3 ðTFÞ3Þ1H5̄ þ αd2ϕ̃
3ðYð8Þ

30 ðTFÞ30 Þ1H5̄ þ βd1ϕ̃ðYð6Þ
3 ðTFÞ3Þ1H5̄

þ βd2ϕ̃ðYð6Þ
30 ðTFÞ30 Þ1H5̄ þ γdðYð8Þ

3 FÞ1T3H5̄ þ ϵdϕ̃
2ðYð10Þ

3 FÞ1T3H5̄

þ α0d1ϕ̃
3ðYð8Þ

3 ðTFÞ3Þ1H45
þ α0d2ϕ̃

3ðYð8Þ
30 ðTFÞ30 Þ1H45

þ β0d1ϕ̃ðYð6Þ
3 ðTFÞ3Þ1H45

þ β0d2ϕ̃ðYð6Þ
30 ðTFÞ30 Þ1H45

þ γ0dðYð8Þ
3 FÞ1T3H45

þ ϵ0dϕ̃
2ðYð10Þ

3 FÞ1T3H45
: ð34Þ

Notice that the Yukawa couplings to H
45

replicate those of
H5̄ because both Higgs multiplets H5̄ and H

45
are S4

singlets with the same modular weight. The phase of the
coupling γd is irrelevant and it can be absorbed by
redefinition of the supermultiplet F. The modular sym-
metry is assumed to be spontaneously broken down to a Z3

subgroup generated by ST, and the alignments of the

modular forms are Yð6Þ
3 ¼ Yð6Þ

30 ¼ ffiffiffi
3

p
ωY3

STð1; 0; 0Þ, Yð8Þ
3;30 ∝

ð0; 1; 0Þ and Yð10Þ
3 ∝ ð0; 0; 1Þ at the fixed point τST , as

shown in Table II. Using the Clebsch-Gordan coefficients
for the different S4 contractions as in the Appendix A and
separating the contributions of H5̄ and H

45
, we find

Y5̄ ≈

0
BB@

0 ðαd1 þ αd2Þϕ̃3 0

ðαd1 − αd2Þϕ̃3 ðβd1 þ βd2Þϕ̃ ϵdϕ̃
2

ðβd1 − βd2Þϕ̃ 0 γd

1
CCA;

Y
45
≈

0
BB@

0 ðα0d1 þ α0d2Þϕ̃3 0

ðα0d1 − α0d2Þϕ̃3 ðβ0d1 þ β0d2Þϕ̃ ϵ0dϕ̃
2

ðβ0d1 − β0d2Þϕ̃ 0 γ0d

1
CCA; ð35Þ

where the convention for the above Yukawa coupling
is FiðY5̄ÞijTj and FiðY45

ÞijTj. Notice that the (11)
and (32) elements of Y5̄ and Y

45
can arise from the

operators ϕ̃5ðYð10Þ
3 ðTFÞ3Þ1H5̄, ϕ̃5ðYð10Þ

30 ðTFÞ30 Þ1H5̄,

ϕ̃5ðYð10Þ
3 ðTFÞ3Þ1H45

, and ϕ̃5ðYð10Þ
30 ðTFÞ30 Þ1H45

, and they

are suppressed by ϕ̃5. Similarly ϕ̃4ðYð12Þ
3 FÞ1T3H5̄ and

ϕ̃4ðYð12Þ
3 FÞ1T3H45

can lead to nonvanishing (13) entry.
The Yukawa matrices of the down-type quarks and the
charged leptons are linear combinations of the two struc-
tures in Eq. (35). Following the construction proposed by
Georgi and Jarlskog [84], we have

Ye
GUT ¼ Y5̄ − 3Y

45
; Yd

GUT ¼ ðY5̄ þ Y
45
ÞT: ð36Þ

Thus the charged lepton and down quark mass matrices are
given by Me ¼ Ye

GUTvd and Md ¼ Yd
GUTvd respectively.

The phase of γd can be removed by the field redefinition of
the 5̄ matter field F while all the other parameters are
complex. Since the (11) element of the down quark Yukawa
coupling matrix is vanishing, the Gatto-Sartori-Tonin
(GST) relation θq12 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
[83] is approximately sat-

isfied. However, the (12) and (21) entries are suppressed by
ϕ̃3 so that the Cabibbo angle is expected to be of order ϕ̃2 if
all coupling constants are of order one. Thus, the param-
eters αd1;d2 and α0d1;d2 should be relatively large to repro-
duce the correct size of Cabibbo angle. This point is
confirmed in the numerical calculation, as shown in Sec. V.

4Here Yð6Þ
3 refers to Yð6Þ

3;II since Yð6Þ
3;I is vanishing with Yð6Þ

3;I ¼ð0; 0; 0Þ at the fixed point τ ¼ τST , as shown in table II. Moreover,
Yð8Þ
3 and Yð8Þ

30 stand for the two independent-weight eight-triplet
modular forms transforming as 3 and 30 respectively, and they are
proportional to (0,1,0) at residual modular symmetry conserving
point τST . Y

ð10Þ
3 denotes the three independent-weight ten-modu-

lar forms in the representation 3, and its values is proportional to
(0,0,1) at the fixed point τ ¼ τST .
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3. Neutrino Mass and Mixing

In the neutrino sector we have two right-handed neu-
trinos in S4 representations Na ∼ 10 and Ns ∼ 1, where the
respective Dirac-Yukawa couplings are determined by the
fixed points from Eq. (23) and Table II

Yð6Þ
30 ∝

0
B@

0

1

−1

1
CA; Yð2Þ

3 ∝

0
B@

1

1þ ffiffiffi
6

p

1 −
ffiffiffi
6

p

1
CA: ð37Þ

We note that, in the CSDðnÞ model, the two columns of
the Dirac mass matrix are proportional to ð0; 1;−1Þ and
ð1; n; 2 − nÞ respectively, [14,15,19,102], so this corre-
sponds approximately to the case CSD(3.45) [40]. By
comparison, the predictive Littlest Seesaw model and its
variant are the cases of n ¼ 3 [14–18], n ¼ 4 [19–21,103]
and n ¼ −1=2 [102] respectively. It has been shown that
the CSDðnÞ model can be reproduced from the S4 flavor
symmetry in the tridirect CP approach [104,105], where
the parameter n is constrained to be a generic real parameter
by the S4 flavor symmetry and CP symmetry [104,105].
Here the modular symmetry can fix the alignment param-
eter n to be 1þ ffiffiffi

6
p

≈ 3.45. This is a remarkable advantage
of modular symmetry with respect to discrete flavor
symmetry.
The most important operators for the neutrino masses are

ανϕ̃ðYð6Þ
30 FÞ10NaH5þβνϕ̃

2ðYð2Þ
3 FÞ1NsH5−

1

2
Mð8Þ

1 Yð8Þ
1 NaNa

−
1

2
Mð0Þ

1 NsNsϕ̃
2−Mð6Þ

10 Y
ð6Þ
10 NaNsϕ̃

3: ð38Þ

The neutrino Dirac mass matrix and the Majorana mass
matrix of right-handed neutrinos are

mD ¼
�
βνϕ̃

2Yð2Þ
3 vu; ανϕ̃Y

ð6Þ
30 vu

	
;

mN ¼
 
Mð0Þ

1 ϕ̃2 Mð6Þ
10 ϕ̃

3

Mð6Þ
10 ϕ̃

3 Mð8Þ
1

!
; ð39Þ

where the Clebsch-Gordan coefficients in both contractions

are omitted for notation simplicity, Yð8Þ
1 and Yð6Þ

10 are absorbed

into Mð8Þ
1 and Mð6Þ

10 respectively. The heavy Majorana mass
matrix is approximately diagonal to excellent approximation.
The effective light neutrino mass matrix is given by the
seesaw formula mν ¼ −mDm−1

N mT
D which implies

mν ¼ −
α2νϕ̃

2v2u

Mð8Þ
1

Yð6Þ
30 Y

ð6Þ
30

T −
β2νϕ̃

2v2u

Mð0Þ
1

Yð2Þ
3 Yð2Þ

3
T; ð40Þ

where the two terms are equally suppressed by ϕ̃2. From
Eq. (40), we find the neutrino mass matrix is predicted to be

mν ¼ ma

0
B@

0 0 0

0 1 −1
0 −1 1

1
CA

þmseiη

0
BB@

1 1 −
ffiffiffi
6

p
1þ ffiffiffi

6
p

1 −
ffiffiffi
6

p
7 − 2

ffiffiffi
6

p
−5

1þ ffiffiffi
6

p
−5 7þ 2

ffiffiffi
6

p

1
CCA: ð41Þ

It is notable that only three free parametersma,ms, and η are
involved in the neutrino mass matrix. It is straightforward to
check that the columnvector ð2;−1;−1ÞT is an eigenvector of
mν with vanishing eigenvalue. Therefore the neutrino mass
spectrum is normal ordering, and the lightest neutrino is
massless m1 ¼ 0, and the neutrino mixing matrix is deter-
mined to be the TM1 pattern,

Uν ¼

0
BBBBB@

ffiffi
2
3

q
− −

− 1ffiffi
6

p − −

− 1ffiffi
6

p − −

1
CCCCCA: ð42Þ

The charged lepton mass matrix given by Eq. (36) is not
diagonal, consequently we have to include the charged lepton
corrections to the lepton mixing matrix. Using the general
formulas for neutrino masses and mixing angles for the
Littlest Seesaw [15] and tridirectmodel [104,105],we see that
the experimental data can be accommodated very well for
certain values of ma, ms, and η, as discussed in next section.

V. NUMERICAL ANALYSIS

In this section, we discuss whether the model is
compatible with the experimental data through a detailed
numerical analysis, and we take the VEVs of weighton as
ϕ̃ ¼ 0.1 for illustration. The Yukawa matrices in Eqs. (31),
(36) and the light neutrino mass matrix in Eq. (41) are
predicted at the GUT scale, thus we should compare
them with the data of fermion masses and mixing param-
eters obtained by performing renormalization group
evolution of their measured values. With regard to the
charged fermion masses and the quark-mixing parameters,
we take a representative set of data at the GUT scale
from [106] for tan β ¼ 10 and the SUSY breaking scale
MSUSY ¼ 10 TeV. Regarding the neutrino masses and
mixing angles, we use the values of the latest global fit
NuFIT 5.0 [107], and thus we neglect the effect of
renormalization group evolution from the low-energy scale
to the GUT scale. Since two right-handed neutrinos are
introduced in our model, the lightest neutrino is massless. It
is known that the running of neutrino masses and mixing
parameters is negligible for strongly hierarchical neutrino
spectrum.
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As discussed in Sec. IV C, the up-type quark-Yukawa
couplings have three real parameters αu, βu, γu, and one
complex parameter ϵu, the down quark and charged lepton
sectors involve 12 parameters αd1;d2, βd1;d2, γd, ϵd, α0d1;d2,
β0d1;d2, γ

0
d, and ϵ

0
d which are all complex numbers except for

γd, and the light neutrino mass matrix only depends on
three real parametersma,ms, and η. We optimize the values
of these parameters by using the conventional χ2 analysis,
and the χ2 function is defined as

χ2 ¼
Xn
i¼1

�
Pi −Oi

σi

�
2

; ð43Þ

where Oi and σi denote the central values and the 1σ errors
of the corresponding quantities shown in Table V, and Pi
are the predictions for the corresponding observables as
complex functions of free parameters of the models. We
numerically diagonalize the Yukawa matrices Yu

GUT, Y
e
GUT,

Yd
GUT as well as the light neutrino mass matrix mν, then we

can obtain the predictions for the masses, mixing angles,
and CP violation phases of both quarks and leptons. The
lepton mixing matrix is parametrized in terms of mixing
angles and CP phases in the convention of PDG para-
metrization [108],

TABLE IV. The best-fit values of the input parameters at the minimum of the χ2.

αu=γu 0.05451 βu=γu 0.4438 jϵu=γuj 0.4009 argðϵu=γuÞ 1.9999π
jαd1=γdj 54.7737 argðαd1=γdÞ 0.05954π jαd2=γdj 61.1089 argðαd2=γdÞ 1.01548π
jβd1=γdj 2.2516 argðβd1=γdÞ 0.004161π jβd2=γdj 2.1808 argðβd2=γdÞ 0.9956π
jα0d1=γdj 54.4400 argðα0d1=γdÞ 1.05652π jα0d2=γdj 55.7477 argðα0d2=γdÞ 0.02208π
jβ0d1=γdj 2.2924 argðβ0d1=γdÞ 1.01751π jβ0d2=γdj 2.1003 argðβ0d2=γdÞ 1.9799π
jϵd=γdj 0.5470 argðϵd=γdÞ 1.05092π jϵ0d=γdj 0.1625 argðϵ0d=γdÞ 1.9962π
γ0d=γd 0.3494 ms=ma 0.1374 η 1.3330π ϕ̃ ¼ 0.1

TABLE V. The predicted values of the masses and mixing parameters of quark and lepton in the model. The best
fit values and 1σ uncertainties of the quark and lepton parameters are evolved to the GUT scale as calculated in
[106], with the SUSY breaking scaleMSUSY ¼ 10 TeV and tan β ¼ 10. The data of lepton mixing angles, Dirac CP
violation phases δlCP and the neutrino mass squared differences are taken from NuFIT 5.0 [107].

Observables Best-fit �1σ Predictions

θq12½rad� 0.22736� 0.00073 0.22736
θq13½ rad� 0.00349� 0.00013 0.00349
θq23½rad� 0.04015� 0.00064 0.04015
δqCP½°� 69.21330� 3.11460 69.21632
mu=mc ð1.9286� 0.6017Þ × 10−3 1.9291 × 10−3

mc=mt ð2.8213� 0.1195Þ × 10−3 2.8213 × 10−3

md=ms ð5.0523� 0.6191Þ × 10−2 5.0532 × 10−2

ms=mb ð1.8241� 0.1005Þ × 10−2 1.8240 × 10−2

mt ½GeV� 87.45553� 2.08874 87.45553
mb ½GeV� 0.96819� 0.01063 0.96819

sin2 θl12 (NO) 0.304þ0.012
−0.012 0.30402

sin2 θl13 (NO) 0.02219þ0.00062
−0.00063 0.02219

sin2 θl23 (NO) 0.573þ0.016
−0.020 0.57302

δlCP½°� (NO) 197þ27
−24 197.01325

me=mμ ð4.73689� 0.04019Þ × 10−3 4.73683 × 10−3

mμ=mτ ð5.85684� 0.04654Þ × 10−2 5.85684 × 10−2

mτ [GeV] 1.30234� 0.00679 1.30234
Δm2

21 ½10−5 eV2� (NO) 7.42þ0.21
−0.20 7.42000

Δm2
31 ½10−3 eV2� (NO) 2.517þ0.026

−0.028 2.51711
ρ=° (NO) � � � 17.68308
m1½meV� (NO) � � � 0
m2½meV� (NO) � � � 8.61394
m3½meV� (NO) � � � 50.17078
χ2min 2.4057 × 10−5
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U ¼

0
B@

c12c13 s12c13 s13e−iδ
l
CP

−s12c23 − c12s13s23eiδ
l
CP c12c23 − s12s13s23eiδ

l
CP c13s23

s12s23 − c12s13c23eiδ
l
CP −c12s23 − s12s13c23eiδ

l
CP c13c23

1
CA
0
B@ ei

ρ1
2 0 0

0 ei
ρ2
2 0

0 0 1

1
CA; ð44Þ

where cij ≡ cos θlij, sij ≡ sin θlij, δ
l
CP is the Dirac CP phase

and ρ1;2 are Majorana CP phases. In our model the
Majorana CP phase ρ1 is unphysical since m1 ¼ 0 there-
fore the only physical Majorana CP phase is ρ≡ ρ2. The
quark mixing matrix is parametrized in a similar way
without Majorana CP phases. The ratios between the
charged fermion masses are included in the χ2 function,
and the measured masses of the third generation can be
exactly reproduced by adjusting the overall scales of the
mass matrices. Similarly we include the ratio Δm2

21=Δm2
31

instead of Δm2
21 and Δm2

31 individually in χ2. The absolute
values of the ratios of the Yukawa couplings are treated as
random numbers between 0 and 1000, and the phases
of complex couplings vary in the range of ½0; 2π�. The
numerical minimization of the χ2 function gives the best-fit
point in parameter space which minimizes the χ2, as shown
in Table IV. From the fitted values of the parameters, one
can obtain the predictions for the masses and mixing
parameters in the quark and lepton sectors. The results
of the fit are summarized in Table V. Obviously the model

(a) (b)

(c) (d)

FIG. 1. The contour plots of sin2 θl12, sin
2 θl13, sin

2 θl23 and m
2
2=m

2
3 in the plane r ¼ ms=ma versus η=π. The cyan, red, green, and blue

areas denote the 3σ regions of sin2 θl12, sin
2 θl13, sin

2 θl23, and m2
2=m

2
3 respectively. The solid lines denote the 3σ upper bounds, the thin

lines denote the 3σ lower bounds and the dashed lines refer to their best-fit values [107]. The panel (a) is for CSD(3.45) without charged
lepton correction [40]. For the panel (b), the input parameters (exceptms,ma, and η) are taken to be the best fit values shown in Table IV.
The panels (c) and (d) show two very similar plots for another two local minima of χ2, namely the first and second local minima,
respectively, discussed in Appendix B.
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can accommodate the experimental data very well; all the
observables fall within the 1σ experimental ranges.
The overall mass scales γuvu and γdvd are fixed by

the top quark and tau masses mt ≃ 87.4555 GeV, mτ ≃
1.30234 GeV respectively at GUT scale [106],

γuvu ¼ 87.31479 GeV; γdvd ¼ 0.71748 GeV: ð45Þ

For tan β ¼ 10, we can obtain the values of the Yukawa
couplings γu and γd as follows:

γu ¼ 0.504; γd ¼ 0.0414: ð46Þ

The absolute values of other couplings can be extracted from
their ratios with γu and γd given in Table IV. Clearly some of
the absolute dimensionless couplings such as γd are not of
order unity, as they would expected to be according to the
weighton approach. Also we see that the couplings αd1;d2
and α0d1;d2 are large (but remain perturbative) in order to
reproduce the observed values of the Cabibbo angle, as has
been emphasized in Sec. IV C 2. However, the hierarchy
among the coupling constants is much less than that of quark
masses. As shown in Eq. (36), the charged lepton and down
quark mass matrices are closely related and they depend on
the same set of parameters. Thus we can determine the
bottom quark mass as

mb ≃ 0.96819 GeV: ð47Þ

It is quite close to tau mass; consequently, approximate b − τ
unification is predicted in the model. The parameter ma is
fixed by requiring that the mass squared difference Δm2

21 ¼
7.42 × 10−5 eV2 is reproduced,

ma ¼ 22.896 meV: ð48Þ

Thus the absolute values of the light neutrino masses can be
determined,

m1¼0meV; m2¼8.61394meV; m3¼50.17078meV:

ð49Þ

The neutrino mass spectrum is normal ordering, and the
lightest neutrino is massless as only two right-handed
neutrinos are introduced in the model. Moreover, the
Majorana CP phase ρ and the effective Majorana mass in
neutrinoless double beta decay are found to be

ρ ¼ 17.68308°; mββ ≃ 3.366 meV: ð50Þ
In the present model, the lepton mixing matrix receives
corrections from the charged lepton sector. At the best fitting
point, the charged lepton diagonalizationmatrix is found to be

2

0

20

40

60

FIG. 2. Numerical results for the correlations among the lepton mixing parameters, where the “star” refers to the best fitting point. The
scans were performed about the best fit point discussed in this section and the two local minima discussed in Appendix B.
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Ul ¼

0
B@

−0.2763þ 0.9247i −0.0750þ 0.2510i 0.000063 − 0.00021i

0.2520 − 0.0308i −0.9284þ 0.1135i 0.2446 − 0.0299i

−0.0643 0.2379 0.9692

1
CA: ð51Þ

We show the contour plots of lepton mixing angles sin2 θ12,
sin2 θ13, sin2 θ23 and the mass ratio m2

2=m
2
3 in the plane

r≡ms=ma versus η in Fig. 1, where all other input
parameters except r and η are fixed to their best-fit values
collected in Table IV. In the original CSD(3.45) model,
there are two small regions in the η − r plane which can
accommodate the measured values of lepton mixing angles
but give CP violation phases of opposite sign. After
including the charged lepton corrections, we find only a
single small region is phenomenologically viable. Further-
more, we numerically scan the parameter space and require
all the obervables in the experimentally preferred 3σ
regions, The correlations between the masses and mixing
parameters are shown in Figs. 2 and 3 for the lepton and
quark sectors respectively.

VI. CONCLUSION

Modular symmetry offers the possibility to provide an
origin of discrete flavor symmetry and to break it along

particular symmetry preserving directions, called stabiliz-
ers, without introducing flavons or driving fields. The use
of multiple moduli at fixed points is justified in the
framework of string theory. It is also possible to use
weighton fields to account for charged fermion mass
hierarchies rather than a Froggatt-Nielsen mechanism.
Such an approach can be applied to flavoured GUTs which
can be greatly simplified using modular forms.
As an example, we have considered a new modular

model based on ðΓ4 ≃ S4Þ × SUð5Þ, where all flavons and
driving fields are removed, with their effect replaced by
modular forms with moduli assumed to be at various fixed
points, rendering the theory much simpler. The neutrino
sector constitutes a minimal 2RHN seesaw model based
on CSD(n) with n ¼ 1þ ffiffiffi

6
p

≈ 3.45, intermediate between
CSD(3) and CSD(4), however being subject to charged
lepton corrections. Using the stabilizers, we have repro-
duced some of the classic features of GUT models such as
the GST and GJ relations, although we have seen that these

2

0

20

40

60

FIG. 3. Numerical results for the correlations among the quark mass ratios and mixing parameters, where the “star” refers to the best
fitting point. The scans were performed about the best fit point discussed in this section and the two local minima discussed in Appendix B.
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relations apply in a more generalized form as the limiting
cases of a choice of parameters. However, in the case of GJ,
this is to be welcomed, since those relations do not work if
strictly imposed.
In the considered model we have included a single

weighton field to ameliorate the large hierarchies in the
charged fermion mass matrices, although some tuning will
remain at the percent level. The best fit to the parameters of
the model indicates that the largest charged lepton correc-
tions to CSD(3.45) mixing are of order of the Cabibbo
angle, but occurring in both the (1,2) and (2,3) entries of the
charged lepton mixing matrix. Nevertheless the model
leads to robust predictions for lepton mixing parameters,
which we have compared to those from the pure CSD(3.45)
model with no charged lepton corrections. We have
performed a numerical analysis, showing quark and lepton
mass and mixing correlations around the best fit points.
Since the lightest neutrino mass is zero, and the phases are
predicted, the neutrinoless double beta decay parameter is
found to be mββ ≃ 3.4 meV which is unobservable in the
near future.
In conclusion, we have shown that conventional field

theory GUT models with flavor symmetry broken by
flavons may be drastically simplified using modular sym-
metry with several moduli assumed to be at their fixed
points. The considered ðΓ4 ≃ S4Þ × SUð5Þ model results in
a dramatic simplification with the nine flavons and 13
driving fields of the HKL model being replaced by a single
weighton and its driving field.
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APPENDIX A: GROUP THEORY OF Γ4 ≅ S4

The finite modular group Γ4 ≡ Γ̄=Γ̄ð4Þ at level N ¼ 4 is
isomorphic to S4 which is the permutation group S4 of
four objects. Geometrically Γ4 is the orientation-preserving
symmetry group of the cube (or equivalently the

octahedron). The group Γ4 can be obtained from the
generators S and T of the modular group by imposing
the additional constraint T4 ¼ 1, thus they obey the
following multiplication rules

S2 ¼ ðSTÞ3 ¼ ðTSÞ3 ¼ T4 ¼ 1: ðA1Þ

The group Γ4 has two one-dimensional irreducible repre-
sentations denoted by 1 and 10, a two-dimensional repre-
sentation denoted by 2, and two three-dimensional
representations denoted by 3 and 30. We adopted the same
convention as that of [40]. We have S ¼ T ¼ 1 in the trivial
singlet representations 1 and S ¼ T ¼ −1 in the singlet
representation 10. For the doublet representation 2, the
generators S and T are represented by

S ¼
�
0 1

1 0

�
; T ¼

�
0 ω2

ω 0

�
; ðA2Þ

with ω ¼ e2πi=3. The triplet representations 3 and 30 are
given by

3; 30∶S ¼ � 1

3

0
B@

1 −2 −2
−2 −2 1

−2 1 −2

1
CA;

T ¼ � 1

3

0
B@

1 −2ω2 −2ω
−2 −2ω2 ω

−2 ω2 −2ω

1
CA; ðA3Þ

where the “þ” and “−” signs are for 3 and 30 respectively.
Notice that the triplet representations 3 and 30 correspond
to 30 and 3 of Refs. [53,54] respectively. In this basis,
the tensor products of two doublets a ¼ ða1; a2ÞT and
b ¼ ðb1; b2ÞT are

�
a1
a2

�
2

⊗
�
b1
b2

�
2

¼ ða1b2 þ a2b1Þ1 ⊕ ða1b2 − a2b1Þ10

⊕
�
a2b2
a1b1

�
2

: ðA4Þ

The multiplication laws for the contraction of doublet and
triplet are

�
a1
a2

�
2

⊗

0
B@
b1
b2
b3

1
CA

3

¼

0
B@
a1b2þa2b3
a1b3þa2b1
a1b1þa2b2

1
CA

3

⊕

0
B@
a1b2−a2b3
a1b3−a2b1
a1b1−a2b2

1
CA

30

;

�
a1
a2

�
2

⊗

0
B@
b1
b2
b3

1
CA

30

¼

0
B@
a1b2−a2b3
a1b3−a2b1
a1b1−a2b2

1
CA

3

⊕

0
B@
a1b2þa2b3
a1b3þa2b1
a1b1þa2b2

1
CA

30

:

ðA5Þ
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Finally the contraction rules of two triplets are given by0
B@

a1
a2
a3

1
CA

3

⊗

0
B@

b1
b2
b3

1
CA

3

¼ ða1b1 þ a2b3 þ a3b2Þ1 ⊕
�
a2b2 þ a1b3 þ a3b1
a3b3 þ a1b2 þ a2b1

�
2

⊕

0
B@

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

1
CA

3

⊕

0
B@

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

1
CA

30

;

0
B@

a1
a2
a3

1
CA

30

⊗

0
B@

b1
b2
b3

1
CA

30

¼ ða1b1 þ a2b3 þ a3b2Þ1 ⊕
�
a2b2 þ a1b3 þ a3b1
a3b3 þ a1b2 þ a2b1

�
2

⊕

0
B@

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

1
CA

3

⊕

0
B@

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

1
CA

30

;

0
B@

a1
a2
a3

1
CA

3

⊗

0
B@

b1
b2
b3

1
CA

30

¼ ða1b1 þ a2b3 þ a3b2Þ1 ⊕
�

a2b2 þ a1b3 þ a3b1
−ða3b3 þ a1b2 þ a2b1Þ

�
2

⊕

0
B@

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

1
CA

3

⊕

0
B@

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

1
CA

30

: ðA6Þ

APPENDIX B: TWO REPRESENTATIVE LOCAL MINIMA OF χ 2

Since the input parameter space is of high dimension, there are usually some local minima of the χ2 function besides the
global minimum. We give here two representative local minima with slightly different features, and the best-fit values of the
input parameters are listed in the following. For the first local minimum, we have

αu=γu ¼ 0.05744; βu=γu ¼ 0.4171; jϵu=γuj ¼ 0.4039; argðϵu=γuÞ ¼ 0.07387π;

jαd1=γdj ¼ 54.6783; argðαd1=γdÞ ¼ 0.04920π; jαd2=γdj ¼ 56.3682; argðαd2=γdÞ ¼ 1.005474π;

jβd1=γdj ¼ 2.3851; argðβd1=γdÞ ¼ 0.003877π; jβd2=γdj ¼ 1.9880; argðβd2=γdÞ ¼ 0.9795π;

jα0d1=γdj ¼ 57.8501; argðα0d1=γdÞ ¼ 1.02773π; jα0d2=γdj ¼ 58.1969; argðα0d2=γdÞ ¼ 0.01443π;

jβ0d1=γdj ¼ 2.2578; argðβ0d1=γdÞ ¼ 1.00004372π; jβ0d2=γdj ¼ 2.0927; argðβ0d2=γdÞ ¼ 1.9788π;

jϵd=γdj ¼ 0.5067; argðϵd=γdÞ ¼ 1.08775π; jϵ0d=γdj ¼ 0.1507; argðϵ0d=γdÞ ¼ 0.2359π;

γ0d=γd ¼ 0.3441; ms=ma ¼ 0.1357; η ¼ 1.3321π: ðB1Þ

For the second local minimum, they are
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αu=γu ¼ 0.05199; βu=γu ¼ 0.4276; jϵu=γuj ¼ 0.3923; argðϵu=γuÞ ¼ 1.9618π;

jαd1=γdj ¼ 54.8850; argðαd1=γdÞ ¼ 0.05932π; jαd2=γdj ¼ 60.1485; argðαd2=γdÞ ¼ 1.0321π;

jβd1=γdj ¼ 2.1891; argðβd1=γdÞ ¼ 0.004274π; jβd2=γdj ¼ 2.1371; argðβd2=γdÞ ¼ 0.9949π;

jα0d1=γdj ¼ 55.9912; argðα0d1=γdÞ ¼ 1.03818π; jα0d2=γdj ¼ 56.1061; argðα0d2=γdÞ ¼ 0.02192π;

jβ0d1=γdj ¼ 2.2935; argðβ0d1=γdÞ ¼ 1.01113π; jβ0d2=γdj ¼ 2.04182; argðβ0d2=γdÞ ¼ 1.9794π;

jϵd=γdj ¼ 0.5201; argðϵd=γdÞ ¼ 1.01137π; jϵ0d=γdj ¼ 0.1631; argðϵ0d=γdÞ ¼ 0.04043π;

γ0d=γd ¼ 0.3510; ms=ma ¼ 0.1405; η ¼ 1.3325π: ðB2Þ

From the fitted parameters, we can obtain the predictions for the masses and mixing parameters of both quarks and leptons,
and the results are summarized in Table VI.
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