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We calculate contributions to the anomalous magnetic moment of the muon from heavy neutral and
charged Higgs bosons and new leptons in two-Higgs-doublet models extended by vectorlike leptons. We
present detailed predictions of two models with type-II couplings to standard model fermions, motivated by
a Z2 symmetry and supersymmetry. In addition, we compare the results with the standard model extended
by vectorlike leptons. We find that the model motivated by a Z2 symmetry can generate much larger
contributions to the magnetic moment compared to the standard model, even by two orders of magnitude
due to tan2 β enhancement, while satisfying current constraints. As a consequence, the standard model
explanation of the anomaly requires much larger corrections to muon couplings making this model easier to
probe at future precision machines. Additionally, we find that the model with couplings motivated by
supersymmetry typically leads to much smaller contributions to the magnetic moment as a result of
cancellations. We also identify interesting scenarios where contributions from the charged Higgs boson can
fully explain the anomaly.
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I. INTRODUCTION

The Standard Model (SM) provides a spectacular
description of nature, surviving stringent tests at both
the current energy and precision frontiers. Indeed the
absence of any direct signal for new particles at the LHC
implies strong bounds for many kinds of new particles up
to several TeV. Further, the discovery of the Higgs boson
and the subsequent measurements of the Higgs couplings
to gauge bosons and fermions indicate that the SM is the
appropriate effective theory of electroweak (EW) sym-
metry breaking.
Despite the lack of any direct clue for new particles,

some discrepancies with SM predictions still persist
evoking a variety of models for new physics whose
low-energy effects could be probed indirectly. In particu-
lar, the measurement of the magnetic moment of the muon
deviates from the SM prediction by more than four
standard deviations [1–3]. Examples of models which

may lead to an explanation of this discrepancy with
particles at or slightly above EW include possible new
fermions, scalars, gauge bosons, or combinations of new
particles, e.g., in the MSSM. For detailed reviews see [4–
8] and references therein. Naively, new particles which
can account for the anomalous magnetic moment cannot
be too far above the EW scale, since the typical con-
tribution from new particles can be parameterized by
Δaμ ≃ g2NPm

2
μ=16π2m2

NP, where gNP and mNP are the
coupling and mass of new particles. In some cases, certain
enhancements can allow for heavier particles. For instance
in the MSSM, the contribution can be enhanced by tan β
[9]. Alternative explanations involve very light particles
which, to avoid a variety of constraints, must be singlets
under the SM [10–16].
In models with new fermions which have the same

quantum numbers as SM leptons, the contributions to
ðg − 2Þμ associated to new physics are proportional to
the mixing parameter, mLE

μ , which simultaneously contrib-
utes to the muon mass. The contribution to ðg − 2Þμ can be
estimated by Δaμ ≃mμλ

3v=16π2m2
NP ≃mμmLE

μ =16π2v2

[17,18]. In this case chirality flipping operators lead
to a chiral enhancement, λv=mμ, compared to the typical
contribution. Chiral enhancement effects related to ðg − 2Þμ
are additionally motivated by connections with recent B
anomalies [19–23], the Cabibbo angle anomaly [24,25],
and dark matter [26–28].
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In this paper, we focus mainly on type-II 2HDMmodels
with vectorlike leptons as an explanation for the anoma-
lous measurement of ðg − 2Þμ. We study in detail a type-II
2HDM motivated by a Z2 symmetry (2HDM-II-Z2),
highlights of which were presented previously in [29].
A striking feature of this scenario is found in a tan2 β
enhancement in the contributions of heavy Higgses to
ðg − 2Þμ compared to those of W, Z, and h in addition to
the chiral enhancement expected in models with VL. In
contrast, the same couplings which generate a large
correction to ðg − 2Þμ also lead to corrections of W, Z,
and h couplings to the muon resulting from mixing that
are tan2 β suppressed. This would allow for a contribution
to Δaμ even two orders of magnitude larger than the
measured value while simultaneously satisfying low-
energy observables, or an explanation of the measured
value, Δaexpμ , with tiny corrections to SM couplings, or
even an explanation of Δaexpμ from new leptons with
masses of tens of TeV. Interestingly, future precision
measurements can fully explore scenarios with heavy
new leptons indirectly [29]. In addition, a muon collider
would be perfectly suited to explore heavy lepton masses
directly [30–32].
We also discuss a version of the 2HDM motivated by

supersymmetry (2HDM-II-S). In particular, we call atten-
tion to the fact that in either model, the couplings of the
Higgs doublets to SM leptons are indistinguishable.
However, when the models are extended with VL each
symmetry dictates a different structure of Yukawa cou-
plings leading to drastically different results. In this version
of the model we find that the contributions to Δaμ from
vectorlike leptons and heavy Higgses with comparable
masses tend to cancel with those of W, Z, and h. Viable
explanations of Δaexpμ can be achieved either by decoupled
heavy Higgses or from the charged Higgs contribution if
vectorlike neutral singlets are included.
Furthermore, we extend previous studies of the SM

extended with vectorlike leptons [17,18]. In particular, we
include couplings to vectorlike neutral singlets (also
considered previously in [33]), and extend the range of
possible couplings and masses that can explain Δaexpμ . In
addition, we impose updated experimental constraints
emphasizing the impact of recent measurements of the
SM Higgs coupling to the muon [34]. It has been noted
that the correlation of the Higgs coupling to the muon
with other observables can often give complementary
information on models for new physics [17,18,29,35].
Interestingly, we find that this constraint limits the possible
contribution to Δaμ in the SM with vectorlike leptons close
to the current central value, while in the 2HDM-II-Z2 it
allows for even two orders of magnitude larger contribution
to Δaμ than the measured value. However, the 1σ range of
Δaexpμ can be explained with a similar range of heavy lepton
masses as in the 2HDM-II-Z2. To illustrate the impact of

future precision measurements, we study possible modifi-
cations of W, Z, and h couplings to the muon.
In our discussion we focus on scenarios where vectorlike

leptons share analogous quantum numbers to SM leptons.
This allows for straightforward extensions of the SM by
complete vectorlike families in the context of simple
unified models. The extension of the SM with vectorlike
familes provides a possible explanation for the observed
hierarchy of gauge couplings [36,37], while the MSSM
with a complete vectorlike family can explain the structure
of the seven largest couplings in the SM at the EW scale
when all new particles are in the multi-TeV range [38–40].
Vectorlike quarks around the same scales can also lead to
more natural EW symmetry breaking [41,42]. For other
examples of explanations of Δaexpμ with vectorlike leptons
either with the same or different quantum numbers, see also
Refs. [19,20,23,24,26,43–49].1 Related studies of ðg − 2Þμ
in the MSSM with vectorlike leptons (not including one-
loop contributions from heavy Higgses) were presented in
[50–52]. For previous studies of supersymmetric models
with vectorlike leptons, see also [53,54]. Related discus-
sions of collider searches for heavy new leptons can be
found in [55–60] and similar studies with vectorlike quarks
in [61–63].
This paper is organized as follows. In Sec. II, we describe

the 2HDM-II-Z2, 2HDM-II-S, and SM extended with
vectorlike leptons which mix with the muon at tree
level. In Sec. III, we present formulae for contributions
to ðg − 2Þμ in models with extended Higgs and lepton
sectors that can be applied to any model. We discuss details
of our analysis and a variety of constraints relevant to heavy
leptons and Higgs bosons in Sec. IV. We present detailed
results and discussion for all three models in Sec. V and
conclude in Sec. VI. In Appendix A, we provide general
formulas for couplings of the muon to Z, W, and Higgs
bosons in the 2HDM-II-Z2 and provide an explicit deri-
vation of the Goldstone boson equivalence theorem for
couplings of the Z and W boson. In addition we list useful
approximate formulas which aid in understanding of the
results. We provide details of the 2HDM-II-S in
Appendix B. We comment on the relative size of possible
Barr-Zee contributions in Appendix C.

1In particular, similar 2HDM variants with VL have been
explored recently in [47,48]. We find disagreement with the
results in [48] in connection with ðg − 2Þe, where the neutral
Higgs contributions are incomplete. Further, the authors claim
that the charged Higgs contribution does not have any chiral
enhancement, which we do not find to be correct. In [47] the
authors do not consider chirally enhanced one-loop contributions
and rather solely consider two-loop Barr-Zee contributions to
ðg − 2Þμ. However, we find that these contributions are negligible
compared to chirally enhanced one-loop contributions by several
orders of magnitude.
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II. MODELS

We consider a two-Higgs-doublet model extended with
vectorlike leptons (VL) in which both SUð2Þ doublet, LL;R,
and singlet representations, EL;R and NL;R, are included.
We assume that the left-handed new doublet, LL, trans-
forms under the same representations as the left-handed SM
leptons. Likewise, the right-handed charged singlet, ER,
has the same quantum numbers as the right-handed SM
leptons. Further, we assume couplings of SM leptons to the
Higgs doublets as in type-II models where Hd couples
exclusively to the down-sector leptons and Hu to the up-
sector. This can be achieved by assigning appropriate
charges under a Z2 symmetry. Alternatively, the super-
symmetric extension of the SM automatically leads to
couplings of SM fermions of type-II [64]. However, when
VL are included the Z2 symmetry and supersymmetry
enforce different structures of their Yukawa couplings to
the Higgs doublets, and thus we distinguish the two
models. We will also compare these models with the
SM extended with VL. In all cases, the leading contribu-
tions of the model to ðg − 2Þμ originate from possible
mixing of VL leptons to the 2nd generation SM leptons.
Thus, for simplicity we will consider only Yukawa cou-
plings leading to mixing of VL leptons to the muon and
muon neutrino.

A. 2HDM-II-Z2 with vectorlike leptons

For the main focus of this paper, we consider the type-II
two-Higgs-doublet model motivated by Z2 symmetry. The
quantum numbers of SM leptons, Higgs doublets, and
vectorlike fields are summarized in Table I. A similar
model with vectorlike quark doublets and singlets was
considered in [61]. While the phenomenology related to
vectorlike quarks will not be pertinent in this paper,
generalizing the model to a 2HDM with a complete VL
family is straightforward.
In the basis where the SM lepton Yukawa couplings are

diagonal, the most general Lagrangian of Yukawa cou-
plings and VL masses under these assumptions is given by

L ⊃ −yμ l̄LμRHd − λEl̄LERHd − λLL̄LμRHd − λL̄LERHd

− λ̄H†
dĒLLR − κNl̄LNRHu − κL̄LNRHu − κ̄H†

uN̄LLR

−MLL̄LLR −MEĒLER −MNN̄LNR þ H:c:; ð1Þ

where the doublet components are labeled as

lL ¼
�
νμ

μL

�
; LL;R ¼

�
L0
L;R

L−
L;R

�
;

Hd ¼
�
Hþ

d

H0
d

�
; Hu ¼

�
H0

u

H−
u

�
: ð2Þ

In the process of electroweak symmetry breaking the
neutral components of the Higgs doublets develop vacuum

expectation values, hH0
ui ¼ vu and hH0

di ¼ vd, such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
¼ v ¼ 174 GeV, and we define tan β ¼ vu=vd.

Additionally, the charged lepton mass matrix becomes

ðμ̄L; L̄−
L; ĒLÞMe

0
B@

μR

L−
R

ER

1
CA

¼ ðμ̄L; L̄−
L; ĒLÞ

0
B@

yμvd 0 λEvd
λLvd ML λvd
0 λ̄vd ME

1
CA
0
B@

μR

L−
R

ER

1
CA: ð3Þ

Similarly, for the neutral leptons we obtain

ðν̄μ; L̄0
L; N̄LÞMν

0
B@

νR ¼ 0

L0
R

NR

1
CA

¼ ðν̄L; L̄0
L; N̄LÞ

0
B@

0 0 κNvu
0 ML κvu
0 κ̄vu MN

1
CA
0
B@

νR ¼ 0

L0
R

NR

1
CA; ð4Þ

where for convenience we have inserted νR ¼ 0 to present
the mass matrix in 3 × 3 form. The mass matrices can be
diagonalized by biunitary transformations

Ue†
L

0
B@
yμvd 0 λEvd
λLvd ML λvd
0 λ̄vd ME

1
CAUe

R¼

0
B@
mμ 0 0

0 me4 0

0 0 me5

1
CA; ð5Þ

Uν†
L

0
B@

0 0 κNvu
0 ML κvu
0 κ̄vu MN

1
CAUν

R ¼

0
B@

0 0 0

0 mν4 0

0 0 mν5

1
CA; ð6Þ

to obtain lepton mass eigenstates. We label new charged
leptons as e4 and e5, and neutral leptons as ν4 and ν5. The
mixing of VL to the 2nd generation will induce modifi-
cations of the muon couplings to gauge and Higgs bosons,
leading in particular to flavor nondiagonal lepton cou-
plings. Details of all couplings in the mass eigenstate basis,
as well as approximate formulas for individual couplings in
the limit of heavy VL masses are given in the Appendix A.

TABLE I. Quantum numbers of Standard Model leptons, Higgs
doublets, and vectorlike leptons under SUð2ÞL × Uð1ÞY × Z2.
After electroweak symmetry breaking, the electric charge is given
by Q ¼ T3 þ Y, where T3 is the weak isospin.

lL eR Hu Hd LL;R NL;R EL;R

SUð2ÞL 2 1 2 2 2 1 1
Uð1ÞY − 1

2
−1 − 1

2
1
2

− 1
2

0 −1
Z2 þ − þ − þ þ −
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B. 2HDM-II-S with vectorlike leptons

Another well motivated 2HDM-type scenario is the
MSSM extended with vectorlike leptons. We do not con-
sider contributions from superpartners which depend on
further assumptions about the SUSY-breaking sector. These
could be simply added to the contributions from heavy
Higgses and VL. Alternatively, our results are complete in
the limit of heavy superpartners such that the relevant low-
energy particle content of the model is the same as the
2HDM-II-Z2. Despite the same particle content, slight
differences in the structure of Yukawa couplings will lead
to very different results in this case. In the supersymmetric
version of the model (2HDM-II-S) the requirement that the
superpotential be holomorphic forbids the terms λ̄H†

dĒLLR

and κ̄H†
uN̄LLR. However, similar terms are generated

through couplings with Hu and Hd respectively. We defer
to Appendix B for detailed discussion of the model.
The resulting structure of mixing matrices and couplings

follows similarly as in the 2HDM-II-Z2 case with the
exception that λ̄vd → λ̄vu and κ̄vu → κ̄vd in Eqs. (5) and
(6). This results in replacement of λ̄ → λ̄ tan β and κ̄ →
κ̄=tan β in the couplings of gauge bosons and the light SM
higgs, while the couplings for the heavy CP-even, CP-odd,
and charged Higgses are found with the replacement λ̄ →
−λ̄=tan β and κ̄ → −κ̄ tan β. In later sections, we will see
that this will result in dramatic differences in the predictions
for ðg − 2Þμ compared to the 2HDM-Z2 version.

C. SM with vectorlike leptons

The SM extended with VL and the corresponding con-
tributions to ðg − 2Þμ have been studied in detail in [17,18].

In Sec. V, we will briefly elaborate on these results, in
particular updating the viable parameter space with respect
to recent improved measurement of h → μþμ−. In this case
there is essentially no difference in the structure of Yukawa
couplings or mixing matrices compared to the 2HDM-II-Z2

version of the model with the caveat that the vevs in Eqs. (5)
and (6) should be replaced by vd → v and vu → v (for
couplings of the light Higgs this also translates to cos β → 1
in Eq. (A25) and related approximate formulas).

III. CONTRIBUTIONS TO ðg − 2Þμ FROM NEW
LEPTONS IN TWO-HIGGS-DOUBLET MODELS

The 1-loop contributions to ðg − 2Þμ from new particles
induced by mixing with the muon in two-Higgs-doublet
models are shown in Fig. 1. In this section, we present
analytical formulas for these contributions in a general two-
Higgs-doublet model. Contributions from SM bosons were
previously calculated in [17,18].
Defining the couplings of lepton mass eigenstates to the

W-boson by

L ⊃ ð ¯̂νLaγμgWνaeb
L êLb þ ¯̂νRaγ

μgWνaeb
R êRbÞWþ

μ þ H:c:; ð7Þ

the corresponding contribution to ðg − 2Þμ is

ΔaWμ ¼ mμ

16π2M2
W

X
a¼4;5

½mμðjgWνaμ
R j2 þ jgWνaμ

L j2ÞFWðxaWÞ

−mνaRe½gWνaμ
R ðgWνaμ

L Þ��GWðxaWÞ�; ð8Þ

where xaW ¼ m2
νa=M

2
W , and the loop functions, FWðxÞ and

GWðxÞ, are given by

FIG. 1. Contributions to ðg − 2Þμ from diagrams involving W, Z, and Higgs bosons with new leptons.
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FWðxÞ¼
4x4−49x3þ78x2−43xþ10þ18x3 lnðxÞ

6ð1−xÞ4 ; ð9Þ

GWðxÞ ¼
−x3 þ 12x2 − 15xþ 4 − 6x2 lnðxÞ

ð1 − xÞ3 : ð10Þ

Similarly, we define couplings of charged or neutral
leptons, generically denoted by fa, to the Z-boson by

L ⊃ ðf̄LaγμgZfafbL fLb þ f̄Raγμg
Zfafb
R fRbÞZμ: ð11Þ

The Z-boson contribution to ðg − 2Þμ is then given by

ΔaZμ ¼
�

−mμ

8π2M2
Z

� X
a¼4;5

½mμðjgZμeaR j2 þ jgZμeaL j2ÞFZðxaZÞ

−meaRe½gZμeaR ðgZμeaL Þ��GZðxaZÞ�; ð12Þ

where the sum is over charged leptons, e4 and e5, and
xaZ ¼ m2

ea=M
2
Z. The associated loop functions are given by

FZðxÞ¼
5x4−14x3þ39x2−38xþ8−18x2 lnðxÞ

12ð1−xÞ4 ; ð13Þ

GZðxÞ ¼ −
x3 þ 3x − 4 − 6x lnðxÞ

2ð1 − xÞ3 : ð14Þ

Contributions from neutral Higgs bosons h, H and A are
identical up to their couplings. For ϕ ¼ h, H, A we
can define the couplings of charged leptons to neutral
Higgses by

L ⊃ −
1ffiffiffi
2

p ¯̂eLaλ
ϕ
eaeb êRbϕþ H:c: ð15Þ

The contributions from neutral Higgses to ðg − 2Þμ involv-
ing new charged leptons are then

Δaϕμ ¼
X
a¼4;5

�
mμ

32π2m2
ϕ

�
½mμðjλϕμea j2 þ jλϕeaμj2ÞFϕðxaϕÞ

þmeaRe½λϕμeaλϕeaμ�GϕðxaϕÞ�; ð16Þ

where xaϕ ¼ m2
ea=m

2
ϕ and

FϕðxÞ ¼
x3 − 6x2 þ 3xþ 2þ 6x lnðxÞ

6ð1 − xÞ4 ; ð17Þ

GϕðxÞ ¼
−x2 þ 4x − 3 − 2 lnðxÞ

ð1 − xÞ3 : ð18Þ

Finally, couplings of charged and neutral leptons to the
Higgs in the mass eigenstate basis can be defined by

LH� ¼ − ¯̂νLaλH
�

νaeb êRbH
þ − ¯̂eLaλH

�
eaνb ν̂RbH

− þ H:c: ð19Þ

The contribution to ðg − 2Þμ from loops with the charged
Higgs is then given by

ΔaH�
μ ¼

�
−mμ

16π2m2
H�

� X
a¼4;5

½mμðjλH�
νaμj2 þ jλH�

μνa j2ÞFH�ðxa
H�Þ

þmνaRe½λH
�

νaμλ
H�
μνa �GH�ðxa

H�Þ�; ð20Þ

where xa
H� ¼ m2

νa=m
2
H� and

FH�ðxÞ ¼ 2x3 þ 3x2 − 6xþ 1 − 6x2 lnðxÞ
6ð1 − xÞ4 ; ð21Þ

GH�ðxÞ ¼ −x2 þ 1þ 2x lnðxÞ
ð1 − xÞ3 : ð22Þ

We emphasize that the formulas given in this section
are not specific to any particular 2HDM strucutre (type-I,
type-II, type-X, etc.) and can be used in any model with
new leptons and extended Higgs sector. Specific contribu-
tions to ðg − 2Þμ in the 2HDM-II-Z2 we consider are
obtained by inserting the forms of the couplings summa-
rized in the Appendix A. For the 2HDM-II-S and SM
appropriate replacements were discussed in the previous
section.
Two-loop contributions to ðg − 2Þμ from Barr-Zee (BZ)

diagrams can sometimes be competitive with one-loop
predictions due to chiral enhancement in the closed fermion
loop, however they are negligible compared to the chirally
enhanced one-loop contributions above. Compared to the
one-loop contributions, we find that the typical size of BZ
contributions are roughly a factor of Oð10−4 − 10−5Þ
smaller, see Appendix C for details. In all the results we
present that explainΔaexpμ within 1σ, the contributions from
BZ diagrams are never more than Oð10−3Þ compared to
one-loop contributions.

IV. PARAMETER SPACE AND EXPERIMENTAL
CONSTRAINTS

To study the contributions to ðg − 2Þμ we vary both
dimensionful and dimensionless parameters in the model
fML;ME;MNg and fλL; λE; λ; λ̄; κN; κ; κ̄g, tan β, and Higgs
masses.
We require ML > 800 GeV, ME > 200 GeV, and

MN > 100 GeV in order to generically satisfy constraints
from searches for new leptons [65–68]. However, it should
be noted that the limits vary significantly with the assumed
pattern of branching ratios of new leptons to W, Z and h
[69] and, in the model we consider an arbitrary pattern of
branching ratios can occur [57] (for a more detailed
discussion of branching ratios and approximate formulas
for relevant couplings of vectorlike quarks which are
completely analogous to leptons, see also Ref. [61]).
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General pattern of branching ratios can allow significantly
lighter new leptons than we consider here, especially SUð2Þ
singlets.
For dimensionless parameters we will typically explore

values of Yukawa couplings up to�0.5 or�1. Values up to
�1 are motivated by perturbativity limits at very large
energy scales, possibly the GUT scale (depending on other
details of the model). Occasionally, we will extend the
range of couplings up to � ffiffiffiffiffiffi

4π
p

which is motivated by
perturbativity limits of couplings at the scale of new
physics. Note that the signs of three Yukawa couplings
are not physical and can be absorbed into a redefinition of
three vectorlike lepton fields. For example, λL, λE and κN
can be chosen to be positive.
We impose constraints from precision EW data related to

the muon and muon neutrino that include Z-pole observ-
ables, the W partial width, and the muon lifetime. We also
impose constraints from oblique corrections [70,71]. These
are obtained from data summarized in ref. [3].
Precision EW measurements constrain possible modifi-

cation of couplings of the muon to the Z and W bosons at
∼0.1% level which, in the limit of small mixing, translates
into 95% C.L. bounds on λE and λL couplings [17]:

���� λEvdME

����≲ 0.03;

���� λLvdML

����≲ 0.04 ð23Þ

assuming only the Yukawa couplings in the charged sector.
In the neutral lepton sector the strongest limits are obtained
from the muon lifetime. These were discussed in Ref. [56]
together with constraints from the invisible widths of the Z
boson. The constraint on the W − ν − μ coupling translates
into an approximate 95% C.L. upper bound on the size of
κN and λE couplings:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
κNvu
MN

�
2

þ
�
λEvd
ME

�
2

s
≲ 0.035; ð24Þ

which is slightly lower compared to the one quoted in
Ref. [56] due to lower uncertainty in the W mass [3].
In type-II 2HDM neutral Higgs bosons are currently

constrained by HðAÞ → tt̄ only for tan β ≲ 2 [72]. At large
tan β, it is the subleading HðAÞ → τþτ− decay mode
[73,74] which leads to stronger limits than HðAÞ → bb̄
[75,76]. Similarly, the strongest limit on the charged Higgs
boson at large tan β correspond to the subleading decay
mode H� → τν [77,78]. The limits on Hþ → tb̄ are
currently weaker at large tan β, however they also constrain
charged Higgs masses below tan β ≃ 2 [79–81].
For simplicity, for the 2HDM-II-Z2 we assume degen-

erate heavy Higgs masses mA ¼ mH ¼ mH� and for
2HDM-II-S we assume the standard tree-level relations
between masses of heavy Higgs bosons. Thus, we
only impose ATLAS limits on HðAÞ → τþτ− [73] and on

Hþ → tb̄ [81] which are currently the strongest at large and
small tan β respectively. These assumptions are also suffi-
cient to satisfy constraints from flavor observables [82].
In addition to constraints on heavy Higgs masses, there

are relevant constraints on the SM Higgs coupling to the
muon through its modified relation to the muon mass. In the
present case, the physical muon mass originates from its
coupling to Hd as well as mixing with heavy leptons

mμ ≃ yμvd þmLE
μ ; ð25Þ

where we have defined

mLE
μ ≡ λ̄λLλEv3 cos3 β

MEML
; ð26Þ

that would give the muon mass in the absence of yμ as can
be seen from the determinant of Eq. (5). Thus, for a given
set of parameters that fix mLE

μ , yμ can be iteratively
determined so that Eq. (25) leads to the measured value
of the muon mass. However, the sign of the muon mass
determined by Eq. (25) is not physical and thus there are
two solutions, y�μ , leading to �mμ, either of which is
acceptable in principle. The wrong-sign of the mass can
always be rotated away by proper field redefinition of
eigenstates. Due to the arbitrary overall sign of mLE

μ it is
always possible to restrict to yþμ solutions.
From the Higgs coupling to the muon

λhμμ ≃ yμ cos β þ 3mLE
μ =v ≃ ðmμ þ 2mLE

μ Þ=v; ð27Þ

it follows that λhμμ > 3ðλhμμÞSM when mLE
μ > mμ. Current

measurements of the h → μþμ− decay [34] by far exclude
this possibility. Thus, in our numerical analysis we restrict
to regions of parameters where mLE

μ < mμ, and thus
yþμ > 0. We will explore the impact of h → μþμ− con-
straints in this region further in the following section.
We note that similar loops as in Fig. 1 will also generate a

correction to the muon Yukawa coupling. This could lead to
large corrections to yμ compared to the value needed to
reproduce the muon mass. As a simple example, wewill see
in the following sections that regions of parameters which
achieveΔaexpμ within 1σ in the SM also require that the tree-
level Higgs coupling to the muon is typically yμ ≃ 2mμ=v.
Loop corrections to the muon Yukawa coupling in our
model scale as Δyμ ≃ λLλEλ̄=8π2 and reach this value for
couplings ∼0.5. For couplings of order 1, motivated by
perturbitivity in the UV, a tuning of only about 10%
between tree- and loop-level contributions to yμ is expected
in these scenarios. However, it could be argued that
scenarios with larger couplings suffer from a fine-tuning
problem with respect to the physical muon mass. See also
[32] for a related discussion.
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V. RESULTS

The current measurement of the muon anomalous
magnetic moment sits at more than four standard deviations
from the predicted value in the SM [1,2]

Δaexpμ ≡ aexpμ − aSMμ ¼ ð2.51� 0.59Þ × 10−9: ð28Þ

Contributions to Δaμ from charged and neutral vectorlike
leptons with mixing to the muon are given by loops with h,
Z andW bosons as well as those with heavy Higgses, A, H
andH�. The contributions involving vectorlike leptons and
SM bosons were calculated previously in [17,18]. The
complementarity of contributions from charged vectorlike
leptons to Δaμ and other precision observables in a 2HDM-
II-Z2 was presented in [29]. In this paper, we extend the
calculation to include mixing in the neutral lepton sector. In
the following subsections, we provide a detailed study of
the 2HDM-II-Z2 followed by a discussion of the corre-
sponding predictions for Δaμ in the 2HDM-II-S. We also
compare these results to the current status of the SM
with VL.

A. 2HDM-II-Z2 with vectorlike leptons

Contributions to ðg − 2Þμ can be calculated following the
analytic formulas in Sec. III and Appendix A. In the
following, it will prove useful to have approximations
on hand to estimate the impact of individual particles to
Δaμ in terms of Lagrangian parameters. In Tables II and III
we summarize individual contributions from doublet- and
singletlike new leptons to Δaμ normalized by mμ=16π2, in
the limit of VL masses well above the EW scale (note the
comments after Eq. (A64) for the appropriate approxima-
tions used). We also assume that the masses of heavy Higgs
bosons are comparable to that of new leptons.2 The
derivation of each contribution is straightforward from
approximate couplings listed in Appendix A 4. The total
approximate contributions assuming heavy lepton masses
can be found by summing the corresponding rows in the
tables. We find

ΔaZμ ≃ −
mμvc3β
32π2

λLλEλ̄

MLME
; ð29Þ

ΔaWμ ≃
mμvc3β
16π2

λLλEλ̄

MEML
; ð30Þ

Δahμ ≃ −
3mμvc3β
32π2

λLλEλ̄

MEML
; ð31Þ

for gauge bosons and SM-like Higgs. For the contributions
from heavy Higgses with masses comparable to new
leptons we find

ΔaH�
μ ≃

mμvs2βcβ
96π2m2

H�

��
λLλEλ̄ML

ME
þ λLκN κ̄MN

MLtan2β
− λLκNκ

�

þ λLλEλ̄m2
H�

MLME
þ λLκN κ̄m2

H�

MLMN

�
1

tan2β
þ 1

��
; ð32Þ

ΔaHμ ≃ −
mμvs2βcβ
192π2m2

H

��
λLλEλ̄ðM2

L þM2
EÞ

MLME
− λLλEλ

�

þ 9m2
H

λLλEλ̄

MLME

�
; ð33Þ

TABLE II. Leading contributions to Δaiμ from new lepton
doublets assuming mA;H;H� ≃ML;E;N ≫ MZ.

16π2

mμ
Δaiμ SUð2Þ doublets

Z 1
2ME

λLvd cos2 β
M2

E−M
2
L
½λEλ̄ML þ λEλME�

W λL cos β
ML

½ vdME
λEλ̄ cos β −

vu sin β
M2

N−M
2
L
ðκN κ̄MN þ κNκMLÞ�

H� 1
6
ð M2

L
m2

H�
þ1Þ λL

ML
½ vdME

λEλ̄sin2βþvu sinβcosβ
M2

N−M
2
L
ðκN κ̄MNþκNκMLÞ�

h − 1
2ML

λLcosβ½ vdME
λEλ̄cosβþ vdcosβ

M2
E−M

2
L
ðλEλ̄MEþλEλMLÞ�

H −1
2
ðM2

L
6m2

H
þ1

2
ÞλL sinβML

½ vdME
λEλ̄sinβþ vd sinβ

M2
E−M

2
L
ðλEλ̄MEþλEλMLÞ�

A −1
2
ðM2

L
6m2

A
þ1

2
ÞλL sinβML

½ vdME
λEλ̄sinβ−

vd sinβ
M2

E−M
2
L
ðλEλ̄MEþλEλMLÞ�

TABLE III. Leading contributions to Δaiμ from new lepton
singlets assuming mA;H;H� ≃ML;E;N ≫ MZ.

16π2

mμ
Δaiμ SUð2Þ singlets

Z − 1
2ML

λEvdcos2β
M2

E−M
2
L
½λLλ̄ME þ λLλML�

W κN sin β
ML

½ vd sin βM2
N−M

2
L
ðλLκML þ λLκ̄MNÞ�

H� 1
6
ð M2

N

m2

H�
þ1Þ κNMN

cosβ½ vdML
λLκ̄cosβ−

vusinβ
M2

N−M
2
L
ðλLκ̄MLþλLκMNÞ�

h − 1
2ME

λE cosβ½ vdML
λLλ̄cosβ−

vd cosβ
M2

E−M
2
L
ðλLλ̄MLþλLλMEÞ�

H −1
2
ðM2

E
6m2

H
þ1

2
ÞλE sinβME

½ vdML
λLλ̄sinβ−

vd sinβ
M2

E−M
2
L
ðλLλ̄MLþλLλMEÞ�

A −1
2
ðM2

E
6m2

A
þ1

2
ÞλE sinβME

½ vdML
λLλ̄sinβþ vd sinβ

M2
E−M

2
L
ðλLλ̄MLþλLλMEÞ�

2Our approximations are accurate to within 10% in the range
1ffiffi
2

p ML;E;N ≲mH;A;H� ≲ ffiffiffi
2

p
ML;E;N . Though, in our numerical

results we do not use any approximations. For heavier lepton
masses, ML;E;N ≫ mH;A;H� , one can make the replacements
1
6
ðM2

L;N

m2

H�
þ1Þ→1 and ðM2

L;E

6m2
H;A

þ 1
2
Þ → 1 in Tables II and III for charged

and neutral Higgs contributions, respectively. In the opposite
limit, ML;E;N ≪ mH;A;H� , the corresponding replacements are
1
6
ðM2

L;N

m2

H�
þ 1Þ→ M2

L;N

m2

H�
and ðM2

L;E

6m2
H;A

þ 1
2
Þ→ ð−3−2 lnðM2

L;E=m
2
H;AÞÞ

ðM2
L;E=m

2
H;AÞ. We note that the latter expansion for neutral Higgs

loops is numerically good to within a factor of 2 up to xa ≃ 0.1.
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ΔaAμ ≃ −
mμvs2βcβ
192π2m2

A

��
λLλEλ̄ðM2

L þM2
EÞ

MLME
þ λLλEλ

�

þ 3m2
A
λLλEλ̄

MLME

�
: ð34Þ

These equations are also valid when ML ¼ ME ¼ MN
unlike the approximations of separate contributions
in Tables II and III. They further simplify when all
up-type couplings are zero and masses of all new particles
are equal ML;E ¼ mH;A;H� . In this limit, the contributions

can be parameterized as Δaiμ ≃ ki

16π2
mμmLE

μ

v2 , where kW ¼ 1,
kZ ¼ −1=2, kh¼−3=2, kH ¼−ð11=12Þ tan2β, kA ¼
−ð5=12Þ tan2 β, and kH

� ¼ ð1=3Þ tan2 β [29]. We have
additionally ignored terms ∝ λ in the CP-even and CP-
odd Higgs contributions as these terms would cancel in the
total contribution whenmH¼mA. Note that kW þkZþkh ¼
−1, while kH þ kA þ kH

� ¼ − tan2 β.
We see that the leading contribution from SM bosons is

∝ −mLE
μ and likewise for CP-even and CP-odd heavy

Higgses up to terms proportional to λ. The terms in the
charged Higgs contribution proportional to mLE

μ are pos-
itive leading to possible cancellation with other contribu-
tions. However, due to mixing in the neutral lepton sector
the charged Higgs loop receives additional contributions
which can independently control the overall sign. Further,
when mLE

μ ¼ 0 the charged Higgs loop gives the dominant
contribution from new physics to ðg − 2Þμ in the leading
order approximation assuming comparable masses of new
leptons.

The behavior of individual loop contributions to Δaμ
with respect to ME and tan β are shown in Fig. 2 for a
representative choice of parameters. In both panels, ML ¼
MN ¼ mH ¼ 1 TeV are fixed. The solid-color curves
correspond to scenarios when these couplings are fixed
to their maximum values allowed by EW precision con-
straints up to values of 0.5. Ignoring EW precision
constraints and instead fixing λL ¼ λE ¼ 0.5 individual
contributions follow the corresponding shaded curves. For
simplicity we also fix λ̄ ¼ −0.5. The signs are chosen to
illustrate the impact from positive contributions ofH and A.
Opposite signs of contributions would be found if the sign
of λL, λE, or λ̄ were flipped. Other couplings are fixed to
λ ¼ κ ¼ κ̄ ¼ κN ¼ 0 for simplicity.
The kinks seen in the curves occur when the precision

EW constraints, Eq. (23), become saturated, λL ¼
0.04ML=vd and λE ¼ 0.03ME=vd. In the left plot, contri-
butions from SM bosons are independent of ME below the
kink, while contributions from heavy neutral Higgses
increase with terms proportional to M2

E. Similar contribu-
tions from charged Higgs scale as M2

L. For ME above the
kink, all contributions asymptote to zero as heavy particles
are decoupled. Note that the range of masses which can
explain Δaexpμ is highly sensitive to tan β where larger tan β
requires either larger couplings or lower masses. In Fig. 3,
we the show the range of individual (left) and total (right)
contributions to Δaμ with respect to mLE

μ =mμ for couplings
up to 0.5 (dark colors) and 1 (shaded colors). All up-type
couplings are fixed κ ¼ κ̄ ¼ κN ¼ 0 (scanning over κ’s
would give almost identical results). From the individual
contributions for tan β ¼ 5 in the left panel, we see that due
to the tan2 β enhancement, heavy Higgs contributions can

FIG. 2. Individual contributions to Δaμ × 109 as a function of ME for tan β ¼ 5 (Left) and as a function of tan β for ME ¼ 500 GeV
(Right) with ML;N ¼ mH ¼ 1 TeV. The total contribution is shown with the solid black curve. Shaded curves show the behavior when
λL ¼ λE ¼ 0.5, while solid curves show the contributions when λL and λE are fixed to the maximum values allowed by precision EW
constraints up to 0.5. Other couplings are fixed to λ̄ ¼ −0.5, λ ¼ κ ¼ κ̄ ¼ κN ¼ 0. The dark and light shaded green bands represent the 1
and 2σ levels of Δaexpμ , respectively.
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give an order of magnitude larger contribution than those
from SM bosons over most of the parameter space. For
instance, for comparable heavy lepton and Higgs masses
ΔaHμ ≃ 0.6 tan2 β × Δahμ. Note that since CP-odd and
charged Higgs contributions tend to cancel the enhance-
ment is largely driven by the CP-even Higgs contribution
for most of the parameter space. This can be seen when
comparing to the right panel of Fig. 3 where we show the
total contribution to ðg − 2Þμ for tan β ¼ 1, 5, 50. In both
panels we show the regions ofmLE

μ =mμ that are excluded by
h → μþμ−. Note that both mLE

μ =mμ ¼ 0 and -1 lead to the
same prediction of h → μþμ− as in the SM which can be
seen from Eq. (27).
In both panels, the dark and light shaded green bands

represent the 1 and 2σ levels of Δaexpμ , respectively. We see
that for couplings up to 0.5 (1), the correction to the
magnetic moment spans a range about 4 (10) times the
measured central value. As a curiosity, we mention that
allowing couplings up to the perturbativity limit,∼

ffiffiffiffiffiffi
4π

p
, the

possible contribution to Δaμ ∼ 200 × 10−9 can be achieved
while still satisfying all relevant constraints.
Regarding contributions from up-type couplings, it is

clear from Tables II and III that corrections to ðg − 2Þμ from
charged currents are the only relevant pieces. Mixing with
the neutral component of the doublets L0

L;R further dictates
that additionally λL should be nonzero to have any non-
vanishing effects from κ’s at leading order. Further, it is
expected that any effect from loops in involving the
W-boson are small, see Eq. (30), since the leading order
contributions from SUð2Þ doublets tend to cancel those
from singlets. In fact, we find that the sub-leading con-
tribution from the W-loop can be found by further
expanding xaGWðxaÞ at the next order in xa

ΔaWμ ≃
6mμM2

Wv

16π2
λLκNs2βcβ
M2

NM
2
L

�
κ̄
MN

ML
þ κ

�

×

�
M2

L

M2
N −M2

L
ln ðM2

N=M
2
WÞ

−
M2

N

M2
N −M2

L
ln ðM2

L=M
2
WÞ þ

3

2

�
: ð35Þ

In Fig. 4 we show the size of corrections to ðg − 2Þμ
(color shading) in the limit that only λL, κ, κ̄, and κN are
nonzero. We have fixed λL and κN to their maximum values
allowed by precision EW constraints. In the left panel we
fix κ ¼ −κ̄ ¼ 0.5, while in the right panel both couplings
are chosen to have the same sign. We explore both cases of
the relative sign since individual contributions are sensitive
to this choice. TheW contribution, shown in purple dashed
curves, can switch signs depending on whether ν4 is mostly
singlet- or doubletlike, dictated by the prefactor ðκ̄ MN

ML
þ κÞ

in Eq. (35). However, the charged Higgs contribution
(dashed red curves) remains negative in the entire plane
(note that opposite sign of individual contributions shown
is also possible simply by replacing λL → −λL).
We see that for small tan β and relatively large MN the

charged Higgs contribution can alone explain Δaexpμ within
2σ for couplings up to 0.5 (when κ and κ̄ have opposite
sign). Allowing couplings up to 1, the charged Higgs
contribution could even explain the central value of Δaexpμ

in this region of parameters. It should be noted that the size
of contributions shown in the plane are completely
orthogonal to contributions resulting from mLE

μ being
nonzero. Thus, one can simply add the size of contributions
from the previous figures to Fig. 4 to estimate the total
contribution to ðg − 2Þμ for a given choice of masses and

FIG. 3. Individual contributions to ðg − 2Þμ with respect to mLE
μ =mμ for tan β ¼ 5 (left) and total contributions for tan β ¼ 1; 5; 50

(right) assuming down-type couplings up to 0.5 (dark colors) and 1 (shaded colors). For simplicity we fix κ ¼ κ̄ ¼ κN ¼ 0. mH ¼
mA ¼ mH� are scanned up to 2 TeV subject to all constraints discussed in Sec. IV. Gray shaded regions are ruled out by h → μþμ−. The
dark and light shaded green bands represent the 1 and 2σ levels of Δaexpμ , respectively.
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tan β. In the left panel of Fig. 5, we show the predicted
Δaμ × 109 in the range 1–7.5 for couplings up to 0.5 with
respect tomH and minðML;ME;MNÞ. In the right panel we
show similar contours when the upper bound on couplings
is extended to one and predicted values of Δaμ × 109

within 1–29.9. In both panels, tan β is scanned within 1–50
assuming constraints on mH from direct searches. For
couplings up to 0.5, Higgs masses up to 6 TeV and the
lightest new lepton mass up to 3 TeV are viable to explain
Δaexpμ within about 1σ. Assuming all values of couplings
not exceeding 1 these ranges extend to 20 TeV and about
8.5 TeV, respectively. Note that the new lepton masses
extend to slightly larger values than without up-type

couplings, see Ref. [29]. In previous sections we high-
lighted the fact that contributions from heavy Higgs bosons
can dominate the total correction to the magnetic moment
in most of the parameter space largely due to the tan2 β
enhancement. In Fig. 6, we show contributions to Δaμ for
couplings up to 0.5 (left) and 1 (right) from heavy Higgses
relative to the total contribution with respect to mH and
tan β when Δaexpμ is achieved within 1σ. Lightly shaded
crosses correspond to scenarios where heavy Higgses
contribute less than 50% to the total correction. We see
that the heavy Higgs corrections are generically the largest
with increasing tan β and fall off with increasing mH.
However, we see that for couplings up to 0.5 heavy Higgs

FIG. 4. Left: predictions forΔaμ with respect toMN and tan β when only λL, κ, κ̄, and κN are nonzero. κ ¼ −κ̄ ¼ 0.5 are fixed and both
λL and κN are set to their maximum values allowed by precision EW constraints. Purple and red dashed curves show individual
contributions from W and H� loops respectively. Right: same contours as in the left panel with κ ¼ κ̄ ¼ −0.5.

FIG. 5. Contours ofΔaμ in the 2HDM-Z2 with respect tomH and minðML;ME;MNÞ. All values of couplings allowed by precision EW
constraints are scanned up to 0.5 (left) and up to 1 (right). Lightly shaded crosses without filled circles correspond to scenarios where
contributions from heavy Higgses make up less than 50% of the total contribution. Points with larger values of Δaμ are plotted on top.
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masses even up to 6 TeV can give the dominant contribu-
tion, while for couplings not exceeding 1 this extends to
Higgs masses up to about 20 TeV. We note that regions

where ΔaH;A;H�
μ =Δaμ > 1 occur when the combined con-

tribution from Z, W, and h is negative.
In Fig. 7, we show the corresponding range of masses in

the same plane as Fig. 6. Here the range of viable vectorlike
lepton masses to at least 3 (8.5) TeV assuming couplings
not exceeding 0.5 (1) are explicit. While these upper ranges
may be out of reach for future colliders, similar comments

as made in [29] also apply here, where complementary
information on precision observables can be used indirectly
to fully explore the model. We note that the predictions for
modifications of Z and h couplings are almost identical in
the present case. Modifications of the W coupling are
typically smaller than those of Z. However, since W can
also receive sizable modifications through up-type cou-
plings it can be larger than the modifications to the Z
couplings especially in regions of parameters when the
charged Higgs gives the dominant contributions to Δaμ.

FIG. 6. Contours of the relative contribution to Δaμ from heavy Higgses, ΔaH;A;H�
μ =Δaμ, for values of couplings up to 0.5 (left) and up

to 1 (right) when Δaexpμ is achieved within 1σ and all constraints are satisfied. Lightly shaded crosses without filled circles correspond to
scenarios where contributions from heavy Higgses make up less than 50% of the total contribution. Points with larger values of

ΔaH;A;H�
μ =Δaμ are plotted on top.

FIG. 7. Values of minðML;ME;MNÞ with respect to mH and tan β for scenarios where Δaexpμ is achieved within 1σ for couplings up to
0.5 (left) and 1 (right). Lightly shaded crosses without filled circles correspond to scenarios where contributions from heavy Higgses
make up less than 50% of the total contribution. Points with larger values of minðML;ME;MNÞ are plotted on top.
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B. 2HDM-II-S with vectorlike leptons

We remarked in Sec. II that the supersymmetric version
of the model in the limit of heavy superpartners has similar
structure up to λ̄ and κ̄ couplings. In Appendix B we
provide the corresponding approximate formulas for indi-
vidual contributions to ðg − 2Þμ. The heavy Higgs contri-
butions in the 2HDM-II-S contain both tan β enhanced and
suppressed pieces as before. However, the tan β enhanced
pieces of these contributions tend to cancel in the leading
approximation for ML, ME, MN ≃mA. Further, the total
contribution from Z, W, and h loops tends to cancel that
from heavy Higgses in this limit.
In Fig. 8, we show the total contributions to Δaμ in the

2HDM-II-S with respect to mA and minðML;ME;MNÞ
(left) and mA and tan β (right) for couplings up to 1. As a
result of the cancellation mentioned above the total con-
tribution is smaller than that of the 2HDM-II-Z2 over most
of the plane. However, it is worth noting that the perfor-
mance of the model improves as heavy Higgses are
decoupled and the total contribution is dominated by Z,
W, and h bosons indicated by the crosses without filled
circles. For instance, the model can achieveΔaexpμ within 1σ
when mA ≳ 9 TeV and heavy lepton masses lower than
about 5 TeV. We note, however, that the discussion of the
charged Higgs contribution with respect to up-type cou-
plings also applies in the 2HDM-II-S. Thus, this contri-
bution can dominate in certain regions of parameters. Such
scenarios can be seen in the left corner of either panel in
Fig. 8 with mA ≲ 10 TeV where contributions from heavy
Higgses make up more than 50% of the total contribution
indicated by points with filled circles. To summarize, the
2HDM-II-S performs less favorably than the 2HDM-II-Z2

version with respect to ðg − 2Þμ considering the loops in

Fig. 1 largely due to the cancellation of tan β enhanced
contributions. However, it should be stressed that the
contributions presented in Fig. 8 can be considered in
addition to the usual contributions from superpartners, e.g.,
through chargino/sneutrino or neutralino/slepton loops
[9,50–52].

C. SM with vectorlike leptons

The standard model with vectorlike leptons was pre-
viously studied in [17,18] as an explanation for Δaexpμ . Here
we extend the region of parameters considered in the model
and show the impact of recent measurements of h → μþμ−.
We also explore the correlation of the contribution to Δaμ
with modifications of gauge and Yukawa couplings.
In Fig. 9, we show individual contributions to Δaμ with

respect to mLE
μ =mμ. All values of couplings allowed by

constraints are scanned up to 1 and the dark shades of
corresponding colors show the subset of predictions when
the upper limit of couplings is reduced to 0.5. In the right
panel we show the total contribution of the model to Δaμ
with respect to mLE

μ =mμ. Colors represent various lepton
masses. The gray shaded bands show the regions of
parameters that are ruled out by h → μþμ−. We see that
the SM extended with VL’s remains viable as an explan-
ation for Δaexpμ even within 1σ for lepton masses as heavy
as ∼7.5ð2.5Þ TeV when couplings are allowed up to 1
(0.5). Although we include up-type couplings and MN in
the scan, contributions from these parameters have a
negligible impact on the results.
Extending the couplings to

ffiffiffiffiffiffi
4π

p
, in Fig. 10, we see that

the lightest new lepton mass can be up to 48 TeV while
explaining Δaexpμ within 1σ. Despite the fact that the upper

FIG. 8. Left: predicted values of Δaμ in the 2HDM-II-S with respect to mA and minðML;ME;MNÞ for couplings up to 1. The inset
shows scenarios when couplings are limited to be less than 0.5. Right: the same points with respect to mA and tan β. In both panels,
shaded crosses without filled circles correspond to scenarios where contributions from heavy Higgses make up less than 50% of the total
contribution and points with larger Δaμ are plotted on top.
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range of masses leading to an explanation of Δaexpμ may be
out of reach from direct searches at the LHC, the model can
be indirectly probed at future colliders through precision
measurements of SM couplings. In colors, we show the
deviation of the Z-boson couplings to the muon (left), and
that of the SM Higgs (right). The insets focus on scenarios
when the upper range of couplings is limited to one.
Interestingly, the full range of scenarios in the SM with
VL’s that can explain Δaexpμ within 1σ can be indirectly
probed by precision measurements at future machines. In
particular, the 250 GeV ILC can probe the Z-boson
couplings up to ∼5 × 10−4 which covers almost the entire

plane, while the GigaZ option, with sensitivity up to 10−4,
can probe all scenarios up to the perturbativity limit (

ffiffiffiffiffiffi
4π

p
).

We note that while the contribution toΔaμ in the 2HDM-II-
Z2 can be significantly larger than that in the SM with VL’s
(see for instance an order of magnitude difference between
Figs. 3 and 9 assuming couplings up to one), the reach of
heavy lepton masses able to explain the anomaly is similar,
about 45 TeV for couplings up to

ffiffiffiffiffiffi
4π

p
(compare for

example Fig. 10 with the results in [29]). This can be
understood by the tan β dependence in the impact of
precision EW constraints on the 2HDM-II-Z2. For instance,

FIG. 9. Left: individual contributions to Δaμ in the SM with VL’s with respect to mLE
μ =mμ. All values of couplings allowed by

constraints up to 1 are shown, where darker shades of corresponding colors show the impact of limiting the upper range of couplings to
0.5. The shaded gray bands show regions of parameters that are ruled out by h → μþμ−. Right: total contribution to Δaμ from the same
scenarios assuming couplings up to 1. Subset of scenarios with couplings up to 0.5 are shown in the inset. We show red, blue, yellow,
and green points when minðML;ME;MNÞ > 2.5; 3; 6, and 8 TeV respectively and black points when minðML;ME;MNÞ ≤ 2.5 TeV.

FIG. 10. Left: largest relative deviations of the muon couplings to the Z-boson in the SMþ VL for scenarios leading to an explanation
ofΔaexpμ within 1σ. Right: same scenarios as in the left panel where points show the relative deviation of the Higgs coupling to the muon.
In both panels, points leading to the smallest possible deviation from SM couplings are plotted on top.

MUON g − 2 IN TWO-HIGGS-DOUBLET MODELS WITH … PHYS. REV. D 104, 055033 (2021)

055033-13



when λE and λL are given by their maximum allowed
values, we have λE ¼ 0.03ME=vd and λL ¼ 0.04ML=vd
resulting in sin β tan β enhancement in the heavy Higgs
contributions so long as λL;E are smaller than the chosen
upper limit. This can be seen in the right panel of Fig. 2
(where λL;E < 0.5 is implemented). However, for fixed
values of the masses, at some value of tan β the maximum
allowed values of couplings are the same as the chosen
upper limit (seen from the kinks in Fig. 2) and for any larger
tan β the constraints have no impact. Thus, the sin β tan β
enhancement occurs for lower values of VL masses and
moderate values of tan β (up to the kink). However, in order
to explain the measured value of Δaμ, for chosen upper
limit of couplings the largest possible masses are such that
the constraints from precision EW data are automatically
satisfied for any tan β ¼ 1–50, see Fig. 4 of [29].

VI. CONCLUSIONS

The anomalous measurement of the magnetic moment of
the muon remains one of the longest standing deviations of
SM predictions. The recent confirmation of this result by
the Fermilab Muon g-2 experiment [1], further motivates
the presence of physics beyond the SM in nature. In this
paper, we studied three distinct extensions of the SM which
can provide an explanation of the magnetic moment with
heavy new leptons while satisfying low-energy precision
measurements.
We extensively explored the viable parameter space of

the 2HDM-II-Z2, highlighting the range of heavy Higgs
and lepton masses which lead to a prediction of Δaμ within
1σ of the measured value with model couplings not
exceeding 1. This extends the study presented in [29]
for a 2HDM with charged vectorlike leptons by including
vectorlike lepton neutral singlets and couplings to Hu. In
particular, we find that the range of lightest lepton and
Higgs masses which can explain Δaexpμ within 1σ can be as
large as 3 (8.5) TeV and 6 (20) TeV, where the dominant
contributions are given by loops with heavy Higgses and
VL and assuming couplings up to 0.5 (1).
Notably, these ranges are similar to the study without

up-type couplings [29]. However, if the typically domi-
nant contributions from down-type couplings are not
present the contribution from the charged Higgs itself
can still explain Δaexpμ within 1σ due to the presence of
couplings to Hu. Apart from the main results, we also
emphasize that the model can generate Δaμ one (two)
orders of magnitude larger than the central measured value
with couplings up to 1 (

ffiffiffiffiffiffi
4π

p
) while satisfying all current

precision constraints. While it is expected that even the
LHC running at 14 TeV with 3 ab−1 luminosity can only
exclude (doublet) VL masses up to 1250 GeV [59]
(depending on the decay modes), the high range of masses
we present here can be probed indirectly at future
precision machines [29].

In addition to our study of the 2HDM-II-Z2, we
emphasize that while Yukawa couplings of SM leptons
in this model are indistinguishable to those in the MSSM,
couplings of VL are necessarily different due to the
requirement that the superpotential be holomorphic. This
leads to drastically different results in the contributions to
Δaμ from the same particle content. We find that the
2HDM-II-S can typically generate Δaμ within 1σ from the
central measured value in the limit that heavy Higgses are
decoupled, for mA ≳ 9 TeV, as a result of cancellations
between heavy Higgs contributions and those of Z, W, and
h. However, in a subset of the parameter space the charged
Higgs contribution can even reach the central value in the
presence of sizable (up to 1) couplings to Hu.
For completeness we have extended previous studies of

the SM with VL [17,18] by including couplings to heavy
leptons which are SM singlets. Interestingly, we find that
while the reach of lepton masses which can lead to Δaμ
within 1σ from the central measured value is roughly the
same as in the 2HDM-II-Z2, current measurements of h →
μþμ− have a much bigger impact in this scenario limiting
the possible contribution to Δaμ up to the current central
value. This can be understood from the tan β dependence in
the impact of precision EW constraints on the 2HDM-II-Z2.
This impact also appears in the differences in modifications
of the Z and h couplings to the muon required to explain
Δaexpμ within 1σ. For the SM with vectorlike leptons we
find that the 250 GeV ILC, that can probe the Z-boson
couplings up to ∼5 × 10−4, can cover almost all the
parameter space, while the GigaZ option, with sensitivity
up to 10−4, can probe all scenarios up to the perturbativity
limit (

ffiffiffiffiffiffi
4π

p
). This is in sharp contrast to the predictions of

the 2HDM-II-Z2 [29].
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APPENDIX A: COUPLINGS AND APPROXIMATE
FORMULAS IN THE 2HDM-II-Z2

We consider a complete generation of VL’s which can
mix with the 2nd generation leptons of the SM. In Sec. III,
we present one-loop formulas giving contributions to
ðg − 2Þμ in a generic 2HDM. In the following appendices
we derive general expressions for all relevant couplings
in the 2HDM-II-Z2 we consider and present useful
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approximations for individual couplings in the limit of
heavy lepton masses.

1. Couplings to Z and W bosons

Expressions for couplings of charged and neutral leptons
to Z and W bosons have been given previously in the
SM extended with vectorlike leptons, and in the 2HDM-
II-Z2 [18,56]. We summarize these expressions for com-
pleteness.3 In the following it will be convenient to define
the 3-component vectors eL;Ra ≡ ðμL;R; L−

L;R; EL;RÞT , and
νL;Ra ≡ ððνμÞL;R; L0

L;R; NL;RÞT in the gauge eigenstate
basis. We denote 3-vectors of mass eigenstates by eL;R ¼
Ue

L;RêL;R and νL;R ¼ Uν
L;Rν̂L;R, where Ue

L;R and Uν
L;R

are the diagonalization matrices given by Eqs. (5) and
(6). We label the components of mass eigenstate vectors
by a ¼ 2; 4; 5.
The couplings to the Z bosons follow from the kinetic

terms of leptons:

Lkin⊃ ēLai=DaeLaþ ēRai=DaeRaþ ν̄Lai=DaνLaþ ν̄Rai=DaνRa

¼ ¯̂eLaðUe†
L Þaci=DcðUe

LÞcbêLbþ ¯̂eRaðUe†
R Þaci=DcðUe

RÞcbêRb
þ ¯̂νLaðUν†

L Þaci=DcðUν
LÞcbν̂Lb

þ ¯̂νRaðUν†
R Þaci=DcðUν

RÞcbν̂Rb; ðA1Þ

where the covariant derivative is given by

Dμa ¼ ∂μ − i
g

cos θW
ðT3

a − sin2θWQaÞZμ: ðA2Þ

Defining the couplings of the Z boson to leptons fa
and fb as

L ⊃ ðf̄LaγμgZfafbL fLb þ f̄Raγμg
Zfafb
R fRbÞZμ; ðA3Þ

the couplings of left- and right- handed fields immediately
follow from Eq. (A2)

gZeaebL ¼ g
cos θW

��
−
1

2
þ sin2θW

�
δab þ

1

2
ðUe†

L Þa5ðUe
LÞ5b

�
;

ðA4Þ

gZeaebR ¼ g
cos θW

�
sin2θWδab −

1

2
ðUe†

R Þa4ðUe
RÞ4b

�
; ðA5Þ

gZνaνbL ¼ g
2 cos θW

½δab − ðUν†
L Þa5ðUν

LÞ5b�; ðA6Þ

gZνaνbR ¼ g
2 cos θW

ðUν†
R Þa4ðUν

RÞ4b; ðA7Þ

where a, b ¼ 2; 4; 5. Since we only introduce mixing to the
muon and muon neutrino, couplings of the first and third
generation leptons in the SM are not modified.
The couplings of the W boson to charged and neutral

leptons arise from the kinetic terms

Lkin ⊃
gffiffiffi
2

p ðν̄μγμμLþ L̄0
Lγ

μL−
Lþ L̄0

Rγ
μL−

RÞWþ
μ þH:c: ðA8Þ

¼ gffiffiffi
2

p ½ ¯̂νLaðUν†
L Þa2γμðUe

LÞ2bêLb þ ¯̂νLaðUν†
L Þa4γμðUe

LÞ4bêLb
þ ¯̂νRaðUν†

R Þa4γμðUe
RÞ4bêLb�Wþ

μ þ H:c: ðA9Þ

Defining the couplings of the W boson to mass eigenstates
ν̂a and êa as

L⊃ð ¯̂νLaγμgWνaeb
L êLbþ ¯̂νRaγ

μgWνaeb
R êRbÞWþ

μ þH:c:; ðA10Þ

we find

gWνaeb
L ¼ gffiffiffi

2
p ½ðUν†

L Þa2ðUe
LÞ2b þ ðUν†

L Þa4ðUe
LÞ4b�; ðA11Þ

gWνaeb
R ¼ gffiffiffi

2
p ðUν†

R Þa4ðUe
RÞ4b: ðA12Þ

2. Couplings to Higgs bosons

Here we provide our conventions for the Higgs sector
and couplings of VL leptons to physical Higgs and
Goldstone bosons.
In the basis where the Yukawa couplings of SM leptons

are diagonal, the Yukawa couplings of the neutral Higgs
components to the muon and VL leptons are given by

LH0
u;d

¼ −ðμ̄L; L̄−
L; ĒLÞ

0
B@

yμH0
d 0 λEH0

d

λLH0
d 0 λH0

d

0 λ̄H0†
d 0

1
CA
0
B@

μR

L−
R

ER

1
CA

− ðν̄μ; L̄0
L; N̄LÞ

0
B@

0 0 κNH0
u

0 0 κH0
u

0 κ̄H0†
u 0

1
CA
0
B@

νR ¼ 0

L0
R

NR

1
CA:

ðA13Þ

To write these interactions in terms of mass eigenstates, we
additionally rotate the Higgs fields to the basis where
physical and Goldstone degrees of freedom are apparent.
This basis is defined by

H0
d ¼ vdþ

1ffiffiffi
2

p ð−hsinαþH cosαÞþ iffiffiffi
2

p ðGcosβ−AsinβÞ;

ðA14Þ
3Note that since the Uð1ÞEM charges of the vectorlike leptons

are the same as their SM counterparts, couplings to the photon are
not modified by mixing.
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H0
u ¼ vuþ

1ffiffiffi
2

p ðhcosαþH sinαÞ− iffiffiffi
2

p ðGsinβþAcosβÞ;

ðA15Þ

and for the charged sector

H�
d ¼ cos βG� − sin βH�; ðA16Þ

H�
u ¼ − sin βG� − cos βH�: ðA17Þ

Inverting these relations, the mass eigenstates of the neutral
Higgs and Goldstone bosons are given by

�
H

h

�
¼

�
cos α sin α

− sin α cos α

�� ffiffiffi
2

p ðReH0
d − vdÞffiffiffi

2
p ðReH0

u − vuÞ

�
; ðA18Þ

�
G

A

�
¼

�
cos β sin β

− sin β cos β

�� ffiffiffi
2

p ðImH0
dÞ

−
ffiffiffi
2

p ðImH0
uÞ

�
: ðA19Þ

where h and H, A, and G are the CP-even, CP-odd, and
neutral Goldstone bosons, respectively. By requiring a light
Higgs with couplings to gauge bosons that are identical to
those in the SM we have α ¼ β − π=2, and the mass
eigenstates for h and H are

�
h

−H

�
¼
�

cosβ sinβ

−sinβ cosβ

�� ffiffiffi
2

p ðReH0
d−vdÞffiffiffi

2
p ðReH0

u−vuÞ

�
: ðA20Þ

Thus, in term of mass eigenstates the Yukawa couplings
of charged and neutral leptons to h and H are

Lh;H ¼ −
1ffiffiffi
2

p ¯̂eLU
e†
L YEUe

RêRðh cos β þH sin βÞ ðA21Þ

−
1ffiffiffi
2

p ¯̂νLU
ν†
L YNUν

Rν̂Rðhsinβ−H cosβÞþH:c:; ðA22Þ

where YE and YN are given by

YE¼

0
B@
yμ 0 λE

λL 0 λ

0 λ̄ 0

1
CA; and YN ¼

0
B@
0 0 κN

0 0 κ

0 κ̄ 0

1
CA: ðA23Þ

The Lagrangian for Yukawa couplings to CP-even Higgses
can be written as

Lh;H ¼−
1ffiffiffi
2

p ¯̂eLaλheaeb êRbh−
1ffiffiffi
2

p ¯̂νLaλ
h
νaνb ν̂Rbh

−
1ffiffiffi
2

p ¯̂eLaλHeaeb êRbH−
1ffiffiffi
2

p ¯̂νLaλ
H
νaνb ν̂RbHþH:c:;

ðA24Þ

where

λheaeb ¼ cos βðUe†
L YEUe

RÞab; ðA25Þ

λhνaνb ¼ sin βðUν†
L YNUν

RÞab; ðA26Þ

λHeaeb ¼ sin βðUe†
L YEUe

RÞab; ðA27Þ

λHνaνb ¼ − cos βðUν†
L YNUν

RÞab: ðA28Þ

The couplings for the CP-odd Higgs can be derived in a
similar way. The Lagrangian for the Yukawa couplings to A
reads

LA ¼ −
iffiffiffi
2

p ¯̂eLU
e†
L YA

EU
e
RêRð−A sin βÞ

−
iffiffiffi
2

p ¯̂νLU
ν†
L YA

NU
ν
Rν̂Rð−A cos βÞ þ H:c:; ðA29Þ

where YA
E and YA

N are given by

YA
E ¼

0
B@
yμ 0 λE

λL 0 λ

0 −λ̄ 0

1
CA; and YA

N ¼

0
B@
0 0 κN

0 0 κ

0 −κ̄ 0

1
CA: ðA30Þ

Writing the Lagrangian as

LA ¼ −
1ffiffiffi
2

p ¯̂eLaλAeaeb êRbA −
1ffiffiffi
2

p ¯̂νLaλ
A
νaνb ν̂RbAþ H:c:;

ðA31Þ

we have

λAeaeb ¼ −i sin βðUe†
L YA

EU
e
RÞab; ðA32Þ

λAνaνb ¼ −i cos βðUν†
L YA

NU
ν
RÞab: ðA33Þ

The couplings for the neutral Goldstone boson,G, follow
similarly. Defining

LG ¼ −
1ffiffiffi
2

p ¯̂eLaλGeaeb êRbG −
1ffiffiffi
2

p ¯̂νLaλ
G
νaνb ν̂RbGþ H:c:;

ðA34Þ

we get

λGeaeb ¼ i cos βðUe†
L YA

EU
e
RÞab; ðA35Þ

λGνaνb ¼ −i sin βðUν†
L YA

NU
ν
RÞab: ðA36Þ

For couplings to the charged Higgs bosons we first
define H−

d ≡ ðHd
þÞ† and Hþ

u ≡ ðH−
u Þ†. Then, reading off

the interactions from the Lagrangian we get
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LH�
u;d

¼ −ðν̄μ; L̄0
L; N̄LÞ

0
B@

yμH
þ
d 0 λEH

þ
d

λLH
þ
d 0 λHþ

d

0 κ̄Hþ
u 0

1
CA
0
B@

μR

L−
R

ER

1
CA

− ðμ̄L; L̄−
L; ĒLÞ

0
B@

0 0 κNH−
u

0 0 κH−
u

0 λ̄H−
d 0

1
CA
0
B@

0

L0
R

NR

1
CA:

ðA37Þ

The charged Higgs mass eigenstatesH� andG� are related
to the gauge eigenstates by

�
G�

H�

�
¼

�
cos β sin β

− sin β cos β

��
H�

d

−H�
u

�
: ðA38Þ

Thus, the Yukawa couplings to charged Higgs bosons, in
terms of mass eigenstates, are given by

LH� ¼− ¯̂νLU
ν†
L YH�

N Ue
RêRH

þ− ¯̂eLU
e†
L YH�

E Uν
Rν̂RH

−þH:c:;

ðA39Þ

where

YH�
N ¼ − sin β

0
B@

yμ 0 λE

λL 0 λ

0 κ̄= tan β 0

1
CA; and

YH�
E ¼ − cos β

0
B@

0 0 κN

0 0 κ

0 λ̄ tan β 0

1
CA: ðA40Þ

Finally, writing the Lagrangian for charged Higgs
Yukawa couplings as

LH� ¼ − ¯̂νLaλH
�

νaeb êRbH
þ − ¯̂eLaλH

�
eaνb ν̂RbH

− þ H:c:; ðA41Þ

we have

λH
�

νaeb ¼ ðUν†
L YH�

N Ue
RÞab; ðA42Þ

λH
�

eaνb ¼ðUe†
L YH�

E Uν
RÞab: ðA43Þ

The couplings for the charged Goldstone bosons, G�,
follow similarly. Defining

LG� ¼ − ¯̂νLaλG
�

νaeb êRbG
þ − ¯̂eLaλG

�
eaνb ν̂RbG

− þ H:c:; ðA44Þ

we get

λG
�

νaeb ¼ ðUν†
L YG�

N Ue
RÞab; ðA45Þ

λG
�

eaνb ¼ðUe†
L YG�

E Uν
RÞab; ðA46Þ

where

YG�
N ¼ cos β

0
B@

yμ 0 λE

λL 0 λ

0 −κ̄ tan β 0

1
CA; and

YG�
E ¼ − sin β

0
B@

0 0 κN

0 0 κ

0 −λ̄= tan β 0

1
CA: ðA47Þ

3. Goldstone boson equivalence theorem

The Goldstone boson equivalence theorem (GBET)
gives a relation between S-matrix elements of massive
vector bosons and unphysical Goldstone bosons at high
energies through the requirement of tree unitarity [83–86].
In the context of spontaneously broken gauge theories, this
requirement results in useful identities for couplings of
goldstone bosons in terms of fermion masses, often
simplifying calculations. In the present case it is not
immediately obvious how the GBET is satisfied. For
instance, the Yukawa matrices of the physical Higgs boson,
Eq. (A23), are clearly different than those appearing for
neutral Goldstone bosons, Eq. (A35) (note the opposite
sign appearing with λ̄). Additionally, the presence of
vectorlike masses further obscures this equivalence. In this
section, we explicitly show the equivalence of Goldstone
boson couplings to gauge couplings and fermion masses.
This serves as a clarification of these issues in the mass-
eigenstate basis, as well as a useful check of gauge
invariance of the model.
First, consider the coupling between the neutral

Goldstone boson and charged leptons ea and eb:

LG ¼ −
1ffiffiffi
2

p ¯̂eLaλGeaeb êRbGþ H:c: ðA48Þ

¼−
1

2
ffiffiffi
2

p ¯̂ea½ðλGeaeb þðλG†ÞeaebÞþðλGeaeb − ðλG†ÞeaebÞγ5�êbG;

ðA49Þ

which, in terms of Lagrangian parameters, can be written as

LG ¼ −i
cos β

2
ffiffiffi
2

p ¯̂ea½ððUe†
L YA

EU
e
RÞab − ðUe†

R YAT
E Ue

LÞabÞ

þ ððUe†
L YA

EU
e
RÞab þ ðUe†

R YAT
E Ue

LÞabÞγ5�êbG: ðA50Þ

We introduce the following matrices

L ¼

0
B@

1 0 0

0 1 0

0 0 −1

1
CA; R ¼

0
B@

1 0 0

0 −1 0

0 0 1

1
CA; ðA51Þ
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and note that YA
E ¼ L · YE ¼ YE · R. Inserting this relation

into the vertex factor and applying the unitary relations of
Ue

L and Ue
R results in

LG ¼ i
2mZ

¯̂ea½ðmeb −meaÞ½gZabL þ gZabR �

þ ðmeb þmeaÞ½gZabL − gZabR �γ5�êbG; ðA52Þ

where we have identified

gZeaebL ≡ g
cos θW

��
−
1

2
þ sin2θW

�
δab þ

1

2
ðUe†

L Þa5ðUe
LÞ5b

�
;

¼ g
2cW

��
−
1

2
þ 2sin2θW

�
δab −

1

2
ðUe†

L LUe
LÞab

�
;

ðA53Þ

and

gZeaebR ≡ g
cW

�
sin2θWδab −

1

2
ðUe†

R Þa4ðUe
RÞ4b

�
;

¼ g
2cW

��
−
1

2
þ 2sin2θW

�
δab þ

1

2
ðUe†

R RUe
RÞab

�
:

ðA54Þ

Similar calculations lead to the following relation
between the charged Goldstone and W boson couplings

LG− ¼ −
1

2
¯̂ea½ðλG�

eaνb þ ðλG�
νbeaÞ†Þ þ ðλG�

eavb − ðλG�
νbeaÞ†Þγ5�ν̂bG−

ðA55Þ

¼ 1

2mW

¯̂ea½ðmνb −meaÞ½gWeaνb
L þ gWeaνb

R �

þ ðmνb þmeaÞ½gWeaνb
L − gWeaνb

R �γ5�ν̂bG−; ðA56Þ

where we have identified

gWeν
L ¼ g

2
ffiffiffi
2

p ðUe†
L Þð1þ LÞUν

L; ðA57Þ

gWeν
R ¼ g

2
ffiffiffi
2

p ðUe†
R Þð1 − RÞUν

R: ðA58Þ

4. Approximate couplings

In this Appendix, we list various approximate formulas
for couplings which enter the contributions to ðg − 2Þμ and
relevant constraints on the model from mixing of the muon
to VL’s. Contributions coming from the SUð2Þ doublet VL
are labeled with index L, whereas contributions coming
from SUð2Þ charged and neutral VL singlets are labeled
with index E or N, respectively, regardless of the hierarchy
of masses. We assume that all mixing parameters are of
similar order. In this case, the mixing matrices in Eqs. (5)
and (6) can be written as an expansion in the dimensionless
parameters

ϵE ¼ vd
ML;E

× ðλL; λE; λ; λ̄Þ ðA59Þ

ϵN ¼ vu
ML;N

× ðκN; κ; κ̄Þ: ðA60Þ

Thus, in the limit λEvd, λLvd, λvd, λ̄vd ≪ ML, ME, and
κNvu, κvu, κ̄vu ≪ ML,MN the mixing matrices up to order
Oðϵ2EÞ and Oðϵ2NÞ are given by

Ue
L ¼

0
BBBBB@

1 − v2d
λ2E
2M2

E
−v2dð λEML

λ̄MEþλML
M2

E−M
2
L
− yμλL

M2
L
Þ vd

λE
ME

v2d
λ̄λEML−yμλLME

M2
LME

1 − v2d
ðλMEþλ̄MLÞ2
2ðM2

E−M
2
LÞ2

vd
λ̄MLþλME
M2

E−M
2
L

−vd
λE
ME

−vd
λ̄MLþλME
M2

E−M
2
L

1 − v2d
λ2E
2M2

E
− v2d

ðλMEþλ̄MLÞ2
2ðM2

E−M
2
LÞ2

1
CCCCCA; ðA61Þ

Ue
R ¼

0
BBBBB@

1 − v2d
λ2L
2M2

L
vd

λL
ML

v2dð λLME

λ̄MLþλME
M2

E−M
2
L
þ yμλE

M2
E
Þ

−vd
λL
ML

1 − v2d
λ2L
2M2

L
− v2d

ðλMLþλ̄MEÞ2
2ðM2

E−M
2
LÞ2

vd
λ̄MEþλML
M2

E−M
2
L

v2d
λLλ̄ME−yμλEML

MLM2
E

−vd
λ̄MEþλML
M2

E−M
2
L

1 − v2d
ðλ̄MEþλMLÞ2
2ðM2

E−M
2
LÞ2

1
CCCCCA; ðA62Þ

Uν
L ¼

0
BBBBB@

1 − v2u
κ2N
2M2

N
−v2u

κN
ML

κMLþκ̄MN
M2

N−M
2
L

vu
κN
MN

v2u
κN κ̄

MLMN
1 − v2u

ðκ̄MLþκMNÞ2
2ðM2

N−M
2
LÞ2

vu
κ̄MLþκMN
M2

N−M
2
L

−vu
κN
MN

−vu
κ̄MLþκMN
M2

N−M
2
L

1 − v2u
κ2N
2M2

N
− v2u

ðκ̄MLþκMNÞ2
2ðM2

N−M
2
LÞ2

1
CCCCCA; ðA63Þ
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and

Uν
R ¼

0
BBB@

1 0 0

0 1 − v2u
ðκMLþκ̄MNÞ2
2ðM2

N−M
2
LÞ2

vu
κMLþκ̄MN
M2

N−M
2
L

0 −vu
κMLþκ̄MN
M2

N−M
2
L

1 − v2u
ðκMLþκ̄MNÞ2
2ðM2

N−M
2
LÞ2

1
CCCA:

ðA64Þ

The above formulas are valid assuming that the
mass eigenstates e4 and ν4 are mostly doubletlike, while
e5 and ν5 are mostly singletlike. This is equivalent to
me4 ≃ML, me5 ≃ME, mν4 ≃ML, and mν5 ≃MN , and λvd,
λ̄vd ≪ ðME −MLÞ and κvu, κ̄vu ≪ ðMN −MLÞ. In the
opposite hierarchy of doublets and singlets one can find
the corresponding diagonalization matrices by switching
the second and third columns of each matrix while
simultaneously switching the bottom two entries in
each case.
For couplings of the Z boson in this approximation we

find

gZμμL ¼ g
cW

��
−
1

2
þ s2W

�
þ v2dλ

2
E

2M2
E

�
; ðA65Þ

gZμμR ¼ g
cW

�
s2W −

v2dλ
2
L

2M2
L

�
; ðA66Þ

and

gZμLL ¼ g
2cWME

ðλME þ λ̄MLÞv2dλE
ðM2

E −M2
LÞ

; ðA67Þ

gZμLR ¼ gvdλL
2cWML

�
−
v2dðMEλ̄þλMLÞ2
2ðM2

E−M2
LÞ2

−
v2dλ

2
L

2M2
L
þ1

�
ðA68Þ

≃
g

2cW

v
ML

λL cos β; ðA69Þ

gZμEL ¼ gvdλE
2cWME

�
v2dðλ̄ML þ λMEÞ2
2ðM2

E −M2
LÞ2

þ λ2Ev
2
d

2M2
E
− 1

�
ðA70Þ

≃ −
g

2cW

v
ME

λE cos β; ðA71Þ

gZμER ¼ gv2dλL
2cWML

ðλ̄ME þ λMLÞ
ðM2

E −M2
LÞ

; ðA72Þ

where in some formulas we indicate leading order terms
in ϵE;N .
For the corresponding couplings of the W boson to

charged and neutral leptons we find

gWνμ
L ¼ gffiffiffi

2
p

�
κ̄v2dκNv

2
uðλEλ̄ML −MEλLyμÞ
MEM3

LMN
þ
�
1 −

λ2Ev
2
d

2M2
E

��
1 −

κ2Nv
2
u

2M2
N

��
ðA73Þ

≃
gffiffiffi
2

p
�
1 −

λ2Ev
2
d

2M2
E
−
κ2Nv

2
u

2M2
N

�
; ðA74Þ

gWνμ
R ¼ 0; ðA75Þ

and

gWLμ
L ¼ gffiffiffi

2
p

�v2dðλEλ̄ML −MEλLyμÞð1 − v2uðκ̄MLþκMNÞ2
2ðM2

N−M
2
LÞ2

Þ
MEM2

L
−
κNv2uð1 − λ2Ev

2
d

2M2
E
Þðκ̄MN þ κMLÞ

MLðM2
N −M2

LÞ
�

ðA76Þ

≃
gffiffiffi
2

p
�
−
v2uκN
ML

�
κ̄MN þ κML

M2
N −M2

L

�
þ v2d

�
λEλ̄

MEML

��
; ðA77Þ

gWLμ
R ¼ −

gffiffiffi
2

p vdλL
ML

�
1 −

v2uðκ̄MN þ κMLÞ2
2ðM2

N −M2
LÞ2

�
ðA78Þ

≃ −
gffiffiffi
2

p v
ML

λL cos β; ðA79Þ
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gWNμ
L ¼ gffiffiffi

2
p

�
v2dvuðκ̄ML þ κMNÞðλEλ̄ML −MEλLyμÞ

MEM2
LðM2

N −M2
LÞ

þ
κNvuð1 − λ2Ev

2
d

2M2
E
Þ

MN

�
ðA80Þ

≃
gffiffiffi
2

p v
MN

κN sin β; ðA81Þ

gWNμ
R ¼ −

gffiffiffi
2

p vdvuλL
ML

ðκML þ κ̄MNÞ
M2

N −M2
L

: ðA82Þ

For the light SM-like Higgs boson, h, we obtain

λhμμ ¼ yμ cos β

�
1 −

3λ2Ev
2
d

2M2
E
−
3λ2Lv

2
d

2M2
L

�
þ 3 cos βλEλ̄v2dλL

MEML
; ðA83Þ

λhμL ¼ −
cos βλEλ̄vd

ME
−

vd cos β
M2

E −M2
L
ðλEλ̄ME þ λEλMLÞ; ðA84Þ

λhμE ¼ λE cos β þ
cos βλλEλ̄v2d
MEML

−
cos βλEλ̄2v2d
M2

E −M2
L

−
cos βλ3Ev

2
d

2M2
E

≃ λE cos β; ðA85Þ

λhLμ ¼ λL cos β þ
cos βλλ̄v2dλL
MEML

þ cos βλ̄2v2dλL
M2

E −M2
L

−
cos βv2dλ

3
L

2M2
L

≃ λL cos β; ðA86Þ

λhEμ ¼ −
cos βλ̄vdλL

ML
þ vd cos β
M2

E −M2
L
ðλLλ̄ML þ λLλMEÞ: ðA87Þ

The couplings for the CP-even heavy Higgs H can be obtained simply by replacing one factor of cos β by sin β in the
couplings for h.
The couplings of the CP-odd heavy Higgs, A, are given by

iλAμL ¼ λE sin βλ̄vd
ME

−
vd sin β
M2

E −M2
L
ðλEλ̄ME þ λEλMLÞ; ðA88Þ

iλAμE ¼ λE sin β þ
λλE sin βλ̄v2d
MEML

þ λE sin βλ̄2v2d
M2

E −M2
L

−
λ3E sin βv

2
d

2M2
E

≃ λE sin β; ðA89Þ

iλALμ ¼ λL sin β þ
λ sin βλ̄v2dλL
MEML

−
sin βλ̄2v2dλL
M2

E −M2
L

−
sin βv2dλ

3
L

2M2
L

≃ λL sin β; ðA90Þ

iλAEμ ¼
sin βλ̄vdλL

ML
þ vd sin β
M2

E −M2
L
ðλLλ̄ML þ λLλMEÞ: ðA91Þ

Finally, the couplings for the charged Higgs boson are given by

λH
�

Lμ ¼ −λL sin β −
cos βκ̄2vdλLvu
ðM2

N −M2
LÞ

−
λ sin βλ̄v2dλL
MEML

þ sin βv2dλ
3
L

2M2
L

≃ −λL sin β; ðA92Þ

λH
�

Nμ ¼ cos βκ̄vdλL
ML

−
vu sin β

M2
N −M2

L
ðλLκ̄ML þ λLκMNÞ; ðA93Þ

λH
�

μL ¼ sin βλEλ̄vd
ME

þ vu cos β
M2

N −M2
L
ðκN κ̄MN þ κNκMLÞ; ðA94Þ

DERMISEK, HERMANEK, and MCGINNIS PHYS. REV. D 104, 055033 (2021)

055033-20



λH
�

μN ¼ −κN cos β −
cos βκλEλ̄v2d

MEML
þ cos βλ2Ev

2
dκN

2M2
E

ðA95Þ

≃ − κN cos β: ðA96Þ

APPENDIX B: DETAILS OF THE 2HDM-II-S

In this appendix, we calculate the contributions to
ðg − 2Þμ from heavy Higgs bosons and VL’s in the
2HDM motivated by supersymmetry (we do not calculate
contributions from superpartners). In Table IV, we list the
SUð2ÞL ×Uð1ÞY charges for the relevant superfields in the
calculation of ðg − 2Þμ. All fields are defined as left-
handed. The most general superpotential of charged and
neutral lepton Yukawa couplings and vectorlike masses
under these assumptions is

WVLL¼ yμHdlēþλEHdlĒþλLHdLēþ λHdLĒ− λ̄HuL̄E

ðB1Þ

þκNHulN̄ þ κHuLN̄ − κ̄HdL̄N ðB2Þ

−MLLL̄þMEEĒ −MNNN̄; ðB3Þ

where the doublet components are labeled as

l ¼
�
νμ

μL

�
; L ¼

�
L0
L

L−
L

�
; L̄ ¼

�
L̄þ

L̄0

�
;

Hd ¼
�
H0

d

H−
d

�
; Hu ¼

�
Hþ

u

H0
u

�
; ðB4Þ

and SUð2Þ doublets are contracted using antisymmetric ϵ,
e.g.,Hdl¼H0

dl2−H−
d l1¼ϵabHdalb where ϵ12¼−ϵ12¼þ1.

Note that L̄ field is related to LR introduced in Eq. (1) via
L̄ ¼ iσ2L�

R, and similarly Ē is the chiral supermultiplet
which contains E†

R. In addition, note that the Higgs
doublets are defined with opposite hypercharges than in
the 2HDM-II-Z2. They are related by the field redefinitions
Hd ¼ iσ2H̃�

d and Hu ¼ −iσ2H̃�
u, where the tilde fields are

the Higgs doublets defined in the 2HDM-II-Z2. Signs of
couplings have been chosen so that entries in the mass
matrices of charged and neutral leptons have the same sign
as in the 2HDM-II-Z2 case.
The mass eigenstates, couplings of fermions to gauge

and Higgs bosons, and contributions to ðg − 2Þμ can be
calculated in a straightforward way following the procedure

detailed in the previous appendix. Note that in the con-
ventions used here the Higgs sector (in alignment limit) is
decomposed as

H0
u ¼ vuþ

1ffiffiffi
2

p ðhsinβ−H cosβÞþ iffiffiffi
2

p ðGsinβþAcosβÞ;

ðB5Þ

H0
d ¼ vdþ

1ffiffiffi
2

p ðhcosβþH sinβÞ− iffiffiffi
2

p ðGcosβ−AsinβÞ;

ðB6Þ
and �

Hþ
u

H−�
d

�
¼ Rβ

�
Gþ

Hþ

�
; ðB7Þ

where

Rβ ¼
�

sin β cos β

− cos β sin β

�
; ðB8Þ

and we identify H� ¼ ðH∓Þ�. With these definitions, the
differences in the couplings of gauge and Higgs bosons
appear only through λ̄ and κ̄ terms, and they are summa-
rized in the main text. Contributions to ðg − 2Þμ can then be
found from the general formulas given in Sec. III.
The approximate contributions to ðg − 2Þμ from Z, W,

and h in the limit of heavy comparable lepton masses are
given by

ΔaZμ ≃ −
mμvc3β
32π2

λLλEλ̄

MLME
tan β; ðB9Þ

ΔaWμ ≃
mμvc3β
16π2

λLλEλ̄

MLME
tan β; ðB10Þ

Δahμ ≃ −
3mμvc3β
32π2

λLλEλ̄

MLME
tan β: ðB11Þ

Assuming ML;E;N ≲mA, the contributions from H, A, and
H� are given by

ΔaH�
μ ≃ −

mμvs2βcβ
96π2

�
1

m2
H�

�
λLλEλ̄ML

ME tan β
þ λLκN κ̄MN

ML tan β
þ λLκNκ

�
þ λLλEλ̄

MLME tan β

�
; ðB12Þ

TABLE IV. Left-handed superfields and their corresponding
quantum numbers for SM leptons, Higgs doublets, and VL
leptons.

l ē Hu Hd L L̄ Ē E N N̄

SUð2ÞL 2 1 2 2 2 2 1 1 1 1
Uð1ÞY − 1

2
1 1

2
− 1

2
− 1

2
1
2

1 −1 0 0
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ΔaHμ ≃
mμvs2βcβ
192π2

�
1

m2
H

�
λLλEλ̄ðM2

L þM2
EÞ

MLME tan β
þ λLλEλ

�
þ 3λLλEλ̄

MLME

�
2

tan β
− tan β

��
; ðB13Þ

ΔaAμ ≃
mμvs2βcβ
192π2

�
1

m2
A

�
λLλEλ̄ðM2

L þM2
EÞ

MLME tan β
− λLλEλ

�
þ 3λLλEλ̄

MLME

�
2

tan β
þ tan β

��
: ðB14Þ

Compared to the 2HDM-II-Z2 version, the loops involv-
ing SM bosons are now tan β enhanced. Heavy Higgs
contributions contain both tan β enhanced and suppressed
terms. Though in the limit when heavy Higgs masses are
equal and comparable to heavy lepton masses, the tan2 β
enhanced contributions cancel in the total contribution. The
approximate formulas highly simplify when ML;E;N ¼ mA

and vanishing κ couplings. In this case we find

ΔaH�
μ ≃ −

mμvc3β
48π2

λLλEλ̄

MLME
tan β; ðB15Þ

ΔaH;A
μ ≃

mμvc3β
24π2

λLλEλ̄

MLME
tan β; ðB16Þ

ignoring terms which cancel between ΔaHμ and ΔaAμ . Note
that comparing contributions from Z, W, and h to those
from heavy Higgses, we find that Δaμ ≃ 0 in this
approximation.

APPENDIX C: COMMENTS ON BARR-ZEE
CONTRIBUTIONS

Two-loop contributions to ðg − 2Þμ from Barr-Zee (BZ)
diagrams can sometimes be competitive with one-loop
predictions due to chiral enhancement in the closed fermion
loop [87]. In the models we have discussed, the chiral
enhancement is generated already at the one-loop level,
Δa1 loopμ ∼mμv=M2, where M is the scale of new physics.
The dominant contribution from BZ-type diagrams is
generated through diagramswith a neutral Higgs and photon
in the internal legs [88]. General formulas for this diagram
are given in [88,89]. In our notation forHiggs couplings, this
contribution from neutral Higgses is given by

ΔaBZμ ¼ α

8π3
X

ϕ¼h;H;A

X
a¼4;5

mμ

mea

½−ReðλϕμμÞReðλϕeaeaÞfðxaϕÞ

þ ImðλϕμμÞImðλϕeaeaÞgðxaϕÞ�; ðC1Þ

where xaϕ ¼ m2
ea=m

2
ϕ and

fðτÞ ¼ τ

2

Z
1

0

dx
1 − 2xð1 − xÞ
xð1 − xÞ − τ

ln

�
xð1 − xÞ

τ

�
; ðC2Þ

gðτÞ ¼ τ

2

Z
1

0

dx
1

xð1 − xÞ − τ
ln

�
xð1 − xÞ

τ

�
: ðC3Þ

The relative size of the BZ contribution from CP-even
Higgses (noting that we work in a CP-conserving 2HDM)
compared to the one-loop contribution, Eq. (16), is esti-
mated by

Δaϕ;BZμ

Δaϕμ
≃
4α

π

m2
ϕ

m2
ea

−ReðλϕμμÞReðλϕeaeaÞ
Re½λϕμeaλϕeaμ�

fðxaϕÞ
GϕðxaϕÞ

; ðC4Þ

where ϕ ¼ h, H. In the limit of heavy lepton masses, we
have [90]

fðxÞ !x→∞ 1

3
lnðxÞ; ðC5Þ

gðxÞ !x→∞ 1

2
lnðxÞ; ðC6Þ

while for the one-loop function

xGϕðxÞ !x→∞
1: ðC7Þ

Thus, we can estimate the relative contribution from the BZ
diagram with h compared to the corresponding one-loop
contribution by

Δah;BZμ

Δahμ
≃
4α

3π

mμ

v cos β
lnðxahÞ ≃Oð10−4 − 10−5Þ; ðC8Þ

considering Oð1Þ couplings of VL to the SM Higgs, VL
masses up to 20 TeV, and tan β ¼ 1–50. We have ignored
the overall sign since both signs are possible depending on
the signs of λ’s.
For comparable masses of heavy leptons and the

heavy CP-even Higgs, xaH≃1, we have fðxaHÞ ≃Oð1Þ
and xaHGH ≃Oð1Þ, and the relative contribution is approxi-
mated by

ΔaH;BZ
μ

ΔaHμ
≃
4α

π

mμ

v cos β
≃Oð10−4 − 10−5Þ; ðC9Þ

considering Oð1Þ couplings of VL to H and tan β ¼ 1–50.
The diagram with the CP-odd Higgs gives similar result. In
either case, the relative contribution can be roughly another
order of magnitude smaller when ML;E ≪ mH;A.
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