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We revisit Higgs inflation in the framework of a minimal extension of the Standard Model gauge
symmetry by a Uð1ÞB−L factor. Various aspects are taken into account, with particular focus on the role of
the supersymmetry-breaking (SUSY) scale and the cosmological constraints associated with the gravitino.
The scalar potential of the model is considered in the context of no-scale supergravity consisting of the
F part constructed from the Kähler function, the D terms, and soft SUSY contributions. We investigate
several limiting cases and by varying the SUSY scale from a few TeV up to intermediate energies, for a
spectral index around ns ∼ 0.9655 and reheating temperature Tr ≤ 109 GeV, we find that the value of the
tensor-to-scalar ratio ranges from r ≈ 10−3 to 10−2. Furthermore, it is shown that for certain regions of the
parameter space the gravitino can live sufficiently long, and as such is a potential candidate for a dark
matter component. In general, the inflationary scenario is naturally implemented and it is consistent with
nonthermal leptogenesis, whereas the dominant decay channel of the inflaton yields right-handed
neutrinos. Other aspects of cosmology and particle physics phenomenology are briefly discussed. Finally,
we investigate the case where the inflaton is initially relaxed in a false minimum and estimate its probability
to decay to the true vacuum.
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I. INTRODUCTION

The theory of cosmological inflation has indisputable
advantages. Among other implications, it provides con-
vincing answers to the flatness and horizon problems [1–3],
and explains the origin of the large-scale structure of the
Universe.
During the last few decades numerous scenarios have

been proposed to formulate a detailed microscopic mecha-
nism for a complete theory of inflation with successful
predictions for all related observables. The cosmic micro-
wave background (CMB) observations, however, put rather
tight constraints on many inflationary theories [4,5].
Several models such as those with quartic and quadratic
potentials fail to satisfy the bound on the tensor-to-scalar
ratio (which, according to Planck 2018 results, is r < 0.05
at the 95% confidence level [5]), and hence such models are

ruled out. On the other side, one of the most successful
inflationary models, which is in accordance with the Planck
2018 results, is the Starobinsky model [1] which predicts
ns ¼ 1 − 2

N0
and r ¼ 12

N2
0

∼ ð0.002–0.004Þ, where N0 repre-

sents the numbers of e-folds. The Starobinsky inflationary
potential has been studied extensively in the literature
within various contexts, where it was shown that this
model can be derived in the context of no-scale super-
gravity [6–13]. The simplest version of the Starobinsky
proposal is equivalent to an inflationary model in which the
scalar field couples nonminimally to gravity. A natural
choice for the inflaton field in grand unified theories
(GUTs) in the context of supergravity is the Higgs field
breaking the GUT symmetry [14–18]. Inflation with a
Standard Model (SM)-like Higgs boson in the minimal
supersymmetric Standard Model (MSSM) has also been
proposed [10,12,19]. Also, in Refs. [20,21] nonsupersym-
metric models with nonminimal Higgs inflation were
discussed. Several other ideas including chaotic, hybrid,
and hilltop inflation have been proposed and investigated in
detail [22]. Some of these scenarios can also be realized in a
string theory framework where the role of the inflaton field
is played by some modulus.
In particular, hybrid inflation is one of the most prom-

ising models of inflation, and can be naturally realized
within the context of supergravity theories. This scenario is
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based on the inclusion of two scalar fields [23], with the
first one realizing the slow-roll inflation and the second
one, dubbed the “waterfall” field, triggering the end of the
inflationary epoch. While in the standard hybrid infla-
tionary scenario [24–26] in the supersymmetric GUTs the
symmetry is broken at the end of inflation, in the case of
shifted [27] and smooth inflation [28] the symmetry
breaking occurs during inflation, and thus magnetic
monopoles and other topological defects are inflated away.
On the side of particle physics, the experimental data

collected at the Large Hadron Collider (LHC) has put
strong constraints on the conventional SUSY scenarios
with superpartner masses around the electroweak scale. The
so-far null SUSY experimental results have triggered
significant interest in alternative SUSY-scale scenarios,
such as high-scale SUSY and split SUSY, among others
[29,30]. Taking into account the possible connection
between inflationary dynamics and SUSY-scale phenom-
enology, it will be interesting to study the effects among
various SUSY-scale scenarios with a successful model of
inflation.
In this paper we study inflation in a supergravity context

where a no-scale Kähler potential is assumed. We consider
the framework of the SM gauge symmetry augmented
by a Uð1ÞB−L factor [31–33]. In this background, after
employing the mechanism proposed in Refs. [34,35] for
dynamically generating a μ term, we investigate the
implementation of cosmic inflation and its interplay with
the issues of SUSY like scale, nonthermal leptogenesis and
gravitino dark matter. We show that for TeVand split SUSY
scenarios the tensor-to-scalar ratio remains as low as
r ≈Oð10−3Þ, while for a high-scale SUSY scenario r takes
higher values of the order r ∼Oð10−2Þ with the spectral
index fixed at its central value ns ¼ 0.9655 and the
reheating temperature Tr < 5 × 109 GeV. We also discuss
the process of nonthermal leptogenesis and show that the
dominant inflaton decay channel yields right-handed neu-
trinos. For gravitino cosmology, we explore three possibil-
ities: stable, unstable long-lived, and unstable short-lived
gravitinos. For the various cases we investigate the reheat-
ing and cosmological gravitino constraints, and we find a
consistent inflationary scenario that gives rather concrete
predictions regarding supersymmetric dark matter and
LHC phenomenology. We complete our analysis with an
investigation of certain regions of the parameters that yield
a potential containing a false minimum. We examine
possible scenarios of quantum tunneling effects and com-
pute the decay probability of such vacua to the true vacuum.
The layout of the paper is as follows. In Sec. II we

describe the basic features of the model including the
superfields, their charge assignments, and the superpoten-
tial constrained by a Uð1Þ R symmetry. The inflationary
setup is described in Sec. III. The numerical analysis is
presented in Sec. IV, containing the prospects of observing
primordial gravity waves and nonthermal leptogenesis.

In Secs. V and VI we discuss the gravitino cosmology
and quantum tunneling. Our conclusions are summarized in
Sec. VII.

II. DESCRIPTION OF THE MODEL

In this section we present the basic features regarding the
gauge symmetry and the spectrum of the effective model in
which the inflationary scenario will be implemented. The
gauge symmetry is the Standard Model gauge group
extended by a UB−L Abelian gauge symmetry,

GB−L ¼ SUð3ÞC × SUð2ÞL ×Uð1ÞY ×Uð1ÞB−L: ð2:1Þ

The particle content of the model contains the MSSM
matter and Higgs representations, three singlets accom-
modating the right-handed neutrinos Nc

i , a neutral scalar
singlet S, and a pair of Higgs singlets H, H̄. These are
listed in Table I, where in addition to the transformation
properties under Eq. (2.1) the “charges” under the global
symmetries R, B, L also are shown.
When the H, H̄ singlet Higgs fields acquire vacuum

expectation values (VEVs), they break the Uð1ÞB−L sym-
metry and, at the same time, they provide Majorana masses
to the right-handed neutrinos. For the field content and the
corresponding charge assignments given in Table I, the
renormalizable superpotential of the model is

W ¼ yuHuquc þ ydHdqdc þ yeHdLec þ yνHuLNc

þ κSðH̄H −M2Þ þ λSHuHd þ βHNcNc: ð2:2Þ

The first line contains the Yukawa sector providing Dirac
masses to the up and down quarks, charged leptons, and

TABLE I. Superfield content of the model, the corresponding
representations under the local gauge symmetry UB−L, and the
properties with respect to the extra global symmetries.

SUPERFIELDS

REPRESENTATIONS

UNDER GB−L

GLOBAL

SYMMETRIES

R B L

MATTER FIELDS

eci (1; 1; 1; 1) 1 0 −1
Nc

i (1; 1; 0; 1) 1 0 −1
Li ð1; 2;−1=2;−1Þ 1 0 1
uci ð3; 1;−2=3;−1=3Þ 1 −1=3 0
dci ð3; 1; 1=3;−1=3Þ 1 −1=3 0
Qi ð3̄; 2; 1=6; 1=3Þ 1 1=3 0

HIGGS FIELDS

Hd ð1; 2;−1=2; 0Þ 0 0 0
Hu ð1; 2; 1=2; 0Þ 0 0 0

S (1; 1; 0; 0) 2 0 0
H̄ (1; 1; 0; 2) 0 0 −2
H ð1; 1; 0;−2Þ 0 0 2
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neutrinos. The corresponding Yukawa couplings are
denoted by yu, yd, ye, and yν, and the family indices are
generally suppressed for simplicity. The tree-level terms in
the second line involve the extra fields beyond the MSSM
spectrum. The first term describes the standard super-
symmetric hybrid inflation model with M being a GUT-
scale mass parameter and κ a coupling constant coefficient.
The second term dynamically generates a μ term for the
model when the singlet scalar S receives a nonzero VEV.
The H and H̄ fields carry nonzero B − L charges and their
VEVs spontaneously break the Uð1ÞB−L symmetry.
Furthermore, H is responsible for generating a Majorana
mass for the right-handed neutrinos through the last term in
Eq. (2.2). By virtue of the extra global symmetries, the
model is protected from dangerous proton decay operators
and R-parity-violating terms. For the same reason, bilinear
terms of the formsHuHd andHH̄ are absent too. Following
this short description of the salient features of the model, in
the next section we proceed with the inflationary dynamics.

III. INFLATION POTENTIAL

We compute the effective scalar potential considering
contributions from the F and D sectors, as well as soft
supersymmetry-breaking terms. The superpotential terms
relevant for inflation are

W ⊃ κSðH̄H −M2Þ þ λSHuHd þ βHNcNc: ð3:1Þ

We consider a no-scale structure Kähler potential which,
after including contributions of the relevant fields in the
present model, takes the form (from now on we set the
reduced Planck mass to unity, MPl ¼ 1)

K ¼ −3 log
�
T þ T�

−
1

3
ðHH� þ H̄H̄� þHuH�

u þHdH�
d þ S†Sþ Nc†NcÞ

þ ξ

3
ðHH̄ þH�H̄�Þ þ ζ

3
ðHuHd þH�

uH�
dÞ
�
; ð3:2Þ

where T, T� are Kähler moduli fields and ξ, ζ are
dimensionless parameters. For later convenience, we define

Δ ¼
�
T þ T�

−
1

3
ðHH� þ H̄H̄� þHuH�

u þHdH�
d þ S†Sþ Nc†NcÞ

þ ξ

3
ðHH̄ þH�H̄�Þ þ ζ

3
ðHuHd þH�

uH�
dÞ
�
; ð3:3Þ

and hence Eq. (3.2) is simply written as K ¼ −3 logΔ.
Furthermore, we introduce the standard definition of the
Kähler function

G ¼ K þ log jWj2 ≡ K þ logW þ logW�:

Then, the F-term potential is given by

VF ¼ eGðGiG−1
ij�Gj� − 3Þ; ð3:4Þ

where GiðGj� Þ are the derivatives with respect to the
various scalar fields appearing in Eq. (3.2). Using the
above ingredients, the F-term potential (3.4) takes the form

VF ¼ 1

Δ2
½κ2ðM2 −HH̄Þ2 þ κ2S2ðH2 þ H̄2Þ

þ λ2ðH2
uH2

d þ S2H2
u þ S2H2

dÞ
þ Nc2ðβ2Nc2 þ 4β2H̄2 þ 2βκSHÞ
− 2κλHH̄HuHd − 2κλM2HuHd�: ð3:5Þ

When the Higgs doubletsHu,Hd, and the various singlet
fields H, H̄, S, Nc are eliminated and only the Kähler
moduli are present, the no-scale structure of the Kähler
potential implies that the effective F-term potential vanishes
identically, VF ≡ 0. We first explore inflation along the H
direction, starting with the supersymmetric global minima
of the potential. It can be observed that the global minimum
of the above potential lies at

S0 ¼ H0
u ¼ H0

d ¼ Nc0 ¼ 0; ð3:6Þ

and

H0 ¼ 0; H0 ¼ �M; ð3:7Þ

where H0 ¼ 0 corresponds to an extremum and H0 ¼ �M
to local minima.
Next, we turn to the D-term potential. For the fields

carrying B − L quantum numbers (shown in Table I and
denoted collectively here as ϕi), the D-term potential is

VD ¼ 1

2
Dp

aD
p
a; ð3:8Þ

where

Dp
a ¼ −gaK;ϕi

½tpa �jiϕj

for SUðNÞ groups and Da is defined as

Dp
a ¼ −gaK;ϕi

½tpa �jiϕj − gaqiς

in the presence of Uð1Þ symmetries. Here qi is the
charge under Uð1Þ, the symbol ς stands for the Fayet-
Iliopoulos coupling constant, and K;ϕi

≡ dK=dϕi. The tpa
are the generators of the corresponding group G and
p ¼ 1;…; dimðGÞ. The D-term potential can be written as
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VD ¼ g2b
2Δ2

½ϕ�
i ðtpbÞjiϕj − ζϕ̄ðtpbÞjiϕj�2

þ g2B−L
2Δ2

½ϕ�
i ðtpB−LÞjiϕj − ξϕ̄ðtpB−LÞjiϕj − qiς�2; ð3:9Þ

where gb (b ¼ 1; 2; 3) and gB−L correspond to the SUð3Þc,
SUð2ÞL, Uð1ÞY , and Uð1ÞB−L gauge couplings, respec-
tively. For our purposes, it suffices to work along D-flat
directions where the D-term potential VD vanishes.
Restricting to the scalar fields, we first observe that they
transform trivially under SUð3Þc, and thus the correspond-
ing D term is zero. The other three contributions are

VD¼
g21
2Δ2

�
1

2
jHuj2−

1

2
jHdj2−ζ

�
1

2
H̄dHu−

1

2
H̄uHd

��

þ g82
2Δ2

½H�
uσ

pHuþH�
dσ

pHd−ζðH̄dσ
pHuþH̄uσ

pHdÞ�2

þg2B−L
2Δ2

½2jH̄j2−2jHj2−ξð2HH̄−2H̄HÞþðqHþqH̄Þς�2:
ð3:10Þ

Here σp, p ¼ 1; 2; 3 are the SUð2ÞL generators (Pauli
matrices) and Hu, Hd are the MSSM doublet Higgs fields,
which in component notation will be written as

Hu ¼
�
Hþ

u

H0
u

�
; Hd ¼

�
H0

d

H−
d

�
: ð3:11Þ

Using the SUð2ÞL transformation, it is possible to rotate the
Higgs boson fields into the neutral directions H0

u and H0
d.

A D-flat direction can be achieved with H0
u ¼ H0

d and
H̄ ¼ H [36]. Finally, we may also include contributions
from explicit soft SUSY-breaking terms of the form

Vsoft ¼ m2jϕij2 þ ðκAκSHH̄ þ λAμSHuHd þ βANcH̄NcNc

− asSκM2 þ H:c:Þ; ð3:12Þ

where Aκ ¼ Aμ ¼ ANc are the complex coefficients of the
trilinear soft SUSY-breaking terms. Along the inflationary
trajectory S is zero, so the corresponding trilinear terms do
not contribute. Then, for S ¼ 0 the total effective potential
VðφÞ ¼ VF þ VD þ Vsoft is

VðφÞ ¼ 9κ2ðM2 −H2Þ2
ð3ðT þ T�Þ − 2ð1 − ξÞH2Þ2 þ 2m2H2: ð3:13Þ

The shape of the effective potential is presented in Fig. 1.
The left panel represents the potential as a function of H
and S with the black curve corresponding to the S ¼ 0
direction. The right panel shows the potential as a function
of H for various values of ξ and S ¼ 0. Along the
inflationary trajectory the vacuum energy density is non-
zero. The nonzero field value during inflation also breaks
Uð1ÞB−L and the symmetry reduces to the SM. Since the
gauge symmetry is broken during inflation, monopoles and
cosmic strings are inflated away.
We define the inflaton field as φ ¼ 2H and the modulus

complex fields as T ¼ ðuþ ivÞ, and hence T þ T� ¼ 2u.
Then, the potential along the inflationary track is

FIG. 1. In the left panel we show the shape of the potential in three dimensions as a function of S andH. In the right panel we show the
shape of the potential along theH direction for different values of ξ. In both plots we have fixed the other parameters asM ¼ 1,m ¼ 0.2,
κ ¼ 0.26, and T ¼ T� ¼ 1

2
.
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VðφÞ ¼ κ2ðM2 − φ2

4
Þ2

ð2u − ð1−ξ
6
Þφ2Þ2 þ

m2

2
φ2

¼ V0ð1 − φ2

4M2Þ2
ð2u − ð1−ξ

6
Þφ2Þ2 þ

m2

2
φ2; ð3:14Þ

where V0 ¼ κ2M4. However, the inflaton field φ is not
canonically normalized since its kinetic energy terms take
the form

LðφÞ ¼ 2u − φ2

6
ξð1 − ξÞ

2ð2u − 1
6
ð1 − ξÞφ2Þ2 ð∂φÞ

2 − VðφÞ: ð3:15Þ

We introduce a canonically normalized field χ satisfying

�
dχ
dφ

�
2

¼ 2u − φ2

6
ξð1 − ξÞ

ð2u − 1
6
ð1 − ξÞφ2Þ2 : ð3:16Þ

Integrating (while choosing u ¼ 1=2), we obtain the
canonically normalized field χ as a function of φ,

χ ¼
ffiffiffi
6

p
tanh−1

 
ð1 − ξÞφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
�
1 − ξð1−ξÞφ2

6

�r
!

−

ffiffiffiffiffiffiffiffiffiffi
6ξ

1 − ξ

s
sinh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ

�
1 − ξ

6

�s
φ

!
: ð3:17Þ

A. The μ problem and a nonzero VEV
for the S field

In Sec. II we discussed the basic features of the model
under consideration and introduced an R symmetry to
constrain the superpotential. In the present section we
discuss the appearance of new contributions, including
those coming from supersymmetry-breaking effects.
The supersymmetric Higgs mass parameter μ (associated

with the so-called μ problem [37]) can be generated when
the S field acquires a nonzero VEV not much higher than
the electroweak scale. Contributions from the soft SUSY-
breaking terms, although negligible during inflation, may
generate the required nonzero VEV, hSi ≠ 0 [34].
Furthermore, in principle, we can include a constant term

W0 in the superpotential (2.2) which gives rise to a gravitino
mass [38–40] through the formula m3=2 ¼ eK=2hW0i. The
magnitude of the constant W0 is model dependent and its
presence in the superpotential has important implications on
the dynamics of the effective theory. In the present model,
however,W0 violates the R symmetry of the superpotential
(2.2) which has been imposed in order to ensure linearity on
S and thereby the gravitino cannot acquire a mass within
this context. Nevertheless, an alternative way to generate
a nonzero m3=2 that is rather appropriate here is the

mechanism described in Ref. [34] (see also Ref. [41]).
This relies on the soft SUSY-breaking superpotential terms
mentioned above which shift the VEV of the field S to a
nonzero value hSi ≠ 0. This is sufficient to solve the μ
problem and—at the same time—generate a nonzero mass
for the gravitino.
Next, we focus on the scalar potential. Inserting the

values H0 ¼ �M, N0 ¼ 0, and H0
u ¼ H0

d ¼ 0, the total
potential takes the form

VtðSÞ ¼
2κ2M2S2�

2u − 2M2ð1−ξÞþS2

3

�þm2
SS

2 þ κAκM2S

− aSκM2 þ H:c: ð3:18Þ

Assuming S ≪ 1, we may expand the first term of
Eq. (3.18) in powers of S. Neglecting terms higher than
S2 in the expansion, the potential can be expressed in terms
of the gravitino mass m3=2 as follows:

VtðSÞ¼
2κ2M2S2�

2u− 2M2ð1−ξÞ
3

�
2
þm2

SS
2þ2bκm3=2M2S; ð3:19Þ

where we used jasj þ jAκj ¼ 2bm3=2, while the m2
S term

has been neglected since m2
S ≪ M2. Minimization of the

potential now gives

σ ≡ hSi ¼ −
bm3=2

2κ

�
2u −

2M2ð1 − ξÞ
3

�
2

: ð3:20Þ

The second derivative with respect to S,

d2Vt

dS2

				
σ

¼ 4κ2M2�
2u − 2M2ð1−ξÞ

3

�
2
> 0; ð3:21Þ

is always positive, and the potential acquires a minimum
for hSi ≠ 0. Hence, the μ parameter now is dynamically
generated as long as S receives a nonzero VEV,

μ ¼ λσ ¼ −
λbm3=2

2κ

�
2u −

2M2ð1 − ξÞ
3u

�
2

: ð3:22Þ

Finally, for hSi ≠ 0 the effective potential takes the follow-
ing form:

VðφÞ ¼ κ2ðM2 − φ2

4
Þ2 þ κ2σ2φ2

2

ð2u − ð1−ξ
6
Þφ2 − σ2

3
Þ2 þm2

2
φ2

−
b2M2m2

3=2

2

�
2u −

2M2ð1 − ξÞ
3

�
2

: ð3:23Þ

So, the Lagrangian in this case reads
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LðφÞ ¼ 2u − φ2

6
ξð1 − ξÞ

2ð2u − 1
6
ð1 − ξÞφ2 − σ2

3
Þ2 ð∂φÞ

2 − VðφÞ; ð3:24Þ

and the canonically normalized field χ now satisfies the
equation

χ0 ≡
�
dχ
dφ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u − φ2

6
ξð1 − ξÞ

ð2u − 1
6
ð1 − ξÞφ2 − σ2

3
Þ2

vuut : ð3:25Þ

We turn now to a numerical analysis and compute the
various observables related to inflation.

IV. ANALYSIS

In this section we analyze the implications of the model
and discuss its predictions regarding the various cosmo-
logical observables. We pay particular attention to lepto-
genesis, large-r solutions, and gravitational waves. Before
presenting numerical predictions, we briefly review the
basic results of the slow-roll assumption.

A. Slow-roll approximation

The inflationary slow-roll parameters are given by

ϵ ¼ 1

2

�
V 0ðφÞ

VðφÞχ0ðφÞ
�

2

;

η ¼
�

V 00ðφÞ
VðφÞðχ0ðφÞÞ2 −

V 0ðφÞχ00ðφÞ
VðφÞðχ0ðφÞÞ3

�
: ð4:1Þ

The third slow-roll parameter is

s2 ¼
�

V 0ðφÞ
VðφÞχ0ðφÞ

��
V 000ðφÞ

VðφÞðχ0ðφÞÞ3 − 3
V 00ðφÞχ00ðφÞ
VðφÞðχ0ðφÞÞ4

þ 3
V 0ðφÞðχ00ðφÞÞ2
VðφÞðχ0ðφÞÞ5 −

V 0ðφÞχ000ðφÞ
VðφÞðχ0ðφÞÞ4

�
; ð4:2Þ

where a prime denotes a derivative with respect to φ. The
slow-roll conditions are ϵ ≪ 1, jηj ≪ 1, and s2 ≪ 1, while
the tensor-to-scalar ratio r, the scalar spectral index ns, and
the running of the spectral index dns

d ln k are given by

r ≃ 16ϵ; ns ≃ 1þ 2η − 6ϵ;

dns
d ln k

≃ 16ϵη − 24ϵ2 þ 2s2: ð4:3Þ

The number of e-folds is given by

Nl ¼
Z

φl

φe

�
VðφÞχ0ðφÞ
V 0ðφÞ

�
dφ

¼ 54þ 1

3
ln

�
Tr

109 GeV

�
þ 1

3
ln

�
VðφlÞ1=4
1016 GeV

�
: ð4:4Þ

In the above equation, l is the comoving scale after crossing
the horizon and φl is the field value at l. Also, φe is the field
at the end of inflation (i.e., when ϵ ¼ 1) and Tr is the
reheating temperature, which will be discussed in the
following section. Furthermore, in the analysis the con-
straints from the amplitude of the curvature perturbationΔR
should be implemented:

Δ2
R ¼ VðφÞ

24π2ϵðφÞ : ð4:5Þ

B. Reheating temperature and
nonthermal leptogenesis

A successful inflationary scenario should be followed by
thermalization (reheating) triggered by the inflaton decay
through its couplings to SM fields and, in particular as far
as the present model is concerned, the right-handed
neutrinos. This coupling, however, is subjected to con-
straints, associated with the issue of gravitino overproduc-
tion during thermalization [42,43]. The abundance of the
latter depends on the decay width of the inflaton which is
related to the reheating temperature. On the other hand,
there is an upper bound on the abundance of dark matter
originating from the decay of gravitinos which is converted
to the upper bound of the reheating temperature
Tr ≲ 106 − 1011 GeV. In particular, a more precise con-
straint on Tr depends on the SUSY-breaking mechanism
and the gravitino mass m3=2. For gravity-mediated SUSY-
breaking models with unstable gravitinos of mass
m3=2 ≃ ð0.1 − 1Þ TeV, the reheating temperature bound
is Tr ≲ 106 − 109 GeV [44,45], while in the case of stable
gravitinos it increases to Tr ≲ 1010 GeV [46]. In gauge-
mediated models the reheating temperature is generally
more severely constrained, although Tr ∼ 109 − 1010 GeV
is possible for m3=2 ≃ 5–100 GeV [47]. Finally, the
anomaly-mediated symmetry-breaking scenario may allow
gravitino masses much heavier than a few TeV, thus
accommodating a reheat temperature as high as
1011 GeV [48]. In the present work we focus on a
gravity-mediated SUSY-breaking scenario, and in the next
section we briefly discuss different cases for the lightest
supersymmetric particle (LSP).
The transition to the radiation epoch is controlled by the

inflaton mass and its decay channels. After the end of
inflation, the inflaton starts oscillating around the mini-
mum. For the following analysis we define the canonically
normalized inflaton

δχ ¼ hχ0iδφ with δφ ¼ ðφ − 2MÞ; ð4:6Þ

where χ0 is defined in Eq. (3.16). The noncanonical
normalized fields φ and H are related to each other by
H ¼ φ=2. The magnitude of hχ0i at the minimum φ0 ¼ 2M
reads
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hχ0ijφ0→2M ¼ 2u − 2M2

3
ξð1 − ξÞ

ð2u − 2M2

3
ð1 − ξÞ − σ2

3
Þ2 ; ð4:7Þ

and the inflaton acquires a mass given by

m2
inf ¼

d2VðφÞ
dχ2

¼
�
V 00ðφÞ
ðχ0Þ2 −

V 0ðφÞχ00
ðχ0Þ3

�
φ0→2M

: ð4:8Þ

Due to the superpotential terms βH̄NcNc and λSHuHd, the
possible decay channels of the fields δχ, S are to a pair of
right-handed neutrinos and sneutrinos ðNc; ÑcÞ and to Hu
and Hd, respectively. The relevant Lagrangian terms are

Lδχ→NcNc ¼ −
1

2
eK=2W;NcNcNcNc → −αNcδχNcNc; ð4:9Þ

with W and K as defined in Eqs. (3.1) and (3.2), while
W;Nc;Nc is the second derivative of W with respect to the
field Nc. Finally, αNc is the effective coupling of inflaton
decay to right-handed neutrino fields, which is defined as

αNc ¼ β

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2u − 2

3
M2ð1 − ξÞ − σ2

3
Þð2u − 2

3
M2ξð1 − ξÞÞ

q :

Hence, the decay width is [41]

Γδχ→NcNc ¼ 1

16π
α2Ncminf

�
1 −

4M2
Nc

m2
inf

�
3=2

; ð4:10Þ

where MN is the Majorana mass

β �M
ð2u − 2

3
M2ð1 − ξÞ − σ2

3
Þ3=2 :

Similarly, for the inflaton decay to Hu and Hd, the relevant
Lagrangian is

Lδχ→HuHd
¼ −eKK;SS� jW;Sj2 ¼ −αhδχHuHd ð4:11Þ

and the effective coupling for inflaton decay to Higgs fields
is

αh ¼
κλMð2u − 2M2ð1−ξÞ

3
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2u − 2
3
M2ξð1 − ξÞÞ

q
ð2u − 2M2ð1−ξÞþσ2

3
Þ4
:

Thus, the decay width in this case is [41]

Γδχ→HuHd
¼ α2h

8π
minf : ð4:12Þ

The reheating temperature Tr for the Uð1ÞB−L extended
MSSM spectrum is given by [41]

Tr ¼
�

72

5π2g�

�
1=4 ffiffiffi

Γ
p

with Γ ¼ Γδχ→NcNc þ Γδχ→HuHd
:

ð4:13Þ

The two conditions

minf

2
≥ MN; MN ≥ 10Tr ð4:14Þ

ensure a successful reheating process with nonthermal
leptogenesis. These two conditions put strong bounds on
the reheating temperature.
Next, we present numerical predictions of the model

with respect to the slow-roll parameters and the reheating
constraints.

C. Large-r solutions and observable gravity waves

Primordial gravity waves are associated with the tensor-
to-scalar ratio r which will be measured with higher
accuracy in the next-generation experiments such as
PRISM, LiteBIRD, PIXIE, and CORE [49–52]. Future
measurements are expected to reach values as low as
r ∼ 5 × 10−4.
Here, we have performed numerical calculations to

provide predictions for the ratio r as well as other
observables. Figure 2 shows ranges for the various param-
eters involved in the effective potential. The plot in the top
panel shows r as a function of the right-handed neutrino
coupling β, for various values of the reheating temperature
Tr. The various curves start with m ¼ 1 TeV from the left
and stop when r has the value r ¼ 0.11. The reheating
temperature varies from Tr ¼ 109 GeV (dark green curve
at the top) to Tr ≃ 105.8 GeV (blue curve) as β decreases.
The spectral index is fixed at ns ¼ 0.9655 (central value)
and the GUT-scale mass parameter is fixed at
M ¼ 2 × 1016 GeV. The remaining plots show the predic-
tions for the parameters m, λ, κ, and ξ. Furthermore, we
consider b ¼ 1 and choose jμj ¼ m3=2 for each curve. As
can be observed in Fig. 2, the reheating bound (4.14) is
satisfied.
Figure 3 (left panel) shows the variations of the inflaton

mass with respect to r. The plot shows that the mass of the
inflaton lies in the range 9.9×1011≤minf ≤9.1×1012GeV.
The plot on the right shows the predictions for the right-
handed heavy Majorana scale MN as a function of r.
Depending on the value of the reheating temperature, MN

varies from 108 up to 1012 GeV, which is heavy enough to
realize small neutrino masses via the seesaw mechanism. In
all of the cases, the results are in accordance with the
bounds given in Eq. (4.14).
Finally, Fig. 4 (left panel) shows the width of the inflaton

decay to Majorana neutrinos with respect to r. In the right
panel we plot the decay rate of the inflaton field to
Majorana neutrinos vs the decay rate to the Higgs fields.
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The dominance of the inflaton decay to Majorana neutrinos
compared to Higgs fields is reflected in this figure.

1. Varying the SUSY scale: Implications

The results obtained show that the range of the tensor-to-
scalar ratio is r ≈ ½0.11 − 10−3�. ThePlanckmeasurement of

r is up to r ¼ 0.056 at 95%C.L. which is shown by the gray
dashed line in Fig. 2. In the lower-left panel of Fig. 2
the parameter β vs m is plotted. The gray line puts the
cutoff for the soft breaking mass atmSUSY ≤ 5 × 1012 GeV.
For mSUSY < 106 TeV, the tensor-to-scalar ratio is
around r ⋍ 10−3. For high-scale (split) SUSY where

FIG. 2. The top panel shows predictions for the tensor-to-scalar ratio r as a function of the coupling constant β for various values of the
reheating temperature Tr. Each curve corresponds to a fixed value of Tr. For all of the curves we fix the GUT scale atM ¼ 2 × 1016 GeV,
the spectral index ns ¼ 0.9655 (central value), and the gravitino mass and the Higgsino mass parameter atm3=2 ¼ μ ¼ 1 TeV. The lower
panels show the ranges for the other parameters (m, λ, κ, ξ) involved in the analysis with respect to the (β, r) plot.
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mSUSY ≥ 106 TeV, we obtain a tensor-to-scalar ratio r ⋍
10−2 which is in very good agreement with the measure-
ments of r from Planck and in next-generation experiments.
For TeV-scale SUSY, big bang nucleosynthesis (BBN)

imposes new bounds. In our model, a TeV-scale SUSY
scenario is very consistent with our results and the observed
BBN bounds. Similarly, for split SUSY and high-scale
SUSY scenarios the reheating temperature is bounded by
ΩLSP, which we discuss in detail in the following sections.

V. GRAVITINO DARK MATTER

In this section we briefly discuss whether there are
regions of the parameter space consistent with a gravitino
dark matter (DM) component. According to Refs. [53,54],
one may consider the cases of (i) a stable LSP gravitino,
(ii) a unstable long-lived gravitino with mass m3=2 <
25 TeV, and (iii) an unstable short-lived gravitino with

mass m3=2 > 25 TeV. In the first case, the gravitino is a
potential DM candidate and, assuming it is thermally
produced, its relic density is estimated to be [55]

Ω2
3=2 ¼ 0.08

�
Tr

1010 GeV

��
m3=2

1000 GeV

��
1þ mg̃2

3m2
3=2

�
;

ð5:1Þ

where mg̃ is the gluino mass parameter and for simplicity
m3=2 ¼ m ¼ jμj is assumed.1 A stable LSP gravitino

FIG. 3. The plot on the left shows variations of the inflaton massminf as a function of the tensor-to-scalar ratio r. The right panel shows
MN vs r. Each curve corresponds to a different value for the reheating temperature Tr.

FIG. 4. Left: tensor-to-scalar ratio r vs the decay width of the inflaton to right-handed neutrino fields. Right: decay width of the
inflaton to right-handed neutrinos vs the decay width of the inflaton to Higgs fields.

1Equation (5.1) contains only the dominant QCD contributions
for the gravitino production rate. In principle, there are extra
contributions coming from the electroweak sector, as mentioned
in Ref. [56,57] and recently revised in Ref. [58]. If we consider
these types of contributions in our analysis, we estimate that
(depending on the gaugino universality condition) our results will
differ by ∼ð10 − 15Þ%.
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requires mg̃ > m, while current LHC bounds on the gluino
mass are around 2.2 TeV [59,60]. Taking the lower bound
of the relic abundance Ω2

h ¼ 0.144 [5], Fig. 5 shows the
range of mg̃ as a function of the reheating temperature Tr

for representative values of m3=2.
It is seen from Fig. 5 that for m3=2 ¼ 1 TeV (blue curve)

the gravitino is the LSP since the kinematic condition
m3=2 < mg̃ is always true. For m3=2 ¼ 10 TeV (red curve)
the gravitino is the LSP in the regions with mg̃ > 10 TeV.
Below mg̃ ¼ 10 TeV (dotted black line) the gravitino is the
next-to-lightest supersymmetric particle (NLSP). A similar
description holds for the case with m3=2 ¼ 100 TeV (green
curve). Therefore, we see that there are regions in the
parameter space where the gravitino is the LSP, and as such
it contributes to DM.
Next, we consider the possibility where the gravitino is

not the LSP. The decay of the gravitino occurs after the
freeze-out epoch of the lightest neutralino, which will play
the role of the LSP. The lightest neutralino has two origins:
one is thermal and the other is nonthermal. Thermal
production consists of the standard freeze-out mechanism
of weakly interacting massive particles, whereas nonther-
mal production deals with the decay product of the
gravitino produced during the reheating process [61].
However, since the density of the thermal relic is strongly
model dependent,2 we do not take its effect into account
in the calculation of the density parameter. Here we
distinguish two cases of gravitino decay: either a long-
lived or a short-lived. For a long-lived gravitino with mass

m3=2 < 25 TeV, its lifetime is about τ̃ ≳ 1 s. However, in
this case we encounter the cosmological gravitino problem
[42] that originates due to the fast decay of the gravitino,
which may affect the light nuclei abundances and thereby
ruin the success of BBN theory. To avoid this problem, one
has to take into account the BBN bounds on the reheating
temperature, which are [61]

Tr ≲ 3 × ð105 − 106Þ GeV for m3=2 ¼ 1 TeV;

Tr ≲ 2.5 × 109 GeV for m3=2 ¼ 10 TeV: ð5:2Þ

We see from Fig. 5 that a long-lived gravitino with
m3=2 ¼ 1 TeV is not a viable scenario because it becomes
the NLSP for a reheating temperature Tr ≥ 2 × 109 GeV.
Nevertheless, for m3=2 ≥ 10 TeV a long-lived gravitino
scenario is viable and consistent with the BBN bounds (5.2)
for the reheating temperature.
In order to discuss the scenario of a short-lived gravitino

(for instance, with mass m3=2 ¼ 100 TeV), we recall that
the gravitino decays before BBN, and as a result the BBN
bounds on the reheating temperature are not effective. In
this case, the gravitino decays into the LSP neutralino χ̃01.
The neutralino abundance is given by

Ωχ̃0
1
h2 ≃ 2.8 × 1011 × Y3=2

� mχ̃0
1

1 TeV

�
; ð5:3Þ

where Y3=2 is the gravitino yield and is defined as

Y3=2 ≃ 2.3 × 10−12
�

Tr

1010 GeV

�
: ð5:4Þ

As we know, the LSP neutralino density produced by
gravitino decay should not exceed the observed DM relic
density. Choosing the upper bound of the relic abundance
Ωχ̃0

1
h2 ¼ 0.126 and using Eqs. (5.4) and (5.3), we find a

relation between the reheating temperature Tr and mχ̃0
1
,

which is

mχ̃0
1
≃ 19.6

�
1011 GeV

Tr

�
: ð5:5Þ

For the gravity-mediation scenario, mχ̃0
1
≥ 18 GeV [62],

which can easily satisfied. For a gravitino with m3=2 ¼
100 TeV, the bounds on the LSP neutralino mass derived
as in Eq. (5.5) are

5.21 × 102 ≤ mχ̃0
1
ðGeVÞ ≤ 4.25 × 106: ð5:6Þ

Figure 6 shows the plot of mχ̃0
1
vs Tr. Therefore, the short-

lived gravitino scenario is also a viable possibility in
this model.

FIG. 5. The case of an LSP gravitino with mass m3=2 ¼ 1;
10; 100 TeV. The corresponding gluino masses mg̃ are shown by
the solid blue, red, and green lines with ns ¼ 0.9655 and
M ¼ 2 × 1016 GeV.

2For a detailed analysis with emphasis on the DM phenom-
enology of the model, see Ref. [33].
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VI. QUANTUM TUNNELING FROM FALSE TO
TRUE VACUUM

A careful consideration of the previous analysis reveals
regions of the parameter space where, in addition to the
global minimum Vminðφ0Þ (true vacuum), a second (higher)
ground state evolves at some point φ ≠ φ0, usually called
the false vacuum. Depending on the initial conditions, the
inflaton may roll down the slope of the potential towards
the false vacuum and subsequently make the transition to
the true minimum. Such transitions can be described by
Euclidean instantons in a way suggested by Coleman and
De Luccia (CdL) [63].
In order to discuss the dynamics of the vacuum in this

new context, we rewrite the noncanonical normalized
potential of Eq. (3.14) in the form

VðΦÞ ¼ 1

2
μ2Φ2 þ λ

4

ð1 −Φ2Þ2
ð1 − γΦ2Þ2 ; ð6:1Þ

where we have made the following redefinitions:

Φ ¼ φ

2M
; γ ¼ ð1 − ξÞM2

3u
;

μ ¼ 2mM; λ ¼
�
κM2

u

�
2

: ð6:2Þ

Since m < M < 1, the parameters μ and λ are expected to
be less than unity.
For the special case ξ ¼ 1 we have γ ¼ 0, and the

potential simplifies to

VðΦÞ ¼ 1

2
μ2Φ2 þ λ

4
ð1 −Φ2Þ2: ð6:3Þ

Similarly, in the large value of jξj we have γ ¼ jξjM2=ð3uÞ.
The form of V in Eq. (6.3) represents a double-well

potential, with the minima at a radius Φ0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

λ

q
and

local maximum at Φ ¼ 0. In this new parametrization the
general case corresponds to γ ≠ 0 or ξ ≠ 1. The extrema are
determined by

dVðΦÞ
dΦ

¼ 0 ⇒ μ2Φ
�
1 −

λ

μ2
ð1 − γÞð1 −Φ2Þ
ð1 − γΦ2Þ3

�
¼ 0: ð6:4Þ

There is an obvious extremum (in fact, a minimum) at
Φ ¼ 0. The parentheses include a cubic equation with
respect to Φ2, implying three roots for Φ2. There are either
three real roots or a single one depending on the values of
the parameter γ and the ratio μ2=λ ¼ R. The case of the
metastable de Sitter vacuum corresponds to the case of
three real roots, since there should be a minimum and a
maximum before Φ ¼ 0 and Φ ¼ ∞. To simplify the cubic
equation, we use the redefinitions

y¼ 1− γΦ2 →Φ2 ¼ 1− y
γ

; for γ ≠ 0; or ξ ≠ 1: ð6:5Þ

Then Eq. (6.4) is written as

y3 þ pyþ q ¼ 0; ð6:6Þ

with

p¼ −
1− γ

γR
; q¼ −ð1− γÞp¼ ð1− γÞ2

γR
¼ a2

γR
: ð6:7Þ

Three real roots exist if the discriminant 4p3 þ 27q2 < 0,
implying

ða=γRÞ3ð−1þ 27aRγ=4Þ < 0:

Substituting y ¼ v cos θ and comparing with the trigono-
metric identity cosð3θÞ ¼ 4cos3ðθÞ − 3 cosðθÞ, we find

y¼2

ffiffiffiffiffiffiffi
−p
3

r
cos

�
1

3
arccos

�
3q
p

ffiffiffiffiffiffiffiffiffiffi
−

3

4p

s �
−
2nπ
3

�
; n¼0;1;2;

or

y ¼ 2

ffiffiffiffiffiffiffiffiffiffi
1 − γ

3γR

s
cos

�
1

3
arccos

�
−
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Rγð1 − γÞ

p �
−
2nπ
3

�
;

n ¼ 0; 1; 2:

Real roots exist when the argument of arccos is less than
one,

FIG. 6. Short-lived gravitino with mass m3=2 ¼ 100 TeV and
the corresponding neutralino masses mχ̃0

1
with ns ¼ 0.9655 and

M ¼ 2 × 1016 GeV.

GRAVITINO DARK MATTER, NONTHERMAL LEPTOGENESIS, … PHYS. REV. D 104, 055025 (2021)

055025-11



				 − 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Rγð1 − γÞ

p 				 ≤ 1; ð6:8Þ

which is just the constraint on the discriminant. Assuming
0 < R < 1 and using Eq. (6.8), we can put bounds on the
various parameters of the potential. The above inequality
can be simplified as

γ2 − γ þ 4

27R
≥ 0: ð6:9Þ

For real roots of γ the discriminant must be greater than or
equal to zero, which means 1 − 16

27R ≥ 0 or R ≥ 16
27
. This

constrains R in the range 16=27 ≤ R < 1, or in terms of μ
and λ we have that

μ2 < λ ≤
27

16
μ2: ð6:10Þ

The bound on R also helps us to obtain a lower bound on

γ, which is γ ≥ 1
2
ð1 −

ffiffiffiffi
11
27

q
Þ. The upper value of γ basically

separates the potential into two regions. Then, Eq. (3.16)
between the canonically and noncanonically normalized
fields with respect to the new parametrization can be
written as

dX
dΦ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γΦ2ð1 − 3u

M2 γÞ
2uð1 − γΦ2Þ2

s
; ð6:11Þ

where X ¼ χ=2M is the normalized field.
We solve Eq. (6.11) in two limits. In the first case we

consider a large-field approximation with

Φ ≫
1ffiffiffi
γ

p ; ð6:12Þ

and we find that

dX
dΦ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3uM2 γ − 1Þ

2uγ

s
1

Φ

⇒ X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3uM2 γ − 1Þ

2uγ

s
lnð ffiffiffi

γ
p

ΦÞ: ð6:13Þ

In terms of Φ, we have that

Φ ¼ 1ffiffiffi
γ

p exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2uγ

ð3uM2 γ − 1Þ

s
X

�
: ð6:14Þ

The effective potential (6.1) in terms of the canonically
normalized field X can be written as

VðXÞ ¼ μ2

2γ
exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2uγ

3u
M2 γ − 1

s
2X

�

þ
λ

�
1 − 1

γ exp

� ffiffiffiffiffiffiffiffiffiffi
2uγ

3u
M2γ−1

r
2X

��
2

4

�
1 − exp

� ffiffiffiffiffiffiffiffiffiffi
2uγ

3u
M2γ−1

r
2X

��
2
: ð6:15Þ

Next, we consider a small-field approximation where

Φ ≪
1ffiffiffi
γ

p ; ð6:16Þ

with γ < 1. In this scenario we find that

dX
dΦ

¼ 1ffiffiffiffiffiffi
2u

p ; ð6:17Þ

which results in

Φ ¼
ffiffiffiffiffiffi
2u

p
X: ð6:18Þ

Then, the effective potential (6.1) in this case takes the form

VðXÞ ¼ uμ2X2 þ λð1 − 2uX2Þ2
4ð1 − 2γuX2Þ2 : ð6:19Þ

The shape of the potential is shown in Fig. 7 for both cases.
In the small-field approximation the factor γX2 plays an
important role in the predictions of the model. If the
contribution of γ in the potential (6.19) is very small
(γX2 ≪ 1), then the tensor-to-scalar ratio is outside the
Planck 2σ bounds. However, as γX2 increases the denom-
inator in Eq. (6.19) becomes important, and some solutions
(depending on the other parameters) consistent with the
CMB observables appear.
Next, we compute the probability of the inflaton tunnel-

ing from the false vacuum at X− to the true one located at
X ¼ 0. Following Ref. [63], we analyze the case where the
field X interacts with gravity. Then, the Euclidean action of
the coupled field X takes the form

SE ¼
Z

d4x
ffiffiffi
g

p �
−
1

2
Rþ 1

2
∂μX∂μX þ VðXÞ

�
: ð6:20Þ

The presence of gravity has important implications for the
decay of the false vacuum. Moreover, note also that in the
context of general relativity there is an absolute minimum
associated with the positive cosmological constant
(de Sitter spacetime), in contrast to the field theory case
where only potential and energy differences matter.
Denoting the Euclidean action as SE, the tunneling

probability is defined as a decay rate per unit volume
per time by
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Γ ¼ Ae−B; with B ¼ SEðXÞ − SEðX−Þ: ð6:21Þ

As in Ref. [63], we look for Oð4Þ-symmetric solutions in a
Euclidean 4-space that is described by the metric

ds2 ¼ dρ2 þ σðρÞ2ðdΩ3Þ2; ð6:22Þ

where ðdΩ3Þ2 is the metric of the unit 3-sphere. The
curvature of the 3-sphere at a given ρ in Eq. (6.22) is
given by the scale factor σðρÞ. The field equations for the
scalar field X and the scale factor σ in the time-like case are

X00 þ 3
σ0

σ
X0 ¼ ∂V

∂X ; ð6:23Þ

σ02 ¼ 1þ 1

3
σ2
�
1

2
X02 − VðXÞ

�
; ð6:24Þ

where the derivativesX0, σ0 etc. are taken with respect to the
“time” variable ρ. For the system of equations (6.23) and
(6.24), we adopt the simplest solutions [64], which for
ρ ∈ ½0; H−1

� π� are given by

XðρÞ ¼ X�; σðρÞ ¼ 1

H�
sinðH�ρÞ; ð6:25Þ

where from the field equation 1
2
H02 ¼ 3H2 − 3VðXÞ at the

minima H0
� ¼ 0, it turns out that H� ¼

ffiffiffiffiffiffiffiffiffiffi
VðX�Þ

3

q
. Using the

solution (6.25) the action is found to be [64]

SEðX�Þ ¼ −2π2
Z

dρ
1

H3
�
sin3ðH�ρÞVðX�Þ ¼ −

24π2

VðX�Þ
;

ð6:26Þ

H2
c ¼ −

VXXðXþÞ
4

−
ΔV
3

; ð6:27Þ

where VXX ¼ ∂2V=∂X2 and, as above, ΔV ¼ VðXþÞ −
VðX−Þ is the height of the barrier. The tunneling coefficient
B introduced in Eq. (6.21) is then computed from Eq. (6.26)
and reads

B ¼ SEðXþÞ − SEðX−Þ ¼ −
24π2

VðXþÞ
þ 24π2

VðX−Þ
: ð6:28Þ

In order to estimate the parameter B involved in the
decay rate it is sufficient to compute the potential at X�.
This follows in the next subsection.

A. Numerical results

The post-inflationary Universe is described by radiation,
matter, and vacuum energy density. Furthermore, it is
assumed that the bubble nucleation rate Γ in the past
satisfies Γ ≥ Γ0, where Γ0 is its current Minkowski-space
value. The constraint on the nucleation rate Γ0 from the
post-inflationary era was given in Ref. [65], which further
implies the bound B0 ≳ 540. Before presenting the numeri-
cal details, we first mention the scanning ranges. The shape
of the potential and the existence of false minima depend on
two parameters: the ratio λ=μ2 and γ. From the previous
analytical calculation we already found that false minima
occur within the following bounds:

1 <
λ

μ2
≤
27

16
;

�
1 −

ffiffiffiffi
11
27

q �
2

≤ γ < 1: ð6:29Þ

In the following the value of μ will be fixed to μ ¼ 1
2
.

Hence, we perform the numerical scan varying λ=μ2 and γ
according to Eq. (6.29).
There are two types of solutions that contribute to

vacuum decay in de Sitter space: the CdL solution [63]
which crosses the barrier through tunneling, and the
Hawking-Moss solution (HM) [66] where the inflaton is

FIG. 7. The left panel shows the shape of the scalar potential for the small-field approximation. In the right panel the shape of the
potential in the large-field approximation is presented. Here we use λ=μ2 ¼ 1.76, μ ¼ 0.08, M ¼ 1, and u ¼ 1=2.
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FIG. 8. Different results for the probability that the inflaton tunnels from the false vacuum at X− to the true vacuum X ¼ 0. Here we
use μ ¼ 0.5.
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on the top of the barrier (for a more detailed discussion, see
Ref. [64]). In Eq. (6.25) we defined H− which is actually
the background Hubble rate in the false vacuum. The
condition for HM solutions to contribute to vacuum decay
is H → Hc, where Hc is the critical Hubble rate defined in
Eq. (6.27). The second term of the critical Hubble rate
generally contributes significantly if the height difference
between the top of the barrier and the false vacuum is
comparable to the Planck mass.
In Fig. 8, the top-left plot shows γ vs the ratio of the

Hubble scale and the top-right plot shows γ vs the decay
width, where the rainbow color bar shows how these
solutions vary with the ratio of λ=μ2. We see from the
top-left plot that for a low Hubble rate we have solutions
corresponding to the HM instanton which contribute to
vacuum decay. Recall that the HM instanton solution is the
one for which the inflaton stays at the top of the barrier
XðρÞ ¼ Xþ. This describes the situation where the inflaton
climbs up the potential barrier instead of tunneling. On the
other hand, when the Hubble rate increases, i.e., H− < Hc,
standard CdL solutions appear. In the top-left panel of
Fig. 8, the solutions below the horizontal black line
correspond to HM. On the other hand, those solutions
above the black horizontal line correspond to the CdL case.
The middle-left panel of Fig. 8 shows the plot between the
ratio of Hubble scales and the decay rate, while in the
middle-right panel one can see the values of the potential at
both minima. In these scans we only show plots with
solutions in which VðX−Þ > VðX0Þ, so the motion of the
inflaton field is from right to left. The lower panel shows
the plot between the ratio of Hubble scales and the
parameter B, where the horizontal line in the figure shows
the bound on B coming from the post-inflationary era.
Based on the numerical value of B, we can categorize our
false vacuum into stable, metastable, and unstable. From
the plot we see that B > B0 (where B0 ¼ 540) is a region
where Γ < Γ0 and we can infer that the false vacuum is
stable. Similarly, B ≃ B0 corresponds to metastable and
B < B0 represents the unstable region.

VII. CONCLUSION

In this work we investigated various cosmological impli-
cations of a generic model based on the extension of the SM
gauge symmetry by aUð1ÞB−L factor, with special emphasis
on the issues of inflation, leptogenesis, and baryogenesis as
well as the physics of the gravitino. The model can be
naturally embedded in a unified gauge group with a
symmetry-breaking scale around MGUT ¼ 2 × 1016 GeV.
The spectrum of the model consists of the MSSM content
extended by a neutral singlet field S, and a pair of Higgs
MSSM singlets ðH; H̄Þ carrying opposite charge under
Uð1ÞB−L. An appropriate R symmetry prevents all of the
dangerous terms in the superpotential, whereas a suitable
fourth-order nonrenormalizable term providing Majorana
mass to the right-handed neutrino is left intact to realize the

seesaw mechanism. The most general effective potential
consists of the F and D parts as well and contributions
coming from soft supersymmetry-breaking terms. The F
part arises from the Kähler function, assuming standard no-
scale supergravity, and the D terms contain the usual
contributions associated with the gauge sector. Under mild
constraints on the parameters involved in the scalar poten-
tial, it is readily realized that the inflationary scenario is
naturally implemented. The cosmological observables,
including the tensor-to-scalar ratio r, the spectral index
ns, etc., were computed and discussed in detail for various
limiting cases of the effective potential. In the present
analysis, a wide viewpoint was taken to encompass future
perspectives on the possible determination of the supersym-
metry-breaking scale mSUSY. Thus, in this context, by
varying mSUSY from a few TeV up to 106 TeV, while
fixing the spectral index to its central value ns ¼ 0.9655,
we found that the tensor-to-scalar ratio lies in the range
r ∈ ½10−2 − 10−3� which is consistent with the latest
Planck data.
We examined in detail the physics related to the nature of

the gravitino and considered possible scenarios, including
that it is the LSP. Among other possibilities, we found that a
stable LSP gravitino is easily accommodated in our setup,
and as such it can be considered as a DM candidate. If the
gravitino is not the LSP, we found that a short-lived
gravitino is always viable as long as its mass is
m3=2 > 25 TeV, whereas the mass of a long-lived one
should lie in the region 10 < m3=2 < 25 TeV.
For high SUSY scales the reheating temperature Tr is

bounded by ΩLSP, whereas for a TeV-scale SUSY case the
reheating temperature is bounded by BBN predictions.
Furthermore, the model predicts an inflaton mass around
1012 GeV. On the other hand, the variation of the right-
handed heavy Majorana scale depends on Tr and ranges
between MN ∼ 108 and 1012 GeV. Values close to the
upper scale are sufficient to realize the seesaw mechanism
and obtain light neutrino masses consistent with the
oscillation experiments. Finally, we identified regions of
the parameter space where the potential in addition to the
true vacuum it also displays a false minimum. For this
particular case, we discussed quantum tunneling effects
with the inflaton field penetrating the barrier, and computed
its decay width to the true vacuum using standard tech-
niques developed by Coleman and De Luccia [63].
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