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The electromagnetic source of arions, as well as axions, is a scalar product of the magnetic field
induction and the electric field intensity. For electromagnetic waves, this product can be nonzero only in the
near zone. Pulsars and magnetars are natural sources of this type. Based on these considerations, we
calculate the generation of arions by coherent electromagnetic field of rotating magnetic dipole of pulsars
and magnetars. It is shown that the radiation of arion waves occurs at the frequency of magnetic dipole
rotation. This radiation has a maximum when the angle between the rotation axis and the magnetic dipole
moment of the neutron star is π=4 and it is completely absent, when the magnetic dipole moment is
perpendicular or parallel to this axis. A formula for the angular distribution of arion radiation is constructed;
and on its basis, it is shown that the radiation is maximal in the plane which is perpendicular to the axis
of rotation.
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I. INTRODUCTION

Many extensions of the Standard Model predict the
existence of light Goldstone bosons, which in the scientific
literature are called axionlike particles. The density of the
Lagrange function for an axionlike particle which is
interacting with an electromagnetic field can be written as

L ¼ 1

2
gnm

∂a
∂xn

∂a
∂xm −

gaγ
4

FnmF̃nma −
1

2
m2

aa2;

where a is the pseudoscalar field of the axionlike particle,
Fnm is the electromagnetic field tensor, ma is the axion
mass, gaγ is the axion-photon coupling constant (with
dimension of inverse energy), F̃nm ¼ enmikFik=2 and
enmik is the axial, absolutely antisymmetric Levi-Chivita
tensor, moreover e0123 ¼ þ1.
One of axionlike particles, is the arion α, which was

introduced in 1982, in works [1–3] by Prof. A. A. Anselm
and his coauthors. The arion is a strictly massless pseu-
doscalar Goldstone particle corresponding to the sponta-
neous breaking of an exact symmetry.
According to papers [1–3], the density of the Lagrange

function for arions interacting with the electromagnetic
field, can be expressed

L ¼ 1

2
gnm

∂α
∂xn

∂α
∂xm −

g
4
FnmF̃nmα; ð1Þ

where α is the arionic field, g is the arion-photon coupling
constant.
Nowadays, the search for axionlike particles is being

currently under way not only in the experiments at
accelerators [4–6] and in laboratory optical experiments
[7,8], but also in astrophysical conditions [9–15]. However,
they have not been successful yet. Therefore, it is necessary
to continue theoretical research to find out the experimental
situations where the radiation of arions and axions reach its
maximum possible value.
In pseudo-Euclidean space-time, the equation for the

arion field, obtained from the density of the Lagrange
function (1) has the form

Δαðr; tÞ − 1

c2
∂2αðr; tÞ

∂t2 ¼ g
4
FnmF̃nm ¼ −gðE ·BÞ; ð2Þ

where E and B are the intensity of the electric field and the
induction of the magnetic field, respectively, that create the
arion field.
According to Eq. (2), the electromagnetic source of the

arion field is a scalar product ðE ·BÞ. Since in the wave
zone for any electromagnetic waves this product is equal to
zero, a noticeable radiation of arions is possible only from
the near zone of electromagnetic waves, where this pseu-
doinvariant is not zero. Therefore, effective electromagnetic
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generators of arions are coherent electromagnetic waves in
which the fields E and B in the nonwave zone are not
orthogonal to each other.
Pulsars and magnetars are natural sources of this type.

A typical pulsar or magnetar is a neutron star with a radius
of about 10 km, rotating around an axis that does not
coincide with the vector of the magnetic dipole moment of
the star. The rotation period of these stars usually ranges
from 1.6 milliseconds (PSR J1810þ 1744 [15]) to ten
seconds (MG J1647-4552 [16]).
Pulsars and magnetars have strong magnetic fields,

that are comparable and even exceed the Schwinger field
Bq ¼ 4.41 × 1013 gauss. So, for example, the induction of a
magnetic dipole field on the surface of a pulsar can reach
1013 gauss [15], and on the surface of a magnetar up to
values of 2 × 1015 gauss [16].
Therefore, the scalar product ðE ·BÞ for the magnetic

dipole radiation of pulsars and magnetars in the near
zone, takes on values that can hardly be created in other
electromagnetic processes.
Let us study the possibilities of arion generation by

low frequency magnetic dipole radiation of pulsars and
magnetars.

II. CALCULATION OF ARION RADIATION BY
MAGNETIC DIPOLE WAVES OF PULSARS

AND MAGNETARS

Consider a pulsar or magnetar of radius Rs with a
magnetic dipole moment m rotating with a frequency of
ω around an axis making an angle β with a vector m.
Due to the rotation of the vector m, magnetic dipole

radiation of electromagnetic waves is being generated.
According to work [17], this radiation vectors B and E,
can be written in the form

Bðr; τÞ ¼ 3ðmðτÞ · rÞr − r2mðτÞ
r5

−
_mðτÞ
cr2

þ 3ð _mðτÞ · rÞr
cr4

þ ðm̈ðτÞ · rÞr − r2m̈ðτÞ
c2r3

;

Eðr; τÞ ¼ ðr × _mðτÞÞ
cr3

þ ðr × m̈ðτÞÞ
c2r2

; ð3Þ

where the dot above the vector means the derivative on
retarded time τ ¼ t − r=c, and the pulsar magnetic dipole
moment in the following task has the components

mðτÞ ¼ jmjðcosðωτÞ sin β; sinðωτÞ sin β; cos βÞ: ð4Þ

Since for pulsars and magnetars the condition ωRs ≪ c, are
met, they are in the near zone of their own magnetic dipole
radiation.

Using Eq. (3), we calculate the scalar product ðB · EÞ

ðB ·EÞ ¼ ðr · ðm × _mÞÞ
cr6

þ ðr · ðm × m̈ÞÞ
c2r5

:

Substituting expression (4) here, and keeping only the time-
dependent part, we get

ðB ·EÞ ¼ −
km2

2r6
fx cosðkr − ωtÞ − y sinðkr − ωtÞ

þ kr½x sinðkr − ωtÞ þ y cosðkr − ωtÞ�g sin 2β

¼ −
km2

2r5
fkr sinðφþ kr − ωtÞ

þ cosðφþ kr − ωtÞg sin θ sin 2β; ð5Þ

where k ¼ ω=c.
Equation (2), taking into account Eq. (5), can be

rewritten in a complex form

Δαðr; tÞ − 1

c2
∂2αðr; tÞ

∂t2 ¼ gkm2

2r5
ð1þ ikrÞ sin θ sinð2βÞ

× exp½−iðkrþ φ − ωtÞ�; ð6Þ

assuming that after solving it, we take only the real part.
Since Eq. (6) describes strictly massless axionlike

particles radiation, we can write the retarded solution of
this equation in the following form:

αðr; tÞ ¼ gkm2

8π
sin 2β

×
Z
V

dV 0ð1þ ikr0Þ
r05jr − r0j P1

1ðcos θ0Þ

× exp½−iðkr0 þ φ0 − ωtþ kjr − r0jÞ�; ð7Þ

where P1
1ðcos θ0Þ ¼ − sin θ0.

This solution can be applied in the case when the mass of
axionlike particles ma is not zero, but meets the condition
k ≫ ma. In other cases (when k ∼ma) the problem of the
axionlike particle radiation by the electromagnetic field of a
rotating magnetic dipole, should be solved regardless of the
problem of the arions radiation.
Let us use the fact that according to the Gegenbauer

theorem [18] at r > r0 the expansion is valid

expf−ikjr − r0jg
jr − r0j ¼ −

πi

2
ffiffiffiffiffiffi
rr0

p
X∞
n¼0

ð2nþ 1ÞJnþ1=2ðkr0Þ

×Hð2Þ
nþ1=2ðkrÞPnðcos γÞ;

and at r < r0, a similar expansion
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expf−ikjr − r0jg
jr − r0j ¼ −

πi

2
ffiffiffiffiffiffi
rr0

p
X∞
n¼0

ð2nþ 1ÞJnþ1=2ðkrÞ

×Hð2Þ
nþ1=2ðkr0ÞPnðcos γÞ;

where

cos γ ¼ ðr0 · rÞ
jr0jjrj ¼ cos θ cos θ0 þ sin θ sin θ0 cosðφ0 − φÞ:

Substituting these expansions into Eq. (7) for the arion
field outside the star ðr > RsÞ, we get

αðr; tÞ ¼ −
igk7=2m2

16
ffiffiffi
r

p exp½iωt� sinð2βÞ

×
X∞
n¼0

ð2nþ 1Þ
Z

π

0

sin θ0P1
1ðcos θ0Þdθ0

×
Z

2π

0

dφ0e−iφ0
Pnðcos γÞ

×

�
Hð2Þ

nþ1=2ðkrÞ
Z

kr

kRs

ð1þ iηÞdη
η7=2

Jnþ1=2ðηÞe−iη

þ Jnþ1=2ðkrÞ
Z

∞

kr

ð1þ iηÞdη
η7=2

Hð2Þ
nþ1=2ðηÞe−iη

�
:

ð8Þ

Function Pnðcos γÞ can be [19] expanded as a series in
spherical functions

Pnðcos γÞ ¼ Pnðcos θÞPnðcos θ0Þ

þ 2
Xn
m¼1

ðn −mÞ!
ðnþmÞ!P

m
n ðcos θÞPm

n ðcos θ0Þ

× cosmðφ0 − φÞ:

Substituting this series into Eq. (8) and integrating it
over r0, angles θ0 and φ0, we arrive at the relation

αðr; tÞ ¼−Re
iπgk7=2m2

4
ffiffiffi
r

p exp½iðωt−φÞ� sinθ sinð2βÞ

× fHð2Þ
3=2ðkrÞ½f1ðkrÞ−f1ðkRsÞ�− J3=2ðkrÞf2ðkrÞg;

ð9Þ

where

f1ðzÞ ¼
ffiffiffi
2

p

8
ffiffiffi
π

p
z4
f½2z − i�e−2iz þ i½2z2 þ 1�g;

f2ðzÞ ¼
ffiffiffi
2

p

4
ffiffiffi
π

p
z4
½2z − i�e−2iz:

This is the exact solution to Eq. (6).

It should be noted that in addition to low-frequency
radiation arising from the rotation of the magnetic dipole
moment, pulsars and magnetars are sources of high-
frequency radiation, which cover a wide range of frequen-
cies; from radio, through optical, x-ray, and up to gamma
range [15,16]. However, this radiation is incoherent and the
calculation above, is inapplicable for these frequencies.

III. THE RADIATION PATTERN
OF ARION WAVES

For further investigation of the results of the generation
of arion radiation by the electromagnetic field of a rotating
magnetic dipole, we only need the wave part of Eq. (9),
which decreases at kr ≫ 1 as 1=r. In addition, we take into
account that for most pulsars and magnetars kRs ≪ 1, and
keeping in the resulting expression only the asymptotically
main term in the expansions with respect to this small
parameter. Then, keeping the real part in Eq. (9) and
discarding the nonwave terms we get

αðr; tÞ ¼ −
gk2m2

6Rsr
sinð2βÞ sin θ sinðωt − kr − φÞ: ð10Þ

Let us investigate the obtained solution (10) and first of
all study the angular distribution of the arising arionic
radiation or, as they sometimes say, its radiation pattern.
By definition [20], the amount of energy dI, emitted by
the source per unit time through the solid angle
dΩ ¼ sin θdθdφ, is given by the formula

dI
dΩ

¼ lim
r→∞

rðW · rÞ;

where W is the energy flux density vector associated with
the components of the energy-momentum tensor Tnm by
the relation Wμ ¼ cT0μ.
The energy-momentum tensor of the field, described by

the function qðr⃗; tÞ according to the monograph [20], has
the form

Tk
i ¼ q;i

∂L
∂q;k − δkiL;

where q;i ¼ ∂q=∂xi.
For the free arionic field qðr; tÞ ¼ αðr; tÞ, so

Tik ¼ gingkm
∂α
∂xn

∂α
∂xm −

1

2
gik

∂α
∂xn

∂α
∂xm gnm:

Then the arion radiation pattern will be determined by
the expression

dI
dΩ

¼ − lim
r→∞

rðr ·∇αÞ ∂α∂t :
Substituting here Eq. (10) and averaging the resulting
relation over period T ¼ 2π=ω of the wave, we have

RADIATION OF ARIONS BY ELECTROMAGNETIC FIELD OF … PHYS. REV. D 104, 055018 (2021)

055018-3



dI
dΩ

¼ cg2k6m4

72R2
s

sin2θsin2ð2βÞ: ð11Þ

Multiplying this expression by sin θdθdφ and integrating it
over the angles θ and φ, we obtain the total intensity I—the
amount of energy of the arionic waves emitted in all
directions by a rotating magnetic dipole per time unit

I ¼ πcg2k6m4

27R2
s

sin2ð2βÞ: ð12Þ

Let us express the dipole moment of a pulsar or magnetarm
through the maximal magnitude of the magnetic field on
the surface of the star Bs. In order of magnitude, we have
jmj ¼ BsR3

s=2. Then formulas (11) and (12) take the form

dI
dΩ

¼ cg2k6B4
sR10

s

1152
sin2ð2βÞsin2θ:

I ¼ πcg2k6B4
sR10

s

432
sin2ð2βÞ: ð13Þ

It follows from Eqs. (12) and (13) that the arion radiation
produced by the rotation of the magnetic dipole moment
of pulsars and magnetars, like any physical field, carries
non-negative energy.

IV. CONCLUSION

The calculation showed that arion radiation occurs when
the magnetic dipole moment rotates. The radiation of arions
occurs at the rotation frequency of the magnetic dipole
moment of the neutron star.
It follows from the expressions (13), the generation of

arions by rotating magnetic dipole radiation is maximal
in the case when the angle β between the magnetic dipole
and the axis of its rotation is π=4. If this angle is π=2, then
arion radiation does not occur. It should be noted that in
the recently discovered “Magnificent Seven” magnetars
[21,22], arionic radiation is either absent or strongly sup-
pressed, since they have the angle between the magnetic
dipole moment and the rotation axis close to π=2.
The radiation pattern of the arion radiation has a

maximum in the plane which is perpendicular to the axis
of rotation ðθ ¼ π=2Þ.
Currently, the value of the electromagnetic and arion

fields interaction constant g is unknown. Let us roughly
estimate the value of this interaction constant. We achieve
this in the following way. Due to the rotation, pulsars and
magnetars emit magnetic-dipole electromagnetic waves
[17], quadruple gravitational waves [23] and, as we have
seen, also are able to generate arions. The energy loss for
this radiation should occur due to kinetic energy of the star
rotation. Therefore, the rotation period of the star P should
increase, and its time derivative _P must be non-negative:
_P > 0. These values are determined quite easily from the

results of observations for pulsed radiation from pulsars
and magnetars. Using these observational data, astrophys-
icists (see [16,23] and the literature cited there) calculated
the quantity _E for magnetars, which was called spin-down
luminosity. It should be noted, that this is not a measured
luminosity, it is the measured loss rate of rotational energy
of magnetars.
According to Table 2 in [16], different magnetars

have different spin-down luminosity that can vary
from _E ¼ 2.1 × 1035 erg s−1, (magnetar 1E 1547.0-5408)
to 2.1 × 1029 erg s−1, (magnetar SGR 0418þ 5729).
Since a part of _E is originated due to arion radiation, we

can write

I < j _Ej: ð14Þ

Using the second relation of the Eq. (13), and supposing
that sin2ð2βÞ ¼ 1, from this inequality, we obtain that

g2 <
432j _Ej

πck6B4
sR10

s
: ð15Þ

Let us find out which form inequality (15) takes in case
of magnetar SGR 1806-20, which has the maximum value
of the magnetic field on the surface of the star, among the
other known [16] magnetars.
Equation (15) was derived by us into the Gaussian

system of units of measurement. Therefore, we must
substitute c ¼ 3 × 1010 cm=s and Bs ¼ 2 × 1015 gauss
into it.
According to [16], the spin-down luminosity of mag-

netar SGR 1806-20 is equal to j _Ej ¼ 4.5 × 1034 erg=s.
The period of rotation of this magnetar is equal to

P ¼ 7.5 s, therefore k ¼ 0.28 × 10−10 cm−1. Its radius is
unknown.
However, following [24], if we admit that

Rs ¼ 11 km ¼ 1.1 × 106 cm, then the inequality (15)
should be written as

g2 <
432j _Ej

πck6B4
sR10

s
¼ 1.0 × 10−32

cm
erg

: ð16Þ

Let us rewrite this formula in the natural system of
units. If we take into account that 1erg ¼ 624 GeV,
and 1cm ¼ 0.5 × 1014 GeV−1, then from the Eq. (16)
we get g2 < 8.2 × 10−22 GeV−2.
From here we obtain the estimate for the arion-photon

coupling constant

g < 0.29 × 10−10Gev−1: ð17Þ

For axions, the strongest constraints on the axion-photon
coupling constant gaγ have also emerged from astrophysical
considerations.
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On the basis of the observed duration of stationary
burning helium stars, in works [25,26] the restriction was
obtained

gaγ < 1 × 10−10 GeV−1: ð18Þ
Another estimate for the coupling constant gaγ is

obtained by studying supernova outbursts.
The analysis of events during the Supernova SN1987A,

carried out in [27], gave in the low mass region a new upper
limit on the photon-axion coupling constant

gaγ ≤ 5.3 × 10−12 GeV−1: ð19Þ

The most recent results [28] of the CAST experiment set an
upper limit

gaγ < 0.66 × 10−10Gev−1; ð20Þ

for all axions with masses below 0.02 eV.
Comparing constraint (17) on the arion-photon coupling

constant g with constraints (18), (19), and (20) on the
axion-photon coupling constant gaγ it can be stated that
they coincide in order of magnitude.
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