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We study a class of gauge groups that can automatically yield a perturbatively exact Peccei-Quinn
symmetry, and we outline a model in which the axion quality problem is solved at all operator dimensions.
Gauge groups belonging to this class can also enforce and protect accidental symmetries of the clockwork
type, and we present a toy model where an “invisible” axion arises from a single low scale breaking of the
gauge and global symmetries.
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I. INTRODUCTION

The nontrivial structure of the vacuum of Yang-Mills
theories [1] implies that CP violation is a built-in feature in
QCD [2,3]. Strong CP violation is parametrized in terms of
an angular variable θ ∈ ½0; 2π�, whose value is not deter-
mined by the theory but is experimentally bounded to lie
surprisingly close to zero jθj≲ 10−10. It is hard to believe
that this could simply occur as a whim of nature, especially
because any value θ ≲ 10−1 would leave our Universe
basically unaffected [4–6], which precludes anthropic
explanations. A convincing rationale for θ ≈ 0 is provided
by the Peccei-Quinn (PQ) mechanism [7,8], which postu-
lates a global Abelian symmetry endowed with a mixed
Uð1ÞPQ-SUð3ÞC anomaly and broken spontaneously. This
unavoidably entails a quasimassless spin zero boson, the
axion [9,10], whose central role is to relax dynamically θ to
0. Remarkably, the axion also provides a novel solution to
the origin of dark matter [11–13] as well as a plethora of
other implications for astrophysics and cosmology (for a
recent review, see [14]). However, it also raises various new
issues. Among the deepest new questions stand the very
origin of the axion or, more precisely, “which is the origin
of the PQ symmetry”? There are in fact good reasons to
believe that global symmetries cannot be fundamental, and
this is especially true for anomalous symmetries that do not
survive at the quantum level. A satisfactory explanation
would arise if the PQ symmetry is enforced accidentally, in
the sense that all renormalizable Lagrangian terms respect-
ing first principles (Lorentz and local gauge invariance)

automatically also preserve a global Uð1Þ with the required
properties. A second issue, known as “the PQ symmetry
quality problem,” arises because to comply with the bound
jθj < 10−10, Uð1ÞPQ must be respected by all effective
operators acquiring a vacuum expectation value (VEV) up
to dimension D≳ 11. However, there is widespread con-
sensus that global symmetries are violated by operators of
all types and dimensions induced by quantum gravity
effects [15–25]. A third issue regards the “the axion scale.”
The axion is a periodic field taking values in a compact
space a ∈ ½0; 2πva�, where the radius va is generally
identified with the PQ spontaneous symmetry breaking
(SSB) scale vPQ. However, to comply with phenomeno-
logical constraints, va ∼ 1010�2 GeV is required, and this
brings in the usual problem of OðvPQÞ corrections that can
destabilize the electroweak scale.
Various strategies have been proposed to explain the

origin of the PQ symmetry and to protect its quality up to a
suitable operator dimension D: discrete gauge symmetries
ZD [26–33], multiple complex scalars with values of Uð1Þ
gauge charges of order D [16], non-Abelian gauge sym-
metries generally of a degree not less thanD [34–37], often
assisted by supersymmetry [38–40] or by higher dimen-
sional constructions [41–44]. However, an unsatisfactory
aspect of all these solutions is that if the scale of PQ-
breaking effects lies below the Planck scale, if SSB occurs
at a scale vPQ ≫ 1010 GeV, or if future experimental limits
will hint to θ ≪ 10−10, the value of D will have to be
accordingly increased. With regards to the axion scale,
certain solutions have been attempted, exploiting the so-
called clockwork mechanism [45–54]. Clockwork PQ
symmetries allow us to boost selectively some axion
couplings [55–58], and to exponentially enhance [59–61]
or suppress [62] the ratio va=vPQ. Clearly, the origin of
clockwork symmetries also calls for an explanation, and in
this case, achieving this goal by exploiting first principles is
an even more challenging task.
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In this paper, we show that so far an uncharted class of
flavor1 gauge symmetries of the form SUðMÞ × SUðNÞ
with M ≠ N, that we denote as “rectangular” symmetries,
allows us to solve at the root the origin and quality
problems by enforcing automatically Uð1Þ symmetries that
are either perturbatively exact at the Lagrangian level or
that become exact on the vacuum.2 We outline a simple
example where PQ protection is enforced by SUð4Þ×
SUð2Þ. We also point out that rectangular symmetries can
also prove useful to solve the axion scale problem. We
illustrate this by constructing a toy model in which a
clockworkUð1ÞPQ arises automatically and is spontaneously
broken together with the gauge symmetries by vPQ ≪ va.

II. RECTANGULAR GAUGE GROUPS AND
ACCIDENTAL Uð1ÞPQ

Consider a scalar multiplet Y transforming in the
bifundamental representation ðM;NÞ of the gauge group
GMN ¼ SUðMÞ × SUðNÞwithM > N ≥ 2. Let us denote a
generic component as Yαi, where greek indices span
SUðMÞ and latin indices SUðNÞ. Each group factor has
a pair of Kronecker and Levi-Civita invariant tensors
ðδM; ϵMÞ, ðδN; ϵNÞ, which can be used to construct invar-
iants by contracting the indices of field components. The
renormalizable Lagrangian always contains T ≡ TrðY†YÞ
and T4 ≡ TrðY†YÞ2 constructed from δM and δN . Being
Hermitian, they are manifestly invariant under a Uð1ÞξY
phase redefinition Y → eiξY. Let us denote the trace of
the matrix of the minors of Y†Y of order k as Ck ¼
Tr½MnrðY†Y; kÞ�. We have C1 ≡ T, C2 ≡ A ¼ 1

2
ðT2 − T4Þ,

and up to CN ¼ det½Y†Y� the Ck’s form a fundamental set
of GMN ×Uð1ÞξY invariants [64,65],3 and it can be proven
[64] that any higher order invariant T2k ¼ TrðY†YÞk can be
expressed in terms of this set.
The accidental Uð1ÞξY can only be broken by non-

Hermitian invariants, that is by operators with an unequal
number of Y and Y† components, which must then involve
the ϵ tensors. However, all invariants involving ϵM and a
single scalar multiplet vanish symmetrically. Consider in
fact the SUðMÞ singlet,

ϵα1…αMYα1;i1…YαM;iM ≡ ðϵMYMÞi1…iM ; ð1Þ
where the right-hand side defines a shorthand notation for
SUðMÞ indices contracted with ϵM. Since M > N, at least

two components have the same SUðNÞ index, and hence,
the string vanishes. Thus, there are no invariants involving
ϵM and a single scalar multiplet.4 Thus, the Lagrangian for a
scalar multiplet Y transforming under a rectangular gauge
symmetry automatically enjoys a global Uð1ÞξY , which is
perturbatively exact.
Uð1ÞξY can be promoted to a PQ symmetry if it is

endowed with a QCD anomaly. This requires assigning
Uð1ÞξY charges to fermions that carry color and couple to Y.
Let us introduce two sets of chiral exotic quarks in the
fundamental of SUð3ÞC, singlets under the electroweak
gauge group and transforming under GMN as QL ∼ ðM; 1Þ
and QR ∼ ð1; NÞ so that the Yukawa operator QLYQR is
gauge invariant. To prevent a gauge SUð3ÞC anomaly, we
add P ¼ M − N quarks qR and a new scalar multiplet Z
acquiring a VEV so that all the quarks can be massive. This
step can be arranged in different ways, the two extreme
possibilities are

(I) Add a set of GMN-singlets qRa (a ¼ 1;…; P), which
couple to a scalar multiplet Z ∼ ðM; 1Þ via P
Yukawa operators

P
P
a¼1QLZqRa.

(II) Assign the qR’s to the fundamental representation
of a new gauge factor SUðPÞ, and Z to the
bifundamental ðM;PÞ of GMP. Then there is a single
Yukawa operator QLZqR.

Note that for M ¼ N þ 1, the two cases coincide; hence,
we restrict case (II) to P ≥ 2. GMNðPÞ gauge anomalies can
be canceled by adding three copies of M;N; ðPÞ-plets of
colorless “leptons” of chirality opposite to that of the
quarks, which can acquire mass from the VEVs of the same
multiplets Y and Z, e.g.,

P
3
r¼1 L

r
RYl

r
L etc.

Similarly to Y, scalar terms involving only Z also enjoy
an exact accidental symmetryUð1ÞξZ, i.e., VðZÞ ¼ VðZ†ZÞ.
However, by contracting the SUðMÞ indices of Y and Z, we
can construct certain mixed non-Hermitian operators that
break Uð1ÞξY ×Uð1ÞξZ to a single Uð1Þ, which is defined
by a specific condition relating the two chargesXY andXZ.
As it will become clear below, there are two classes of
operators, which we can denote as fOδg and fOϵg that
correspond to contracting the SUðMÞ indices with δM ¼ δαβ
or with ϵM ¼ ϵα1…αM , and which are invariant with respect
two different combinations of Uð1ÞξY;Z ,

Oδ∶ Uð1ÞξY ×Uð1ÞξZ → Uð1Þξ; XY − XZ ¼ 0 ð2Þ

Oϵ∶ Uð1ÞξY × Uð1ÞξZ → Uð1Þξ0 ; NXY þ PXZ ¼ 0:

ð3Þ

The charge relation in Eq. (3) implies that Uð1Þξ0 has no
QCD anomaly, and hence, the symmetry preserved by

1In this work, “flavor” refers to a replication of exotic quarks.
2This term refers to global symmetries that are broken

explicitly solely by operators whose VEV vanishes. Vacua
having more global symmetries than the Lagrangian imply
additional massless scalars besides the usual Nambu-
Goldstone-Bosons (NGB) [63].

3Considering the M ×M matrix YY†, one has
Tr½MnrðYY†; kÞ� ¼ Ck for k ≤ N and 0 for k > N, which
yields the same result.

4Only “square” symmetries (M ¼ N) allow for Uð1ÞξY -break-
ing operators like ϵMϵNYM ∝ detY [34,65,66].
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operators constructed with ϵM cannot be promoted to a
PQ symmetry. To see this, let us consider a chiral trans-
formation with generic quark charges XQL

;XQR
;XqR . The

Uð1Þ-QCD anomaly coefficient is, precisely,

j2N j ¼ MXQL
− NXQR

− PXqR ¼ NXY þ PXZ; ð4Þ

where the relation with the charges of the scalars follows
from requiring Uð1Þ invariance of the Yukawa terms.

A. Uð1Þ-breaking operators

Equations (2) and (3) show that operators involving δM
break Uð1Þξ0 , while those involving ϵM break Uð1Þξ.
We then need to study which operators can arise, since
in the presence of both, no Uð1Þ would survive. Starting
with case (I), let us define from the multiplets components
Yαi; Zα the set of SUðNÞ vectors ðXnÞi ¼ ðZ†ðYY†Þn−1YÞi,
n ¼ 1;…; N. The operator,

OIðXnÞ ¼ ϵNΠN
n¼1Xn; ð5Þ

does not vanish symmetrically, is nonrenormalizable
(D ¼ NðN þ 1Þ ≥ 6 for N ≥ 2) and preserves Uð1Þξ.
Since for M − N ≥ 2 all ϵM contractions must involve at
least two Zα, they vanish symmetrically, and thus, Uð1Þξ
survives as a perturbatively exact accidental symmetry,
broken only by the anomaly with coefficient j2N j ¼
ðN þ PÞXY . A relatively simple example of this case is
the SUð4Þ × SUð2Þmodel discussed below in Sec. II B. For
M − N ¼ 1, we can instead write

O0
IðY; ZÞ ¼ ðN!Þ−1ϵα1…αNαMðϵNYNÞα1…αN

ZαM ; ð6Þ

that has dimensionD ¼ M (hence is renormalizable for G32

and G43) and preserves Uð1Þξ0 . However, OIðXnÞ breaks
Uð1Þξ0 at D ¼ M · N so that no Uð1Þ survives.
In case (II), the multiplets components are Yαi; Zαa,

where a; b;… span SUðPÞ. Let us take N ≥ P ≥ 2 (N ≤ P
amounts to interchange Y ↔ Z) and let us consider the
SUðPÞ and SUðNÞ singlets ðϵPZPÞα1…αP

and ðϵNYNÞβ1…βN
.

SinceM ¼ Pþ N, the SUðMÞ indices of their product can
be exactly saturated with ϵM, yielding the GMNP invariant
operator,

O0
IIðY; ZÞ ¼ ðP!N!Þ−1ϵMðϵPZPÞðϵNYNÞ; ð7Þ

that has a dimension D ¼ M (is renormalizable only for
G422) and preserves Uð1Þξ0 . δM type of operators can be
constructed starting from ðϵPZ†PÞα1…αP and contracting the
SUðMÞ indices with P components of Y. This yields
ðϵPXP

1 Þi1;…iP , where ðX1Þai ¼ ðZ†YÞai . Only for N ¼ P, that
is when X1 is a N × N square matrix, we can contract the
SUðNÞ indices with ϵN . The D ¼ M operator,

OIIðX1Þ ¼ ðP!Þ−1ϵNϵPXN
1 ¼ detX1 ð8Þ

(renormalizable only for G422) is invariant under Uð1Þξ.
For P < N ≤ 2P, new combinations ðX2Þai ¼ ðZ†YY†YÞai
allow for the contraction ½ϵNðϵPXP

1 ÞX2
N−P�a1…aN−P .5

However, unless N ¼ 2P, this cannot be contracted into
a P singlet. It is then clear that the relevant quantity that
we need to consider is the least common multiplier
L≡ lcmðP;NÞ, in terms of which these operators have
the structure,

OIIðXnÞ ∼ ðϵNÞLNðϵPÞLPðXP
1…XP

FX
N−FP
Fþ1 ÞLN; ð9Þ

where F ≡ floorðN=PÞ denotes the greatest integer less
or equal to N=P. These operators preserve Uð1Þξ and
break Uð1Þξ0 ; however, since their dimension DðLÞ ¼
ðL=NÞðF þ 1Þð2N − FPÞ grows rapidly with L (for N ¼
4 and P ¼ 3, D ¼ 30) in most cases Uð1Þξ0 breaking
remains an academic issue. In Table I, we list the lowest
dimension of operators that break Uð1Þξ and Uð1Þξ0 .

B. Vacuum structure of the operators

The PQ solution is endangered when the minimum of the
axion potential is shifted away from the one selected by
the nonperturbative QCD effects. Therefore, operators
that break explicitly Uð1ÞPQ in the Lagrangian but have
vanishing VEVs are harmless, since they do not contribute
to determine the minimum. To study the behavior of hOi,
hO0i at the potential minimum, let us start by considering
the renormalizable potential for Y. It reads

VðYÞ ¼ κðT − μ2YÞ2 þ λA; ð10Þ

where T and A are the two invariants introduced above, we
require κ > 0 and λ > − 2N

N−1 κ to ensure a potential
bounded from below, and μ2Y > 0 to trigger SSB. Let us
now write YðxÞ in its singular value decomposition (SVD),

TABLE I. Dimension of the operatorsO0 andO of lowest order
that break, respectively, Uð1Þξ and Uð1Þ0ξ. The expression for
DðLÞ is given in the text.

Case DðO0Þ DðOÞ
(I) M − N ¼ 1 M NðN þ 1Þ
M − N > 1 � � � NðN þ 1Þ
(II) N ¼ P M M
N > P M DðLÞ

5Different field combinations X2 ≠ X1 are needed because
otherwise ðϵNXN

1 Þ would vanish symmetrically since pairs of X1

would necessary have the same SUðPÞ index. Thus, for N ¼ mP,
m different objects up to Xm ¼ Z†ðYY†Þm−1Y are needed.
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ffiffiffi
2

p

vY
Y ¼ UŶV† ¼ UŶeiφYV† → ŶeiφY ; ð11Þ

where vY ¼ ffiffiffiffiffiffiffiffiffiffi
2hTip

, U and V are UðMÞ and UðNÞ unitary
matrices, U and V are the corresponding special matrices
with detðU;VÞ ¼ þ1, φY , defined as

φYðxÞ≡ aYðxÞ
vY

¼ 1

M
arg detU −

1

N
arg detV; ð12Þ

is the NGB of the global Uð1ÞξY , and Ŷ is the matrix of real
non-negative singular values, which can be taken to lie in
the diagonal upper N × N block with all other entries
vanishing. We will henceforth denote by YjN↑, the N × N
upper left block of a matrix Y. The last form in Eq. (11) is
obtained by gauging away UðxÞ and VðxÞ. In this gauge,
the two invariants read

TðŶÞ ¼
XN
i¼1

y2i ; AðŶÞ ¼
X
i<j

y2i y
2
j : ð13Þ

It is now easy to identify the vacuum configurations
Ŷc ≡ hŶi that minimize VðYÞ [65]: T is blind to specific
orientations of Ŷ in field space. This is because it carries a
SOð2 ×M × NÞ symmetry, which is much larger than
GMN , and allows us to rotate different configurations into
each other. Adopting the classification of Ref. [67], it is a
“flavor irrelevant” operator. The structure of Ŷc is then
determined by the extrema of AðYÞ. Since A is non-
negative, its minimum occurs at hAi ¼ 0, that is when
all yi’s but one vanish. The maximum instead occurs at the
point of enhanced symmetry yci ¼ 1=

ffiffiffiffi
N

p
; ∀ i. The sign of

λ thus determines which minimum is selected. We take λ <
0 so that

ŶcjN↑ ¼ diagð1;…; 1Þ=
ffiffiffiffi
N

p
: ð14Þ

The little group is H ¼ SUðNÞV × SUðM − NÞ with
SUðNÞV the “diagonal” combination of SUðNÞ and
of SUðNÞ0 ⊂ SUðMÞ, while the value of φc

Y is left
undetermined.
With regards to the renormalizable potential for the

scalar multiplet Z, we need to distinguish between the two
cases (I) Z ∼ ðM; 1Þ and (II) Z ∼ ðM;PÞ. In case (I), the
potential has the form Eq. (10) (with μY → μZ), but with
AðZαÞ ¼ 0. In the SVD Eq. (11), V → VZ ¼ I, while Ẑ has
a single nonzero entry in some row α with VEV zcα ¼ 1.
In case (II), the matrix VZ appearing in the right-hand

side of the SVD can be gauged away via a SUðPÞ
transformation, so that we can writeffiffiffi

2
p

vZ
Z → UZẐeiφZ ; ð15Þ

where Ẑ has P singular values located in different rows/
columns. For λZ < 0, the potential is lowered when hAðZÞi

is maximum, which corresponds to zca ¼ 1=
ffiffiffiffi
P

p
; ∀ a. The

relative orientation of hYi and hZi is determined by the
D ¼ 4 Hermitian operator,

OZY ¼ TrðZ†YY†ZÞ: ð16Þ

If the coupling is negative, the potential is lowered when
hOZYi is maximum. Since hYY†ijN↑ ∝ IN×N (with vanish-
ing entries in the lower P × P block), this occurs when the
P entries za fall in the upper N positions of Ẑc, and Uc

Z
restricted to the block corresponding to these entries is
unitary. In short, hYi and hZi get maximally aligned, and in
this case, all ϵM type of operatorsO0 vanish on the vacuum.
If the coupling is positive, then hOZYi → 0 which is
obtained when the entries za fill the lower P positions
of Ẑc, and only Uc

ZjP↓ ⊂ Uc
Z is nontrivial (i.e., with non-

vanishing off diagonal entries). hYi and hZi are maximally
misaligned, which implies that all operators of δM type
vanish on the vacuum: hOi ¼ 0. Uc

ZjP↓ is unitary but
otherwise undetermined. However, in case (II), the D ¼ M
operator O0

II Eq. (7) is allowed. The potential is further
lowered proportionally to ∝ jhO0

IIij, which is maximum
for Uc

ZjP↓ → IP×P.
We should stress at this point that since our study

focused on generic gauge invariant combinations of the
scalar fields, the results we have obtained hold also in the
presence of other sources of PQ breaking, e.g., from
operators involving the fermions. In fact, while fermion
loops will indeed contribute to the quantum corrections to
the scalar effective potential, whatever form the effective
potential will acquire, it can only be written in terms of
gauge invariant scalar operators which either preserve the
PQ symmetry, or vanish on the vacuum.
Another issue is whether the vanishing vacuum value of

PQ breaking operators resulting from specific structures of
the field VEVs (e.g., alignment or misalignment) could be
lifted by perturbative higher order corrections. Let us
assume that at the leading order the symmetry breaking
pattern is determined by an operator of the type fOδg, and
let us denote the “aligned” VEV configurations as hYi ¼
Yδ and hZi ¼ Zδ. The gauge group then breaks toGδ which
is the little group of Yδ, Zδ. Due to alignment, we have
OϵðYδ; ZδÞ ¼ 0 so that at the lowest order Uð1Þξ is
unbroken in the vacuum. In order to break Uð1Þξ, higher
order effects must then produce hOϵi ≠ 0, which in turn
requires hYi ≠ Yδ and/or hZi ≠ Zδ. However, these new
VEV configurations will also break further Gδ, and it is
known that this cannot happen as a result of perturbative
effects [68,69].6

6This conclusion can be evaded only if there are additional
massless non-NGB scalar particles in the theory, as is, for
example, the case in the Coleman-Weinberg model [70], but
not in our model.
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C. A SUð4Þ × SUð2Þ model

As a concrete application, let us outline a model in which
Uð1ÞPQ arises automatically and is perturbatively exact
(details of the phenomenology will be discussed else-
where). Case (I) with M − N > 1 is particularly favorable,
since ϵM operators that could endanger the anomalous
Uð1Þξ are not allowed (see Table I). The smallest group in
this class is G42 ¼ SUð4Þ × SUð2Þ. We take Y ∼ ð4; 2Þ,
Z ∼ ð4; 1Þ, QL ∼ ð4; 1Þ, QR ∼ ð1; 2Þ and qaR ¼ ð1; 1Þ (with
a ¼ 1, 2). The flavor relevant scalar terms and the quark
Yukawa operators are

Vf ¼ −λAðYÞ þ ηOZY þ ½ηIOð6Þ
I þ H:c:�; ð17Þ

Vq ¼ κQQLYQR þ
X
a¼1;2

κaQLZqaR þ H:c:; ð18Þ

with λ; η > 0. AðYÞ drives Ŷ → Ŷcj2↑ ∼ diagð1; 1Þ at
the minimum, while OZY misaligns hYi and hZi∼
ð0; 0; z1; z2ÞT , so that G42 breaks to SUð2ÞV . At D ¼ 4,
there are two global symmetries Uð1ÞξY ×Uð1ÞξZ ¼
Uð1Þξ ×Uð1Þξ0 and, although Oð6Þ

I [see Eq. (5)] breaks

Uð1Þξ0 at D ¼ 6, VEVs misalignment implies hOð6Þ
I i ¼ 0

so that there are two NGB,

a ¼ 1

va
ðvYaY þ vZaZÞ; a0 ¼ 1

va
ðvYaY − vZaZÞ; ð19Þ

where v2a ¼ v2Y þ v2Z and, given that all the fields have the
same periodicity, we have set XY ¼ XZ ¼ 1. aðxÞ gets a
mass ma ∼mπfπ=fa from the QCD anomaly with fa ¼
va=j2N j and j2N j ¼ 2ðXY þ XZÞ ¼ 4. There are, how-
ever, only two domain walls because under the Z2 center of
SUð2ÞVhai → hai þ π. At this stage, a0ðxÞ remains mass-
less. However, considering that breaking Uð1Þξ0 does not
imply breaking the gauge symmetry, a0 might eventually
acquire a mass à la Coleman-Weinberg [70] once all the
effects, including those of the fermions, are included in the
effective potential.

III. A GAUGE SYMMETRY FOR A
CLOCKWORK AXION

We now discuss a construction based on rectangular
gauge symmetries that enforces a mechanism for a highly
protected “clockwork” Ũð1ÞPQ. While this the model
embeds some of the properties of the semisimple rectan-
gular gauge groups discussed above, it differs from the
previous constructions in that the local gauge group
includes an Abelian factor, whose role is crucial to enforce
the accidental symmetry. Note also that although we use
suggestive names for some group factors, this should be
regarded as a toy model, not intended to describe real
phenomenology.

Consider the gauge group Uð1ÞY × ½SUð2Þ×SUð3Þ�nþ1.
We call Uð1ÞY hyperchage, and the first SUð2Þ × SUð3Þ
non-Abelian factors isospin and flavor. We introduce three
sets of quarks in the fundamental of color transforming
under these factors as QL ∼ ð2; 3Þ1

3
, uaR ∼ ð1; 1Þ4

3
, daR ∼

ð1; 1Þ−2
3
with a ¼ 1, 2, 3 and two scalar multiplets Yd;u ∼

ð2; 3Þ�1 acquiring VEVs hTðYd;uÞi ¼ v2d;u=2. (We leave
understood that gauge anomalies can be compensated by a
suitable set of “leptons.”) The Yukawa Lagrangian reads

Lq ¼ −
X3
a¼1

ðκauQLYuuaR þ κadQLYddaRÞ þ H:c:; ð20Þ

where κau;d are coupling constants. Note that a coupling
ðϵ2YuYdÞαβ is forbidden because of unsaturated flavor
indices, so that the scalar potential involving Yu;d has
the form VðY†

uYu; Y
†
dYdÞ and, besides local Uð1ÞY , it

carries also an additional accidental symmetry, that is
Uð1Þξu ×Uð1Þξd ¼ Uð1ÞY × Uð1Þξ. Orthogonality with
hypercharge,

YuXuv2u þ YdXdv2d ¼ 0; ð21Þ

fixes the ratio of the Uð1Þξ charges of the scalars as
Xu=Xd ¼ v2d=v

2
u, and we normalize their sum to

Xu þ Xd ¼ 2. We now add two sets of hyperchargeless
fields Σp, Yp (p ¼ 1;…; n) that transform under the
additional gauge factors. For the first three non-Abelian
group factors in the chain, that is SUð3Þ × SUð2Þ1 ×
SUð3Þ1, we have

Σ1
α1i1
α ∼ ð3; 21; 31Þ; Y1α1i1 ∼ ð1; 21; 31Þ…;

with the successive factors p > 1 Σp ∼ ð3p−1; 2p; 3pÞ and
Yp ∼ ð1; 2p; 3pÞ. This allows us to write a chain of n
renormalizable operators,

ðϵ3ϵ2YuYdΣ1Þα1i1Y1α1i1 þ
Xn
p¼2

ðϵ3ϵ2Y2
p−1ΣpÞαpipYpαpip

:

ð22Þ

For each field Σp, we can write a D ¼ 6 operator
ϵ32ðϵ3ϵ30Σ3

pÞðϵ3ϵ30Σ3
pÞ which, together with the operators

in Eq. (22), breaks the global symmetry Uð1Þξ ×
½Uð1ÞΣ ×Uð1ÞY �n to Ũð1ÞPQ under which X̃Y1

¼ −ðX̃u þ
X̃dÞ ¼ −2 and in general, X̃Yp

¼ ð−2Þp while X̃Σ ¼ 0.
Let us now assume that there is no large scale in the

model, and that all dimensional parameters in the scalar
potential are of order vu;d. The operators in Eq. (22) have
multifold effects. First, nonvanishing VEVs would lower
the potential by an amount ∼jhYYΣ0Y 0ij; hence, the field
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VEVs tend to align in specific directions. The combination
ϵ2YuYd in the first term misaligns hYui and hYdi in isospin
space, in such a way that upon Uð1ÞY × SUð2Þ breaking a
Uð1Þ gauge factor is preserved in the usual way. At the
same time, ϵ3YuYdΣ1 rotates hΣ1i in flavor space in the
direction orthogonal to hYui and hYdi while, because of δ21
and δ31 index contraction, hΣ1i and hY1i get aligned in
SUð3Þ1 × SUð2Þ1 space. Isospin breaking provides a neg-
ative mixed term −vuvdΣ1Y1 so that there are regions in
parameter space where Σ1 and Y1 acquire VEVs propor-
tional to vu;d even if their mass square terms are non-
negative. By extrapolation, regions exist in which all the
VEVs in the chain vanish if isospin is unbroken.
Let us now study if Ũð1ÞPQ can be broken by higher

dimension operators. At D ¼ 6, we can write

ϵijðY†
1Σ

†
1YuÞiðY†

1Σ
†
1YdÞj:

This operator vanishes on the vacuum because the first
term in Eq. (22) rotates hΣ1i in the direction orthogonal in
flavor space to hYui and hYdi. As regards the other
multiplets, for each pair ðΣpþ1; Ypþ1Þ, let us now define
ðXnÞγp ¼ ½ΣðΣ†ΣÞn−1Y�γp with n ≥ 1, in terms of which we
can write the following two operators:

ϵ2pðX†
1YpÞðX†

2YpÞðD ¼ 8Þ; ϵ3pX1X2X3ðD ¼ 12Þ;

which also break Ũð1ÞPQ. However, all hXni’s have a single
nonzero component in SUð3Þp space, orthogonal to the
plane hYpiαp − hYpiβp , and this ensures that also these

Ũð1ÞPQ breaking operators vanish on the vacuum. Thus,
Ũð1ÞPQ remains perturbatively exact, broken only by the
QCD anomaly with coefficient j2N j ¼ 3ðXu þ XdÞ ¼ 6.
The corresponding NGB is

ãðxÞ ¼ 1

va

�
vuau þ vdad þ

Xn
p¼1

vpap

�
; ð23Þ

where vu;d;p and au;d;p are the VEVs and orbital modes of
Yu;d;p, and

v2a ¼ X̃2
uv2u þ X̃2

dv
2
d þ

X
p

X̃2
pv2p ≈

v2

3
4nþ1; ð24Þ

where the approximation holds for vu;d;p ≈ v. Taking
now the isospin (and PQ) breaking VEVs at a scale
v ∼ 100 GeV, for n ∼ 20, the radius of the axion compact
space is boosted to va ≳ 108 GeV without introducing any
large fundamental scale.

IV. CONCLUSIONS

The “origin” and “quality” problems of the PQ symmetry
can be solved by assigning the scalar multiplets hosting the
axion to representations of semisimple gauge groups with a
“rectangular” structure. No group factors of large degree are
required, which renders this solution particularly elegant. It
should have not gone unnoticed that such constructions
require that (exotic) quarks must replicate, with some
“generations” obtaining a mass from different VEVs than
others. Admittedly, embedding rectangular symmetries in
the SM to play the role of flavor symmetries appears as a
challenging undertaking, but hopefully not insurmountable.
Succeeding in this venture might uncover unexpected
implications for the SM flavor problem.
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