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We study the two-Higgs-doublet model with a type-II seesaw mechanism. In view of constraints from the
Higgs data, we consider the aligned two-Higgs-doublet scheme and its effects on muon anomalous
magnetic dipole moment, aμ, including both one-loop and two-loop Barr-Zee type diagrams. Thanks to a
sizable trilinear scalar coupling, the Barr-Zee type diagrams mediated by the Higgs triplet fields have a
dominant effect on aμ. In particular, unlike the usual two-Higgs-doublet models that require exotic Higgs
bosons light in mass, the masses of the corresponding particles in the model are of Oð100Þ GeV.
The doubly charged Higgs boson presents a different decay pattern from the usual Higgs triplet model and
thus calls for a new collider search strategy, such as multi-τ searches at the LHC.
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I. INTRODUCTION

A long-standing anomaly in particle physics is the muon
anomalous magnetic dipole moment (dubbed the muon
g − 2 anomaly) denoted by aμ ≡ ðg − 2Þμ=2, where the data
and Standard Model (SM) show an over 3σ disagreement.
The E821 experiment at Brookhaven National Lab (BNL)
has presented a precision measurement of:

aexpμ ¼ 116592089ð63Þ × 10−11; ð1Þ

with an uncertainty of 0.54 ppm [1]. The current theoretical
estimate of aμ within the SM has also reached a comparable
precision of 0.369 ppm, and is shown to be [2]:

aSMμ ¼ 116591810ð43Þ × 10−11: ð2Þ

The deviation between the experiment and the SM is
Δaμ ¼ aexpμ − aSMμ ¼ 279ð76Þ× 10−11 with an achievement
of 3.7σ. The new muon g − 2 measurement performed in
the E989 Run 1 experiment at Fermilab, designed to have a
precision of 0.14 ppm, reports its first measurement as [3]:

aFNALμ ¼ 116592040ð54Þ × 10−11: ð3Þ

Combining all available measurements on the quantity, we
now have a 4.2σ deviation between experiment and SM
expectation,1 accentuating the muon g − 2 anomaly.
On the other hand, since the discovery of Higgs boson at

the LHC in 2012 summer, measurements of the Higgs
signal strengths, commonly used as a measure of deviations
from the SM, have been improving over the years. They are
found to be quite consistent with the SM expectations and,
hence, models with extensions in the scalar sector are
severely constrained. One possibility for a new physics
(NP) model to achieve such a good agreement with the SM
in the Higgs couplings while having exotic Higgs bosons of
mass atOð100Þ GeV scale is when the model shows the so-
called alignment limit [5–7].
In this work, we study the contributions of a model with

an extended scalar sector to the muon g − 2 when the
relevant theoretical and experimental constraints are taken
into account. One purpose is to revisit the two-Higgs-
doublet models (2HDMs), where the earlier studies can be
found in Refs. [8–29]. It is known that to explain the muon
g − 2 in this framework, the new scalar or pseudoscalar
boson are required to be as light as Oð10Þ GeV. Although
such a parameter space is still allowed by the current data, it
is of interest to probe the scenarios where the new scalar
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1The latest lattice QCD calculation for the leading hadronic
vacuum polarization from the BMW collaboration is obtained as
aLO−HVPμ ¼ 707.5ð5.5Þ × 10−10, which leads to a larger aμ, can be
found in [4].
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masses can be more relaxed and of ∼Oð100Þ GeV by
further extending the scalar sector. More importantly, such
a new extension should also address some other unsolved
issues, such as the origin of neutrino mass, that the simple
2HDMs cannot accommodate.
To achieve the above-mentioned goals, we consider the

2HDM with type-II seesaw mechanism [30,31]. In addition
to the SM Higgs doublet, the scalar sector contains another
complex doublet and a complex triplet. Moreover, we will
consider the so-called aligned two-Higgs-doublet scheme
(A2HDS), where the Yukawa couplings of the two Higgs
doublets to the SM fermions are proportional to each other
and one of the neutral physical Higgs boson is SM-like
[32–36]. The A2HDS has the interesting feature that it
reduces to various 2HDM types by taking proper limits on
the alignment parameters. With a small vacuum expectation
value (VEV) induced by electroweak symmetry breaking
from the two Higgs doublets, the Higgs triplet in the model
provides Majorana mass to neutrinos through the so-called
type-II seesaw mechanism [37–42].
It is found that rather than a simple combination of the

2HDM and the type-II seesaw model (also called the Higgs
triplet model or HTM), the model presents several inter-
esting features:

1. The coupling between the heavier neutral Higgs
boson in the 2HDM and the doubly charged Higgs
boson in the HTM can significantly enhance the
muon g − 2 through two-loop Barr-Zee type dia-
grams [43,44], even when the heavier neutral Higgs
mass is ∼Oð100Þ GeV.

2. The Higgs triplet VEV is now determined by three
lepton number-violating parameters instead of just
one in the simple HTM. As a result of the extra
freedom, these parameters are not necessarily of the
same order as the Higgs triplet VEV [30].

3. With a sizable Higgs triplet VEV, the doubly
charged Higgs boson shows a richer decay pattern.
As a result, the doubly charged Higgs boson can
evade the recent ATLAS lower bound of 350 GeV in
pair production [45]. In addition to the like-sign
diboson channel, the doubly charged Higgs boson
can also be probed via channels involving the light
charged Higgs boson.

The paper is organized as follows. In Sec. II, we derive the
Yukawa couplings in the A2HDS and show the relations
between the scheme and thevarious types of 2HDMswithZ2

symmetry. The mass-square relations of the triplet Higgs
bosons are discussed, and the CP-even neutral Higgs
couplings with the charged Higgses are given. In Sec. III,
we discuss the results of one-loop and the dominant two-loop
Barr-Zee type diagrams. Using the bounded parameters, we
present the detailed numerical analysis and discussion in
Sec. IV. SectionV summarizes our findings in this work. The
full scalarmassmatrices and their approximations in the limit
of neglecting vΔ are given in Appendix A.

II. MODEL AND INTERACTIONS

We consider a model where the scalar sector is extended
with a doublet with Y ¼ 1=2 and a complex triplet with
Y ¼ 1. In the following, we discuss the general Yukawa
interactions and scalar potential in this model.

A. Scalar potential and the trilinear scalar couplings

Since the scalar sector is an extension of 2HDM or of
type-II seesaw, in the following, we briefly discuss the
essential parts for our analysis. First, as we will assume
negligibly small mixing between the doublet fields and the
triplet field, it is useful to go to the Higgs basis in the usual
2HDM, defined by:

�
H1

H2

�
¼

�
cβ sβ
−sβ cβ

��Φ1

Φ2

�
; ð4Þ

where vi is the VEVofΦi (i ¼ 1, 2), cβðsβÞ ¼ cos βðsin βÞ,
tan β ¼ v2=v1 and v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
≃ 246 GeV. Written in

terms of field components, the Higgs doublets H1;2 and
triplet Δ are

H1¼
�

Gþ

ðvþH0
1þ iG0Þ= ffiffiffi

2
p

�
; H2¼

�
Hþ

ðH0
2þ iA0Þ= ffiffiffi

2
p

�
;

Δ¼
�

δþ=
ffiffiffi
2

p
δþþ

ðvΔþδ0þ iη0Þ= ffiffiffi
2

p
−δþ=

ffiffiffi
2

p
�
: ð5Þ

In the conventional CP-conserving 2HDM, G�ð0Þ are the
Goldstone bosons, and H� and A0 are the charged Higgs
boson and the CP-odd pseudoscalar physical states. In
addition, the CP-even scalars H0

1 and H0
2 mix to give their

mass eigenstates via:

�
H

h

�
¼

�
cβ−α −sβ−α
sβ−α cβ−α

��
H0

1

H0
2

�
; ð6Þ

where h is the 125-GeV SM-like Higgs boson,
cβ−α ¼ cosðβ − αÞ, sβ−α ¼ sinðβ − αÞ, and α is the mixing
angle of Φ0

1 and Φ0
2. Although δ0, η0 and δ� generally mix

with ðH; hÞ, ðG0; A0Þ, and ðG�; H�Þ, respectively, such
mixings are small and phenomenologically negligible when
vΔ ≪ 1 GeV, as is the case considered in this work. Hence,
it is a good approximation to take h, H, A0, and H� as the
physical states.
The scalar potential of two-Higgs-doublet fields and the

Higgs triplet field under the SUð2ÞL ×Uð1ÞY gauge sym-
metry is given by:

V ¼ VðΦ1;Φ2Þ þ VðΔÞ þ VðΦ1;Φ2;ΔÞ; ð7Þ

where each term is more explicitly given by [30,31]
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VðΦ1;Φ2Þ ¼ m2
1Φ

†
1Φ1 þm2

2Φ
†
2Φ2 −m2

12ðΦ†
1Φ2 þ H:c:Þ þ 1

2
λ1ðΦ†

1Φ1Þ2

þ 1

2
λ2ðΦ†

2Φ2Þ2 þ λ3Φ
†
1Φ1Φ

†
2Φ2 þ λ4Φ

†
1Φ2Φ

†
2Φ1

þ
�
1

2
λ5ðΦ†

1Φ2Þ2þλ6ðΦ†
1Φ1ÞðΦ†

2Φ1Þ þ λ7ðΦ†
2Φ2ÞðΦ†

2Φ1Þ þ H:c:

�
; ð8Þ

VðΔÞ ¼ m2
ΔTrΔ†Δþ λΔ1ðTrΔ†ΔÞ2 þ λΔ2TrðΔ†ΔÞ2; ð9Þ

VðΦ1;Φ2;ΔÞ ¼ ðμ1ΦT
1 iτ2Δ†Φ1 þ μ2ΦT

2 iτ2Δ†Φ2 þ μ3ΦT
1 iτ2Δ†Φ2 þ H:c:Þ

þ ðλ8Φ†
1Φ1 þ λ9Φ†

2Φ2 þ ðλ12Φ†
1Φ2 þ H:c:ÞÞTrΔ†Δ

þ λ08Φ
†
1ΔΔ†Φ1 þ λ09Φ

†
2ΔΔ†Φ2 þ ðλ012Φ†

1ΔΔ†Φ2 þ H:c:Þ: ð10Þ

In terms of the Higgs basis, the minimal conditions for the VEVs of H1;2 and Δ can be obtained as:

�
c4βλ1 þ s4βλ2

2
þ c2βs

2
βλ345 þ 2c3βsβλ6 þ 2cβs3βλ7

�
v2 ¼ −c2βm2

1 − s2βm
2
2 þ 2cβsβm2

12

þ
ffiffiffi
2

p
vΔðc2βμ1 þ s2βμ2 þ cβsβμ3Þ −

v2Δ
2
ðc2βλ̄8 þ s2βλ̄9Þ; ð11aÞ

cβsβðm2
2 −m2

1Þ −m2
12c2β þ

v2

2
ð−c3βsβλ1 þ cβs3βλ2Þ þ

λ345v2

2
cβsβc2β þ

λ6v2

2
ð−3c2β þ c4βÞ þ

λ7v2

2
ð3c2β − s4βÞ

¼ −
ffiffiffi
2

p
cβsβvΔðμ1 − μ2Þ þ

c2βvΔμ3ffiffiffi
2

p þ λ̄8 þ λ̄9
2

cβsβv2Δ; ð11bÞ

�
m2

Δ þ λ̄8
2
c2βv

2 þ λ̄9
2
s2βv

2 þ ðλΔ1 þ λΔ2Þv3Δ
�
vΔ ¼ v2

2
ðc2βμ1 þ s2βμ2 þ cβsβμ3 þ s2βλ̄12Þ; ð11cÞ

where λ̄8 ¼ λ8 þ λ08, λ̄9 ¼ λ9 þ λ09, λ̄12 ¼ λ12 þ λ012, and the
VEV of Δ is denoted by vΔ. These relations are useful to
simplify the expressions of scalar masses and trilinear
scalar couplings. We note that since no discrete symmetry
is imposed in the 2HDM, both H1;2 Higgs doublets are
indistinguishable. It is simpler to directly use the Higgs
basis in the scalar potential. To compare our results with
those given in Ref. [31], here we employ the generic Higgs
flavor basis, which is used in Ref. [31]. Nevertheless, we
show the more compact expressions in Appendix B.
If we drop the small effect from ðλΔ1 þ λΔ2Þv3Δ, the

Higgs triplet VEV can be obtained as:

vΔ ≈
v2ffiffiffi
2

p c2βμ1 þ s2βμ2 þ cβsβμ3
M̃2

Δ
; ð12Þ

with M̃2
Δ ¼ m2

Δ þ ðλ̄8c2βv2 þ λ̄9s2βv
2 þ λ̄12s2βÞv2=2. Since

vΔ is bounded by the electroweak precision measurement,
and with the exception of the neutrino mass, its effect is
irrelevant to the current study. Precision measurement of
the electroweak ρ parameter gives a constraint that
vΔ ≲ 8 GeV [46]. To illustrate the importance of trilinear
scalar couplings between the two Higgs doublets

and the Higgs triplet on the muon g − 2, we take
vΔ ∼Oð10−3–10−4Þ GeV. The considered parameter
region can be easily achieved. For instance, using
c2βμ1 þ s2βμ2 þ cβsβμ3 ≈ 10−3 GeV and M̃Δ ¼ 500 GeV,
we obtain vΔ ≈ 1.7 × 10−4 GeV. As a result, the mass
mixings of scalars, pseudoscalars, and charged scalars
between Φi and Δ are phenomenologically negligible,
justifying our earlier assumption. Due to the doublet-triplet
coupling terms in Eq. (10), the G0;� and H�ðA0Þ in the
Higgs basis of 2HDM are not the Goldstone modes and the
physical states, and the ðG0; A0; η0Þ and ðG�; H�; δ�Þ
states will respectively mix. The only nonmixing state is
the doubly charged Higgs, where from Eq. (9), its mass can
be expressed as:

m2
δ�� ¼ m2

Δ þ λΔ1v2Δ þ v2

2
ðc2βλ8 þ s2βλ9 þ λ12s2βÞ: ð13Þ

It can be seen that the new doublet-triplet couplings terms
shift the δ�� mass.
The detailed discussions for the scalar, pseudoscalar, and

charged scalar mass matrix are given in Appendix A. We
summarized the characteristics as follows: from Eqs. (A2)
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and (A7), it can be seen that m2
G0 and m2

G� are proportional
to v2Δ. With vΔ ∼Oð10−4Þ GeV, their values can be
dropped. If μ3 ¼ tan 2βðμ1 − μ2Þ is required, we can find
that the mixing matrix elements of G0A0 and G−Hþ

become Oðv2ΔÞ, and the G0ðA0Þη0, G−ðH−Þδþ, and
hðHÞδ0 matrix elements are of OðvΔÞ. In comparison with
the mass-square elements of other massive particles, their
mixing effects are small. Although the small mixing effects
can have important influence on some processes, e.g.,
δ�� → W�H� can be induced, their influence on the muon
g − 2 can be indeed neglected. Hence, when we numeri-
cally estimate the muon g − 2, we take hðHÞ, H�ðδ�Þ and
A0 as the physical states; however, for other processes, one
can take the mixing effects into account if necessary.
The new doublet-triplet couplings can cause the triplet

scalar mass splittings, and the mass differences can be
found as:

m2
δ� −m2

δ�� ¼ v2Δ
2
λΔ2 þ

v2

4
ðc2βλ08 þ s2βλ

0
9 þ λ012s2βÞ;

m2
δ0
−m2

δ�� ¼ ð2λΔ1 þ 3λΔ2Þv2Δ
þ v2

2
ðc2βλ08 þ s2βλ

0
9 þ λ012s2βÞ: ð14Þ

It can be seen that the mass split can be or be less
than Oð100Þ GeV.
The trilinear interactions among a neutral Higgs boson

and two charged Higgs bosons are given by:

LH0
i SS

¼ −v½λH0
i δ

−−δþþH0
i δ

−−δþþ þ λH0
i δ

−δþH
0
i δ

−δþ

þ λH0
i H

−HþH0
i H

−Hþ�; ð15Þ

where the couplings are written as:

λH0
1
δ−−δþþ ¼ λ8c2βþ λ9s2βþ λ12s2β;

λH0
2
δ−−δþþ ¼ ð−λ8þ λ9Þcβsβþ λ12c2β;

λH0
1
δ−δþ ¼

�
λ8þ

λ08
2

�
c2βþ

�
λ9þ

λ09
2

�
s2βþ

�
λ12þ

λ012
2

�
s2β;

λH0
2
δ−δþ ¼−

�
λ8− λ9þ

λ08− λ09
2

�
þ
�
λ12þ

λ012
2

�
c2β;

λH0
1
H−Hþ ¼ ½λ1þ λ2−2ðλ4þ λ5Þ�c2βs2βþ λ3ðc4βþ s4βÞv

−2ðλ6− λ7Þcβsβc2β;
λH0

2
H−Hþ ¼−λ1cβs3βþ λ2c3βsβ − λ345cβsβc2β

− λ6ð3c2βs2β − s4βÞþ λ7ðc4β −3c2βs
2
βÞ: ð16Þ

In the alignment limit of cβ−α ¼ 0, the h and H trilinear
terms can be easily obtained by the replacement ofH0

1 → h
and H0

2 → −H. Therefore, the corresponding trilinear
couplings have the relations:

λhδ−−ð−ÞδþþðþÞ ¼λH0
1
δ−−ð−ÞδþþðþÞ ; λhH−Hþ ¼λH0

1
H−Hþ ;

λHδ−−ð−ÞδþþðþÞ ¼−λH0
2
δ−−ð−ÞδþþðþÞ ; λHH−Hþ ¼−λH0

2
H−Hþ : ð17Þ

We note that the pseudoscalar A0 does not couple to the
charged scalars in the CP-conserving case.

B. Yukawa interactions

The most general Yukawa couplings in the model are
given by:

−LY ¼ Q̄LYd
1DRΦ1 þ Q̄LYd

2DRΦ2

þ Q̄LYu
1URΦ̃1 þ Q̄LYu

2URΦ̃2

þ L̄Yl
1lRΦ1 þ L̄Yl

2lRΦ2 þ
1

2
LTCyνiτ2ΔL

þ H:c:; ð18Þ

where the flavor indices are suppressed, yν is a symmetric
matrix,QL (L) denotes the quark (lepton) doublets, qR ðlRÞ
denotes the quark (lepton) singlets, Yf

1;2 with f ¼ u; d;l
are respectively the Yukawa matrices for the up-type
quarks, down-type quarks, and charged leptons, C is the
charge conjugation operator, and Φ̃i ≡ iτ2Φ�

i with τ2 being
the Pauli matrix.
Since Φ1 and Φ2 simultaneously couple to each type of

fermions, flavor-changing neutral currents (FCNCs) natu-
rally arise at tree level. The FCNC effects are usually
suppressed by introducing, for example, a Z2 discrete
symmetry [47]. In this case, the 2HDM can be categorized
into Type-I [9,48], Type-II [48,49], Type-X, and Type-Y
[50–53]. See Ref. [54] for a detailed review. In addition to
the above-mentioned schemes in 2HDM, the tree-level
FCNCs can also be avoided by imposing a certain relation
between Yf

1 and Yf
2 , where f ¼ u, d, and l. The A2HDS

assumes the relation Yf
2 ¼ ξfY

f
1 , where ξf is a proportion-

ality constant [32]. Alternatively, one may also impose the
condition Yf

2 ¼ NIY
f
1N

†
I [55–57], where the possible NI

matrices can be found in Ref. [55]. In this work, we are
considering the A2HDS.
With the assumed VEVs ofΦi, Y

f
1 and Y

f
2 in Eq. (18) can

be linearly combined to form two matrices:

Xf ¼ cβY
f
1 þ sβY

f
2 ;

Zf ¼ −sβY
f
1 þ cβY

f
2 ; ð19Þ

so that XfðZfÞ is associated with the doublet H1ð2Þ, and the
fermion mass matrix can be obtained as Mf ¼ Xfv=

ffiffiffi
2

p
.

Moreover, Mf can be diagonalized by the unitary matrices

Uf
L;R in the way Mdia

f ¼ Uf
LMfU

f†
R . If Yf

1 and Yf
2 are two

linearly independent matrices and cannot be diagonalized
simultaneously, then tree-level FCNCs can arise due to the
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Zf couplings because its off-diagonal elements cannot be
removed when Xf is diagonalized. When the A2HDS

relation Yf
2 ¼ ξfY

f
1 is taken, the Yukawa matrix can be

related to the mass matrix as:

Yf
1 ¼

ffiffiffi
2

p

cβv
1

1þ ξftβ
Mf: ð20Þ

As a result, both Yf
1 and Yf

2 now can be diagonalized
simultaneously, and the H0

1;2 FCNCs are suppressed at the
tree level.
For simplicity, we only concentrate on theCP-conserving

case and assume ξf to be real, though they can generally be
complex. Using Eqs. (4) and (6) and the notations used in
[32], the mass terms and Yukawa interactions with h, H,
A0, and H� are found to be

−LY ¼
X

f¼u;d;l

�
f̄LMdia

f fR þ cβ−α − ζfsβ−α
v

f̄LMdia
f fRH þ sβ−α þ ζfcβ−α

v
f̄LMdia

f fRh

�

þ
X

f¼u;d;l

ζfsf
v

f̄LMdia
f fRðiA0Þ þ

ffiffiffi
2

p

v
ūðVCKMζdMdia

d PR −Mdia
u ζ�uVCKMPLÞdHþ

þ
ffiffiffi
2

p

v
ν̄ðVPMNSζlMdia

l PRÞlHþ þ H:c:; ð21Þ

where sd;l ¼ þ1, su ¼ −1; PRðLÞ ¼ ð1� γ5Þ=2 are the
chirality projection operators, VCKM ¼ Vu

LV
d†
L is the

Cabibbo-Kobayashi-Maskawa (CKM) matrix [58,59],
VPMNS ¼ Vν

LV
l†
L is the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix [60,61], and

ζf ¼
ξf − tβ
1þ ξftβ

; ð22Þ

with tβ ¼ tan β. In general, ζf can be complex numbers as
ξf [32], and their magnitudes can be large without requiring
a large tan β. In this study, we only focus on the
CP-conserving case. The A0 and H� Yukawa couplings
do not depend on cβ−α ðsβ−αÞ. For comparison, we show in

Table I the vanishing and nonvanishing Yf
1;2 for various

2HDM types and the associated ζf. In particular, ζf in
Type-I, -II, -X, and -Y can be obtained from the A2HDS by
taking an appropriate limit of ξf and thus ζf:

Yf
2 ¼ 0∶ ξf ¼ 0 → ζf ¼ −tβ;

Yf
1 ¼ 0∶ ξf ¼ ∞ → ζf ¼ t−1β : ð23Þ

Since the SM-like Higgs couplings generally depend on
cβ−α ðsβ−αÞ and ζf, the current Higgs production and decay
measurements put stringent constraints on the value of
cβ−α. Here we simply take the alignment limit with
β − α ≈ π=2 [5], i.e., cβ−α → 0 (sβ−α → 1). As a result,
the H and A0 couplings to the SM fermions have the same
magnitude and are dictated by ζf. In this work, we
demonstrate how a large ζl can affect the muon g − 2
when mH > mh and the Hδþþδ−− and Hδþδ− couplings
are present.
Using the component fields of the Higgs triplet shown in

Eq. (5), the neutrino mass and lepton Yukawa interactions
with the triplet fields are given by:

LY ⊃
1

2
νCLMννL þ 1

2
νCLMννL

δ0 þ iη0

vΔ
− νCL

yνffiffiffi
2

p lLδ
þ

−
1

2
l̄C
Ly

νlLδ
þþ þ H:c:; ð24Þ

where fC ¼ Cγ0f� and Mν ¼ yνvΔ=
ffiffiffi
2

p
is the neutrino

mass matrix. In order to fit the neutrino data, the values of
ðMνÞij has to be of Oð10−3–10−2Þ eV [30,62,63]. In the

TABLE I. Vanishing (mark by 0) and nonvanishing (marked by ×) Yukawa matrices of various 2HDM types and the corresponding ζf.

Yd
1 Yu

1 Yl
1 Yd

2 Yu
2 Yl

2 ζu ζd ζl

Type I 0 0 0 × × × t−1β t−1β t−1β
Type II × 0 × 0 × 0 t−1β −tβ −tβ
Type X 0 0 × × × 0 t−1β t−1β −tβ
Type Y × 0 0 0 × × t−1β −tβ t−1β
A2HDS × × × × × × ξu−tβ

1þξutβ

ξd−tβ
1þξdtβ

ξl−tβ
1þξltβ
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type-II seesaw model with the assumed triplet VEV
vΔ ∼Oð10−3–10−4Þ GeV, the Yukawa couplings yνij are
very small, ≲Oð10−7Þ. Therefore, δ� and δ�� of
Oð102Þ GeV mass have negligible effects on most lepton
processes.
As we will numerically show below, the Yukawa

couplings as well as the trilinear scalar couplings
Hδ−−ð−ÞδþþðþÞ and HH−Hþ, arising from the scalar
potential, play important roles in producing a sizable
correction to the muon g − 2.

III. ONE- AND TWO-LOOP MUON g − 2
The electromagnetic interaction of a lepton can be

written as:

l̄ðp0ÞΓμlðpÞ

¼ l̄ðp0Þ
�
γμF1ðk2Þ þ

iσμνkν
2ml

F2ðk2Þ
�
lðpÞ: ð25Þ

The lepton anomalous magnetic dipole moment is then
defined by

al ¼ gl − 2

2
¼ F2ð0Þ: ð26Þ

Since the magnetic moment is associated with dipole
operator, the lepton g − 2 originates from radiative quan-
tum corrections. In the model, the one-loop corrections
from new physics are induced by the mediation of H, A0,
and H�, where the associated Feynman diagrams are
shown in Figs. 1(a) and 1(b). Moreover, it is known that

the two-loop Barr-Zee type diagrams can have important
contributions to the magnetic dipole moment due to a large
coupling enhancement [43,44]. The potentially large two-
loop diagrams mediated by heavy fermions, including
top, bottom, and τ, are shown in Fig. 1(c). The essential
mechanism contributing to the muon g − 2 in the model is
the two-loop with Barr-Zee type diagram mediated by the
charged scalars, including δþþ, δþ, and Hþ, as shown in
Fig. 1(d). In addition to the lepton Yukawa coupling, such
diagrams further enjoy the enhancement of the electric
charges associated with the charged scalars.
The one-loop corrections to the anomalous magnetic

dipole moment in the 2HDM have been studied long time
ago [8–11]. Using the Yukawa couplings shown in
Eq. (21), the muon g − 2 from Fig. 1(a) and 1(b) can be
expressed as:

Δa1;H=A0

μ ¼ m2
μ

8π2v2

�
ðyHl Þ2

Z
1

0

rμHx
2ð2 − xÞ

1 − xð1 − rμHxÞ

− ðyA0

l Þ2
Z

1

0

rμ
A0x3

1 − xð1 − rμ
A0xÞ

�
;

Δa1;H
�

μ ¼ m2
μζ

2
l

8π2v2

Z
1

0

rμH�x2ð1 − xÞ
1 − xð1 − rμH�xÞ ; ð27Þ

where rfB ¼ m2
f=m

2
B with B ¼ H, A0, H� and the Yukawa

couplings yH;A0

f are defined as:

yHf ¼ sβ−αζf − cβ−α; yA
0

f ¼ −sfζf: ð28Þ

(a) (b)

(d)(c)

FIG. 1. One-loop and two-loop Barr-Zee type Feynman diagrams for the muon g − 2, where f in plot (c) includes top (bottom) quark
and τ lepton.
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From the expressions, it can be seen that the induced muon
g − 2 is proportional to m4

μ. One of the four factors of mμ

comes from the definition in Eq. (25), another comes from
the mass insertion for chirality flip, and the rest two enter
through the two Yukawa interaction vertices, each of which
is proportional to the muon mass. Thus, if the intermediate
scalar mass is of Oð100Þ GeV, the resulting muon g − 2 is
far below 10−9. To get Δaμ up to ∼10−9, the mediating
particle has to be as light as tens of GeV. This was the
observation previously found for the 2HDM in the
literature.
Following the results shown in Ref. [19], the two-loop

Barr-Zee type diagrams with fermion and charged scalars
can be written as:

Δa2;fμ ¼
X

f¼t;b;τ

αemm2
μN

f
CQ

2
f

4π3v2
½yHf yHl JHf ðrfHÞþyA

0

f yA
0

l JA
0

f ðrf
A0Þ�;

Δa2;Sμ ¼
X

S¼δþþ;δþ;Hþ

αemQ2
Sr

μ
H

8π3
ζlλHS�SJSðrSHÞ; ð29Þ

where Nf
C is the number of color for the fermion f, QP

(P ¼ f, S) is the electric charge of the particle, and the loop
functions are given by:

JHf ðzÞ ¼
z
2

Z
1

0

2xð1 − xÞ − 1

z − xð1 − xÞ ln

�
z

xð1 − xÞ
�
;

JA
0

f ðzÞ ¼ z
2

Z
1

0

1

z − xð1 − xÞ ln
�

z
xð1 − xÞ

�
;

JSðzÞ ¼
1

2

Z
1

0

xð1 − xÞ
z − xð1 − xÞ ln

�
z

xð1 − xÞ
�
: ð30Þ

The two-loop results are proportional tom2
μ because there is

only one muon Yukawa coupling involved. It can be seen
that when yH=A

u;d are strictly bounded by the experimental

data, their contributions become subleading, and Δa2;Sμ is
the dominant effect.

IV. NUMERICAL ANALYSIS

In this section, we present how we choose the parameters
in our model, how they affect Δaμ at one-loop and partial
two-loop levels, and how the doubly charged Higgs
phenomenology at the LHC is modified.

A. Parameter choice

Among the parameters in the Yukawa and scalar sectors,
most relevant ones for the muon g − 2 are combinations of
the Yukawa matrix elements, the quartic scalar couplings,
and tβ that appear in various couplings. More explicitly, the
relevant parameters are: cβ−α ðsβ−αÞ, ζu;d;l, mH;A0;H� ,
mδ��;δ� , λHδ−−δ−− , λHδ−δ− , and λHH−Hþ . We will show how
they contribute the muon g − 2.

Before a numerical analysis, we first need to find the
allowed parameter space for the model. All potential
constraints from experimental measurements, including
various flavor physics processes, Higgs data, and electro-
weak precision observables, and theoretical bounds, such
as perturbative unitarity and positivity of the scalar poten-
tial, have to be taken into account. Recently, such a global
fit, considering the theoretical constraints has been done in
the A2HDS [64]. In this work, we will follow the global fit
results in Ref. [64] when the parameter values are taken for
the numerical estimations.
Two scenarios, the light scenario and the heavy scenario,

are discussed by in Ref. [64], where the former refers to the
case with mH > mh and the latter has mH < mh. Since we
are interested in the heavy scalar boson contribution toΔaμ,
we will concentrate on the light scenario.
The values of parameters used in our numerical analysis

are described below. Using the experimental data at 2σ
errors, the global fit gives jcβ−αj < 0.04. Thus, we will take
the alignment limit of cβ−α ¼ 0. Under this limit, the
HW−Wþ andHZZ couplings vanish identically. It is found
that ζu;d have to be of the same sign and their values are
restricted to small-value regions when jζlj approaches the
boundary of maximum, i.e., jζlj ¼ 100. Moreover, the sign
of ζl cannot be determined by the global fit, and it always
appears in the product along with other parameters in Δaμ,
e.g., ζlλHδ−−δþþ . We can thus fix the value of ζl and let the
associated parameter vary. In numerical calculations, we
take:

ζu ¼ 0.1; ζd ¼ 10; ζl ¼ −100: ð31Þ

Since the maximally allowed value of jζlj in the negative
region is larger than that in positive region, we assume ζl
to be negative. The signs of ζu;d are taken to fit the
positive Δaμ.
From Eq. (16), it is seen that the trilinear couplings have

involved relations with the parameters in the scalar poten-
tial. If we assume that the 2HDM with a Z2 symmetry
contributes little to the HH−Hþ coupling, the λ6;7 param-
eters in A2HDS become the dominant source, i.e.,

λHH−Hþ ≃ λ6ð3c2βs2β − s4βÞ − λ7ðc4β − 3c2βs
2
βÞ: ð32Þ

Since the constrained λ6;7 values allow λ6 ≃ −3.5 and
λ7 ≃ −2.5, we will take λHH−Hþ ≈ 1.5 to estimate the muon
g − 2.
According to the results shown in Ref. [31], the allowed

values for jλ8;9j and jλ08;9j can be of Oð10Þ,2 where the
Higgs data and the theoretical constraints have been
imposed. With cβ ¼ sβ ¼ 1=

ffiffiffi
2

p
, it is expected that

2The parameters λ8;9 and λ08;9 used in this paper correspond
respectively to the parameters λ6;7;8;9 in Ref. [31].
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λHδ−−ð−ÞδþþðþÞ ≲ 5 can be conservative upper bounds. The
upper bound is consistent with that used in Ref. [33] for
the HH−Hþ coupling due to the perturbative requirement.
For simplicity, we take λHδ−δþ ¼ λHδ−−δþþ . Since ζl and
λHδ−−δþþ show up together in Δaμ, we can consider
ζlλHδ−−δþþ as a single variable because ζl ¼ −100 is fixed.
Global fits cannot determine the masses of the involved

new scalar particles. Nevertheless, their mass differences
are strongly correlated and constrained. In our numerical
analysis, we take mδ� ¼ mδ�� þ 100 GeV according to
Eq. (14). When discussing the CP-even or CP-odd scalar
effects, we take mHðA0Þ as a free parameter. When combin-
ing the effects of H and A0 together, we take mH ¼ mH�

and mA0 ¼ mH � 50 GeV.
The parameters jζlj andmH� can also be bounded by the

Michel parameters [65] in the τ decays [66–70]. The
Michel parameters in the leptonic τ decay are defined as:

dΓτ→lν̄lντ

dx
∝ f0ðxÞ þ ρlf1ðxÞ þ ηl

ml

mτ
f2ðxÞ

− Pτξlðg1ðxÞ þ δlg2ðxÞÞ; ð33Þ

where x ¼ El=Elmax
and Elmax

¼ mτð1þm2
l=m

2
τÞ=2, Pτ is

the τ-lepton polarization, and the explicit expressions of
functions fi can be found in [46]. In the SM, the Michel
parameters are predicted as ρl ¼ 3=4, ηl ¼ 0, ξl ¼ 1, and
δl ¼ 3=4, whereas the current experimental values are:
ρexpl ¼ 0.749� 0.008, ηexpl ¼ 0.015� 0.021, ξexpl ¼
0.981� 0.031, and ðδlξlÞexp ¼ 0.79� 0.04. We will con-
centrate on the ηl and ξl parameters because they are
sensitive to the scalar couplings.
The general transition matrix element for τ → lν̄lντ can

be written as [71]:

M ¼ 4
GFffiffiffi
2

p
X
κ¼S;V;T
ϵ;λ¼R;T

gκϵλhl̄ϵjΓκjðνlÞnihðν̄τÞmjΓκjτλi; ð34Þ

where κ ¼ S, V, T denotes the type of interaction,
ϵðλÞ ¼ R, L is the lepton chirality, and the chirality of
mðnÞ can be determined when κ and ϵðλÞ are fixed. In the
SM, due to the V − A interaction, we only have gVLL ¼ −1.
Since the involved couplings in the A2HDM are scalar and
vector types and the H�-Yukawa coupling is proportional
to the lepton mass, we only need to consider the muon
mode and the effective couplings gSRR and gVLL. Thus, the
Michel parameters of ημ and ξμ are expressed as:

ημ ¼
1

2
ReðgSRRgV�LLÞ;

ξμ ¼ jgVLLj2 −
1

4
jgSRRj2; ð35Þ

where gSRR and gVLL with one-loop corrections [67] in the
model are given by:

gSRR ¼ mμ

mτ

�
mτζl
mH�

�
2

;

gVLL ¼ −1 −
ζ2l

32π2
m2

τ

v2

�
F

�
m2

A0

m2
H�

�
þ F

�
m2

H

m2
H�

��
; ð36Þ

with the loop function F defined by

FðaÞ ¼ 1

2
þ 1þ a
4ð1 − aÞ ln a: ð37Þ

To illustrate the constraints from the measured Michel
parameters, we show the contours of ημ (left panel) and ξμ
(right panel) in the jζlj-mH� plane in Fig. 2, where
mA0 ¼ 50 GeV and mH ¼ 100 GeV are used. The dashed
line in the left plot corresponds to the 2σ lower bound of
ηexpμ , pointing to the lower right region as more favorable
parameter space. For example,mH� ≲ 180 GeV is excluded
when jζlj ¼ 100. The right plot, on the other hand, does
not show much constraining powers as the entire parameter

FIG. 2. Contours for the Michel parameters ημ (left panel) and ξμ (right panel) as a function of jζlj andmH� , wheremA0 ¼ 50 GeV and
mH ¼ 100 GeV are used.
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space gives values consistent with ξexpμ at the 2σ level.
Therefore, to avoid the constraint from ηexpμ , we takemH� ≳
180 GeV in the following numerical analysis.

B. Muon g− 2
In the following, we divide our discussion of muon g − 2

into three contributing parts.

1. One-loop contribution

According to Eq. (27), Δa1;H=A0

μ and Δa1;H
�

μ with
cβ−α ¼ 0 depend only on the scalar boson masses and
the parameter ζl. Thus, we show Δa1;Xμ as a function of mX

for X ¼ H;A0; H� in Fig. 3(a)–3(c), respectively, where
the curves correspond to jζlj ¼ ð30; 50; 100Þ. Clearly, the
pseudoscalar A0 and the charged-Higgs H� contributions
are always negative at the one-loop level. The H� con-
tribution is small and can be neglected. Although H makes
a positive contribution to Δaμ, Δa1;Hμ > 10−9 is possible
only when mH is lighter than about 50 GeV. According to
the global fit results in the A2HDS with mH < mh scenario
[64], such light CP-even scalar is still allowed. However,
the associated mA0 parameter can be of Oð100Þ GeV.
To demonstrate the correlation between mH and mA0 ,
the contours of the combined Δaμ as a function of mH

and mA0 are shown in Fig. 3(d), where ζl ¼ −100 and
mH� ¼ 180 GeV are used. When A0 with the allowed mass
of Oð102Þ GeV is included, comparing to the case without
A0 contribution, the mH value required for Δaμ > 10−9 has
to be shifted downward. Hence, in the region of
mH > 100 GeV, the one-loop contribution to the muon
g − 2 within the 2HDM is far below 10−9.

2. Barr-Zee contribution within the 2HDM

Before discussing the new two-loop effects on Δaμ in
our model, we first focus on the analysis within the 2HDM.
As discussed before, the main two-loop Barr-Zee diagram
contributions are usually from the fermion and charged
Higgs loops shown in Figs. 1(c) and 1(d), respectively. In
order to understand the influence of these effects on Δaμ,
we separately show the fermion and H� contributions in
Fig. 4, where plot (a) [(b)] is mediated by H ½A0�; the
dashed, dotted, dot-dashed, and dot-dot-dashed curves are
the top, bottom, τ-lepton, and H� contributions, respec-
tively, and the solid curves are the combined fermion- and
H�-loop Barr-Zee contributions and the one-loop results.
In the numerical estimates, we take ζu ¼ 0.1, ζb ¼ 10, and
ζl ¼ −100, consistent with the numerical results given in
Ref. [64]. To estimate the H� contribution, we use the

(a)

(b)

(c) (d)

FIG. 3. One-loop muon g − 2 within the 2HDM, induced by the mediation of (a) H, (b) A0, and (c) H�, as a function of respectively
mH;A0;H� , where the curves correspond to jζlj ¼ ð30; 50; 100Þ. (d) Contours of Δaμ with the combination of H0, A0, and H�, where
ζl ¼ −100 and mH� ¼ 180 GeV are used.
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conservative value of λHH−Hþ ¼ 2 and set mH� ¼ mH.
In the H-mediated part given in Fig. 4(a), it can be seen
that due to the strict bounds on ζu;d the top- and bottom-
quark contributions are smaller than 2 × 10−10, although
an enhancement factor of ζl is already applied. The
H-mediated τ-loop contribution is always negative and
sizable in magnitude. Intriguingly, using λHH−Hþ ¼ 2, it is
found that the H�-loop in the mass region of mH;H� > mh

gives the dominant effect, and it can overcome the negative
τ-loop contribution, so that Δaμ is positive.
In the A0-mediated part given in Fig. 4(b), similar to the

case mediated by H, the top-quark and bottom-quark
effects are small. However, the bottom-quark and τ-lepton
contributions interchange sign, and the latter becomes the
dominant effect. The sign difference arises from the loop
functions JHτ ðzÞ and JA

0

τ ðzÞ shown in Eq. (30). For the
region of mA0 > mh, it can be seen from Fig. 4(b) that its
two-loop effect on Δaμ is smaller than 10−9. Nevertheless,
when A0 is lighter than the SM-like Higgs, its contribution
to Δaμ increases significantly. When the negative one-loop
contribution is included, one observes that the A0 contri-
bution to Δaμ can reach 2 × 10−9 when mA0 ≈ 55 GeV.
Following the global analysis in the A2HDS [64], when
mH > mh, such a light pseudoscalar boson is not excluded
by the current experimental data. Hence, the conclusion is
consistent with that obtained in the 2HDM type-X [18,20].

3. Barr-Zee contribution from the triplet extension

It has been shown that when the CP-even and CP-odd
scalar masses are heavier than the observed Higgs mass, the
H-mediated and A0-mediated effects in the 2HDM become
ineffective to accommodate the measured Δaμ. In the
following analysis, we discuss the new contributions from
the doubly and singly charged Higgs bosons derived from
the Higgs triplet extension. In the analysis, we focus on the
mH > mh scenario, following the parameter constraints
given in Ref. [64].

According to Eq. (29), in addition to the mass factor
Δa2;Yμ (Y ¼ δþþ; δþ) further depends on the product
ζlλHY�Y . Since the δþ-loop effect is similar to the Hþ-
loop effect, its contribution is expected to be of Oð10−10Þ.
However, the doubled electric charge of δþþ results in a
factor of 4 enhancement. We show contours of Δa2;δ

þþþδþ
μ

in the mH-ζlλHδ−−δþþ plane in Fig. 5(a), where λHδ−δþ ¼
λHδ−−δþþ , mδ� ¼ mδ�� þ 100 GeV, and mδ�� ¼ 350 GeV.
Fixing ζl ¼ −100, we treat λHY�Y as a variable and set
λHY�Y ≲ 5 to satisfy the perturbativity bound [33]. We
observe that Δa2;δ

þþþδþ
μ ≈ 1.3 × 10−9 can be achieved in

the model when mH ≈ 200 GeV and ζlλHδ−−δþþ ≈ −320.
Even when using the maximal value of jζlλHδ−−λþþj ¼ 500,
Δa2;δ

þþþδþ
μ can still reach 10−9 at mH ≈ 500 GeV. In

Fig. 5(b), we show contours of Δa2;δ
þþþδþ

μ in the mδ�� −
ζlλHδ−−δþþ plane, where mH ¼ 200 GeV is taken. Clearly,
with ζlλHδ−−δþþ ≈ −500, we can have Δa2;δ

þþþδþ
μ ≈ 10−9 at

mδ�� ≈ 500 GeV. These results demonstrate that the mea-
sured muon g − 2 can be readily achieved even when
the exotic Higgs bosons in our model have mass of
a few × 100 GeV.
Besides the enhancement from the two units of electric

charge, it is interesting to note the other enhancement factor
associated with the doubly charged Higgs boson by
comparing the result with that induced from the τ-loop.
Because the H and A0 couplings to muon are the same in
the alignment limit, if we further set mH ¼ mA0 ¼ mX the
only different factors come from the couplings, A0ττ and
HH−Hþ, and from the loop integrals, JA

0

f ðzÞ and JSðzÞ
defined in Eq. (30). For simplicity, we use zχJχ to represent
the effect for the τ-loop and the δþþ-loop, where zχ and Jχ
are the associated coupling factor and integral function,
respectively. We show zχJχ as a function mX in Fig. 6,
where ζl ¼ −100, mδþþ ¼ 350 GeV, and λHδ−−δþþ ¼ 3 are
applied. It can be seen that once mX > 160 GeV, the δþþ-
loop contribution is larger than the τ-loop.

(a) (b)

FIG. 4. Two-loop muon g − 2 from Figs. 1(c) and 1(d) induced by the mediation of (a) H and (b) A0 as a function of respectively
mH;A0 , where the dashed, dotted, dot-dashed, and dot-dot-dashed curves are the top, bottom, τ-lepton, and H� contributions,
respectively. The solid curves contain both one-loop and two-loop effects.
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So far, we have just analyzed the effects of the
Higgs triplet field on the muon g − 2. Although the
2HDM contribution to Δaμ becomes less significant as
mA0 > mh, its effects are part of the model and we should
combine them with the Higgs triplet effects altogether.

According to the global fit analysis presented in Ref. [64],
the masses ofH, A0, and H� are strongly correlated and, in
themH > mh scenario, A0 andH� can be heavier or lighter
than h. For the purpose of illustration, we show the cases
with mH� ¼ mH for mA0 ¼ mH þ 50 GeV and for mA0 ¼
mH − 50 GeV in Figs. 7(a) and 7(b), respectively. The
dashed, dotted, and dot-dashed curves give respectively the
fermion-loop, H�, and δþþ;þ contributions. The dot-dot-
dashed curves are the two-loop 2HDM results, where the
fermion- and H�-loop contributions are summed up. The
solid curves combine all the above-mentioned contribu-
tions, including the one-loop effects. To show the maximal
contribution from the Higgs triplet field, we take
λHδ−−δþþ ¼ 5 in the plots, and the other parameter are
taken to be the same as those used in the earlier plots. In
order to see the effects of ζl andmδ�� on Δaμ, we show the
contours of Δaμ (in units of 10−9) in the plane of ζl and
mδ�� in Fig. 8, where the parameter values are taken to be
the same as those used in Fig. 7 with the exception of
mH;H� ¼ 180 GeV and mA0 ¼ 120 GeV.
Based on the analyses, we summarize the results as

follows:

FIG. 6. Product of coupling factor and loop-integral function
for the δþþ-loop and τ-loop.

(a) (b)

FIG. 7. Combined results of one-loop and two-loop contributions in the model for (a) mH� ¼ mH and mA0 ¼ mH þ 50 GeV and for
(b) mH� ¼ mH and mA0 ¼ mH − 50 GeV, where mδ�� ¼ 350 GeV is used and the other parameters are the same as in plot (a).

(a) (b)

FIG. 5. Contours of Δaμ from the 2-loop Barr-Zee type diagrams of δ�� and δ� in the plane of (a) mH and ζlλHδ−−δþþ with
mδ�� ¼ 350 GeV and (b) mδ�� and ζlλHδ−−δþþ with mH ¼ 200 GeV.
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1. The contribution of Barr-Zee type diagram with the
H�-loop can only be of Oð10−10Þ.

2. When the H- and A0-mediated two-loop diagrams
are combined, A0 with a mass of 70 GeV can lead to
Δaμ ∼ 2 × 10−9, similar to the situation of 2HDM
type-X [18]. However, when mA0 > mh, the 2HDM
contribution is below 10−9.

3. The H-mediated δþþðþÞ-loop contribution is inde-
pendent of mA0 , and it can play an important role on
Δaμ in a wide range of mH and mδ�� , particularly
when the exotic Higgs masses are a few hun-
dred GeV.

Before closing this subsection, we make a brief remark
about the implication of the model on the anomalous
magnetic dipole moment of the electron (electron g − 2).
Applying the accurate measurements of the fine structure
constant from 133Cs and 87Rb to the theoretical calculations
[72,73], the differences in the electron g − 2 between the
experiments and the SM expectation are found to be:

Δaeð133CsÞ ¼ −ð8.8� 3.6Þ × 10−13 ½75�;
Δaeð87RbÞ ¼ ð4.8� 3.0Þ × 10−13 ½76�; ð38Þ

i.e., having −2.4σ and 1.6σ deviations, respectively. Their
weighted average is Δae ¼ −0.8� 2.3. In spite of the
inconclusively experimental results, the model predicts a
concrete correlation in the corrections for muon g − 2 and
electron g − 2. Since the dominant contribution comes from
the Barr-Zee type diagrams in the model and the lepton
Yukawa couplings to HðA0Þ are proportional to ml
according to Eq. (29), we have the ratio Δae=Δaμ ¼
ðme=mμÞ2 ≃ 2.36 × 10−5. Hence, Δae and Δaμ should
have the same sign in the model.

C. Doubly charged Higgs decays

In this subsection we discuss the decay branching ratios
of δ�� in our scenario and its related collider signature.

With our choice of vΔ > Oð10−4Þ GeV, δ�� dominantly
decays into charged scalar and/or W bosons, evading the
stringent constraint of LHC searches for same-sign dilep-
tons. The interactions relevant to the dominant decays of
δ�� are obtained from the scalar potential and kinetic term
as follows

L ⊃ −ðμ1s2β þ μ2c2β − μ3sβcβÞδþþH−H−

−
v
2

�
s2β

λ08 − λ09
2

− c2βλ012

�
δþþH−δ−

−
g2ffiffiffi
2

p vΔδþþW−μW−
μ − igW−μð∂μδ

−δþþ − δ−∂μδ
þþÞ

þ H:c:; ð39Þ

where g is the SUð2ÞL gauge coupling. It can be seen that
the δþþH−H− and δþþW−W− couplings are dictated by the
factor of vΔ. That is, for the doubly charged-Higgs decays,
the mixing of OðvΔÞ among G�, H�, and δ� has to be
taken into account though its effects are small in the muon
g − 2. If we take μ3 ¼ t2βðμ1 − μ2Þ and λ8c2β þ λ9s2β þ
λ012s2β ∼ −2ð2mΔ=vÞ2 in Eq. (A7), it is found that m2

G−δþ ∼
Oðv2ΔÞ and m2

H−δþ ∼OðvΔÞ. With such parameters and
dropping Oðv2ΔÞ terms, the relevant charged scalar mass-
square matrix can be simplified as a 2 × 2 matrix:

ðH−δ− Þ
� m2

H� m2
H−δþ

m2
H−δþ m2

δ�

��
Hþ

δþ

�
; ð40Þ

where the matrix can be diagonalized by an SOð2Þ trans-
formation, similar to the expression given in Eq. (A8) but
using the θ� mixing angle instead of α. Due to the fact that
vΔ ≪ v, we can ignore the influence of m2

H−δþ on m2
H� and

m2
δ� , and the physical states and the small mixing angle can

be simply expressed as:

H�
1 ≃H� þ θ�δ�;

H�
2 ≃ −θ�H� þ δ�;

θ� ≃
vvΔ

2
ffiffiffi
2

p ðm2
δ� −m2

H�Þ

�
s2β

λ08 − λ09
2

þ s2βλ
0
12

�
: ð41Þ

Taking λ08 − λ09 ¼ 1, λ012 ¼ 1, mδ� ¼ 350 GeV, mH� ¼
180 GeV, vΔ ¼ 5 × 10−4 and cβ ¼ sβ ¼ 1=

ffiffiffi
2

p
, the mixing

angle value is estimated to be θ� ≃ 4.8 × 10−7. Since H�
1ð2Þ

only carries a tiny component of δ�ðH�Þ, in the following
analysis we keep using H�ðδ�Þ instead of H�

1 ðH�
2 Þ.

Because of the introduction of θ�, in addition to the
W�W� and H�H� modes, the doubly charged Higgs can
also decay into H�W�. In the case an on-shell decay to
H�H� is impossible, we consider the decay channel
H�H��, i.e., one of H� is off-shell, with the assumption

FIG. 8. Contours for the combined one- and two-loop con-
tributions to Δaμ (in units of 10−9) in the ζl −mδ�� plane.
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that theH� → τ�ν is dominant. The partial decay widths of
these dominant modes are explicitly expressed as:

Γðδ�� →W�W�Þ≃ g4v2Δm
3
δ��

16πm4
W

�
3r2W − rW þ 1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4rW

p
;

ð42Þ

Γðδ�� → H�W�Þ ≃ g2m3
δ��

16πm2
W
θ2�λð1; rW; r�Þ

2
3; ð43Þ

Γðδ�� → H�H�Þ ≃ v2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4r�

p
4πmδ��

jλδþþH−H− j2; ð44Þ

Γðδ�� → H�H��Þ ≃ 1

26π3mδ��
j

ffiffiffi
2

p
mτζlλδþþH−H− j2

×
Z

xmax

xmin

dx
x

ðx − r�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1; r�; xÞ

p
;

ð45Þ

where rW ¼ m2
W=m

2
δ�� , r� ¼ m2

H�=m2
δ�� ; x ¼ q2=m2

δ��

and q2 is the invariant mass of τντ in the Hþ → τþντ
decay; xmax ¼ ð1 − ffiffiffiffiffi

r�
p Þ2, xmin ¼ m2

τ=m2
δ�� ; λð1; x; yÞ ¼

1þ x2 þ y2 − 2xy − 2x − 2y, and

λδþþH−H− ¼ 1

v
ðμ1s2β þ μ2c2β − μ3sβcβÞ

þ 1

2

�
s2β

λ08 − λ09
2

− c2βλ012

�
θ�: ð46Þ

For the purpose of comparison, we include the δþþ →
lþ
i l

þ
j channels. According to the δþþ Yukawa couplings to

l−
i l

−
j shown in Eq. (24), the decay rate is given by:

Γðδþþ → lþ
i l

þ
j Þ ¼

mδ��

8πð1þ δijÞ
���� ðMνÞij

vΔ

����
2

; ð47Þ

where δij is the Kronecker delta. We use the ðMνÞij values
determined by a global fit to the neutrino data and given
in [74].
For illustration purposes, we show in Fig. 9 their

branching ratios as functions of μ1 with the parameter
choice of tβ ¼ 1, jζlj ¼ 100, ϵΔ ¼ vΔ ¼ 5 × 10−4 GeV,
mδ�� ¼ 300ð400Þ GeV and mH� ¼ 180 GeV for the left
(right) plot where Eq. (A3) is applied to fix μ2 and μ3. For
the neutrino mass matrix element in Eq. (47), we apply the
dominant ones ðMνÞμμ;ττ;μτ ∼ 2 × 10−2 eV according to the
global fit in [74] for the normal ordering of neutrino
masses. Note that one of Hþ is off-shell in the left plot
while both Hþ are on-shell in the right plot. In the former
case, we find that the HþHþ�ð→τþνÞ mode can be
dominant when μ1 ≫ vΔ, even though it is a three-body
decay. In the latter case, we find that the HþHþ mode is
dominant for μ1 > OðvΔÞ and that the ratio of branching
ratio is BrðHþHþÞ∶BrðWþWþÞ ≃ 0.07∶1 when μ1 ≲ vΔ
except for the region μ1 ∼ vΔ=2. The suppression of
BrðHþHþÞ at around μ1 ¼ vΔ=2 is due to a cancellation
in the coupling. The cancellation occurs when Eq. (A3) is
applied. With tβ ¼ 1, we have μ1 ¼ μ2 and μ3¼2ðϵΔ−μ1Þ,
μ1s2β þ μ2c2β − μ3cβsβ ≃ 2μ1 − ϵΔ. The mixing angle θ�
could induce a sizable effect if λ08 − λ09 ¼ 2 is used. Note
also that λ012 does not contribute to the coupling λδþþH−H−

when tβ ¼ 1 is taken. In Fig. 10, we also show the
branching ratios of δþþ as functions of mδþþ with
μ1 ¼ 0.01 GeV, where the other parameter values are
the same as those shown in Fig. 9. We find that the
HþHþð�Þ mode becomes dominant when mδ�� > 2mHþ

and that the branching ratios ofWþWþ andHþWþ slightly
increase with mδ�� .
Finally we discuss signals from doubly charged Higgs

boson production at the LHC. The δþþδ−− pair can be
produced via electroweak interactions in proton-proton
collision process. In our scenario, the produced δ��

dominantly decay into W�W� and/or H�H�ð�Þ mode,
depending on the value of μ1 as discussed above. Here

FIG. 9. Branching ratios of δþþ as functions of μ1, with tβ ¼ 1, ϵΔ ¼ vΔ ¼ 5 × 10−4 GeV, mδ�� ¼ 300ð400Þ GeV and mH� ¼
180 GeV for left (right) plots.

MUON g − 2 IN A TWO-HIGGS-DOUBLET MODEL WITH A … PHYS. REV. D 104, 055011 (2021)

055011-13



we focus on the H�H�ð�Þ mode as it is a special channel in
our model. The scenario when the W�W� mode is more
dominant is equivalent to the Higgs triplet model with
vΔ > Oð10−4Þ GeV. The singly charged Higgs H� domi-
nantly decays into τν mode since the Yukawa interaction
between H� and leptons is enhanced by the large ζl factor
that is required for a sizable muon g − 2 contribution.
Therefore, the signature from δþþδ−− production is
4τ þ ET in our scenario. Note that we can relax the bound
on mδ�� of ∼350 GeV [45] because the analysis assumes
that the W�W� mode is dominant and considers only the
muons/electrons in the final state. It would be difficult to
reconstruct the doubly charged Higgs mass because of the
missing transverse energy carried away by neutrinos from
H� decays. Our signature could be tested in multi-tau
searches in future LHC experiments.

V. SUMMARY

In this work, we have studied an extension of the
Standard Model only in the scalar sector, with the addition
of one Higgs doublet and one complex Higgs triplet,
rending a two-Higgs-doublet model (2HDM) with the
type-II seesaw mechanism. For the 2HDM part, we con-
sider the aligned two-Higgs-doublet scheme (A2HDS) to
avoid undesired flavor-changing neutral currents induced
by the two Higgs doublet fields and to satisfy the current
Higgs data constraints. The Higgs triplet field obtains a
small vacuum expectation value (VEV) induced by the
electroweak symmetry breaking and gives Majorana mass
to neutrinos through Yukawa couplings.
We have examined how the model can accommodate the

measured muon g − 2 deviation. Simple 2HDMs usually
require CP-even and -odd Higgs bosons (H and A0) to be
sufficiently light (about a few ×Oð10Þ GeV) and rely on
the contributions of Barr-Zee type diagrams to account for
the muon g − 2 anomaly, Δaμ. In our model, the Barr-Zee

type diagrams get additional contributions from a large
HδþþðþÞδ−−ð−Þ coupling, an enhanced coupling between
charged leptons and the charged Higgs boson (H�) in
2HDM, and the electric charges of the charged Higgs
bosons (δ� and δ��) from the Higgs triplet field, inde-
pendent of the mass of CP-odd Higgs boson. In fact, the
mass of the exotic Higgs bosons is allowed to have a wider
range, up to a few hundred GeV.
Owing to the new interactions with the other charged

Higgs and W bosons, the doubly charged Higgs boson
presents a different decay pattern than the usual Higgs
triplet model. With the assumed Higgs triplet VEV,
vΔ ∼ 5 × 10−4 GeV, the doubly charged Higgs boson
may dominantly decay into like-sign charged Higgs bosons
in the 2HDM rather than like-sign W bosons, when the
magnitudes of the trilinear couplings μ1;2;3 are greater than
10−3ð10−2Þ GeV for both (one of the) charged Higgs
bosons being on-shell. Therefore, pair productions of the
doubly charged Higgs bosons will lead to the signature of
4τ-leptons and missing energy at the LHC.
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APPENDIX A: MASS MATRICES FOR NEUTRAL
AND CHARGED HIGGS BOSONS

In this Appendix, we show the full mass matrices at tree
level for scalar, pseudoscalar, and charged Higgs bosons.
Since A0 and H� are the physical states in the 2HDM, it is
useful to show the scalar mass matrices in terms of the
ðG0; A0; η0Þ and ðGþ; Hþ; δþÞ bases when the Higgs triplet
field Δ is introduced. Since the CP-evenH0

1 andH
0
2 scalars

mix, we show the mass matrix in the basis of the ðh;HÞ
states, defined in Eq. (6).
From the scalar potentials given in Eqs. (8)–(10) and the

Higgs basis in Eq. (4), the mass matrix for the CP-odd
components G0, A0 and η0 is given by

1

2
ðG0 A0 η0 Þ

0
BB@

m2
G0G0 m2

G0A0 m2
G0η0

m2
G0A0 m2

A0A0 m2
A0η0

m2
G0η0

m2
A0η0

m2
η0η0

1
CCA
0
B@

G0

A0

η0

1
CA; ðA1Þ

where the mass matrix elements

FIG. 10. Branching ratios of δþþ as functions of mδ�� ,
with tβ ¼ 1, ϵΔ ¼ vΔ ¼ 5 × 10−4 GeV, μ1 ¼ 0.01 GeV and
mH� ¼ 180 GeV.
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m2
G0G0 ¼3vΔffiffiffi

2
p ðc2βμ1þs2βμ2þcβsβμ3Þ;

m2
G0A0 ¼−

ffiffiffi
2

p
vΔ½s2βðμ1−μ2Þ−c2βμ3�;

m2
G0η0

¼−
ffiffiffi
2

p
vðc2βμ1þs2βμ2þcβsβμ3Þ;

m2
A0A0 ≡m2

A0 ¼ m2
12

sβcβ
−λ5v2−

v2

2
ðλ6t−1β þλ7tβÞþ2

ffiffiffi
2

p
s2βvΔμ1

þc2βvΔμ3ffiffiffi
2

p
tβ

ð1− t2βÞ2−
v2Δλ̄12
2

ðs2βþc3βþs3βÞ;

m2
A0η0

¼ vffiffiffi
2

p ½s2βðμ1−μ2Þ−c2βμ3�;

m2
η0η0

≡m2
η0
¼m2

ΔþðλΔ1þλΔ2Þv2Δþ
λ̄8c2bþ λ̄9s2β

2
v2

þ λ̄12s2β
2

v2; ðA2Þ

with λ̄8 ¼ λ8 þ λ08 and λ̄9 ¼ λ9 þ λ09. From Eq. (12), it is
known that c2βμ1 þ s2βμ2 þ cβsβμ3 ∼OðvΔÞ. Neglecting
term of OðvΔÞ, one can see that m2

G0G0 , m2
G0A0 , and

m2
G0η0

are negligibly small. Thus, to a good approximation,

G0 represents the neutral Goldstone boson. Moreover, if we
further demand that the factor s2βðμ1 − μ2Þ − c2βμ3 in
m2

A0η0
vanish, A0 and η0 decouple from each other. To

understand the correlations among μ1, μ2, and μ3 under the
conditions:

�
c2βμ1 þ s2βμ2 þ cβsβμ3 ¼ ϵΔ;

s2βðμ1 − μ2Þ − c2βμ3 ¼ 0;
ðA3Þ

where ϵΔ is an parameter of OðvΔÞ, we solve and obtain:

μ2 ¼ μ1t−2β þ ϵΔð1− t−2β Þ; μ3 ¼ −2t−1β ðμ1 − ϵΔÞ: ðA4Þ

For tan β ¼ 1, we have μ2 ≃ μ1 and μ3 ≃ −2μ1. For large
tan β, they can be approximated as:

μ2 ≃ ϵΔ þ μ1t−2β ; μ3 ≃ −2μ1t−1β : ðA5Þ

It is seen that the μ2;3 scale is determined by μ1 and tβ.
Similarly, the mass matrix for Gþ, Hþ and δþ is

given by:

ðG−H−δ−Þ

0
BB@

m2
G−Gþ m2

G−Hþ m2
G−δþ

m2
G−Hþ m2

H−Hþ m2
H−δþ

m2
G−δþ m2

H−δþ m2
δ−δþ

1
CCA
0
B@

Gþ

Hþ

δþ

1
CA; ðA6Þ

where the mass matrix elements

m2
G−Gþ ¼

ffiffiffi
2

p
vΔðc2βμ1 þ s2βμ2 þ cβsβμ3Þ

−
v2Δ
2
ðc2βλ08 þ s2βλ

0
9 þ λ012s2βÞ;

m2
G−Hþ ¼ −

vΔffiffiffi
2

p ðs2βðμ1 − μ2Þ − c2βμ3Þ þ
λ08 − λ09

2
cβsβv2Δ

−
λ012
2

c2βv2Δ;

m2
G−δþ ¼ −vðc2βμ1 þ s2βμ2 þ cβsβμ3Þ

þ vΔv

2
ffiffiffi
2

p ðc2βλ08 þ s2βλ
0
9 þ s2βλ012Þ;

m2
H−Hþ ≡m2

H� ¼ m2
12

cβsβ
−
λ4 þ λ5

2
v2 −

λ6v2

2
t−1β −

λ7v2

2
tβ;

þ
ffiffiffi
2

p
vΔðs2βμ1 − c2βμ2Þ þ

μ3vΔffiffiffi
2

p
cβsβ

ðc4β þ s4βÞ

−
v2Δ
2
ðλ08s2β þ λ09c

2
βÞ −

v2Δ
2
ðs2βλ12 þ ðc3β þ s3βÞλ̄12Þ;

m2
H−δþ ¼ v

2
ðs2βðμ1 − μ2Þ − c2βμ3Þ −

λ08 − λ09
2

ffiffiffi
2

p cβsβvvΔ

−
λ012
2

ffiffiffi
2

p s2βvvΔ;

m2
δ−δþ ≡m2

δ� ¼ m2
Δ þ 2λ9 þ λ09

4
s2βv

2 þ 2λ8 þ λ08
4

c2βv
2

þ 2λ12 þ λ012
4

s2βv2: ðA7Þ

Analogous to the case of CP-odd scalar mass matrix,
m2

G−Gþ , m2
G−Hþ , and m2

G−δþ vanish if we drop the OðvΔÞ
terms. Therefore, G� can be approximated as the charged
Goldstone bosons. If we further demand μ3 ¼ t2βðμ1 − μ2Þ,
m2

H−δþ also vanishes, and H� and δ� decouple each other
and are approximately the physical states.
Next, we discuss the CP-even scalars. In 2HDMs, the

physical ðH; hÞ states and the ðΦ0
1;Φ0

2Þ states are related by:

�
H

h

�
¼

�
cα sα
−sα cα

��Φ0
1

Φ0
2

�
; ðA8Þ

where α is the mixing angle for CP-even scalars. To derive
the mass matrix in the ðh;H; δ0Þ states, it is more
convenient to start from the basis of ðΦ0

1;Φ0
2Þ. Once the

mass eigenvalues and eigenstates of h and H in the 2HDM
are obtained, we then include δ0 to form a three-component
basis ðh;H; δ0Þ. As we will explicitly see below, these will
be approximately the physical states as long as OðvΔÞ
terms are ignored.
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The 2 × 2 mass matrix for ðΦ0
1;Φ0

2Þ is

1

2
ðΦ0

1 Φ0
2 Þ
�m2

ϕ1ϕ1
m2

ϕ1ϕ2

m2
ϕ1ϕ2

m2
ϕ2ϕ2

��Φ0
1

Φ0
2

�
; ðA9Þ

where the matrix elements

m2
ϕ1ϕ1

¼
�
m2

12 þ
vΔμ3ffiffiffi

2
p

�
tβ þ λ1v2c2β þ

3λ6v2

2
cβsβ

−
λ7v2

2
s2βtβ;

m2
ϕ1ϕ2

¼ −
�
m2

12 þ
vΔμ3ffiffiffi

2
p

�
þ λ345v2cβsβ

þ 3v2

2
ðc2βλ6 þ s2βλ7Þ;

m2
ϕ2ϕ2

¼
�
m2

12 þ
vΔμ3ffiffiffi

2
p

�
t−1β þ λ2v2s2β −

λ6v2

2
c2βt

−1
β

þ 3λ7v2

2
cβsβ: ðA10Þ

Using the parametrization in Eq. (A8), we obtain the
eigenvalues of Eq. (A8) as:

m2
h;H ¼ m2

ϕ1ϕ1
þm2

ϕ2ϕ2

2

� 1

2
½ðm2

ϕ1ϕ1
− ϕ2

ϕ2ϕ2
Þ2 þ 4ðm2

ϕ1ϕ2
Þ2�1=2; ðA11Þ

and the mixing angle is determined by:

tan 2α ¼ 2m2
ϕ1ϕ2

m2
ϕ1ϕ1

−m2
ϕ2ϕ2

: ðA12Þ

Using the rotational matrix,

0
B@

−sα cα 0

cα sα 0

0 0 1

1
CA; ðA13Þ

we can transform the basis from ðΦ0
1;Φ0

2; δ
0Þ to ðh;H; δ0Þ,

and the transformed mass matrix is:

1

2
ð h H δ0 Þ

0
BB@

m2
h 0 m2

hδ0

0 m2
H m2

Hδ0

m2
hδ0 m2

Hδ0
m2

δ0δ0

1
CCA
0
B@

h

H

δ0

1
CA; ðA14Þ

where the additional elements

m2
hδ0 ¼ −

vffiffiffi
2

p ½ðμ1 þ μ2Þsβ−α − ðμ1 − μ2Þsβþα þ μ3cβþα�

−
vΔv
2

½ðλ̄8 þ λ̄9Þsβ−α þ ðλ̄8 − λ̄9Þsβþα − 2λ̄12cβþα�;

m2
Hδ0

¼ −
vffiffiffi
2

p ½ðμ1 þ μ2Þcβ−α þ ðμ1 − μ2Þcβþα þ μ3sβþα�

þ vΔv
2

½ðλ̄8 þ λ̄9Þcβ−α þ ðλ̄8 − λ̄9Þcβþα þ 2λ̄12sβþα�;

m2
δ0δ0

¼ m2
Δ þ 3ðλΔ1 þ λΔ2Þv2Δ þ v2

2
ðc2βλ̄8 þ s2βλ̄9 þ s2βλ̄12Þ:

ðA15Þ

In the model, m2
hδ0 and m2

Hδ0
are generally not small.

Nevertheless, if we apply the conditions in Eq. (A4), m2
hδ0

and m2
Hδ0

can be rewritten as:

m2
hδ0 ¼ −

ffiffiffi
2

p
vϵΔsβ−α

−
vΔv
2

½ðλ̄8 þ λ̄9Þsβ−α þ ðλ̄8 − λ̄9Þsβþα − λ̄12cβþα�;
m2

Hδ0
¼ −

ffiffiffi
2

p
vϵΔsβþα

þ vΔv
2

½ðλ̄8 þ λ̄9Þcβ−α þ ðλ̄8 − λ̄9Þcβþα þ λ̄12sβþα�;
ðA16Þ

both being ∼OðvΔÞ. Comparing to the dominant diagonal
elementsm2

h;H;δ0 , the mixing effects among h,H, and δ0 are
thus small. Therefore, to the leading order in vΔ, we will
neglect such mixing and h and H decouple from δ0.

APPENDIX B: SCALAR POTENTIAL AND
TRILINEAR COUPLINGS IN THE

HIGGS BASIS

The scalar potential in terms of the Higgs basis H1;2 can
be written as:

V ¼ VðH1; H2Þ þ VðΔÞ þ VðH1; H2;ΔÞ; ðB1Þ

where each term is more explicitly given by
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VðH1; H2Þ ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ Y3ðH†

1H2 þ H:c:Þ þ 1

2
Λ1ðH†

1H1Þ2

þ 1

2
Λ2ðH†

2H2Þ2 þ Λ3H
†
1H1H

†
2H2 þ Λ4H

†
1H2H

†
2H1 þ

�
1

2
Λ5ðH†

1H2Þ2

þ Λ6ðH†
1H1ÞðH†

2H1Þ þ Λ7ðH†
2H2ÞðH†

2H1Þ þ H:c:

�
; ðB2Þ

VðΔÞ ¼ M2
ΔTrΔ†Δþ ΛΔ1ðTrΔ†ΔÞ2 þ ΛΔ2TrðΔ†ΔÞ2; ðB3Þ

VðH1; H2;ΔÞ ¼ ðW1HT
1 iτ2Δ†H1 þW2HT

2 iτ2Δ†H2 þW3HT
1 iτ2Δ†H2 þ H:c:Þ

þ ½Λ8H
†
1H1 þ Λ9H

†
2H2 þ ðΛ12H

†
1H2 þ H:c:Þ�TrΔ†Δ

þ Λ0
8H

†
1ΔΔ†H1 þ Λ0

9H
†
2ΔΔ†H2 þ ðΛ0

12H
†
1ΔΔ†H2 þ H:c:Þ: ðB4Þ

Using the representations of H1;2 and Δ in Eq. (5), the
minimum conditions for the VEVs of H1;2 and Δ can be
obtained as:

Y2
1 þ

Λ2
1

2
v2 ¼

ffiffiffi
2

p
W1vD −

Λ̄8

2
v2D;

Y2
3 þ

Λ2
6

2
v2 ¼ W3ffiffiffi

2
p vD −

Λ̄12

2
v2D;

M2
Δ þ Λ̄8

2
v2 ¼ v2ffiffiffi

2
p W1

vΔ
− ðΛΔ1 þ ΛΔ2Þv2Δ; ðB5aÞ

with Λ̄8 ¼ Λ8 þ Λ0
8 and Λ̄12 ¼ Λ12 þ Λ0

12.
From Eqs. (B2)–(B4), the doubly charged Higgs mass is

obtained as:

m2
δ�� ¼ m2

Δ þ Λ8v2

2
þ ΛΔ1v2Δ: ðB6Þ

The mass splittings in the Higgs triplet are

m2
δ� −m2

δ�� ¼ ΛΔ2v2Δ
2

þ Λ0
8v

2

4
;

m2
δ0
−m2

δ�� ¼ ð2ΛΔ1 þ 3ΛΔ2Þv2Δ þ Λ0
8v

2

2
: ðB7Þ

The trilinear couplings of the neutral scalars to the charged
Higgs scalars with cβ−α ¼ 0 are given by:

LHiSS ¼ −v½λHiδ
−−δþþHiδ

−−δþþ þ λHiδ
−δþHiδ

−δþ

þ λHiH−HþHiH−Hþ�; ðB8Þ

where the couplings:

λhδ−−δþþ ¼ Λ8; ΛHδ−−δþþ ¼ −Λ12;

λhδ−δþ ¼ Λ8 þ
Λ0
8

2
; λHδ−δþ ¼ −Λ12 −

Λ0
12

2
;

λhH−Hþ ¼ Λ3; λHH−Hþ ¼ −Λ7: ðB9Þ
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