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Spectra with full towers of levels are expected due to the quantization of the string vibrations; however,
different theoretical models exist for the excitation spectra. First principle computations are important to
test the different models and to search for novel phenomena, but so far, only a few excited states of QCD
flux tubes have been studied with pure gauge SU(3) lattice QCD in 3þ 1 dimensions. We thus aim to study
a spectrum of flux tubes with static quark and antiquark sources up to a significant number of excitations.
We specialize on the spectrum of the most symmetric case, namely Σþ

g , where up to two levels are already
published in the literature. To achieve the highest possible excitation level, we construct a large set of
operators with the correct symmetry, solve the generalized eigenvalue problem, and compare the results of
different lattice QCD gauge actions with different lattice spacings and anisotropies.
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I. INTRODUCTION

Understanding the confinement of color remains a main
theoretical problem of modern physics. Its solution could
also open the door to other unsolved theoretical problems.
An important evidence of confinement, where we may
search for relevant details to understand it, is in the QCD
flux tubes [1], computed in lattice QCD. Experimentally,
flux tubes are suggested by the Regge trajectories [2,3]
in the hadron spectrum. String models can account for
Regge trajectories, and they also imply the linear confining
quark-antiquark potential similar to the one used in quark
models [4,5].
Presently, an approximate understanding of flux tubes is

quite developed, for example, with string models. The
dominant behavior of the stringlike flux tubes has a single
scale: the string tension σ. The main analytical string model
utilized in the literature to explain the behavior of the QCD
flux tubes is the Nambu-Goto bosonic [6,7] string model
[8]. It assumes infinitely thin strings, with transverse
quantum fluctuations only. The quantum fluctuations
predict not only a finite profile width of the ground-state
flux tube, increasing with distance [9], but also an infinite
tower of quantum excitations [10,11]. However, the

stringlike behavior obscures the details of confinement
and of other possible hadronic phenomena.
Clearly, at short quark-antiquark distances, the flux tube

deviates from the string model. The Nambu-Goto model in
four space-time dimensions has an imaginary tachyon [11]
at short distances for the ground state, whereas the QCD
flux tube has a real Coulomb potential [11]. At really short
distances, lattice QCD has recently shown the potential
becomes dominated by perturbative QCD [12].
Another instance where the ground-state flux tube

deviates from the string model is in the flux tube profile.
Recently, our lattice QCD collaboration PtQCD [13]
studied the zero temperature ground-state flux tube of pure
gauge QCD and found evidence for a penetration length λ
[14] as a second scale other than the string tension σ,
contributing to the color fields density profile of the flux
tube. This intrinsic width of the flux tube may be the reason
why the QCD flux tube is stable in four dimensions, unlike
the Nambu-Goto string, which is rotational invariant only
in 26 dimensions.
There is also an ongoing puzzle in the excited spectrum

of mesons, as reported [15] in measurements by the Cristal
Barrel detectors [16]: The Regge slope for radial excitations
is similar to the one for angular excitations, and this cannot
be explained with a quark model [2]. A large degeneracy,
larger than the chiral restoration symmetry [17], has been
analyzed [18–21]. Possibly, there is a new principal
quantum number [3]. Notice a principal quantum number
is already present in the Nambu-Goto spectrum.
Besides, an infinite tower [22] of these excitations can

also be obtained with constituent gluon models, in the
denominated hybrid three body quark-gluon-antiquark
systems [23,24]. This may possibly be explained by [3]
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a constituent gluon with an effective mass [25,26] and an
effective quark gluon-gluon potential [27,28].
Moreover, there is evidence for another particle, the

string worldsheet axion [29], in the lattice gauge theory
spectra of closed strings.
Thus, precise first principle theoretical studies are

necessary to go beyond the string models and clarify the
details of QCD flux tubes or hybrid. In lattice QCD, it is
straightforward to study ground-state open flux tubes,
using the technique of Wilson loops [1], the simplest gauge
invariant correlations in lattice QCD.
There are two classes of flux tubes: the closed flux

tubes and the open ones. In lattice QCD, they are,
respectively, studied with torelons and Wilson loops.
There has been a serious effort of extracting higher
excitations in the closed flux tube channel [30,31]. The
spectrum of the closed flux tube can be partially approxi-
mated by the Nambu-Goto model.
In this paper, we study the excited open flux tubes in

lattice QCD. In particular, we opt to address the puzzling
sector of radial excitations. Some excited states have indeed
been observed by lattice QCD computations [32–38], so far
compatible with the string dominance of the QCD flux
tube. Moreover, the structure of excited flux tubes started to
be studied as well [39–41], where some evidence for a
constituent gluon is present in some states. However, only
the first excitations have so far been studied.
The spectrum of radial excitations of the ground state is

the Σþ
g spectrum. We now review the symmetry group of our

flux tubes. With two static sources, it is equivalent to the one
of the molecular orbitals of homonuclear diatomic mole-
cules. It is the point group denominatedD∞h. We thus utilize
the standard quantum number notation of molecular physics,
already adopted in the previous studies of QCD flux tube
excitations [32–38,40,41]. D∞h has three symmetry sub-
groups, and they determine three quantum numbers.
The two-dimensional rotation about the charge axis

corresponds to the quantum angular number, projected in
the unit vector of the charge axis Λ ¼ jJg · êzj. The capital
Greek letters Σ;Π;Δ;Φ;Γ… indicate as usual states with
Λ ¼ 0; 1; 2; 3; 4…, respectively. The notation is reminis-
cent of the s; p; d � � �waves in atomic physics. In the case of
two-dimensional rotations, there are only two projections,
Jg · êz ¼ �Λ.
The permutation of the quark and the antiquark static

charges is equivalent to a combined operation of charge
conjugation and spatial inversion about the origin. Its
eigenvalue is denoted by ηCP. States with ηCP ¼ 1ð−1Þ
are denoted by the subscripts g (u), short notation for
gerade (ungerade).
Moreover, there is a third quantum number, different

from the phase corresponding to a two-dimensional p
wave. Due to the planar, and not three-dimensional, angular
momentum, there is an additional label for the s wave Σ
states only. Σ states, which are even (odd) under the

reflection about a plane containing the molecular axis,
are denoted by a superscript þð−Þ.
With these quantum numbers, the energy levels of the

flux tubes are labeled as Σþ
g , Σ−

g , Σþ
u , Σ−

u , Πu, Πg,Δg,Δu � � �
The states we opt to study are most symmetric system ones,
corresponding to the Σþ

g spectrum. This is the spectrum
where up to two levels have so far been reported in the
lattice QCD simulations literature [36,37]. For the other
spectra, only the ground-state level has been reported in the
literature [32–38]. In principle, the Σþ

g is the most amenable
for a first study of very excited states.
In Sec. II, we thus detail the different state of the art lattice

QCD techniques adequate to study the excited spectrum of
the gluonic flux tubes [32–37] produced by a static quark-
antiquark pair. Working with pure gauge SU(3) fields
discretized in a lattice, we utilize Wilson loops with a large
basis of gluonic spacelike Wilson lines to include different
excitations of the quark-antiquark flux tube. Moreover, we
apply different smearing techniques, an improved action,
and an anisotropic lattice to improve the signal over noise
ratio. We combine our operators to block diagonalize our
basis the angular momentum and parity quantum numbers
of the D∞h point group and project on Σþ

g states. We
numerically solve the correlation matrix via the generalized
eigenvalue problem and compute the corresponding effective
masses. We also discuss our computational efficiency. The
number of gluonic operators combined with the space points
where we compute the flux tube densities turn out to be very
large, and we resort to computations in graphics processing
units (GPUs) and to CUDA codes.
In Sec. III we show, for the excited levels where the

signal is clear, the results of our computations for the
spectrum. We evaluate how the different techniques

FIG. 1. Example of a Wilson spacial path from the antiquark to
the quark, to be used as one of the components of the flux tube
operator Oð2; 1Þ. The z axis is the charges axis, and xy is the
perpendicular spatial plane.
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improve the results. Finally, in Sec. IV, we analyze our
results for the first excitations of the flux tube and search
for signals of novel phenomena beyond the Nambu-Goto
string model; in Sec. V, we conclude our work.

II. LATTICE QCD FRAMEWORK TO COMPUTE
THE Σ+

g FLUX TUBES

We discuss our strategy to compute as many radially
excited states as we can for the Σþ

g flux tubes. We consider a
large basis of operators, use the standard action and an
improved one, apply different smearing techniques in the
configurations, and use different lattices with space-time
anisotropy.

A. Our operator basis for the Σ+
g excited states

Our gauge invariant operators are a collection of Wilson
loops, a closed path of Wilson lines. Since we have static
charges, our temporal Wilson lines are quite simple; they
are straight lines.
We want our spatial operators to have the same sym-

metry as the flux tubes we are studying. Moreover, since we
are using a correlation matrix, we want any linear combi-
nation of our operators to also have the same symmetry.
Otherwise, we could be producing unwanted states. The
symmetry is provided by the spacial Wilson lines, who
close the Wilson loop and make it gauge invariant.
In the study of the flux tubes, we utilize a basis of spacial

Wilson line operators, with the necessary and sufficient
operators to produce the Σþ

g spectrum and avoid producing
the other spectra. As usual, we choose our frame such that
the charge axis is the z axis, and the origin is set at the
midpoint between the quark and the antiquark, with
distance R. The x and y axis are in the two perpendicular
directions, as illustrated in Fig. 1.
We first must choose a basis of operators, consisting of a

linear combination of a set of spatial Wilson curves
connecting the two static charges, with the same sym-
metries as those of Σþ

g . Each curve we consider first departs
from the antiquark charge in the xy plane perpendicular to
the charge. In Fig. 2, we show different such curves. Then,
the path of the operator is continued with a straight Wilson
line in the z direction, and finally, it is completed with an
opposite curve in the x, y plane to join the quark charge.
The operators must be invariant for rotations of angles
multiple of π=2 around the charge axis; thus, we must have
a sum of nop different paths in order to achieve this
invariance.
In Fig. 2, we show the denomination of the operator

Oðl1; l2Þ, the distance l between the straight section of the
Wilson line and the charge axis, and the number of terms
nop in the operator to make it symmetric. For instance, the
first operator Oð0; 0Þ is the simple straight Wilson line
directly connecting the two charges; it has l ¼ 0 and just
nop ¼ 1 term. The next operators are deformations of the

straight Wilson line. Then, the operator Oð1; 0Þ is a staple
with l ¼ 1, but we need to add Nop ¼ 4 of these staples
in different directions to have an invariant operator for
rotations of angles multiple of π=2 around the charge axis.
The subsequent operator Oð1; 1Þ has its straight z direction
line at distance l ¼ ffiffiffi

2
p

from the charge axis, but for it to be
invariant for the two-dimensional rotation around the
charge axis and invariant for the parity inversion about
the median point, we need to have a sum of all nop ¼ 8 of
these possible Wilson curves to get a fully symmetric
operator. Continuing along this way, we can construct an
infinite tower of symmetric operators.
Obviously, we must truncate the set of operators up to

some distance lmax of the order of half the spatial length of
the lattice since our lattice has periodic boundary con-
ditions. Ideally, we should have lmax larger than the finite
width of the flux tubes.
However, in contradistinction with the continuum, in a

cubic lattice, there is a mixing between particular different
angular momentaΛ operators. Let us consider, for instance,
the operators such as the Oðl1; l2Þ, which are a linear
combination of suboperators pointing in four directions
separated by right or flat angles of 0; π=2; π; 3π=2. An
operator with planar angular momentum Λ must have [42],
for each of its spatial links as described, for instance, in
Fig. 2, the phase,

exp ð�2πiΛφÞ; ð1Þ

FIG. 2. Detail of the section, in the xy plane perpendicular to
the charge z axis, of Wilson spacial paths from the antiquark to
the quark. These examples correspond to a suboperator used
in the gauge field operators Oðl1; l2Þ. The full operator has the
symmetric sum of the corresponding set of nop operators, all at

the same distance l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l12 þ l22

p
from the charge z axis.
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where φ is the azimuthal angle corresponding to the
respective spatial link. In the four directions of our operator,
any angular momentum multiple of four,

Λ ¼ 0; 4; 8 � � � ; ð2Þ

has the same phase in all four directions. Thus, we must be
aware of this problem and do our best to mitigate it. This is
further complicated by the phenomenology of flux tubes; in
the Nambu-Goto model, there is as well a degeneracy
between the excited states of these operators.
In particular, we must be careful to prevent the combi-

nations of the symmetric operators Oðl1; l2Þ to generate
other symmetries. These operators are discrete; they
include, in general, Wilson lines in four to eight directions,
and all these directions have the same phase. Having the
same phase in all directions is necessary for a fully
symmetric Σþ

g operator. However, when combining differ-
ent operators with different directions, a nonsymmetric
operator may be generated. For instance, Oð1; 0Þ,
which azimuthal directions in the xy plane are φ ¼
0; π=2; π; 3π=2, and Oð1; 1Þ, which azimuthal directions
in the xy plane are φ ¼ π=4; 3π=4; 5π=4; 7π=4, may be
combined with an opposite phase, for instance, Oð1; 0Þ −
Oð1; 1Þ in the case they are both properly normalized,
which would correspond to a Γg state.

Indeed, if these Oðl1; l2Þ operators are all included in a
correlation matrix, its diagonalization will pick up not only
Σþ
g states but also states with large angular momentum

Λ ¼ 4 about the charge axis. We explicitly verified that,
when using a wider basis of operators Oðl1; l2Þ, we would
get more energy levels, some of them nearly degenerate,
than expected. Besides, the signal of the excited potentials
would be less clear.
We thus restrict our basis of operators to avoid as much

as possible states other than Σþ
g . We only consider operators

whose set of Wilson curves have the same directions. It is
convenient to use the operators on the directions x and y
of the lattice axes. For completeness, we show in Fig. 3 the
four suboperators, spatial Wilson line paths from the
antiquark to the quark, used to construct the gauge field
operators,

Oðl; 0Þ ¼ 1ffiffiffi
4

p ðLx þ Lx̄ þ Ly þ LȳÞ; ð3Þ

at Euclidean time t0. The inverse Wilson lines are used for
the operators at time t.
Our basis to construct the correlation matrix consists of

the operators of type Oðl; 0Þ only, but considering several
different l. It is interesting that using a smaller operator
basis and less dense in the space of the flux tube lead to
clearer results for the spectrum of excited states as we found
out in our computation.

B. Solving the GEVP for the correlation matrix
to compute the excited spectra

We utilize the correlation matrix hCklðtÞi to compute the
energy levels of the excited states, as done previously in the
literature [43–46]. Now the subindices k and l stand for
the spacial operators in the operator basis defined in
Sec. II A, denoted Ok. The spacial operators, defined in
Figs. 1–3, are connected by temporal Wilson lines L,

CklðtÞ ¼ hOkð−R=2;R=2; 0ÞLðR=2; 0; tÞ
O†

l ð−R=2;R=2; tÞL†ð−R=2; 0; tÞi: ð4Þ

Notice each matrix element corresponds to an evolution
operator in Euclidean space, where all energy levels Ei
contribute, with coefficients depending on how close the
operator is to the actual physical states, with the Euclidean
damping factor expð−EitÞ.
The first step to compute the energy levels, is to

diagonalize the generalized eigenvalue problem for the
correlation matrix,

CðtÞvnðt; t0Þ ¼ λnðt; t0ÞCðt0Þvnðt0Þ; ð5Þ

for each time extent t of the Wilson loop and get a set of
time dependent eigenvalues λiðtÞ. With the time depend-
ence, we study the effective mass plot,

Ei ≃ log
λiðtÞ

λiðtþ 1Þ ; ð6Þ

and search for clear plateaux consistent with a constant
energy Ei in intervals t ∈ ½tiini; tifin� between the initial and

FIG. 3. The sub-operators used to construct the Wilson line
Oðl; 0Þ in Eq. (3).
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final time of the plateau. We have the option of choosing
the initial time, and we choose t0 ¼ 0 because it produces
the clearest results. Moreover, the results with t0 ¼ 0
are compatible with the ones obtained with other small
values of t0.
The different energies levels Ei should correspond to the

ground state and excited states of the flux tube. If our
operator basis is good enough, then E0 is extremely close to
the ground-state energy, E1 is very close to the first excited
state, etc.
Moreover, with the diagonalization, we also obtain the

eigenvector operators [46] corresponding to the ground
state, first excitation, etc. We get a linear combination of
our initial operators,

Õ0 ¼ c01O1 þ c02O2 þ � � �
Õ1 ¼ c11O1 þ c12O2 þ � � �

� � � ð7Þ

Notice this result must be interpreted with a grain of salt.
The eigenvector operators Õi do not exactly correspond
to the respective state as in quantum mechanics, but they
get the clearest possible signal to noise ratio, among our
operator basis.
The eigenvector operators Õi and the respective corre-

lation matrix can be used in the same time interval
t ∈ ½tiini; tifin�, ideal for the effective mass plateaux of
the energy spectrum.
The number of gluonic operators turns out to be large,

requiring a large computer power. We thus write all our
codes in CUDA and run them in computer servers with
NVIDIAGPUs. Due to the GPU limited memory, this requires
an intensive use of atomic memory operations. For instance,
to compute a 13 × 13 correlation matrix, per configuration,
our CUDA code takes approximately 380s for a lattice volume
of 243 × 96 using a GeForce RTX 2080 Ti with 7.5 cc.

C. Gluon actions and configuration ensembles

We compute our results using six different ensembles,
defined in Table I.

We use the anisotropic Wilson action [1] computed with
plaquettes,

SWilson ¼ β

�
1

ξ

X
x;s>s0

Ws;s0 þ ξ
X
x;s

Ws;t

�
; ð8Þ

where Wc ¼
P

c
1
3
ReTrð1 − PcÞ, where s, s0 runs over

spatial links in different positive directions, Ps;s0 denotes
the spatial plaquette, Ps;t the spatial-temporal plaquettes,
and ξ is the (unrenormalized) anisotropy.
Moreover, to improve our signal, we also resort to the

improved anisotropic action SII developed in Ref. [47],

SII ¼ β

�
1

ξ

X
x;s>s0

�
5Ws;s0

3u4s
−
Wss;s0 þWs0s0;s

12u6s

�

þ ξ
X
x;s

�
4Ws;t

3u2su2t
−

Wss;t

12u4su2t

��
; ð9Þ

with us ¼ h1
3
Re TrPssi1=4, ut ¼ 1.Wss;s0 , andWss;t, instead

of plaquettes, include 2 × 1 rectangles.
So far, the results with more excited states shown in the

literature, two states [36,37] and up to three in an unpub-
lished work [48], have been obtained with this action.
We generate five different ensembles of configurations,

with the parameters defined of Table I.
The anisotropy is used in order to have a smaller

temporal lattice spacing at. This enables a better estimation
on the extraction of excited states as well as a more precise
result since we have more time slices for the same time
intervals.
Notice an anisotropic action enables us to use larger

distances with the same number of spatial lattice points.
However, in order to have a good spatial resolution, it is
then convenient to use an improved action, and SII uses
plaquettes extended up to 2 × 1 rectangular shapes. SII is
specially designed to eliminate spurious high-energy states
from the gluon spectrum.
Moreover, in order to improve the signal over noise ratio,

for the Wilson ensemble, we use the multihit technique in
the temporal Wilson lines and the APE smearing in the

TABLE I. Our ensembles, for the isotropic Wilson action and the improved anisotropic SII action. ξ is the bare anisotropy in the
Lagrangian, and ξR is the renormalized anisotropy. The renormalized anisotropy and the lattice spacings are computed with the
prescription of Sec. II D.

Ensemble Action Operators β Volume us ut ξ ξR as
ffiffiffi
σ

p
at

ffiffiffi
σ

p
No. of configs

O1 Wilson 11Oðl1; l2Þ 6.2 243 × 48 � � � � � � 1 1 0.1610 0.1610 1180
O2 Wilson 11Oðl1; l2Þ 5.9 243 × 48 � � � � � � 2 2.1737(4) 0.3088(4) 0.1421(2) 2630

W1 Wilson 13Oðl; 0Þ 6.2 243 × 48 � � � � � � 1 1 0.1610 0.1610 2500
W2 Wilson 13Oðl; 0Þ 5.9 243 × 48 � � � � � � 2 2.1737(4) 0.3093(2) 0.1423(1) 2170
W4 Wilson 13Oðl; 0Þ 5.6 243 × 96 � � � � � � 4 4.5459(9) 0.4986(4) 0.1097(1) 3475
S4 SII 13Oðl; 0Þ 4.0 243 × 96 0.82006 1.0 4 3.6266(32) 0.3043(3) 0.0839(1) 3575

SPECTRUM OF VERY EXCITED Σþ
g FLUX TUBES … PHYS. REV. D 104, 054512 (2021)

054512-5



spatial Wilson lines [14]. The multihit technique [49,50]
replaces each temporal link by its thermal average,

U4 → Ū4 ¼
R
dU4U4eβTr½U4F†�R
dU4eβTr½U4F†� : ð10Þ

Here, it is not possible to utilize the extended multihit
technique as defined in Ref. [14], because our operators in
the spatial Wilson line have a broader structure. In particular,
we use multihit with 100 iterations in time followed by APE
smearing [51] with α ¼ 0.4 and 20 iterations for the Wilson
action without anisotropy. For the SII ensemble and for the
Wilson ensembles with anisotropy, we use multihit with 100
iterations in time followed by Stout smearing [52] in space
with α ¼ 0.15 and 20 iterations.
It turns out it is more economical, using GPUs, to perform

all our computations on the fly, rather than saving configu-
rations. In general, we first generate a configuration, then
apply smearing, then compute the correlation matrix with
our full operator basis. What we save to a disk is the
correlation matrix. Since we generate the computations on
the fly, we also list the ensemble Table I, the sets of operators
used. Notice we may as well turn off smearing, to check the
importance of smearing, and we study the results of
ensembles W1, W2, W4, and S4 with and without smearing.
In what concerns the efficiency of our codes, for

instance, using a lattice volume of 243 × 96 and the
Wilson action, it takes 5s to generate a new configuration.
To decorrelate the configurations, we run 50 iterations
between the used configurations. Each iteration is com-
posed by four heat bath steps followed by seven over-
relaxation steps. It takes 0.8s for 100 iterations of multihit
and 0.014s for 20 steps of Stout smearing in space.

D. Computing the lattice spacing and
the renormalized anisotropy

In the case of isotropic actions, there is only one
independent scale, arising from dimensional transmutation,
since the action is conformal invariant. The physical scale is
the string tension σ present in the linear term of the quark-
antiquark potential. From its value, we determine the lattice
spacing a. In the case of anisotropic actions, we have two
different lattice spacings: the spatial as and the temporal at.
To set the scale of the lattice spacing a of the isotropic

Wilson action (with ξ ¼ 1) in physical units, corresponding
to the ensemble W1, we use the equations fitted in SU(3)
pure gauge lattice QCD by Ref. [53],

ða ffiffiffi
σ

p ÞðgÞ ¼ fðg2Þ½1þ b1âðgÞ2 þ b2âðgÞ4 þ b3âðgÞ6�=b0;
ð11Þ

where g is the coupling constant of the Wilson action, and
[53] the parameters are b0 ¼ 0.01364, b1 ¼ 0.2731,

b2 ¼ −0.01545, and b3 ¼ 0.01975, valid in the region
5.6 ≤ β ≤ 6.5,

âðgÞ ¼ fðg2Þ
fðg2ðβ ¼ 6.0ÞÞ ; ð12Þ

fðg2Þ ¼ ðb0g2Þ
− b1
2b2

0 exp

�
−

1

2b0g2

�
; ð13Þ

and

b0 ¼
11

ð4πÞ2 ; b1 ¼
102

ð4πÞ4 : ð14Þ

As for anisotropic actions, the renormalized anisotropy
ξR ¼ as=at can be determined as a function of the bare
anisotropy ξ. The ground-state potential is computed with
the Wilson loop, two different directions for the time
direction, either the usual direction four, now anisotropic,
or using one of the isotropic distances, say three. Comparing
the short distance potential with both time directions, which
is well determined without any smearing and is fitted with a
simple function, the ratio as=at is determined.
For the pure gauge SU(3) anisotropic Wilson

action, ensembles W2 and W4, Refs. [54,55] fit the para-
metrization,

ξR ¼ ð1þ ηðξÞg2Þξ; ð15Þ

corresponding to the series,

Zðg2; ξÞ ¼ ξR=ξ ¼ 1þ ηðξÞg2 þOðg4Þ; ð16Þ

where,

g2 ¼ 6

β

ηðξÞ ¼ 0.1687ð2Þ − 0.16397ð4Þ=ξ − 0.005245ð2Þ=ξ2:
ð17Þ

For the SII action, ensemble S4, we have similar
equations from Refs. [54,55], the only difference is in
the parameters of

ηðξ0Þ ¼ 0.0955ð4Þ − 0.0702ð16Þ=ξ0 − 0.0399ð14Þ=ξ20;
ð18Þ

with ξ0 ¼ ξus=ut and ξR ¼ ð1þ ηðξ0Þg2Þξ0. We explicitly
checked these formulas comparing them with the values
used in Ref. [56]. In general, both values for ξR are
compatible within error bars; only in one case the differ-
ence is slightly larger than the error bar.
Once the physical anisotropy ratio ξR is determined, we

determine the physical scale from the string tension. We fit

P. BICUDO, N. CARDOSO, and A. SHARIFIAN PHYS. REV. D 104, 054512 (2021)

054512-6



the data for the ground-state potential at large interquark
distance R with the linear plus constant ansatz c0 þ c1R.
We did not find any improvement in the results fitting the
data with the ansatz c0 þ c1rþ c2=r. We utilize smearing
to be able to fit the large distance potential. The linear term
is obtained from fitting the difference for different distances
R of the ground-state potential,

c1 ¼ E0ðRþ 1Þ − E0ðRÞ; ð19Þ

with a plateau. The linear term depends on the spatial lattice
spacing as, the temporal lattice spacing at, and the string
tension σ as

c1 ¼ asatσ: ð20Þ

Therefore,

as
ffiffiffi
σ

p ¼
ffiffiffiffiffiffiffiffiffi
c1ξR

p
; ð21Þ

at
ffiffiffi
σ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c1=ξR

p
: ð22Þ

Note that, using the above formulas, all the results
presented in this work are in units of

ffiffiffi
σ

p
for the potentials

and in units of 1=
ffiffiffi
σ

p
for the distances. This is the standard

two step technique to determine the scales of our lattice.
Besides, there is another option to fit both lattice

spacings as and at in one step, when we fit the whole
excited flux tube spectrum. This will be discussed in
Sec. IV when we will analyze the spectrum.

III. IMPROVED RESULTS FOR
THE Σ+

g SPECTRUM

Extracting very excited states requires using different
state of the art techniques. We first show the results of the
different techniques we check to improve the signal over
noise ratio. Then, we show our best results.

A. Comparing the use of several Oðl; 0Þ operators
with and without smearing of the gauge links

Here, we are interested in checking the effect of using a
large basis of operators. If this improves the results, it can
be used together with other techniques. Notice, in general,
in the literature, smearing is mandatory to improve the
results, already for the ground-state quark-antiquark flux
tube. We thus compare the effect of using a large basis of
operators to using smearing.
In Fig. 4, we compare the ground-state potential for

different ensembles, using just one operator (the standard
Wilson loop with Oð0; 0Þ) or 13 sets of operators of the
type Oðl; 0Þ up to l ¼ 12. It turns out the use of 13
operators improves the ground-state signal, but to have the
best signal for a distance large enough to be physically
interesting, we need smearing. According to the plots,

smearing maintains the results unchanged for R > 1as; in
particular, the string tension error bar is reduced with
smearing, but it remains consistent with the string tension
with no smearing.
In Fig. 5, we use the 13 operators to search for at least

one excited state, and we compare the results without and
with smearing. We also include the Nambu-Goto spectrum
in dashed lines to guide the eye. Indeed, the operators are
necessary to get the excited sates, but in most cases,
smearing is necessary as well and produces similar results
to Nambu-Goto. Only in ensemble W4, the results for the
smaller distances R < 4as can be obtained without any

FIG. 4. Comparing results with and without a basis of oper-
ators, with and without smearing. Results for the ground state
only, from top to bottom, respectively, with ensembles W1, W2,
W4, and S4.
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smearing for the first two excited states. Having an excited
state with no smearing, similar to the smearing ones and to
Nambu-Goto, confirms that smearing is not distorting our
spectrum. This W4 result also shows that an anisotropic
action may be more effective to study excited states.

B. Degeneracies with Oðl1;l2Þ operators
We now study the results obtained with a more complete

set of operators, using the ensembles O1 and O2 of Table I.
In these simulations, we include all 11 possible operators
Oðl1; l2Þ with l < 4.5, corresponding to the operators with

l1l2 ¼ 0; 0; 1; 0; 2; 0; 3; 0; 4; 0; 1; 1; 2; 1; 3; 1; 2; 2; 3; 2; 3; 3.
As discussed in Sec. II A, this may produce states
with different symmetries from Σþ

g . For instance, a
phase difference between operators Oðl; 0Þ and operators
Oðl1; l2Þ may be selected by the GEVP, and this could
produce operators with an angular momentum four, of
symmetry Γþ

g .
This is verified in Fig. 6, where we find more states than

in Fig. 7, with just the sets of operators Oðl; 0Þ, which are
less prone to generate unwanted symmetries other than Σþ

g .
Indeed, we find approximate degeneracies among the
N ¼ 2, N ¼ 3 states, the N ¼ 4, N ¼ 5, N ¼ 6, and the
N ¼ 7, N ¼ 8 states. This makes sense in the Nambu-Goto
perspective where there is a principal quantum
n ¼ 2 � nr þ l, similar to the principal quantum number
for a harmonic oscillator vibrating in a two-dimensional
x − y space.
From this perspective, we expect to have the degener-

acies, n ¼ 0, 1 state: nr ¼ 0, n ¼ 2, 1 state: nr ¼ 1, n ¼ 4,
3 states: nr ¼ 2 or l ¼ 4, n ¼ 6, 3 states: nr ¼ 3 or nr ¼ 1
and l ¼ 4, n ¼ 8, 5 states: nr ¼ 4 or nr ¼ 2 and l ¼ 4
or l ¼ 8;….
Indeed, we find in Fig. 6 nearly degenerate states N ¼ 2

and N ¼ 3, compatible with nr ¼ 2, l ¼ 0, and nr ¼ 0,
l ¼ 4 states. They only differ for small distances, where
possibly there are Coulomb contributions beyond the

FIG. 5. Comparing results with and without smearing, using the
13 operators Oðl; 0Þ. To guide the eye, the Nambu-Goto model
spectrum is shown in dashed lines. Results for the ground state
and first two states, from top to bottom, respectively, with
ensembles W1, W2, W4, and S4.

FIG. 6. Results with the enlarged basis of 11Oðl1; l2Þ operators
for the Wilson gauge action with APE smearing in space and
multihit in time. To guide the eye, the Nambu-Goto model
spectrum is shown in dashed lines. From top to bottom,
respectively, with ensembles O1 and O2.
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Nambu-Goto model. We also find approximate degener-
acies for the higher states.
This confirms as expected that to get clearer and

unambiguous Σþ
g signals, it is preferable to have a smaller

class of operators, using only the Oðl; 0Þ sets of operators.

C. Results with a basis of Oðl;0Þ operators,
the Wilson action, and smearing

Using 13 sets of on-axis operatorsOðl; 0Þ and theWilson
action, with no anisotropy, we find already several energy
levels, clearly ordered.
However, the level N ¼ 3 is a bit out of the remaining

patterns, with larger error bars a bit unexpectedly closer
to the N ¼ 2 level. This is clear in the top of Fig. 7,
ensemble W1.
The energy levels also have a similar dependence on R as

in the Nambu-Goto model, constant at short distances and
linear at large distances.
However, the higher levels seem to be shifted vertically

when compared with the Nambu-Goto levels depicted with
dotted lines.

D. Results with the Wilson action
and anisotropic lattice

To get potentials at large distances, we first use the
anisotropic Wilson action. The results are shown in Fig. 7
center, both for ξ ¼ 2 and ξ ¼ 4. Then, we are able to go
not only up to large distances, but also to clearly see one
more level, going up to N ¼ 6.
The pattern of the separation of the levels is also more

striking even than in the isotropic case.
However, the values of the higher potentials get distorted

at shorter distances, perhaps because the anisotropy some-
how enables the degeneracy already discussed in Secs. II A
and III B to set in.
Nevertheless, the higher levels remain undistorted

for R > 4as.

E. Results with the improved anisotropic action

To solve the problem at smaller distances for the
anisotropic lattices, we resort to the improved action.
Indeed, the short distance is improved, although it remains
distorted, as seen in Fig. 7 bottom, ensemble S4.
Nevertheless, we are able to get two more levels, N ¼ 7

and 8. This is the highest level we are able to get.
We also compare the results of all actions in Fig. 8, where

we study one potential level in each panel. The excited levels
tend to be higher than the Nambu-Goto model.
To conclude on the different spectra, we are able to get

several levels, with on-axis operators, with smearing, and
with anisotropic lattices, but we should discard the first four
smaller distances for the anisotropic action because the
levels aboveN ¼ 2 are distorted and tend to get degenerate.

IV. ANALYSIS OF OUR RESULTS

The simplest description of the QCD excited flux
tubes—with charges in the triplet representation of
SU(3)—is given by the bosonic string model, based on
the Nambu-Goto action [6,7],

FIG. 7. Results for the full spectrum, showing only the levels
obtained with good effective mass plots, from top to bottom,
respectively, with ensembles W1, W2, W4, and S4. To guide the
eye, the Nambu-Goto model spectrum is shown in dashed lines.
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S ¼ −σ
Z

d2Σ; ð23Þ

which, for spectrum for an open string with ends fixed with
Dirichlet boundary conditions is the Arvis potential [11],

VnðRÞ ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2π

σ

�
n −

D − 2

24

�s
: ð24Þ

In Eq. (24), D is the dimension of the space time D ¼ 4,
and n ¼ 2nr þ l is the principal quantum number. In our
case of Σþ

g , l ¼ 0, the only quantum number we have is
n ¼ 2nr, where nr is the order of the radial excitation.
Because of this simple analytical form, we opt to fit the

excited spectrum with the Arvis potential. Any deviation
may indicate other phenomena, say, a constituent gluon.
Note that, for the ground state, the Arvis potential is

tachyonic at small distances since the argument of the
square root is negative; moreover, rotational invariance is
only achieved for D ¼ 26. Nevertheless, the first two terms
in the 1=R expansion, including the Coulomb term, are
more general than the Arvis potential, since they fit the
D ¼ 3 and D ¼ 4 lattice data quite well beyond the
tachyonic distance. The Coulomb term is independent of
the string tension σ, and for the physical,D ¼ 3þ 1 has the
value − π

12
1
R. This is the Lüscher term [57]. The energy

spectrum of a static quark-antiquark and of its flux tube is
certainly well defined (not tachionic), and this was the first
evidence of flux tube vibrations found in lattice field theory.

FIG. 8. Comparing the results of ensemblesW1,W2,W4, and S4 for each one of the energy levels. From left to right and top to bottom,
we show the ground-state potential and the first five excited states. To guide the eye, the dashed lines correspond to the corresponding
level of the Nambu-Goto spectrum.
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In what concerns the ground state, it is well known, as
detailed in Sec. I, that the Nambu-Goto fails because we
have no tachyon at short distances. However, the leading
terms in a large distance expansion are accurate not only at
long distances, but also at medium range short distances,
where the tachyon is replaced by the Lüscher [57] cou-
lombic potential,

V0ðRÞ ¼ σR −
π

12

1

R
þO

�
1

R3

�
; ð25Þ

which confirms the factor ðn − D−2
24

Þ in the Arvis potential.
At very short distances, the correct potential matches
perturbative QCD [12].
Nevertheless, for the excited states, the intrinsic width of

the flux tube [14] should become negligible compared with
the quantum vibrations of the string. The Nambu-Goto
model should then be adequate to analyze the potentials we
compute with lattice QCD. Notice the Arvis potential
produces a tower of levels,

VnrðRÞ ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2π

σ

�
2nr −

1

12

�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ

�
2nr −

1

12

�s
þOðR2Þ; ð26Þ

as we observe in our lattice QCD data.
We now start analyzing our data, shown in Figs. 7 and 8,

where they are compared explicitly with the Nambu-
Goto model.
If we exclude the smaller four distances showing some

energy degeneracy, evident in Fig. 7 in the compression of
the higher levels with N > 2, we see no evidence for the Γg

states, discussed in Sec. II A, degenerate with our Σþ
g states.

Notice the degeneracy in these smaller four distances is
possibly due to higher harmonics of the string vibrations.
The harmonics with an even number of nodes have the

FIG. 9. Results of the fits, for the second σ2 parameter of the
modified Nambu-Goto expression, from top to bottom, respec-
tively, with ensembles W1, W2, W4, and S4.

TABLE II. The different parameters σ2=σ in the modified Nambu-Goto model fitted for all the energy levels in the
different ensembles.

Energy level

σ2=σ

W1 W2 W4 S4

N1 0.9241(105) 0.9970(76) 1.0206(117) 0.9273(101)
N2 0.9403(114) 1.0258(93) 0.9753(20) 0.9302(112)
N3 1.0255(422) 1.0313(99) 1.0486(468) 0.9171(103)
N4 0.8160(79) 0.9803(58) 0.9223(37) 0.8990(285)
N5 0.7880(115) 1.0731(275) 0.8440(219) 0.8845(117)
N6 0.7646(14) 0.9967(147) 0.8254(203) 0.8852(363)
N7 � � � � � � � � � 0.9317(38)
N8 � � � � � � � � � 0.8245(46)
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same quantum numbers Σþ
g as the fundamental harmonic.

Since our operators only have two nodes, at the open ends
of the string, they should not have a large overlap with the
higher harmonics, except at shorter distances, where the

square shape of our operators may be too crude to only
overlap with the fundamental harmonic. Since we are only
interested in studying the radial excitations, From now on,

FIG. 10. Comparing our results to a fit with the modified
Nambu-Gotto action, a unique σ2 is extracted from a nonlinear
multifit of all the energy levels, in the interval ½5as − 12as�, from
top to bottom, respectively, with ensembles W1, W2, W4, and S4.
The width of the solid lines are equal to the error bar of our fit.

FIG. 11. Comparing our results in lattice spacing units to a fit
with the modified Nambu-Gotto action the values are extracted
from a nonlinear multifit of all the energy levels, in the interval
½5as − 12as�, from top to bottom, respectively, with ensembles
W1, W2, W4, and S4. The width of the solid lines are equal to the
error bar of our fit. The ground state was excluded from the
multifit. σ is the linear term of the ground state fitted alone.
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we will exclude the four shortest distances from the fits of
our data.
Moreover, we see no evidence for string breaking

[58–60], noticing that with the anisotropic actions we
are able to go to distances much larger than the string
breaking distance. Thus, we are confident to be analyzing
the pure hybrid Σþ

g states.
The first two excited states seem to be, in general,

compatible with the Nambu-Goto model within error bars.
However, the next states depart from it, apparently the
energy levels are in general higher than in Nambu-Goto.
Thus, we analyze quantitatively the difference to the

Nambu-Goto potential, fitting the data with an extra
parameter. We multiply the constant term in the square
root by an independent prefactor. The simplest way we find
to do this is to change σ in to σ2 in the denominator or the
constant term depending on nr. The modified Nambu-Goto
model is

VnðRÞ ¼ σR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2π

σ2R2

�
n −

D − 2

24

�s
: ð27Þ

In particular, we fit the results of Fig. 7 for each excited

state separately with E2NðRÞ=ðRσÞ to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2π

σ2R2 ð2N − 1
12
Þ

q
and extract σ2. The resulting fits of all the energy levels for
the different ensembles are shown in Fig. 9 and detailed in
Table II.
Besides, we also use another approach with a gobal fit

of all levels. Instead of fitting each excited state
separately, we perform a nonlinear multifit for all the
excited states in each ensemble in Fig. 10. For each
emsemble, we display the resulted σ2 and χ2=dof. We
find that for ensembles W1, W4, and S4, σ2 is up to 10%
smaller than σ (meaning that the energy levels are higher
than in the Nambu-Goto model), but for W2 and σ2, they
are similar.
Furthermore, since the results in Fig. 7 are in units of

the string tension obtained from the ground-state fit,
we also perform an even more global fit, fitting all
parameters to the excited spectrum (and not fitting the
ground state). In Fig. 11 and in Table III, we depict the
nonlinear multifit for all the excited states in lattice spacing
units to the equation,

VnðRÞ ¼ a0 þ σ1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2π

σ2R2

�
n −

D − 2

24

�s
: ð28Þ

In this case, what we have to compare with the previous
σ2=σ is now σ2=ξR=σ1. Again, this goes down, up to 10% in
ensemblesW4 and S4, while in ensemblesW1 andW2, this
is of order of 1.
This departure of up to 10% from the Nambu-Goto

model may possibly be interpreted as the string being
nonhomogeneous or be interpreted with the existence of a
constituent gluon in the more excited states.

V. CONCLUSIONS AND OUTLOOK

We computed the potentials for several new excitations
of the pure SU(3) flux tubes produced by two static 3 and 3̄
sources, specializing in the radial excitations of the repre-
sentation Σþ

g .
We succeeded in obtaining the spectrum of several new

excited flux tubes, using a large basis of operators,
employing the computational techniques with GPUs of
Ref. [40] (improved to be able to study field densities), and
utilizing different actions with smearing and anisotropy.
Previously in the literature and websites, states up to N ¼ 2
have been shown, and we go up to N ¼ 8.
In general, the excited states of the Σþ

g flux tubes are
comparable to the Nambu-Goto string model with trans-
verse modes, only depending on the string tension σ and the
radial quantum number nr.
Nevertheless, we found evidence that the Σþ

g flux tubes
cannot be exactly modelled by the Nambu-Goto string
model. A second parameter, we parametrize as a second σ2
up to 10% smaller than σ, essentially corresponding to a
larger energy splitting between levels than in the Nambu-
Goto model leads to better fits. Interesting for the theo-
retical studies of the QCD flux tubes, this may indicate the
formation of a nonhomogenous string with a lump or a
constituent gluon or of an extra symmetry higher in the
spectrum as referred in Sec. I.
To clarify in more detail this small tension with the

Nambu-Goto model, we would need to have more compu-
tational power to be able to use larger lattices and more
operators. Another direction of research is on investigating
higher angular excitations of the flux tube (here we
investigated radial excitations), but a new approach would

TABLE III. Fit results of the Fig. 11 extracted from a nonlinear multifit of all the energy levels, in the interval ½5as − 12as�. The ground
state was excluded from the multifit. σ is the linear term of the ground state fitted alone.

Ensemble a0 σ σ1 σ2 σ2=ξR σ2=ξR=σ1 χ2=dof

W1 0.521(408) � � � 0.0351(46) 0.0344(74) 0.0344(74) 0.9814(2470) 35.1
W2 0.2363(33) 0.0440(1) 0.0468(6) 0.1039(25) 0.0478(11) 1.0205(270) 2.9
W4 0.0564(99) 0.0547(1) 0.0583(8) 0.2400(47) 0.0528(10) 0.9062(216) 25.8
S4 0.1203(39) 0.0255(1) 0.0279(5) 0.0923(29) 0.0255(8) 0.9116(329) 13.7
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be necessary to overcome the limitations of a cubic lattice.
Searching in different quantum numbers for explicit evi-
dences of a constituent gluon [41] or of an axion [29] is also
motivating. We leave this for future works.
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