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The background magnetic-field formalism of lattice QCD has been used recently to calculate the
magnetic polarizability of the charged pion. These nf ¼ 2þ 1 numerical simulations are electroquenched,
such that the virtual sea-quarks of the QCD vacuum do not interact with the background field. To
understand the impact of this, we draw on partially quenched chiral perturbation theory. In this case, the
leading term proportional to 1=Mπ arises at tree level from L4. To describe the results from lattice QCD,
while maintaining the exact leading terms of chiral perturbation theory, we introduce a Padé approximant
designed to reproduce the slow variation observed in the lattice QCD results. Two-loop contributions are
introduced to assess the systematic uncertainty associated with higher-order terms of the expansion. Upon
extrapolation, the magnetic polarizability of the charged pion at the physical pion mass is found to be
βπ� ¼ −1.70ð14Þstatð25Þsyst × 10−4 fm3, in good agreement with the recent experimental measurement.

DOI: 10.1103/PhysRevD.104.054506

I. INTRODUCTION

Determining the electromagnetic structure of baryons
and mesons presents a contemporary challenge of broad
interest in hadron physics. The internal structure of hadrons
is governed by the interactions between quarks and gluons
described by quantum chromodynamics (QCD). Although
QCD is well established to describe the strong interactions,
it is very difficult to study hadronic physics using QCD
directly, due to its nonperturbative behavior.
Many phenomenological models as well as effective

field theory have been utilized to learn about the mecha-
nisms at play in determining the hadron spectrum, hadron
structure and hadronic interactions. The most rigorous way
to study hadron physics is through lattice QCD. It is based
on the first principles of the quantum field theory and
provides an avenue for the ab initio calculation of Green
functions via simulations of the path integral in a discrete
space-time lattice.
The electromagnetic polarizability is a fundamental prop-

erty characterizing the structure of a hadron. The observable
reflects a dynamical response of a hadron to an external
electromagnetic probe. As the lightest meson, the pion
polarizability is of special interest. It is very difficult to
measure accurately, due to the short lifetime of the pion [1,2].
A relatively recent measurement by the COMPASS collabo-
ration [2] provides βπ� ¼ ð−2.0� 0.6� 0.7Þ × 10−4 fm3

for the charged pion. Here the uncertainties are statistical and
systematic respectively.
This experimental measurement is complemented by

theoretical calculations based on models, such as the quark
confinement model [3], Nambu-Jona-Lasinio model [4,5],
linear sigma model [6], dispersion sum rules [7,8], as well
as chiral perturbation theory [9,10].
In this investigation we analyze lattice QCD results for

the magnetic polarizability of the charged pion determined
via the uniform background magnetic field formalism.
Early work with the background-field approach calculated
baryon magnetic moments [11,12]. The first attempt to
calculate a polarizability with the background field method
was made by Fiebig et al. [13]. The formalism for
calculating the magnetic polarizability of a baryon within
the background field method was outlined in Ref. [14].
Today, there are several calculations of light-hadron

magnetic polarizabilities using the background-field
formalism [15–21], with advances in algorithms comple-
menting increased supercomputing resources to signifi-
cantly reduce both systematic and statistical errors over
time. In addition, first attempts to calculate the polar-
izability of light nuclei [22] have been made. More recently,
Landau and Laplacian SUð3Þ × Uð1Þ projection methods
have been created to isolate the ground states of hadrons in
an external magnetic field [23–25].
While the chiral extrapolation of the magnetic

polarizability of the nucleon and neutral pion has been
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considered [23,24,26,27], a chiral extrapolation of lattice
QCD results for the charged-pion magnetic polarizability
βπ� remains.
xIn this paper, we will extrapolate the lattice results of

Ref. [25] for βπ� to the physical pion mass. The results of
Ref. [25] employ a new Laplacian-mode projection tech-
nique that isolates the state of interest and enables accurate
determinations of the small energy shifts induced by the
background magnetic field. We will analyze the one loop
diagrams from partially quenched chiral perturbation
theory to identify the leading contributions of quark-flow
connected and disconnected diagrams separately.

II. PARTIALLY QUENCHED χPT

A naive approach to chiral extrapolation is to simply use
low-order polynomial fit functions of the quark mass to fit
the lattice results. However, such a procedure is not correct
as it neglects the effects of the meson cloud, which can
produce terms nonanalytic in the quark mass. These terms
can generate rapid variation in observables for pion masses
below 400 to 500 MeV [28]. The nonanalytic terms are
crucial in obtaining the correct extrapolated results at the
physical pion mass.
Chiral perturbation theory (χPT) provides a robust frame-

work for determining the nonanalytic terms and their
coefficients. The coefficients are model-independent and
should not be taken as fit parameters. This approach has been
used to extrapolate many hadronic observables [29–37].
For the magnetic polarizability of the charged pion, the

tree level contribution starting from the next-to-leading
order LagrangianL4 provides a leading term to βπ� of order
1=Mπ with a well-determined coefficient [9]. The leading
nonanalytic contribution to the Compton amplitude propor-
tional to logðmπÞ has its origin in the two-loop diagrams
of χPT [10].
We find that the lattice QCD results for βπ� are described

very well over the available pion-mass range by a Padé
approximant involving three terms. This approximation
provides an interpolation between the light quark-mass
regime where χPT is robust to the larger quark-mass regime
where the lattice-QCD results are smooth and slowly
varying as a function of the quark mass. A similar approach
was explored in Ref. [38] where baryon magnetic moments
were extrapolated to the physical point.
To explore the systematic errors of the approach and the

importance of higher-order terms in the chiral expansion,
two-loop contributions are also considered [10]. These
contributions are found to be small relative to the leading
contributions. With this consideration, the magnetic polar-
izability of the charged pion at the physical point is
βπ� ¼ −1.70ð14Þstatð25Þsyst × 10−4 fm3, in good agreement
with the recent experimental measurement of Ref. [2].
For pion-photon scattering, the Taylor expansion of the

Compton amplitude in photon energies at threshold can be
expressed as

T ¼ −2½ϵ⃗1 · ϵ⃗�2ðe2 − 4πMπαπω1ω2Þ
− 4πMπβπðq⃗1 × ϵ⃗1Þ · ðq⃗2 × ϵ⃗�2Þ þ � � ��; ð1Þ

where απ and βπ are called the electromagnetic polar-
izabilities. There have been several calculations addressing
the pion electromagnetic polarizability within chiral effec-
tive field theory [9,10,39]. The chiral Lagrangian is
organized in the following terms

L ¼ L2 þ L4 þ L6 þ � � � ; ð2Þ

where the subscripts refer to the chiral order. For the one-
loop diagrams, only the Lagrangian at leading order L2 is
used. The expression for L2 is

L2 ¼
f2π
4
Tr½DμUDμU†� þ f2π

4
Tr½mðU þ U†Þ�; ð3Þ

where U ¼ e2iϕ=fπ and fπ ¼ 92.4ð3Þ MeV is the pion
decay constant [40]. ϕ is the matrix of pseudoscalar
fields

ϕ ¼ 1ffiffiffi
2

p

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA; ð4Þ

and m is the mass matrix expressed as

m ¼

0
BB@

M2
π 0 0

0 M2
π 0

0 0 2M2
K −M2

π

1
CCA: ð5Þ

In our extrapolation, the next higher order Lagrangian will
provide the leading tree level contribution. The one-loop
Feynman diagram for the magnetic polarizability of the
charged pion is shown in Fig. 1.
For the charged pion, the amplitude of Fig. 1 is written as

FIG. 1. The leading one-loop diagram for the pion magnetic
polarizability.
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T ¼ −ie2

3f2π

Z
d4k
ð2πÞ

½ðk − q1Þðk − q2Þ − 3Pðk − q1Þ − 3Pðk − q2Þ −M2
π�ð2k − q2Þνð2k − q1Þμ

ðk2 −M2
πÞððk − q2Þ2 −M2

πÞððk − q1Þ2 −M2
πÞ

ϵμðq1Þϵν�ðq2Þ þ C:S: ð6Þ

where C:S: denotes crossing symmetry terms where the
photons labeled q1;μ and q2;ν in Fig. 1 couple with the
opposite time ordering. This amplitude has no contribution
to the magnetic polarizability of the charged pion.
The lattice results in [25] are simulated in the electro-

quenched approximation. In this case, virtual sea-quark
loops in the QCD vacuum do not interact with the back-
ground magnetic field. To understand the impact of this
approximation, we draw on partially quenched chiral
perturbation theory to separate the contributions of sea-
quark loops and understand their role in composing the
properties of QCD.
Hu et al. [41] have performed a comprehensive calcu-

lation of the pion polarizability at one loop using the
graded-symmetry formalism of partial quenching for

isolating sea-quark-loop contributions [42]. Here we com-
plement this approach with a simple diagrammatic
approach [43] where the sea-quark-loop contributions are
isolated by changing the sea-quark flavor to a flavor that
does not appear in the hadron under consideration, in this
case a strange quark. Drawing on established SU(3) flavor
relations the loop contribution is readily obtained.
The quark-flow diagrams for the πþπþπþπþ channel are

plotted in Fig. 2. The coefficients of the four-meson
vertex for Figs. 2(a) and (b) alone can be obtained by
replacing the sea quark with a strange quark [43] as
described above. Therefore, the amplitude can be obtained
by calculating a K-meson loop dressing with the K-meson
mass set equal to the pion mass. The amplitude of Fig. 2(a)
is written as

TðaÞ ¼ −ie2

6f2π

Z
d4k
ð2πÞ

½ðk − q1Þðk − q2Þ − 3Pðk − q1Þ − 3Pðk − q2Þ −M2
π�ð2k − q2Þνð2k − q1Þμ

ðk2 −M2
πÞððk − q2Þ2 −M2

πÞððk − q1Þ2 −M2
πÞ

ϵμðq1Þϵν�ðq2Þ þ C:S:: ð7Þ

Except for the leading factor, Eq. (7) is the same as Eq. (6)
and once again this amplitude does not contribute to the
magnetic polarizability of the charged pion. Since the
expression of Fig. 2(b) has the same structure, its con-
tribution also vanishes. Since the sum of the contributions
of Figs. 2(a) and (b) matches the total amplitude of Fig. 1,
the 4π vertex in Fig. 2(c) also vanishes. These results are
consistent with the conclusions from graded symmetry [42]
and the comprehensive analysis of Hu et al. [41].
Thus, the one-loop diagrams of the leading order

Lagrangian L2 make no contributions to βπ� in either full
QCD or electroquenched QCD. Loop contributions com-
mence at the two-loop level. This is in contrast with the π0

case, where quark-annihilation contractions of quark-field
operators within the neutral-pion interpolating fields create
source-sink-disconnected contributions to βπ0 . Similar
contractions do not exist in the charged pion interpolators
and thus this one-loop amplitude does not appear for the
charged-pion magnetic polarizability.
The lowest order tree-level contribution starts from L4

and can be written as

β0 ¼ −
α

16f2πMππ
2

l̄Δ
3
; ð8Þ

where α ¼ 1=137 is the fine structure constant, l̄Δ ¼ 3.0�
0.3 is the renormalized constant taken from Refs. [9,10].

This is the leading contribution to the magnetic
polarizability of the charged pion, as it is proportional to
1=Mπ . At the physical point, this contribution is
−2.98ð30Þ × 10−4 fm3.
Note, for the π0 case, the leading tree-level contribution

is of orderMπ. There, sigma-meson exchange, contributing

u

u

u

(a) (b)

(c)

+

d
−

d
−

d
−

FIG. 2. Quark-flow diagrams for the πþπþπþπþ channel. The
couplings for Figs. 2(a) and 2(b) can be obtained individually by
replacing the light sea-quark-loop flavor with a strange quark
flavor and using SU(3)-flavor symmetry [43].
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at order 1=Mπ, was included to describe the pion
mass dependence of the lattice results [27]. Here however,
it is not necessary to introduce sigma exchange as
the 1=Mπ contribution is effectively included in the l̄Δ
term.

III. PADÉ APPROXIMANT

The tree level contribution from L6 is OðMπÞ. Thus the
tree-level contribution up to M3

π can be written

βπ
�

tree ¼ β0 þ b1Mπ þ b3M3
π ¼ β0ð1þ c1M2

π þ c3M4
πÞ: ð9Þ

To create a function able to interpolate between the light
quark-mass regime where χPT is robust to the larger quark-
mass regime where the lattice-QCD results are smooth
and slowly varying, we consider the following Padé
approximant

βπ
�

L ¼ β0
1þ c1M2

π þ c3M4
π

1þ c4M4
π

; ð10Þ

where c1 ¼ 3ar
1

32f2ππ2 l̄Δ
and ar1 ¼ −3.2 is the renormalized

low-energy constant as determined in Ref. [10]. We note
that the result for βπ

�
L is insensitive to the value taken for

ar1 as the fit parameters c3 and c4 compensate for changes
in ar1 as the fit function is constrained by the lattice QCD
results.
We note that the effectiveness of a Padé in such

circumstances was illustrated by a study of the exactly
soluble Euler-Heisenberg effective action, where an
approximant was shown to yield a surprisingly accurate
fit to the exact result provided the logarithmic behavior at
small mass and the inverse power behavior at large mass
was correctly incorporated [44]. The parameters c3 and c4
are fit parameters constrained by fitting the lattice QCD
results. We find

c3 ¼ −0.59� 0.16 fm4; and c4 ¼ 1.50� 0.15 fm4:

ð11Þ

The pion mass dependence of the lattice QCD results for
the charged-pion magnetic polarizability is illustrated in
Fig. 3. The fit of βπ

�
L to these lattice results is illustrated as a

solid curve. One observes the lattice results can be
described very well by the Padé approximant. The Padé
approximant incorporates a heavy quark behavior consis-
tent with the lattice QCD observations, allowing the fit
function to become flat at larger pion masses, which is of
course not possible with a polynomial expansion.
At small pion masses, βπ

�
L is dominated by the results of

χPT, decreasing quickly with decreasing Mπ due to the
leading order term proportional to 1=Mπ . As a result, the
positive lattice results at large Mπ change to negative

values at small Mπ . At the physical pion mass,
βπ� ¼ −1.80ð14Þ × 10−4 fm3.
This extrapolation is possible because there is

knowledge of l̄Δ from chiral perturbation theory. The
merit of the extrapolation lies not only in providing a
prediction to confront experiment, but also in the guidance
it provides for next generation lattice QCD simulations to
both directly observe the predicted sign change in the
magnetic polarizability, and determine the value of l̄Δ
from the first principles of QCD. To constrain l̄Δ, one
needs precise lattice QCD results at small pion masses.
However, lattice calculations have yet to resolve a signal
there. If chiral fermion actions are required to circumvent
difficulties associated with additive mass renormalization
issues with Wilson-clover fermions, a two-order of
magnitude increase in computational resources will be
required.
To investigate the importance of higher-order

terms in the chiral expansion, we proceed to include
additional two-loop contributions from χPT [10]. In
presenting these contributions, we begin by simply
adding the two-loop contributions to the existing fit
illustrated in Fig. 3. The modified Padé approximant
incorporating the two-loop contributions can be
expressed as

βπ
�

F ¼ β0
1 − 3ðd1þ−d1−Þ

32π2f2π l̄Δ
M2

π þ c3M4
π

1þ c4M4
π

; ð12Þ

where d1þ and d1− are coefficients for the two-loop
contributions [10]. They are defined as

FIG. 3. Pion mass dependence of the magnetic polarizability of
the charged pion. The Padé approximant of Eq. (10) (solid curve)
is constrained by the CSSM lattice results of Ref. [25] (black
bullets) as described in the text. The leading and next-to-leading
contributions are constrained by χPT [9,10]. Dashed curves
represent the 1σ error bounds associated with the statistical
uncertainties of the lattice results. The vertical dotted line
indicates the physical pion-mass point.
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d1þ ¼ 8br −
4

9

�
l

�
lþ 1

2
l̄l þ

3

2
l̄2

�
−
53

24
lþ 1

2
l̄1 þ

3

2
l̄2

þ 91

72
þ Δþ

�
;

d1− ¼ ar1 þ 8br −
4

3

�
l

�
l̄1 − l̄2 þ l̄Δ −

65

12

�
−
1

3
l̄1 −

1

3
l̄2

þ 1

4
l̄3 − l̄Δl̄4 þ

187

104
þ Δ−

�
; ð13Þ

with

Δþ ¼ 8105

576
−
135

64
π2; and Δ− ¼ 41

432
−
53

64
π2; ð14Þ

where l≡ ln ðM2
π=μ2Þ, and l̄i are scale-independent low-

energy constants (LECs) defined in Eqs. (3.8), (3.9) and
(3.10) of Ref. [10].

l̄1 ¼ −0.4� 0.6; l̄2 ¼ 4.3� 0.1;

l̄3 ¼ 2.9� 2.4; l̄4 ¼ 4.4� 0.2;

l̄Δ ¼ 3.0� 0.3: ð15Þ

The scale μ ¼ 0.770 GeV is set to the ρ-meson mass. The
uncertainty in each of these LECs contributes to a
systematic uncertainty in the magnetic polarizability
βπ� . We consider the uncertainty associated with each
LEC and combine their contributions in quadrature.
Our final results for the chiral extrapolation of the

magnetic polarizability of the charged pion is illustrated
in Fig. 4. The blue line is our previous fit of Eq. (10) to the
lattice results. The red line for 0 ≤ M2

π ≤ 2M2Phys
π repre-

sents the chiral extrapolation with the two-loop contribu-
tions added to our previous fit as described by Eq. (12). The
addition of the two-loop contributions makes only a small
adjustment to the chiral extrapolation. At the physical
point, the two-loop correction is 0.10 × 10−4 fm3, a 6%
correction. However the correction decreases as one moves
to heavier pion masses. Given that the corrections are very
small and it is not clear to what extent electroquenched
simulations incorporate these effects, we propose the
addition of two-loop effects to provide the better estimate
of the observable, and adopt the difference between the red
and blue curves as contributing to the systematic error,
added in quadrature.
The full QCD prediction for the magnetic polarizability

of the charged pion βπ� is illustrated at the physical
pion mass in Fig. 4 by the red point where the error
bar incorporates both statistical and systematic uncer-
tainties combined in quadrature. Our final estimate
is βπ� ¼ −1.70ð14Þstatð25Þsyst × 10−4 fm3.
The experimental measurement obtained by the

COMPASS collaboration [2] is βπ� ¼ ð−2.0� 0.6�
0.7Þ × 10−4 fm3 under the assumption ðβ þ αÞπ ¼ 0.

Here the uncertainties are statistical and systematic, respec-
tively. This measurement is illustrated by the orange point
in Fig. 4 where the statistical and systematic uncertainties
have been added in quadrature. Our result is in good
agreement with the experimental measurement.
It is interesting to examine how a power-series expansion

of the Padé generates corrections to the leading contribu-
tion of β0. We commence with a Taylor expansion of the
total contribution without the two-loop correction, in
Eq. (10)

βπ
�

L ¼ β0ð1þ c1M2
π þ ðc3 − c4ÞM4

πÞ þ � � � : ð16Þ

Table I, lists the contributions at different orders of the
expansion evaluated at the physical pion mass. Recall that
the coefficient c1 is related to ar1, known from chiral
perturbation theory, whereas c3 and c4 are constrained
by the current lattice QCD results.
We note that the large contribution at ∝ M4

π may be a
reflection of the Padé considered where a ratio of c3=c4 is
encountered at large pion mass. For example, a Padé
involving a ratio of M6

π terms may shift the strength
observed at M4

π to neighboring terms. On the other hand,
these coefficients are required to describe the lattice QCD
results. Therefore, the large contribution at M4

π cautions
against the naive application of the power-series expansion,
even at the physical pion mass.
Considering the corrections ∝ M4

π and higher order
contributions together, we observe an OðM4

πÞ correction
of 1.11 × 10−4 fm3 relative to a leading order term of

FIG. 4. Chiral extrapolation of the charged-pion magnetic
polarizability. The red and blue lines illustrate the Padé approx-
imates of Eqs. (12) and (10) with and without the two-loop
contributions respectively. The full QCD prediction for the
magnetic polarizability of the charged pion βπ� is illustrated at
the physical pion mass by the red point where the error bar
incorporates both statistical and systematic uncertainties as
described in the text. The experimental measurement by the
COMPASS collaboration [2] is illustrated by the orange point at
the physical pion mass.
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magnitude 2.98 × 10−4 fm3, a 37% correction at the
physical pion mass.

IV. SUMMARY

In this paper, we have investigated the magnetic polar-
izability of the charged pion based on an analysis of recent
lattice QCD simulations at a range of quark masses. We
considered partially-quenched chiral perturbation theory to
understand the role of sea-quark-loops in the magnetic
polarizability of the charged pion at one-loop level, vital to
understanding the impact of electroquenching in the lattice
QCD simulations. In this case, electroquenched and full
QCD agree, with neither theory making contributions to the
charged-pion magnetic polarizability at one-loop level.
Thus the fact that the lattice simulations are electro-
quenched has no impact on the leading loop contributions
to the magnetic polarizability.
To interpolate between the light quark-mass regime

where χPT is robust to the larger quark-mass regime where
the lattice-QCD results are smooth and slowly varying, a
Padé approximant was constructed. The lattice results are
described well by the Padé approximant. To evaluate the
impact of higher-order contributions in the chiral extrapo-
lation, two-loop contributions as determined by Ref. [10]
were investigated. The contribution at the physical pion
mass is small and decreases as one moves to larger pion
masses.
Although the lattice results at larger pion masses are

positive, the final result at the physical pion mass is
negative at βπ� ¼ −1.70ð14Þstatð25Þsyst × 10−4 fm3, in very
good agreement with the experimental measurement by the
COMPASS collaboration [2].
Future research will focus on studying the pion magnetic

polarizability at smaller pion masses, to directly observe the
sign change of βπ� predicted in this analysis. Such
simulations are very demanding, particularly if the large
statistical fluctuations observed at light quark masses are

associated with additive-mass renormalization issues in
nonchiral fermion actions. If one needs a chiral fermion
action to circumvent this problem, a two-order of magni-
tude in computational resources will be required.
Understanding the finite volume corrections to the

charged pion magnetic polarizability remains of interest,
and can be quantified through simulations on larger
volumes.
An alternative approach to the background field formal-

ism is to access the polarizability via perturbative electro-
magnetic-current insertions in four-point correlation
function calculations [45,46]. Here the QCD basis states
are not mixed by the electromagnetic interactions and may
be of advantage in understanding Σ0 and Λ polarizabilities
for example, as these states mix in the background-field
formalism.
Finally, while the two-loop contributions are remarkably

small, in principle it would be interesting to bring the
graded-symmetry approach of partially-quenched chiral
perturbation theory to the two-loop χPT calculations to
learn the details of electroquenching in the two-loop sector.
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TABLE I. Comparison of the contributions to the charged pion magnetic polarizability in the standard units of ×10−4 fm3.

Description Term Value (×10−4 fm3)

Total contribution without the two-loop correction Eq. (10) −1.80
Tree level contribution at leading order β0 −2.98
Correction ∝ M2

π β0c1M2
π 0.07

Correction ∝ M4
π β0ðc3 − c4ÞM4

π 1.60
Sum of remaining contributions βπ

�
L − β0ð1þ c1M2

π þ ðc3 − c4ÞM4
πÞ −0.49

Two loop correction of Eq. (12) − 3ðd1þ−d1−þar
1
Þ

32π2f2π l̄Δð1þc4M4
πÞM

2
πβ0

0.10

Full QCD prediction Eq. (12) −1.70
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