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We present a calculation of the pion and kaon Mellin moment hx3i extracted directly in lattice QCD
using a three-derivative local operator. We use one ensemble of gauge configurations with two degenerate
light, a strange and a charm quark (Nf ¼ 2þ 1þ 1) of maximally twisted mass fermions with clover
improvement. The ensemble reproduces a pion mass ∼260 MeV, and a kaon mass ∼530 MeV. Excited-
states contamination is evaluated using four values of the source-sink time separation within the range of
1.12–1.67 fm. We use an operator that is free of mixing, and apply a multiplicative renormalization function
calculated nonperturbatively. Our results are converted to the MS scheme and evolved at a scale of 2 GeV,
using three-loop expressions in perturbation theory. The final values are hx3iuþπ ¼ 0.024ð18Þstatð2Þsyst,
hx3iuþK ¼ 0.035ð6Þstatð3Þsyst, and hx3isþK ¼ 0.075ð5Þstatð1Þsyst, where the systematic error is the uncertainty

due to excited state contamination. We combine hx3i with the two lower moments, namely hxi and hx2i, to
obtain the ratios hx3i=hxi and hx3i=hx2i, as well as hx3iuþK =hx3iuþπ and hx3iuþK =hx3iuþπ . In addition, we
reconstruct the x-dependence of the pion and kaon PDFs via 2- and 3-parameter fits to our results. We find
that the reconstruction is feasible and that our lattice data favor a large x-dependence that falls as ð1 − xÞ2
for both the pion and kaon PDFs. We integrate the reconstructed PDFs to extract the higher moments with
4 ≤ n ≤ 6. Finally, we compare the pion and kaon PDFs, as well as the ratios of their moments, to address
the effect of SU(3) flavor symmetry breaking.
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I. INTRODUCTION

The pion, kaon, and eta mesons comprise the octet of
Nambu–Goldstone bosons, which are unique among
hadrons because their masses vanish in the chiral limit.
The valence quark structure of these mesons is given by a
combination of a quark and an anti-quark with flavors u, d,
and s, and if the masses of these quarks are equal then
these Nambu–Goldstone bosons are mass degenerate
(up to electroweak effects). Since the mass of the strange

quark is significantly higher than that of the light u and
d quarks—2ms=ðmu þmdÞ ¼ 27.46� 0.15� 0.41 [1]—
comparison between pion and kaon observables provides
a unique window into the interplay between strong inter-
action forces described by quantum chromodynamics
(QCD) and quark mass effects [2].
For the pion and kaon, signficant SU(3) flavor breaking

effects have already been observed. For example, experi-
ment finds pion and kaon charge radii of rπþ ¼ 0.672�
0.008 fm and rKþ ¼ 0.560� 0.031 fm [1], which reveals
flavor breaking effects of around 10%. More striking
perhaps is for the neutral pion and kaon, where rπ0 vanishes
and rK0 ¼ −0.277� 0.018 fm [1]. Similar effects are
expected in the pion and kaon parton distribution functions
(PDFs). However, while some data exists for the pion, from
pion induced Drell-Yan [3], knowledge of the kaon is even
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more limited with only some early data on ūK−ðxÞ=ūπ−ðxÞ
[4]. The naive expectation based on quark mass effects is
that sKðxÞ will have more support at large x (harder) while
uKðxÞ will be concentrated at smaller x (softer). Similarly,
flavor breaking would imply sKðxÞ is harder and uKðxÞ is
softer than the u=d quark distributions in the pion. Existing
data on the pion and kaon are not in contradiction to these
naive expectations, however, the error bars are large so
definitive conclusions cannot be made.
Calculations of the pion and kaon are also limited within

lattice QCD as compared to the proton. Among the first
calculations for the pion are for the moments in the quenched
approximation [5], which were later improved [6,7]. It is
only recently that the first calculation of moments using local
operators was performed [8]. Lattice calculations of the
x-dependence of the pion and kaon PDFs became available
in the last few years [9–16] using methods like the quasi-
PDFs [17,18], pseudo-Ioffe-time-distributions (ITD) [19],
and current-current correlators [20–22]. For a recent review
on these approaches see Refs. [23,24]. Using these methods,
one can integrate and extract the nth moments.
In this work, we calculate the nontrivial moments of the

pion and kaon quark PDFs up to hx3i using lattice QCD,
and explore the size of quark mass effects by comparing
moments in the pion and kaon, and between the light and
strange quarks in the kaon. These moments are determined
by directly evaluating the associated operators, using one
ensemble of gauge configurations with two degenerate light
quarks, and strange and charm quarks (Nf ¼ 2þ 1þ 1) of
maximally twisted mass fermions with a clover improve-
ment. We avoid operator mixing in the hx3i moments by
using three different spatial and a temporal component for
the associated operator. The computation of these moments
provide important insight into the large-x behavior of the
pion and kaon PDFs, and provide a check of systematic
errors associated with recent methods to determine the full
x-dependence of the PDFs using, e.g., quasi-PDFs [15,17],
pseudo-PDFs [25,26], and current-current correlation
methods [16,22]. With hx3i at hand for the pion and kaon,
and the lower two moments calculated in Ref. [8], we make
an attempt to reconstruct the x-dependence of the PDFs by
fitting to a functional form, which is constrained by the
baryon number sum rule. Sensitivity to the exponent β of
the reconstructed PDFs qðxÞ ≃ ð1 − xÞβ near x ∼ 1 is
explored. Furthermore, we discuss the size of SU(3) flavor
breaking effects by comparing the pion and kaon moments
as well as the reconstructed PDFs.
The paper is organized as follows: In Sec. II, we present

the theoretical framework and the decomposition to obtain
the hx3i quark moments for the pion and kaon. We refer the
reader to Ref. [8] for the formalism associated with the hxi
and hx2i quark moments. In Sec. III we describe how to
perform the nonperturbative renormalization of the three-
derivative operator associated with hx3i and in Sec. IV we
provide details on the analysis methods used to obtain the

pion and kaon moments. Our results for the pion and kaon
quark PDF moments are presented in Sec. V, where
comparisons are made to other lattice QCD results and
various model calculations. In Sec. VI, we present the
reconstruction of the x-dependence of the PDFs and in
Sec. VII we summarize this work.

II. THEORETICAL AND LATTICE SETUP

The meson matrix elements connected to hx3i,
hMjOfμνρσgjMi, with jMi being a meson state, contain
a bilinear fermion vector operator with three covariant
derivatives, that is

Ofμνρσg ≡ ψ̄γfμDνDρDσgψ ; ð1Þ

where ψ is a quark field. Curly brackets denote symmet-
rization over the indices and subtraction of the trace. In
general, any of the indices μ, ν, ρ, σ can be spatial (1,2,3)
or temporal (4) and in any combination. However, to avoid
mixing with other operators we choose all four indices to
be different from each other [27–30], which leads to the
operator Of1234g. There are twenty-four permutations for
the indices, which are all calculated and averaged over.
The relevant decomposition of the meson matrix element

of the operator Ofμνρσg in Euclidean space leads to three
generalized form factors, via the expression

hMðp0ÞjOfμνρσgjMðpÞi ¼ C½−2PfμPνPρPσgA40ðQ2Þ
− 2ΔfμΔνPρPσgA42ðQ2Þ
− 2ΔfμΔνΔρΔσgA44ðQ2Þ�; ð2Þ

in a general frame with initial momentum p and final
momentum p0. P is defined as the average of the initial and
final momenta of the meson, P ¼ ðpþ p0Þ=2, and Δ is
their difference, Δ ¼ p0 − p. The generalized form factors
Aij are only dependent on the momentum transferred
squared, Q2. C is a kinematic factor, which depends on
the normalization of the meson state. In this work, we
obtain C ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4EðpÞEðp0Þ
p for a general frame, wheremM is the

mass of mesonM and EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M þ p⃗2
p

is the energy at
momentum p⃗.
To extract the moment hx3i≡ A40ð0Þ, we study the

forward-kinematics limit of Eq. (2), that is, p0 ¼ p ≠ 0,
Q2 ¼ 0, which leads to

hMðpÞjOfμνρσgjMðpÞi ¼ −2
1

2E
pfμpνpρpσghx3iM: ð3Þ

The kinematic factor C is simplified to 1=ð2EÞ. Similarly
to hx2i, the kinematic coefficient of hx3i becomes zero in
the rest frame (p⃗0 ¼ p⃗ ¼ 0) at the forward limit, unless all
the indices of the operator are temporal. However, the
renormalization of O4444 is very complicated as it is not
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multiplicative and requires one to disentangle hx3i from
with lower-dimension operators [27–29]. The only pos-
sibility to avoid any mixing in hx3i is to use the operator
Of1234g, which we use in this work, and obtain:

hMðpÞjOf1234gjMðpÞi ¼ −ip1p2p3hx3iM: ð4Þ

We employ the simplest boosted frame setup to get non-
vanishing matrix elements, that is, all spatial components of
the four-momentum are equal, p0 ¼ p ¼ ðiE; p1; p2; p3Þ.
To have the highest possible signal-to-noise ratio in this
setup we choose the smallest nonzero value for the spatial
components, that is p⃗0 ¼ p⃗ ¼ 2π

L ð�1;�1;�1Þ, where L is
the spatial extend of the lattice used. To increase statistics,
we use all eight permutations of the momentum boost, and
all twenty-four combinations of indices that enter the
symmetrization of Of1234g.
We calculate the connected contributions to hx3i, shown

in the pictorial representation of Fig. 1. We use an ensemble
of gauge configurations labeled cA211.30.32, which has
been produced by the Extended Twisted Mass Collaboration
(ETMC) [31]. The ensemble uses Nf ¼ 2þ 1þ 1 twisted
clover fermions with clover improvement and the Iwasaki
improved gluon action. The fermionic action is written as the
sum of the degenerate light (Sltm) and nondegenerate heavy
(Shtm) fermion actions

Sfermtm ¼ Sltm þ Shtm; ð5Þ

with:

Sltm ¼
X
x

χ̄lðxÞ
�
DWðUÞ þ i

4
cswσμνF μνðUÞ

þml þ iμlτ3γ5
�
χlðxÞ;

Shtm ¼
X
x

χ̄hðxÞ
�
DWðUÞ þ i

4
cswσμνF μνðUÞ

þmh − μδτ1 þ iμστ3γ5
�
χhðxÞ: ð6Þ

Here, χl ¼ ðu; dÞ⊤ represents the light quark doublet and
χh ¼ ðs; cÞ⊤ the heavy quark doublet. μl is the twisted quark
mass of the degenerate light doublet and μδ and μσ are the
twisted quark masses of the heavy doublet.ml andmh are the
(untwisted) Wilson quark masses and DW is the massless
Wilson-Dirac operator. The bare untwisted Wilson masses
are tuned to the critical value ml ¼ mh ¼ mcrit, which gives
automatic OðaÞ improvement [32] and requires no further
operator level improvements. The clover term multiplied by
the Sheikoleslami-Wohlert improvement coefficient csw
reduces isospin symmetry breaking effects [33], since
OðaÞ improvement is already achieved from tuning to
the critical Wilson quark mass. The key parameters of the
ensemble are collected in Table I and the remaining param-
eters are κcrit ¼ 1=ð2amcrit þ 8Þ ¼ 0.1400645, csw ¼ 1.74,
aμl ¼ 0.003, aμσ ¼ 0.1408, and aμδ ¼ 0.1521.
As in Ref. [8] in which the lower two moments of the

kaon PDF were computed, in the valence sector we use the
so-called Osterwalder Seiler fermions for the strange
quarks, with the same value of the bare strange quark mass.
The matrix elements hMðpÞjOfμνρσgjMðpÞi use the

interpolating fields of πþ and Kþ, that is, Jπþ ¼ d̄γ5u
and JKþ ¼ s̄γ5u. For the pion, we only need to calculate
the up quark contribution to hx3i, as the equalityGuðx; x0Þ ¼
γ5G

†
dðx0; xÞγ5 holds for twisted mass fermion propagators.

The interpolating fields at the source and the sink are
smeared using Gaussian smearing. Further details can be
found in Ref. [8]. The three-point correlation functions in the
forward limit are given by

C1234
M ðt; ts; p⃗Þ ¼

X
x⃗s;x⃗

h0jJMðts; x⃗sÞO1234ðt; x⃗Þ

× J†Mðti; x⃗iÞj0ie−ip⃗·ðx⃗s−x⃗iÞ; ð7Þ

FIG. 1. Connected diagram for the three-point function entering
the calculation of hxi and hx2i. The wavy line corresponds to the
operator insertion.

TABLE I. Parameters of the ensemble used in this work.

Parameters

Ensemble β a [fm] Volume L3 × T Nf mπ [MeV] Lmπ L [fm]

cA211.30.32 1.726 0.093 323 × 64 u, d, s, c 260 4 3.0
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where ti, t, ts denote the source, insertion and sink Euclidean
times, respectively. Similarly, the spatial coordinates of the
source, current insertion and sink are x⃗i, x⃗, x⃗s. We set the
source to be at ti ¼ 0, so that the source-sink separation is
ts − ti ≡ ts. In the results presented in this paper, we focus
on the uþ contribution to the pion, where qþ ≡ qþ q̄. To
get the total connected contribution one may use the
relation hx3iuþþdþ

π ¼ 2hx3iuþπ .
The calculation requires a large number of statistics to

control the gauge noise introduced by the covariant
derivatives. The signal-to-noise ratio is also suppressed
due to the use of a boosted frame, which is necessary to
obtain hx3i directly in the forward kinematic limit while
avoiding operator mixing. We use the smallest possible
values, that is, momenta of the class p⃗i ¼ 2π

L ð�1;�1;�1Þ
with p⃗i

2 ¼ 12π2

L2 . This leads to a factor of eight more
computational cost, which is compensated by the reduction
of statistical uncertainties by a factor that can be up to
1=

ffiffiffi
8

p
. Practically, this factor is operator- and particle-

dependent. Based on our results for hxi with the same
statistics and setup, we anticipate a reduction which is a
factor of 2 or higher.
We analyze 122 configurations, separated by 20 trajec-

tories to reduce autocorrelation effects [31]. In order to
control the gauge noise, we calculate the matrix elements
for hx3i for more than double the statistics as compared to
our previous work on hxi and hx2i [8]. Based on the
conclusions of Ref. [8], we use ts=a ¼ 14, 16, 18 to
reliably suppress excited states. The pion, being a lighter
meson, suffers from higher statistical noise. Therefore, we
add ts=a ¼ 12 in the procedure for eliminating excited-
states contamination. The statistics used for each value of ts
are listed in Table II.

III. RENORMALIZATION

The three-derivative operator, in its general case, exhibits
mixing with lower dimension operators [27–30]. As men-
tioned in the previous section, we choose all indices of the
operator to be different (μ ≠ ν ≠ ρ ≠ σ ≠ μ), which avoids
such a mixing and, therefore, its renormalization is multi-
plicative. We calculate the corresponding renormalization

function, ZvDDD, nonperturbatively following the procedure
we developed in Refs. [34–36]. We note that the gauge
average is performed over gauge-fixed configurations,
obtained using a stochastic overrelaxation algorithm
[37]. We start by writing the bare vertex function as

GðpÞ ¼ a12

V

X
x;y;z;z0

e−ipðx−yÞhuðxÞūðzÞJ ðz; z0Þdðz0Þd̄ðyÞi;

ð8Þ

with J ¼ γμDνDρDσ , and u and d representing quark
fields in the physical basis. p is the vertex momentum
allowed by the boundary conditions, and V is the lattice
volume. The Dirac and color indices of GðpÞ are sup-
pressed for simplicity. We employ the momentum source
approach, introduced in Ref. [38], which uses directly
Eq. (8) with a source that is momentum dependent. For
twisted mass fermions, we make use of the symmetry
Suðx; yÞ ¼ γ5Sd†ðy; xÞγ5 between the u– and d–quark
propagators, and therefore, extract the vertex function with
a single inversion per momentum. While this method
requires separate inversions for each momentum employed
in the calculation, it has the advantage of high statistical
accuracy and the evaluation of the vertex for any operator at
no significant additional computational cost.
ZvDDD is calculated by employing the Rome-Southampton

method (RI0 scheme) [39], which involves the amputated
vertex function

ΓðpÞ ¼ ðSuðpÞÞ−1GðpÞðSdðpÞÞ−1: ð9Þ

SuðpÞ and SdðpÞ are the propagators in momentum space in
the physical basis, defined by

SuðpÞ ¼ a8

V

X
x;y

e−ipðx−yÞhuðxÞūðyÞi;

SdðpÞ ¼ a8

V

X
x;y

e−ipðx−yÞhdðxÞd̄ðyÞi: ð10Þ

In practice, we work in the twisted basis at maximal twist, in
which Eq. (8) takes the form

GðpÞ ¼ a12

4V

X
x;y;z;z0

e−ipðx−yÞhð1̂þ iγ5ÞuðxÞūðzÞ

× ð1̂þ iγ5ÞJ ðz; z0Þð1̂ − iγ5Þdðz0Þd̄ðyÞð1̂ − iγ5Þi:
ð11Þ

The above expression can be simplified by using Suðx; zÞ ¼
γ5Sd†ðz; xÞγ5. The renormalization function in the RI0
scheme are determined by the conditions

TABLE II. Statistics used in the calculation of hx3i.
Statistics

ts=a #
configurations

# source
positions

# momentum
boost

Total
statistics

Two-point correlators

� � � 122 72 8 70,272

Three-point correlators

12 122 16 8 15,616
14, 16, 18 122 72 8 70,272
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Z−1
q ZvDDD

1

12
Tr½ΓL

vDDDðpÞðΓBorn
vDDDðpÞÞ−1�

����
p2¼μ2

0

¼ 1; ð12Þ

Zq ¼
1

12
Tr½ðSLðpÞÞ−1SBornðpÞ�

����
p2¼μ2

0

; ð13Þ

where the trace is taken over spin and color. The momentum
of the vertex function is indicated by p, and is set to the RI0

renormalization scale, μ0. SBorn (ΓBorn
vDDD) is the tree-level value

of the fermion propagator (operator). We differentiate ZvDDD
and ZvDDD, as the former depends on the pion mass of the
ensemble and the initial RI0 renormalization scale. The latter
is our final estimate after the chiral extrapolation and after the
limit ðaμ0Þ2 → 0 has been taken.
We evaluate the vertex functions and propagators for a

wide range of values for ðapÞ2, using 10 gauge configu-
rations, which leads to per mil statistical accuracy. We use
momenta that have the same spatial components, that is:

ðapÞ≡ 2π

�
nt
Lt

þ 1

2Lt
;
nx
Ls

;
nx
Ls

;
nx
Ls

�
;

ntϵ½2; 9�; nxϵ½2; 5�; ðapÞ2 ∈ ½0.9 − 6.7�; ð14Þ

where Lt (Ls) is the temporal (spatial) extent of the lattice.
Democratic momenta in the spatial directions that satisfy, in
addition, Eq. (14) reduce non-Lorentz invariant contribu-
tions (

P
i p

4
i =ð

P
i p

2
i Þ2 < 0.3). This is based on empirical

arguments [40] and is being implemented in all calculations
by our group. We further improve ZvDDD by subtracting the
Oðg2a∞Þ artifacts from Zq, which enters the renormaliza-
tion condition of Eq. (12). The artifacts are computed to
one loop in perturbation theory and to all orders in the
lattice spacing,Oðg2a∞Þ, as outlined in Refs. [36,41]. Note
that the vertex function of the three-derivative operator also
contain Oðg2a∞Þ, but have not been calculated yet.
We obtain ZvDDD on five Nf ¼ 4 ensembles at the same

lattice spacing as the Nf ¼ 2þ 1þ 1 ensemble we use for

the meson matrix elements. The ensembles correspond to
different pion masses, and are used in order to take the
chiral limit. The parameters of the Nf ¼ 4 ensembles used
for ZvDDD are given in Table III. The chiral limit is taken
using a quadratic fit with respect to the pion mass, or linear
in aμ, giving a zero slope within uncertainties in both cases.
The chirally extrapolated values for ZvDDD in the RI0

scheme are converted and evolved to MSð2 GeVÞ using an
intermediate renormalization group invariant (RGI)
scheme. Finally, a linear fit with respect to ðaμ0Þ2 is
applied to the MS estimates to eliminate residual depend-
ence on μ0, that is

ZvDDDðapÞ ¼ ZvDDD þ Zð1Þ
vDDD · ðaμ0Þ2: ð15Þ

ZO corresponds to the final value of the renormalization
function for operator O. The estimates for ZvDDD in the
RI0 and MS schemes as a function of the initial RI0

renormalization scale are shown in Fig. 2. ZMS
vDDD is given

at a scale of μ ¼ 2 GeV. We find that, for ðaμ0Þ2 ≥ 3
the purely nonperturbative data exhibit a small residual
dependence on the initial scale μ0 they were evolved from.
The subtraction of the lattice artifacts in Zq results in a
smaller slope, demonstrating the effectiveness of the
artifact-subtraction procedure. We obtain

TABLE III. Parameters for the Nf ¼ 4 ensembles used for the
renormalization functions.

β ¼ 1.726, a ¼ 0.093 fm

aμ amPS Lattice size

0.0060 0.1680 243 × 48
0.0080 0.1916 243 × 48
0.0100 0.2129 243 × 48
0.0115 0.2293 243 × 48
0.0130 0.2432 243 × 48

0 1 2 3 4 5 6 7

1.4

1.6

1.8

2.0

2.2

Z
vD

D
D

 

(a µ
0
)2

FIG. 2. Chirally extrapolated ZvDDD in the RI0 scheme (blue triangles), MS scheme (black circles, magenta diamonds) as a function of
the initial scale. The magenta diamonds correspond to the improved estimates upon subtraction of the artifacts in Zq. The dashed line
corresponds to the fit of Eq. (15). The filled magenta diamond is our final value for ZvDDD.
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ZMS
vDDDð2 GeVÞ ¼ 1.668ð1Þð26Þ; ð16Þ

with the number in the first (second) parenthesis being
the statistical (systematic) uncertainty. The indicated
systematic effect is obtained by taking the deference
between the estimates for the fit interval ðaμ0Þ2ϵ½2 − 7�
and ðaμ0Þ2ϵ½3 − 7�.

IV. ANALYSIS METHODS

A. Setup

To extract the meson matrix elements, one requires to
take the ratio of the three-point correlation functions of
Eq. (7) with the two-point functions, given by

CMðt;pÞ ¼
X
x

h0jJMðt;xÞJ†Mð0; 0Þj0ieip·x: ð17Þ

The normalization of the meson state is h0jJMjMi ¼
ZM=

ffiffiffiffiffiffi
2E

p
. The ground state contribution can be isolated

from the ratio

R1234
M ≡ C1234

M ðts; t;pÞ
CMðts;pÞ

; ð18Þ

which cancels unknown overlap terms between the inter-
polating field and the meson state. In this work, we apply
two methods to obtain the ground state, namely a single-state
(plateau) fit, and a two-state fit.

1. Two-point function

In both methods for identifying and eliminating excited
states, analyze the two-point function and perform a single-
state and two-state fit, the latter being

CMðp2; tÞ ¼ c0ðe−E0ðp2Þt þ e−E0ðp2ÞðT−tÞÞ
þ c1ðe−E1ðp2Þt þ e−E1ðp2ÞðT−tÞÞ: ð19Þ

In the above equation, the fitting parameters are the ground
state energy, E0ðp2Þ, the first excited state energy, E1ðp2Þ,
and the amplitudes c0 and c1. The plateau fit takes into
account only the first term of Eq. (19). We fit the two-point
functions averaged over the eight different directions of
meson momentum (p2 ¼ 12π2=L2), as the energies only
depend on the momentum squared. In addition, using the
averaged two-point functions improves the stability of the
fit compared to fits on the individual momentum directions.
The effective energy is calculated using the formula

Eeffðp2; tÞ ¼ 1

2
ln

�
CMðp2; t − 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CMðp2; t − 1Þ2 − CMðp2;T=2Þ2

p
CMðp2; tþ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CMðp2; tþ 1Þ2 − CMðp2;T=2Þ2

p
�
; ð20Þ

which assumes that the two-point functions are sym-
metrized, i.e., that the two-point functions at t have been
averaged with the values at T − t. For the fits, we select a
range of t ∈ ½tlow; 31� with varying tlow. We choose the
lowest values of tlow, such that the resulting ground state
energies, E2−state and Eplat satisfy the condition

1

2
δEplat ≥ jEplat − E2−statej; ð21Þ

where δEplat is the error on the plateau fit. This criterion,
while not unique, works very well on the lattice data we
obtain here (see Fig. 3 and Fig. 5).

2. Single-state fit

We calculate the ratios in Eq. (18) using a fit of the two-
point function instead of the actual lattice data, that is

CMðtÞ ¼ c0 expð−E0tÞ; ð22Þ

where c0 and E0 are the ground state amplitude and
energy, respectively. Using the modified two-point func-
tion removes ts dependence from the plateau values of the
ratios so that the plateaus converge at high ts. Based on
the plateau method, at insertion times far enough from the
source and sink, the above ratio becomes time indepen-
dent, i.e.,

FIG. 3. The pion ground state energies calculated using plateau
fits (red squares) and two-state fits (green circles) for the range
t ∈ ½tlow; 31a�. The black line shows the value from the con-
tinuum dispersion relation as explained in the text.
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C1234
M ðts; t;pÞ
CMðts;pÞ

⟶
ΔEðts−tÞ=a≫1

Et=a≫1
Π1234

M ðpÞ: ð23Þ

In practice, we apply a constant fit in a region where a
plateau is identified. The time-independent ratio (plateau)
is renormalized multiplicative with ZvDDD, and is related
to the desired hx3i as given in Eq. (4)

hx3iM ¼ iZvDDDΠ1234
M ðpÞ

p1p2p3
: ð24Þ

Indeed, we confirm that the signal is found in the
imaginary part of the three-point function. The single-
state fit is applied on each ts separately, and the ground
state is extracted at the lowest ts, beyond which the
plateau value is ts-independent. We also compare with the
two-state fit to confirm convergence.

3. Two-state fit

For the two-state fit we include the data for all ts
simultaneously. The two-state fit is calculated by fitting
the three-point functions to the Ansatz

C1234
M ðt; tsÞ ¼ A00e−E0ts þ A01e−E0ðts−tÞ−E1t

þ A10e−E1ðts−tÞ−E0t þ A11e−E1ts ; ð25Þ

where the fitting parameters are the amplitudes A00, A10,
and A11 since, at zero momentum transfer, A10 ¼ A01. To
avoid heavy notation we do not include a subscriptM in the
parameters and energies. We use the energies E0 and E1

calculated from the two-state fit on the two-point functions.
The results of the two-state fits on the two- and three-point
functions are related to the matrix elements by

Π1234
M ¼ A00

c0
; ð26Þ

so that hx3iM is calculated from the two-state fit as

hx3iM ¼ iZvDDD A00

p1p2p3 c0
: ð27Þ

As mentioned above, the two-state fit is useful to confirm
ground-state dominance beyond a certain value of ts.

B. Pion

We start our presentation with the extraction of the ground
state energy for a boosted pion, which is needed for the
analysis of the three-point functions. We follow the setup
outlined above, and the results are shown in Fig. 3. We apply
a single-state (plateau), as well as two-state fits, and test the
results against energies obtained via the continuum dispe
rsion relation E2ðpÞ ¼ m2 þ ð2πL pÞ2, where m is obtained
from the effective mass of the two-point correlation function
at zero momentum, i.e., Eq. (20). For the two-state fit we vary
tlow between t ¼ 1a and t ¼ 7a. The single-state fit is
applied for tlow ∈ ½5a − 14a�. As can be seen in Fig. 3,
we find that the ground-state energy is isolated already at
tlow=a ¼ 2 for the two-state fit and at tlow=a ¼ 8 for the
plateau fit. The ground-state energy obtained from the plateau
fit is aEplat ¼ 0.3668ð24Þ and from the two-state fit is
aE2−state ¼ 0.3674ð18Þ. These values satisfy the criterion
of Eq. (21), and also, are compatible with each other and with
the dispersion relation.
Using the above values for the ground state energy we

form the modified two-point function of Eq. (19) and take
the ratio of Eq. (18). We also ensure that excited-state

FIG. 4. Left panel: The ratios leading to hx3iuπ for the pion using Eq. (24) for ts=a ¼ 12, 14, 16, 18, shown with blue circles, red
squares, green up triangles and orange left triangles, respectively. The plateau fits for each ts are shown with bands of the same color as
the data points. The purple line in both panels is the value of hx3iuπ calculated from the two-state fit according to Eq. (27). Right panel:
The hx3iuπ values extracted from the plateau fit of the left panel (blue, red, green, orange points). The gray curve is the ratio of Eq. (23) as
obtained using the two-state fit parameters for t ¼ ts=2.
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effects can be successfully suppressed by calculating the
three-point correlators at different source-sink time sepa-
rations. In our previous study [8], we calculated hxi in the
rest frame for ts=a ¼ 12, 14, 16, 18, 20, 24 and found that
the results converge at ts=a ≥ 18. Therefore, for the
boosted frame we focus on ts=a ¼ 12, 14, 16, 18.
Figure 4 shows the ratios which lead to hx3iuπ , that is,
the right-hand side (rhs) of Eq. (24) for the plateau method
and the rhs of Eq. (27) for the two-state fit. We find that the
signal is more noisy for ts=a ≥ 16, due to the three
covariant derivatives and the boosted frame setup. All
plateau fits, however, are found to be consistent with one
another as well as with the two-state fit result. This finding
suggests that any remaining excited-state effects are within
the reported errors. The plateau and two-state fit values are
collected in Table IV. For completeness, we give the
updated values for hx2iuπ obtained with double the statistics
for ts=a ¼ 14, 16, 18 compared to our previous work [8].
The computational challenges associated with the gauge
noise contamination in three-derivative operators, the
boosted frame with three nonzero spatial components,
coupled with the light mass of the pion are reflected in
the increased uncertainties in hx3iuπ . However, this is not the
case for the kaon, which is about twice heavier than the
pion for this ensemble (see Table V).

C. Kaon

Our analysis for the kaon follows the same procedure for
the two-point and three-point correlation functions, as in
the case of the pion. In Fig. 5, we show the extraction of the
ground-state energy, EK . The dependence of EK on tlow is
similar to the pion. We extract the plateau value aEplat ¼
0.4230ð12Þ from tlow ¼ 11a, and the two-state fit value
aE2−state ¼ 0.4230ð7Þ at tlow ¼ 1a.
In Fig. 6, we plot the ratio leading to hx3iK for the up and

strange quark. We show the four values of ts and compare
with the two-state fit. As can be seen, the gauge noise is
decreased compared to the pion, attributed to the heavier
mass of the kaon. There is a clear signal for both flavors of
the kaon for all source-sink time separations. Similarly to

the pion, the plateau values are consistent with the two-state
fit. The plateau and two-state fits are collected in Table V.

V. RESULTS: COMPARISON WITH
OTHER STUDIES

A. Results

Based on our analysis, we choose the results extracted
using two-state fits as our final values for all quantities. We
report as systematic uncertainties the difference between
the value extracted using the two-state fit and that deter-
mined using the plateau fit at ts ¼ 18a. Our final results in
the MS at a scale of 2 GeV are

hx2iuπþ ¼ 0.110ð7Þð12Þ; ð28Þ

hx2iuKþ ¼ 0.096ð2Þð2Þ; ð29Þ

hx2isKþ ¼ 0.139ð2Þð1Þ; ð30Þ

for the second moment, and

hx3iuπþ ¼ 0.024ð18Þð2Þ; ð31Þ

hx3iuKþ ¼ 0.033ð6Þð1Þ; ð32Þ

hx3isKþ ¼ 0.073ð5Þð2Þ; ð33Þ

for the third. We also calculate the ratios hx3i=hxi and
hx3i=hx2i. The calculation of hxi and hx2i is discussed in
Ref. [8]. These ratios are of interest because they reveal
partial information on the x-dependence PDFs, in particu-
lar, the large-x region. In general, the statistical errors for
hx3i are larger than the lower moments, which is propa-
gated to the ratios. The hx3i to hxi ratios are

TABLE IV. Renormalized values for the pion hx2i and hx3i
using a single-state fit on ts=a ¼ 12, 14, 16, 18, and the
corresponding two-state fit. The results are given in the MS
scheme at 2 GeV. The number shown in the parenthesis is the
statistical error.

ts=a hx2iuπ hx3iuπ
12 0.110(6) 0.026(17)
14 0.114(5) 0.031(15)
16 0.105(9) 0.025(23)
18 0.099(15) 0.026(39)
2-state 0.110(7) 0.024(18)

FIG. 5. The kaon ground state energies calculated by both fits
using t ∈ ½tlow; 31a�. The notation is the same as in Fig. 3.
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hx3iuþπ
hxiuþπ

¼ 0.092ð71Þð6Þ; ð34Þ

hx3iuþK
hxiuþK

¼ 0.135ð26Þð8Þ; ð35Þ

hx3isþK
hxisþK

¼ 0.232ð16Þð1Þ; ð36Þ

and the hx3i to hx2i ratios are

hx3iuþπ
hx2iuþπ

¼ 0.216ð167Þð50Þ; ð37Þ

hx3iuþK
hx2iuþK

¼ 0.346ð66Þð5Þ; ð38Þ

hx3isþK
hx2isþK

¼ 0.529ð36Þð18Þ: ð39Þ

It is also interesting to compare hxniπ and hxniK , as it is
related to the SU(3) flavor symmetry breaking due to the
heavier mass of the strange quark. This is important
because some quantities may be sensitive to SU(3) flavor
symmetry breaking, such as the pion and kaon radii [1]. For
the comparison of the up quark contributions we find

hxiuþπ
hxiuþK

¼ 1.060ð9Þð7Þ; ð40Þ

hx2iuþπ
hx2iuþK

¼ 1.148ð57Þð106Þ; ð41Þ

hx3iuþπ
hx3iuþK

¼ 0.717ð488Þð94Þ; ð42Þ

while for the strange quark in the kaon over the up quark in
the pion we have

TABLE V. Renormalized values for the up- and strange-quark
contribution to the kaon hx2i and hx3i, for the single-state fits and
the corresponding two-state fit. The results are given in the MS
scheme at 2 GeV. The number shown in the parenthesis is the
statistical error.

ts=a hx2iuK hx2isK hx3iuK hx3isK
12 0.101(2) 0.146(2) 0.043(7) 00.079(6)
14 0.099(2) 0.142(2) 0.042(4) 0.077(3)
16 0.096(2) 0.139(2) 0.037(6) 0.077(5)
18 0.095(3) 0.138(3) 0.032(11) 0.075(8)
2-state 0.096(2) 0.139(2) 0.033(6) 0.073(5)

FIG. 6. The ratios leading to hx3i for the kaon. The top and bottom panels correspond to the up and strange contributions, respectively.
The notation is the same as in Fig. 4.
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hxiuþπ
hxisþK

¼ 0.823ð8Þð10Þ; ð43Þ

hx2iuþπ
hx2isþK

¼ 0.795ð45Þð80Þ; ð44Þ

hx3iuþπ
hx3isþK

¼ 0.325ð244Þð23Þ: ð45Þ

We find that the SU(3) symmetry breaking is ∼5–10% for
hxi and ∼10–20% for hx2i. The results for hx3i indicate a
symmetry breaking of ∼30–50%, with larger uncertainties.
These results are very interesting because based on intuitive
arguments, the strange quark PDF has its support at higher
x than the up quark PDF, which indicates that the symmetry
breaking is more pronounced in the higher moments. We
will discuss further the SU(3) flavor symmetry breaking
in Sec. VI.

B. Other lattice calculations

There are only a few direct calculations for hx3i extracted
from the three-derivative local vector operator, starting with
the pioneering work of QCDSF-UKQCD in 1997 [5],
which was later extended in 2007 [6,7], and reanalyzed in
Ref. [42]. All these calculations are for the pion; our results
are the first reported for the kaon, using the three-derivative
local operator. Interest in the pion and kaon structure has
recently been renewed, due to novel approaches to extract
the x-dependence of PDFs, such as the quasi-PDFs [17,18],
the pseudo-Ioffe-time-distributions (ITD) [19], and current-
current correlators [20–22]. Using such methods, the lowest
moments of the pion [12,14,15], and the kaon [14] have
been obtained [12,14,15], either from integration on the
x-dependent PDF, or via the so-called operator product
expansion without an operator product expansion (OPE
without OPE) method [43]. Given the small number of
calculations, we compare our results with all these meth-
ods. One has to bear in mind that, each calculation has its
own systematic uncertainties and uses a different method-
ology. Therefore, the comparison is qualitative at this stage,
as not all sources of systematic uncertainties have been
quantified.

The calculation of Ref. [5] was done in the quenched
approximation for Wilson fermions using ensembles with
pion mass 712, 1013, 1208MeV. They used an operator with
only two indices different (Ov4 ¼ Oii44), which requires
momentum boost only in one spatial direction. However, this
operator exhibits mixing with lower dimensional operators,
which is difficult to eliminate. The calculation ignored the
mixing and hx3iπ was renormalized using results from
perturbation theory. The reported values for hx3iuπ in the
MS scheme at a scale of 2.4 GeVare 0.0619(45) 0.0580(65)
0.054(18) for the ensembles with pion mass 1208, 1013,
712 MeV, respectively. In Table VI we present their estimate
for the extrapolated value, 0.048(20), after evolution to
2 GeV. The results of Ref. [5] have been analyzed in
Ref. [42] using different methods to perform the chiral
extrapolation on the three ensembles mentioned above. For
two of the methods they report hx3iuπ ¼ 0.043ð15Þð3Þ, and
0.05(2) at a scale of 2.4 GeV. The value of the first method is
evolved to 2 GeV and is given in Table VI.
Almost a decade after their first calculation, QCDSF-

UKQCD has improved their work in more than one ways, as
presented in Refs. [6]. The ensembles employed are
unquenched (Nf ¼ 2) clover fermions. Several ensembles
were used to extract hx3iπ with pion mass between
450–1180 MeV. The operator Ov4 was used, and while
the mixing was ignored, the renormalization was done
nonperturbatively. Their preliminary results chirally extrapo-
lated to the physical pion mass gave hx3iπ ¼ 0.074ð9Þð4Þ in
the MS at a scale of 2 GeV. It should be noted, that the
accuracy of the chirally extrapolated value is heavily
influenced from the accuracy of the ensembles with mπ ¼
800 MeV and higher. Another update of the calculation was
presented in the thesis of Ref. [7], using Nf ¼ 2 clover
fermions at four β values, several lattice spacings between
0.068–0.115 fm and a wide range of pion mass values
between 440–1173 MeV. They report hx3iuπ ¼ 0.074ð9Þð4Þ
in the MS scheme at 2 GeV at the physical pion mass
obtained from a chiral extrapolation.
Much more recently, there have been explorations of the

x-dependent pion and kaon PDFs [9–16], and some extract
the first moments with indirect methods. Unlike our work,
and the aforementioned calculations, these new methods

TABLE VI. Comparison of lattice results for hx3iuπ in the MS scheme at 2 GeV. The evolution from the reported scale (“initial” scale)
to 2 GeV is applied to NNLO. Statistical and systematic uncertainties have been added in quadrature where applicable.

Reference Method Renormalization Mixing mπ (MeV) Nf hx3iuπ (2 GeV) Initial scale

This work Local operator Nonperturbative Not present 260 2þ 1þ 1 0.024(18) 2 GeV
Ref. [5] Local operator Perturbative Present Chiral extrapolation 0 0.051(21) 2.4 GeV
Ref. [42] Local operator Perturbative Present Chiral extrapolation 0 0.046(16) 2.4 GeV
Ref. [7] Local operator Nonperturbative Present Chiral extrapolation 2 0.074(10) 2 GeV
Ref. [12] Pseudo-ITD Nonperturbative N/A 415 2þ 1 0.046(19) 2 GeV
Ref. [14] Quasi-PDF Nonperturbative N/A Chiral extrapolation 2þ 1þ 1 0.073(13) 5.2 GeV
Ref. [15] Pseudo-ITD Nonperturbative N/A 300 2þ 1 0.075(61) 3.2 GeV
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calculate matrix elements of nonlocal operators, with the
quark fields separated by a finite spatial distance connected
through a straight Wilson line. Therefore, the mixing
observed in the moments of PDFs from towers of
n-derivative local operators, is not relevant here.
However, these methods have other systematic uncertain-
ties, due to the need of boosted meson states, namely either
requiring the boost to be large or the product of spatial
separation and boost to be large. Furthermore, a matching
kernel is necessary to relate these matrix elements to the
light-cone PDFs.
In Ref. [12] two ensembles of Nf ¼ 2þ 1 clover fer-

mions with pion mass 415 MeVand two volumes were used.
They extracted the x-dependence of PDFs using the pseudo-
ITD approach. They used two methods to extract the lowest
moments: OPE without an OPE and an integration of the
PDFs that gives hx3iuπ ¼ 0.046ð19Þ in the MS at 2 GeV.
Ref. [14] employs the quasi-PDFs method using a mixed-
action setup (clover on HISQ). The calculation was per-
formed on three ensembles with pion mass 217, 310,
319 MeV and two lattice spacings (a ¼ 0.06, 0.12 fm).
hx3iuπ was renormalized nonperturbatively and a value of
hx3iuπ ¼ 0.057ð10Þ at a scale of 5.2 GeV is reported after
chiral extrapolation to the physical point. A similar analysis
for the kaon gives hx3iuK ¼ 0.042ð6Þ and hx3iuK ¼ 0.070ð6Þ,
but the scale is not reported. The result for the pion is
presented in Table VI after evolution to 2 GeV. Finally,
the work of Ref. [15] explored both the quasi-PDFs and
pseudo-ITD approaches, and also used a mixed-action setup
of clover valence fermions on Nf ¼ 2þ 1 HISQ configu-
rations. The pion PDF was calculated using two ensembles
at mπ ¼ 300 MeV and lattice spacing 0.04 and 0.06 fm.
The third moment is obtained with fits to the pion PDF with
a 2- and a 4-parameter Ansatz. They report the valence
case hx3iπ ¼ 0.0652ð49Þð36Þ; 0.0647ð47Þð38Þ, for the
2-parameter and 4-parameter fits, respectively. The results
are given in the MS scheme at 3.2 GeV. We extract hx3iπ at
2 GeV using the finest lattice and the 2-parameter fit, which
is provided in Table VI. For completeness, we summarize
our calculation for the kaon in Table VII.
As can be seen in Table VI, there is a range of values

obtained with different methods. We find that, our results are
compatible within uncertainties with the calculations of
Refs. [5,42], which, however, used an operator that exhibits
mixing. Reference [5] employs a perturbative renormaliza-
tion prescription, which justifies the higher value compared
to the other studies. The value of Refs. [7] is higher than the
other calculations with local operators. The comparison with

the indirect methods to extract the Mellin moments from
integration or fits on the pion PDF, also shows compatibility
with our value, except the one for Ref. [14], which is at the
high end. It should be noted that these calculations carry very
large uncertainties (∼15% − 95%) and the comparison is
inconclusive. From these results one can extract the range in
which hx3iπ is. It is worth mentioning that our value is at the
lower end of the range, which is a consequence of the
suppression of excited states. For example, our results for
ts=a ¼ 14, which is at the range used in other calculations is
higher (0.031(15)). We emphasize that we obtain directly
hx3i using a local operator that avoids mixing with lower-
dimensional operators, but requires all spatial components of
the meson momentum boost to be nonzero. The lattice data
are renormalized nonperturbatively, and the renormalization
function is multiplicative.

C. Model calculations and global fits

There are a few model calculations and global fits on
experimental data for the three-four lowest moments of
pion and kaon PDFs, and we compare these here with
our results. We emphasize that the comparison is only
qualitative, as many of the calculations do not have
quantified uncertainties. Also, our calculation is at
higher-than-physical pion and kaon masses and only the
connected diagram is included.
One of the first calculations is a next-to-leading-order

analysis of several π�N experimental data, including Drell-
Yan and prompt photon production, presented in Ref. [44].
They obtain hx3iuπ ¼ 0.058ð4Þ at a scale of 2 GeV. Much
later, an updated analysis of the moments of pion PDFs to
next-to-leading-order using the Fermilab E-615 pionic
Drell-Yan data was carried out and can be found in
Ref. [45]. A value of hx3iuπ ¼ 0.045ð3Þ is given at
5.2 GeV. The JAM global fit analysis is performed at
1.3 GeV for the third nontrivial moment of the pion [46],
and the obtained value is hx3iuπ ¼ 0.074.
Reference [47] presents a calculation of the valence

quark PDF for the pion using Dyson-Schwinger equations
(DSE) and obtains hx3iuπ ¼ 0.049 at 2 GeV. A more recent
DSE study can be found in Ref. [48] with hx3iuπ ¼ 0.052 at
2 GeV. Ref. [49] reports hx3iuπ ¼ 0.049ð7Þ at 2 GeV using
the Bethe-Salpeter equation (BSE). The recent calculation
of Ref. [50] applied a rainbow-ladder truncation of
DSEs, and therefore all planar diagrams were summed
and the nonperturbative gluon dressing of the quarks
was correctly accounted for. They find hx3iuπ ¼ 0.109 at
0.78 GeV. A calculation using the chiral constituent quark

TABLE VII. Our lattice results for hx3iuK and hx3isK in the MS scheme at 2 GeV. Statistical and systematic uncertainties have been
added in quadrature.

Reference Method Renormalization Mixing mπ (MeV) Nf hx3iuK (2 GeV) hx3isK (2 GeV) Initial scale

This work Local operator Nonperturbative Not present 260 2þ 1þ 1 0.033(6) 0.073(5) 2 GeV
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model is found in Ref. [51], which gives hx3iuπ ¼ 0.048 at
a scale of 5.2 GeV. Finally, Ref. [52] combined QCD
evolution with light front quantization to obtain the pion
PDFs, as well as the moments up to hx4i. At 2 GeV they
find hx3iuπ ¼ 0.057ð8Þ.
The kaon hx3iwas also studied in Ref. [48] and the results

are hx3iuK ¼ 0.048 and hx3isK ¼ 0.092 at 2 GeV. The model
calculation of Ref. [51] gives hx3iuK ¼ 0.045 and hx3isK ¼
0.049 at 5.2 GeV. The findings of Ref. [50] are hx3iuK ¼
0.092 and hx3isK ¼ 0.143 at 0.78 GeV. Ref. [52] report
hx3iuK ¼ 0.050ð6Þ and hx3isK ¼ 0.066ð9Þ at 2 GeV.
The aforementioned results can be found in Table VIII

for the pion and Table IX for the kaon, after evolution to
2 GeV. An extended list can be found in Ref. [52]. We find
that our data for the pion and up part of kaon are lower than
most of the other calculations. However, some of the
calculations do not include systematic uncertainties, which
prevents a meaningful comparison. A better agreement is
observed for the strange part of the kaon with our values
being in the middle of the range from the other calculations.
Let us remind the reader that our calculation, like all other

lattice results mentioned above, focuses in the connected
diagram. Also, the ensemble used has a pion mass of
260 MeVand a kaon of 530 MeV, which are higher than the
physical values.

VI. RECONSTRUCTION OF PDFS

It is generally believed that the reconstruction of PDFs
from their Mellin moments is, at best, challenging on the
lattice for a number of reasons. The signal-to-noise ratio
decays fast with the addition of derivatives in the operator,
requiring increased computational cost so that gauge noise
is controlled. The moments hx2i and hx3i can only be
obtained in a kinematic framework where the hadron has
momentum with nonzero spatial components. In fact, to
avoid mixing with lower dimensional operators under
renormalization, the initial and final states should carry
momentum with at least two and three nonzero spatial
components, respectively. Such a setup comes at increased
computational cost. In addition, the mixing under renorm-
alization for the moments with n > 3 cannot be avoided,
regardless of the kinematic framework. Because of these
challenges, early attempts have been inconclusive in
determining whether it is feasible to reconstruct PDFs
from lower moments using lattice QCD (see, e.g.,
Refs. [53,54]). More recently, methods to extract higher
moments have been proposed, using smeared operators
[55], heavy-quark operator product expansion (HOPE)
[56,57], and light-quark current-current correlators [58].
While the above challenges are true, numerical simu-

lations have advanced significantly with more computa-
tional power, better algorithms, implementation of
nonperturbative renormalization, and methods to control
gauge noise. In fact, in this work and in Ref. [8], we
demonstrate that the Mellin moments with n < 4 can be
obtained with reliable elimination of excited states and in a
setup that does not contain mixing with lower dimensional
operators. Therefore, we attempt the reconstruction of the
x-dependence of PDFs. The goal is threefold: (a) understand
the limitations of the reconstruction; (b) study the large-x
behavior; and (c) extract the moments with n > 3 from the
reconstructed PDFs.

A. Setup

We use the standard functional form

qfMðxÞ ¼ Nxαð1 − xÞβð1þ ρ
ffiffiffi
x

p þ γxÞ; ð46Þ

to obtain the x dependence of the pion and kaon PDFs,
qfMðxÞ, where ðM; fÞ ¼ ðπ; uÞ; ðK; uÞ; ðK; sÞ. N is a nor-
malization defined by charge conservation

h1iM ¼
Z

1

0

dxqMðxÞ ¼ 1; ð47Þ

TABLE VIII. Comparison with global fits and model calcu-
lations for hx3iπ in the MS scheme at 2 GeV. The evolution from
the reported scale (“initial” scale) to 2 GeV is applied to NNLO.
Statistical and systematic uncertainties have been added in
quadrature where applicable.

Reference hx3iuπ (2 GeV) Initial scale

This work (lattice) 0.024(18) 2 GeV
Ref. [44] (global fit) 0.058(4) 2 GeV
Ref. [47] (DSE) 0.049 2 GeV
Ref. [45] (global fit) 0.058(4) 5.2 GeV
Ref. [48] (DSE) 0.052 2 GeV
Ref. [51] (CC quark model) 0.061 5.2 GeV
Ref. [50] (DSE) 0.065 0.78 GeV
Ref. [46] (JAM global fit) 0.063 1.3 GeV
Ref. [49] (DSE, BSEs) 0.049(7) 2 GeV
Ref. [52] (BLFQ-NJL) 0.057(8) 2 GeV

TABLE IX. Comparison with global fits and model calcula-
tions for hx3iuK and hx3isK in the MS scheme at 2 GeV. The
evolution from the reported scale (“initial” scale) to 2 GeV is
applied to NNLO. Statistical and systematic uncertainties have
been added in quadrature where applicable.

Reference
hx3iuK

(2 GeV)
hx3isk

(2 GeV)
Initial
scale

This work (lattice) 0.033(6) 0.073(5) 2 GeV
Ref. [48] (DSE) 0.048 0.092 2 GeV
Ref. [51] (CC quark model) 0.058 0.063 5.2 GeV
Ref. [50] (DSE) 0.55 0.85 0.78 GeV
Ref. [52] (BLFQ-NJL) 0.050(7) 0.066(9) 2 GeV
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leading to

N ¼ 1

Bðαþ 1; β þ 1Þ þ γBð2þ α; β þ 1Þ ; ð48Þ

where B is the Euler beta-function. The fit parameters in
Eqs. (46), (48) are α, β, γ and ρ. Their values depend on M
and f, but we omit the subscript and superscript in the
following equations for simplicity in the notation. The
parameter ρ is generally assumed to be negligible [48], and
therefore, we omit the term ρ

ffiffiffi
x

p
. The nth-moment is

defined as the integral of a continuous function

hxni ¼ N
Z

1

0

dxxαð1 − xÞβð1þ γxÞ: ð49Þ

We are interested in real and integer values of n, for which
the moments take the form

hxni¼ ðQn
i¼1ðiþαÞÞðnþ2þαþβþðiþ1þαÞγÞ

ðQn
i¼1ðiþ2þαþβÞÞð2þαþβþð1þαÞγÞ ; n>0:

ð50Þ

Our results for hxni, n ¼ 1, 2, 3 are used as input for Eq. (50)
to extract the fit parameters. The fit takes into consideration
the correlation between the moments and the covariance is
used. The results of hxi are given in Eqs. (38)–(40) of
Ref. [8]. For hx2i we use the values given in Eqs. (28)–(30),
which have been obtained at higher statistics than the values
reported in Ref. [8]. hx3i is given in Eqs. (31)–(33). To
compare with results from global fits and models, we evolve
our results for the moments to a scale of 5.2 GeV using
NNLO expressions.

B. Lattice data

Given that we have results up to hx3i, we apply a
2-parameter for the presentation that follows. To examine
the sensitivity of the reconstructed PDF on the number of
the fit parameters, we also explore a 3-parameter fit.
However, we should emphasize that the effectiveness of
the fit cannot be evaluated with only three moments as
input. In the case of the 2-parameter fit we set γ ¼ 0, as
used in many such fits. The values extracted for the
parameters from the fits are given in Table X for the pion
and kaon. We find that the fits for the pion are less stable
than the ones for the kaon, due to the enhanced gauge noise
in the former. For the case of the pion and the strange
contribution of the kaon, we find that the parameter γ has
large uncertainties. This is due to the fact that the number of
moments are not enough to perform a 3-parameter fit, and
the parameters have a competitive role in the fit. For
instance, we find that in the pion and strange kaon, γ ¼ 0
within errors. We emphasize that the reconstruction of the

PDF has unquantified uncertainties, that we intend to
address in the near future using more ensembles.
Using the parameters of Table X obtained from both fits

we reconstruct the x-dependent PDFs as shown in Fig. 7.
We find that the shape of the PDFs has a mild dependence
on the choice of fit, mostly in quK. The uncertainties for q

s
K

are increased for the 3-parameter fit, while they are very
similar for the other two PDFs. For the remaining presen-
tation we focus on the 2-parameter fits.
Next, we want to study the effects of excited-states

contamination on qfMðxÞ that may be nontrivial because the
dependence of the fit parameters in Eq. (46) on the
moments is nonlinear. We apply the 2-parameter fit on
our results at ts=a ¼ 14–18, as well as the two-state fit and
reconstruct the PDFs, as shown in Fig. 8. We observe a nice
convergence for all the cases as ts increases. Similarly to
the behavior of the moments, we find that the excited-states
contamination at ts ≲ 1.4 fm leads to a PDF that is higher
than the two-state fit and the plateau fit at ts ≥ 1.5 fm.
Eventually, the two-state fit values converge with a peak
around x ∼ 0.3–0.4, that is xquπð0.3Þ ∼ 0.4, xquKð0.3Þ ∼ 0.4
and xqsKð0.4Þ ∼ 0.5. We use as final PDFs those extracted
from a 2-parameter fit on the two-state fit results for the
moments (purple band in Fig. 8).
One concern is whether the use of the n ≤ 3 moments

can successfully reconstruct the PDF. To address this
question we use the JAM data for the pion PDF [46], as
well as its moments. We follow the same procedure as for
our lattice data, that is, fit the parameters α, β, γ using as
input only the JAM moments with n ≤ 3, and then produce
the reconstructed PDF via Eq. (46) with ρ ¼ 0. The
reconstructed PDF is then compared to the original JAM
PDF and is shown in Fig. 9. We use bootstrap sampling to
obtain the uncertainties and width of the band. As can be
seen, the two are in very good agreement within uncer-
tainties for almost all x region. The reconstruction of the
PDF from its moments with only n ≤ 3 leads to much
larger uncertainties due to the truncation of the information
that is used to extract the PDF. Furthermore, we use the
reconstructed PDF to estimate the n ¼ 4 moment via

TABLE X. The values for the fit parameters, α, β and γ for quπ,
quK and qsK at 5.2 GeV. The error in the parenthesis is statistical.

Fit type αuπ βuπ γuπ χ2=d:o:f:

2-parameter −0.05ð19Þ 2.20(64) 0 1.50
3-parameter −0.57ð15Þ 2.72(61) 24.86(1.93) � � �
Fit type αuK βuK γuK χ2=d:o:f:

2-parameter −0.005ð81Þ 2.59(28) 0 1.95
3-parameter −0.52ð6Þ 3.17(27) 24.01(91) � � �
Fit type αsK βsK γsK χ2=d:o:f:

2-parameter 0.26(9) 2.27(22) 0 0.012
3-parameter 0.29(37) 1.85(2.21) −0.58ð5.32Þ � � �
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FIG. 8. Dependence of xquπðxÞ (top), xquKðxÞ (lower left panel) and xqsKðxÞ (lower right panel) on the source-sink time separation. The
pink, green, yellow and purple bands correspond to ts=a ¼ 14, 16, 18 and the 2-state fit, respectively. The results are given in the MS
scheme at a scale of 27 GeV2.

FIG. 7. Top: The x dependence of xquπðxÞ at 27 GeV2 for the 2-parameter (blue band) and 3-parameter (pink band) fits. Bottom: Same
as top panel for xquKðxÞ (left) and xqsKðxÞ (right). Results are given in the MS scheme at 27 GeV2.
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Eq. (50), and we find hx4iuπ ¼ 0.026ð2Þ. This is in excellent
agreement with the moment as extracted from the JAM
framework, hx4iuπ ¼ 0.027ð2Þ, which is more accurate, as
expected.
These results suggest that the reconstruction of the PDFs

using the n ≤ 3 moments is indeed feasible. To further test
the sensitivity of our fits, we change the number of inputs
used. In particular, we perform fits including moments up
to hxnmaxi, with nmax ¼ 2, 3, or 4. For nmax ¼ 2 and 3 we
only use lattice data, while for nmax ¼ 4 we add another
constraint by using the value of hx4i from global fits and

models for the pion and kaon, respectively. In particular, we
use hx4iuπ ¼ 0.027ð2Þ from the JAM analysis [46], and
hx4isK ¼ 0.029þ0.005

−0.004 , hx4iuK ¼ 0.021þ0.003
−0.003 from BLFQ-NJL

[52]. It should be emphasized that, combining lattice data
with results from model calculations is a useful exercise for
understanding the effect on the fits. However, it is not a
preferred direction due to the various sources of uncer-
tainties, and only lattice data enter our final results. We
remind the reader that our calculation is performed at a pion
mass of 260 MeVand a kaon of 530 MeV, which are larger
than their physical values. While for the kaon this is only
7% larger, for the pion this corresponds to a factor of about
two. However, it was shown that the pion moment hxi has
insignificant pion mass dependence [59], which implies the
same for the higher moments. Therefore, one can neglect
the pion mass dependence when combining our results with
the JAM moment hx4i. In Fig. 10 we compare the resulting
PDF (hxnmaxi ¼ hx4i) to the one that uses only lattice data
(hxnmaxi ¼ hx2i; hx3i). The results show that the addition of
n ¼ 3 improves the constraint of PDFs. Interestingly, the
addition of n ¼ 4 does not affect the shape of the PDFs.
Therefore, the effect of higher moments is within the shown
uncertainties. To summarize, our final estimates are
obtained from a 2-parameter fit applied on the two-state
fit results using our lattice results up to hx3i.
The large-x behavior of the pion andkaonPDFshas beenof

great interest, due to different findings between existing data

FIG. 9. Pion PDF using the JAM data (blue band) and the
reconstructed PDF using its moments with n ≤ 3 (pink band).
The reported scale is 27 GeV2.

FIG. 10. Top: the x dependence of xquπðxÞ using the 2-parameter with hxnimax ¼ hx2i; hx3i; hx4i, shown with blue, pink and green
bands. For the green band we use a constraint of hx4iuπ [46]. Bottom: same as top panel for xquKðxÞ (left panel) and xqsKðxÞ (right panel)
using the BLFQ-NJL [52] hx4iK values as constraints for the pink band.
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and model calculations. For the pion, the analysis of the pion
Drell-Yan data from the Fermilab E615 experiment [3]
suggests a ð1 − xÞ1 fall (β ¼ 1), while the data of Ref. [60]
indicate a ð1 − xÞ2 dependence (β ¼ 2). Also, DSE results
[48] find a coefficientβ closer to 2, in support of the arguments
that the distribution at large-x is dominated by the term
ð1 − xÞ2þγ̄ , where γ̄ ≥ 0 is an anomalous dimension. One
can argue either direction: Ref. [3] uses evolution equations to
only leadingorder in perturbativeQCD,which is not sufficient
for convergence. On the other hand, the model calculations
have limitations on howwell they describe QCD. To date, the
tension persists. Therefore, it is desirable to address this issue
from lattice QCD. Recently, the large-x dependence was
discussed using new methods to access the x-dependence of
PDFs (see, e.g., Refs. [10–12,14,16,61]). In this work, we
address the large-x behavior using the reconstructed PDFs
from their Mellin moments. As can be seen in Table X and
in Fig. 7, our data show a preference in the functional
form ∼ð1 − xÞ2 for both the pion and kaon.
The pion and kaon PDFs can be compared in order to

address SU(3) flavor symmetry, which is broken due to the
larger mass of the strange quark as compared to the up and
down quark. This leads to a mass difference between the
pion and kaon, a manifestation of the SU(3) flavor symmetry
breaking effect in the Nambu-Goldstone bosons. To this end,
we compare the pion and kaon PDFs in Fig. 11. The
distributions xquπðxÞ and xquKðxÞ are in full agreement for all
regions of x, besides a minor tension around x ¼ 0.5. Based

on this behavior, one can argue that the up quark plays an
equal role in the pion and kaon PDF, and has most of its
support in the small- to intermediate-x regions. The strange
quark in the kaon shows a tension with the up quark between
x ¼ 0.3 and x ¼ 0.8, with the strange quark having more
support in the large-x region, as one would expect from
quark mass effects. We find that the peak of the distributions
are xquπðx ¼ 0.30Þ ¼ 0.42ð5Þ, xquKðx ¼ 0.27Þ ¼ 0.43ð2Þ,
and xqsKðx ¼ 0.35Þ ¼ 0.52ð2Þ.
Using the reconstructed pion and kaon PDFs we apply

the appropriate integrals to extract their moments. One of
the advantages of extracting the moments beyond n ¼ 3
from the x-dependent PDF is that it avoids the operator
mixing problem, which one has to deal with in the
calculation of matrix elements using nth-derivative oper-
ators. The moments up to hx6i in the MS scheme at
27 GeV2 are given in Table XI. Namely, we use Eq. (50)
and the parameters obtained for the 2-parameter fit
tabulated in Table X. We propagate both the statistical
error and the systematic error of residual excited states
contamination as given in the first and second parenthesis,
respectively, on the mean values in Table XI. Note that the
statistical uncertainties are well controlled for hxni with
n > 3, something that would not be feasible had these
moments been calculated directly as matrix elements of
the nucleon with the same statistics. Our value for hx4i is
in agreement JAM value hx4iuπ ¼ 0.027ð2Þ.

C. Comparison with other studies

As mentioned in the previous section, there are a few
calculations of the pion and kaon PDFs, which we
compare to our results in Fig. 12. In the left upper panel,
we compare with the lattice results extracted from the
pseudo-ITD approach [12] and the current-current corre-
lators (LCS) method [10,16]. We find best agreement with
the pion PDF obtained by three parameters fit using the
LCS method, while the pseudo-ITD data have a lower
peak. We include in the plot the E615 [3] and ASV data
[60]. The latter include soft-gluon resummation and use
the next-to-leading order formalism. As can be seen, while
the E615 and ASV data are in agreement in the inter-
mediate x-rang the ASV data fall off faster. The global fits
of the JAM Collaboration [46,62] is also shown. The JAM
fit describes well the E615 data. In the upper right panel
we compare with Dyson-Schwinger (DSE) [48] as well as

FIG. 11. Comparison of xquπðxÞ (blue band), xquKðxÞ (pink
band) and xqsKðxÞ (green band) at 27 GeV2. The reconstruction
uses our lattice data up to hx3i obtained with the 2-state fits
analysis and a 2-parameter fit.

TABLE XI. Values for the first six moments for the pion and kaon in the MS at 27 GeV2. The number shown in the first parenthesis is
the statistical error, while the number in the second parenthesis is the systematic error indicating residual excited-states contamination.

qfM hxi hx2i hx3i hx4i hx5i hx6i
quπ 0.229(3)(7) 0.087(5)(7) 0.042(5)(9) 0.023(5)(7) 0.014(4)(6) 0.009(3)(4)
quK 0.217(2)(5) 0.077(2)(1) 0.035(2)(2) 0.019(1)(2) 0.011(1)(1) 0.007(1)(1)
qsK 0.279(1)(5) 0.114(2)(4) 0.057(2)(2) 0.032(2)(2) 0.020(1)(2) 0.013(1)(2)
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the updated DSE ’18 [50], the chiral constituent quark
model (χCQ) [51], and the BLFQ Collaboration results
from in the light front quantization and QCD evolution
(NJL) [52]. We note that the pion PDF can also be
extracted from the determination of the nucleon PDF
from light-front holographic QCD [63]. For the kaon,
there exist limited calculations. In the lower panel of
Fig. 12 we compare with the χCQ results [51], the BLFQ-
NJL data [52], and DSE ’18 [50] for the up quark (left)
and strange quark (right). All results are in agreement in
the small-x region (x < 0.1) for the pion and xquKðxÞ. The
χCQ have a different slope in the small-x region. For x >
0.6 our results agree with all other results except the
original E615 data. The intermediate region reveals
disagreement between the various methods; our pion
results agree with DSE [48] for all regions of x, but
overestimate the peak as compared to DSE’18. For
the kaon we find that there is qualitative agreement in
the small- and large-x regions, while there is a tension in
the intermediate-x region. in all cases, our data are larger
in the intermediate x region. However, we need to stress
that there are no experimental data, and therefore, the
comparison is qualitative, as all calculations carry non-
quantified systematic uncertainties.

VII. SUMMARY

In this paper we present a calculation of the Mellin
moment hx3i for the pion and kaon. We use one Nf ¼
2þ 1þ 1 ensemble corresponding to a pion mass of
260 MeV and a kaon mass of 530 MeV. A momentum-
boosted kinematical frame is required to access hx3i from
Eq. (4). In fact, the momentum boost should have all
spatial components nonzero to avoid mixing under
renormalization. Here we use the minimum momentum,

that is jp⃗ij ¼
ffiffiffiffi
12

p
π

L (0.72 GeV). We find that this momen-
tum is small enough and momentum smearing [64] does
not have an advantage. Excited-states contamination are
studied using four values of ts ranging from 1.12 fm to
1.67 fm. We perform a single-state and a two-state fit to
ensure ground state dominance. Our analysis shows that
ts > 1.5 fm is sufficient to suppress excited states.
Within this work, we also calculate nonperturbatively the

renormalization function of the three-derivative operator
with all Dirac indices unequal, a choice that avoids mixing.
We use the RI scheme, and then convert to the MS scheme
and apply evolution to 2 GeV using the RGI intermediate
scheme. The results for hx3i are given in Eqs. (31)–(33) in
the MS at 2 GeV. We also study ratios of moments

FIG. 12. Top left panel: comparison of the pion xquπðxÞ with other lattice calculations, experimental data and global analysis, all in the
MS at 27 GeV2. Our results (blue band) use data up to hx3i obtained with the two-state fits analysis and a 2-parameter fit. The E615 data
[3] are shown with gray points, the rescaled ASV curve [60] with cyan color. The JAM global fit is shown with pink band, and the lattice
results from pseudo-ITD [12] and current current correlators (LCS) [16] are shown with orange and green band, respectively. Top right
panel: comparison of our results for xquπðxÞ with DSE [48] and the updated DSE’18 [50], BLFQ-NJL [52] and χCQ [51]. Bottom panel:
same as top panel for the kaon xquKðxÞ (left) and xqsKðxÞ (right).
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including the moments for the kaon over pion, which are
connected to SU(3) flavor symmetry breaking. We find that
for the low moments this breaking is 5%–10%, and
increases up to about 30%–50% for hx3i. Such an effect
indicates that the strange quark in the kaon has its support at
higher x values than the up quark in the pion and kaon.
One of the interesting aspects of this work is the recon

struction of the pion and kaon PDFs from the Mellin
moments up to hx3i, as described in Sec. III. We apply
2-parameter and 3-parameter fits using the standard func-
tional form for PDFs. We examine excited-states contami-
nation and find that a two-state fit is necessary to suppress
excited state effects which are not negligible for source-sink
time separation below 1.5 fm. Furthermore, we reconstruct
the PDFs varying the highest moment used as input to be
hx2i, hx3i, or hx4i. We find that, including hx4i does not
improve the PDF reconstruction.
In conclusion, we find that a 2-parameter fit of the form

xαð1 − xÞβ using the moments up to hx3i is sufficient to
reconstruct the PDF. We utilize our results on the PDFs in
more than one ways. First, there has been a great interest on
the value of β which captures the large-x behavior. Our
lattice data exhibit a behavior of ∼ð1 − xÞ2. Second, having
the functional form of the PDFs, we can obtain the higher
moments, and provide results up to hx6i. Last, but very
importantly, we examine the SU(3) flavor symmetry break-
ing in the PDFs, and find that the conclusions are consistent
to those drawn when comparing ratios of the Mellin
moments as described above. In particular, we see that
the up quark has approximately the same contribution in the

pion and kaon and that the strange quark has a more
prominent contribution in the intermediate- to large-x region.
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