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We present results on the quark unpolarized, helicity and transversity parton distributions functions of
the nucleon. We use the quasiparton distribution approach within the lattice QCD framework and perform
the computation using an ensemble of twisted mass fermions with the strange and charm quark masses
tuned to approximately their physical values and light quark masses giving pion mass of 260 MeV. We use
hierarchical probing to evaluate the disconnected quark loops. We discuss identification of ground state
dominance, the Fourier transform procedure and convergence with the momentum boost. We find nonzero
results for the disconnected isoscalar and strange quark distributions. The determination of the quark parton
distribution and in particular the strange quark contributions that are poorly known provide valuable input
to the structure of the nucleon.
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I. INTRODUCTION

Parton distribution functions (PDFs) are the foundation
for understanding the structure of hadrons in terms of their
partonic content. Together with the generalized parton
distributions (GPDs) and the transverse-momentum depen-
dent distributions (TMDs) form a set of quantities that are
needed for the mapping of hadrons, in the coordinate and
momentum space. The most well-constraint distribution
functions are the PDFs, which depend only on the
momentum fraction carried by the partons. These can be
obtained from a number of scattering processes and
have a wide kinematical coverage (see, e.g., Refs. [1,2]).
Furthermore, the individual-flavor contributions are
also studied in phenomenological fits for the colinear
PDFs.
The present calculation is motivated by the fact that not

all PDFs are well-constrained from global analyses. The
number of available experimental datasets in the case of the

transversity is less by Oð10Þ compared to the helicity, and
Oð100Þ compared to the unpolarized PDFs. In addition,
isolating the strange-quark PDF from the down-quark
PDFs can be challenging, as most of the high-energy
processes cannot differentiate between the two flavors.
For example, there is a disagreement on the sign of the
strange-quark helicity PDF, ΔsðxÞ þ Δs̄ðxÞ, from analysis
of polarized inclusive deep inelastic scattering [3,4] and
global analyses of inclusive and semi-inclusive deep
inelastic scattering datasets [5–8]. The large uncertainties
in the strange PDFs have an effect on other quantities, such
as the W-boson mass and the determination of the CKM
matrix element Vcs [9,10]. Therefore, calculations
of the individual-quark PDFs from lattice QCD can,
eventually, be used as input in analysis requiring knowl-
edge of PDFs.
The flavor decomposition of proton charges and form

factors had been under investigation in the last few years
with calculations of disconnected diagrams using ensem-
bles at or near the physical values for the quark masses
(physical point) [11–24]. Such a success in lattice calcu-
lations of hadron structure is partly due to available
computational resources, but also due to novel method-
ologies to extract the individual quark Mellin moments and
form factors. A notable example is the hierarchical probing
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[25], which improves the signal significantly. In this work,
we extend hierarchical probing to nonlocal operators. Such
an approach was shown to be successful in our first
calculation on the helicity PDF [26].
Matrix elements of nonlocal operators are of great

interest in recent years. These can be related to light-cone
PDFs through a factorization and matching procedure.
Methods to access the x dependence of PDFs, such as
the quasi-PDFs [27,28], pseudo-ITDs [29], and current-
current correlators [30,31] are now well established.
Progress in terms of the renormalizability, renormalization
prescription, and factorization of light-cone PDFs has been
made, alleviating major sources of systematic uncertainties.
For their application in lattice QCD see Refs. [26,32–70]
and the recent reviews of Refs. [71–73]. Results from
lattice QCD simulations on the x-dependence of PDFs are
very promising, and therefore, their flavor decomposition is
the extension of these investigations. The matching for the
singlet case, as well as the mixing with the gluon PDFs
have been recently addressed [47,74]. In Ref. [26] we
presented the first calculation for the helicity PDFs includ-
ing disconnected contributions and the flavor decomposi-
tion for the up-, down-, and strange-quark PDFs. Here we
extend the calculation to the three types of collinear PDFs,
that is the unpolarized, helicity and transversity PDFs.
While such calculations are becoming feasible, there are a
number of computational challenges before taming the
statistical uncertainties. To date, calculations of discon-
nected contributions for matrix elements of nonlocal
operators at the physical point do not exist.
The paper is organized as follows: Sec. II presents the

methodology of extracting the nucleon matrix elements,
the renormalization and matching. Section III focuses on
the details of the calculation and the techniques employed.
The results for the disconnected and connected matrix
elements are presented in Secs. IV and V, respectively. In
Sec. VI, we extract the vector, axial and tensor charges

using the data with zero length for the Wilson line. The
PDF reconstruction and flavor decomposition is given in
Sec. VII. Finally, we give out conclusions in Sec. VIII.

II. METHODOLOGY

A. Nucleon bare matrix elements

The main component of this study is the calculation of
the nucleon matrix elements of nonlocal operators, that is

hϒΓ ðz; P3Þ ¼ hNðP3Þjψ̄ðzÞϒΓWðzÞψð0ÞjNðP3Þi; ð1Þ

where jNðP3Þi is the nucleon state with momentum boost
along the z-direction, i.e., P⃗ ¼ ð0; 0; P3Þ. The fermionic
field ψðxÞ≡ ψðx⃗; tÞ can be either the light quark doublet
ψ ≡ ðu; dÞT or the strange quark field ψðxÞ≡ sðxÞ. The
Wilson line WðzÞ is constructed in the direction parallel to
the nucleon boost P⃗ and extends from zero length to up to
half of the lattice, L=2, in both positive and negative
directions. The Dirac structure of the operator, Γ, acts in
spin space and depends on the type of the collinear PDF
under study. Without loss of generality, one can take that
the momentum boost is in the z-direction (k). Based on this,
we employ the following Γ matrices:

(i) Γ ¼ γ0 for the unpolarized distribution qðxÞ;
(ii) Γ ¼ γ5γ3 for the helicity distribution ΔqðxÞ;
(iii) Γ ¼ σ3j with j ≠ 3 for the transversity distribu-

tion δqðxÞ.
We calculate both the isovector and isoscalar quark con-
tributions to Eq. (1), and, therefore, we introduce the
superscript ϒ for the matrix elements. The matrix ϒ acts
on the light quark sector and takes the value τ3ð1Þ for the
isovector (isoscalar) distribution, where τ3 ¼ diagð1;−1Þ,
is the third Pauli matrix.
The matrix elements are computed from the ratio of

three- and two-point functions defined as

C2ptðP⃗; ts; 0Þ ¼ Pαβ

X
x⃗

e−iP⃗·x⃗hΩjNαðx⃗; tsÞN̄βð0⃗; 0ÞjΩi

C3ptðP⃗; tins; ts; 0Þ ¼ P̃αβ

X
x⃗;y⃗

e−iP⃗·x⃗hΩjNαðx⃗; tsÞOðy⃗; tins; zÞN̄βð0⃗; 0ÞjΩi; ð2Þ

where ts is the source-sink separation, and tins the insertion
time of the three-point function. We use the proton
interpolating field Nα ¼ εabcuaαðxÞðdbTðxÞCγ5ucðxÞÞ with
C ¼ γ0γ2. The three-point function projector depends on
the operator under study and can be found in Table I
and for the two-point function we use P ¼ ð1� γ0Þ=2. To
increase the number of measurements for the disconnected
diagrams, we average the three- and two- point functions
over plus and minus parity projectors.

The operator O is defined as

Oðy⃗; tins; zÞ ¼ ψ̄ðy⃗þ zẑ; tinsÞϒΓWðy⃗þ zẑ; y⃗Þψðy⃗; τÞ; ð3Þ

and is inserted in the three-point function of Eq. (2). The
Wick contractions lead to two topologically different
diagrams, as shown in Fig. 1(b) and 1(c). In Fig. 1(a),
we also show pictorially the two-point function of
Eq. (2). For the case that the fermionic field in Eq. (3)
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is ψ ¼ ðu; dÞT and ϒ ¼ τ3, we obtain the matrix elements
for the isovector distribution u − d, which receive contri-
bution from the connected diagram only [Fig. 1(b)].
However, in the case whereϒ ¼ 1, the three-point function
takes contributions from both connected and disconnected
diagrams. For the nucleon, the strange-quark contribution
comes exclusively from the disconnected diagram. We
emphasize that, disconnected contributions have a consid-
erably smaller signal-to-noise ratio compared to the con-
nected ones and their evaluation requires the use of
stochastic and gauge noise reduction techniques described
in detail in Sec. III A 2.
The ratio of three- over two-point functions becomes,

hC3ptðP3; tins; ts; 0i
hC2ptðP3; ts; 0Þi

¼0≪tins≪ts ðhϒΓ Þbareðz; P3Þ; ð4Þ

and is used to obtain the matrix elements of Eq. (1). This
relation is meaningful for the ground-state contribution. To
isolate the latter, we apply constant (plateau) fits in a range
where the operator insertion time is large enough, and away
from the source and sink. Besides the plateau fit method,
we employ different techniques allowing the extraction of
the nucleon matrix element, as described in Sec. IVA.

B. Nonperturbative renormalization

The bare matrix elements of Eq. (1) must be renormal-
ized in coordinate space prior to obtaining the quasi-PDFs,
which are defined in the momentum space (see Sec. II C).

The renormalization of both the nonsinglet and singlet
quantities is multiplicative. In this work, we use the
nonsinglet renormalization function, as the difference with
the singlet is expected to be small [75], which was
demonstrated numerically for local operators [18,20].
The mixing between the unpolarized and helicity singlet-
quark PDFs with the gluon PDFs arises at the matching
level because there is no additional nonlocal ultraviolet
divergence in the quasi-PDF [47,74,76].
To renormalize the matrix elements we apply the

regularization independent (RI0) scheme, and use the
momentum source method [77] that offers high statistical
accuracy. More details on the setup can be found in
Refs. [52,78]. In Refs. [37,79], we proposed an extension
of the renormalization prescription to include nonlocal
operators, which we also follow in this work. The con-
ditions for the renormalization functions of the nonlocal
operator, ZΓ, and the quark field, Zq, are

ðZimpr
q ðμ0ÞÞ−1ZΓðz; μ0ÞTr½VΓðp; zÞ=p�jp2¼μ2

0

¼ Tr½VBorn
Γ ðp; zÞ=p�jp2¼μ2

0
; ð5Þ

Zimpr
q ðμ0Þ ¼

�
1

12
Tr½ðSðpÞÞ−1SBornðpÞ� − dZ∞

q ðpÞ
�����

p2¼μ2
0

:

ð6Þ

Vðp; zÞ (SðpÞ) is the amputated vertex function of the
operator (fermion propagator) and SBornðpÞ is the tree-level
of the propagator. These conditions are applied at each
value of z separately. We improve Zq, and consequently ZΓ,
by subtracting lattice artifacts calculated to one-loop level
in perturbation theory and to all orders in the lattice
spacing, dZ∞

q ðpÞ. The details of the calculation can be
found in Ref. [78].
The RI-type schemes are mass-independent, and there-

fore ZΓ is calculated at several ensembles with different
values for the quark masses. Eventually, a chiral extra-
polation is applied to remove residual artifacts related to
the quark mass. Here we use five ensembles that are

(b) (c)(a)

FIG. 1. Schematic representation of the two- and three-point functions. The time tsðtÞ indicates the source-sink separation for the three
(two)-point function. The solid lines correspond to quark propagators, while the curly lines represent the Wilson lines of length z. (a)
Nucleon two-point function, (b) Nucleon connected three-point function, and (c) Nucleon disconnected three-point function.

TABLE I. List of parity projectors and insertions for each
colinear PDFs. The nucleon momentum boost is assumed to be in
the z-direction, P ¼ ð0; 0; P3Þ.
PDF Γ P̃αβ

Unpolarized γ0 1�γ0

2

Helicity γ5γ3 iγ3γ5ð1�γ0

2
Þ

Transversity σ3j iγ5γið1�γ0

2
Þ; i ≠ j
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generated at different pion masses in the range of
350 MeV–520 MeV with a lattice volume of 243 × 48.
For the chiral extrapolation to be meaningful, all quark
masses should be degenerate. Therefore, we use Nf ¼ 4

ensembles generated by the Extended Twisted Mass
collaboration (ETMC) that are dedicated to the renorm-
alization program. These ensembles have the same lattice
spacing and action parameters as the Nf¼2þ1þ1

ensemble used for the production of the nucleon matrix
elements.
ZΓ depends on the RI renormalization scale μ0, and it will

be converted to MS and evolved at a scale of choice. To
reliably perform this procedure we use several values of μ0,
and the conversion and evolution formulas is applied on ZΓ
obtained at each scale.We choose the initial scale μ0 such that
discretization effects are small [78]. In particular, the
4-vector momentum p, which is set equal to μ0, has the
same spatial components: p ¼ ðp0; p1; p1; p1Þ. The values

of p0 and p1 are chosen such that the ratio p4

ðp2Þ2 is less than
0.28, as suggested in Ref. [80]. The values of aμ0 cover the
range [1, 5]. For each μ0 value, we apply a chiral extra-
polation using the fit

ZRI
Γ ðz; μ0; mπÞ ¼ ZRI

Γ;0ðz; μ0Þ þm2
πZRI

Γ;1ðz; μ0Þ; ð7Þ

to extract the mass-independent ZRI
Γ;0ðz; μ0Þ at each value of

the initial scale. ZRI
Γ;0ðz; μ0Þ is converted to the MS scheme

and evolved to μ ¼ 2 GeV (μ ¼ ffiffiffi
2

p
GeV) using the results

of Ref. [79] for the unpolarized and helicity (transversity)
PDFs. The conversion and evolution depends on
both the initial scale μ0 and the final scale in the MS. The
appropriate expressions have been obtained to one-loop
perturbation theory in dimensional regularization.
Therefore, there is residual dependence on the initial scale
μ0, which is eliminated by taking the limit ðaμ0Þ2 → 0

using a linear fit on the data in the region ðaμ0Þ2 ∈
½1 − 2.6�.
The last step of the renormalization program is the

conversion to a modified MS scheme (MMS), developed in
Ref. [52], and is given by

ZMMS
Γ;0 ðz; μ̄Þ ¼ ZMS

Γ;0ðz; μ̄ÞCMS;MMS; ð8Þ

where

CMS;MMS ¼ 1þ CFg2

16π2

�
eð1ÞΓ þ eð2ÞΓ ln

�
μ̄2

4μ2F

�
þ eð3ÞΓ

�
iπjμFzj
2μFz

− lnðjμFzjÞ − CiðμFzÞ − iSiðμFzÞ þ lnðμFzÞ
�

þ eð4ÞΓ ðeiμFzð2Eið−iμFzÞ þ iπsgnðμFzÞ − lnð−iμFzÞ þ lnðiμFzÞÞÞ
�
: ð9Þ

This scheme was introduced to satisfy particle number
conservation. In Ref. [52] we showed that the difference
between MS and MMS is numerically very small, but
brings the PDFs closer to the phenomenological ones. In
Eq. (9) μF is the factorization scale set equal to the MS
scale. Ci, Si, Ei and sgn are the special functions cosine
integral, sine integral, exponential integral, and sign

function, respectively. The coefficients eðiÞΓ depend on

the operator: feð1ÞΓ ; eð2ÞΓ ; eð3ÞΓ ; eð4ÞΓ g is f−5;−3;þ3;−3=2g,
f−7;−3;þ3;−3=2g, f−4;−4;þ4;−4=2g, for the vector,
axial and tensor operator, respectively.
Due to the presence of the Wilson line, both the

matrix elements and renormalization functions are complex
functions. As a consequence, a complex multiplication is
required to extract the renormalized matrix element,
that is

hϒΓ ¼ ZMMS
Γ · ðhϒΓ Þbare ¼ ðRe½ZMMS

Γ �Re½ðhϒΓ Þbare� − Im½ZMMS
Γ �Im½ðhϒΓ Þbare�Þ

þiðRe½ZMMS
Γ �Im½ðhϒΓ Þbare� þ Im½ZMMS

Γ �Re½ðhϒΓ Þbare�Þ: ð10Þ

For simplicity in the notation, the dependence on z, P3,
scheme and scale is implied. As can be seen, the real
(imaginary) part of the renormalized matrix elements are
not simple multiples of the real (imaginary) part of the
bare matrix element. Therefore, controlling systematic
uncertainties in the renormalization is an important aspect
of the calculation.

C. Quasi-PDFs and matching to light-cone PDFs

Quasi-PDFs are defined as the Fourier transform of the
renormalized nucleon matrix elements in Eq. (4) with
respect to the Wilson line length z

q̃ðx; P3Þ ¼
Z

∞

−∞

dz
4π

e−ixzP3hϒΓ ðz; P3Þ: ð11Þ
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Note that the renormalized matrix elements, hϒΓ , depend on
the scheme and scale, which also propagates to q̃ðx; P3Þ.
For simplicity in the notation, this dependence is implied.
As mentioned in the previous paragraph, the matrix
elements are renormalized in the MMS scheme and evolved
to 2 GeV (

ffiffiffi
2

p
GeV) for the unpolarized and helicity

(transversity) PDFs.
On the lattice, we can only evaluate the matrix elements

for discrete and finite values of z. Therefore, the integral of
Eq. (11) is replaced by a discrete sum over a finite number
of Wilson line lengths

q̃ðx; P3Þ ¼
Xzmax

−zmax

dz
4π

e−ixzP3hϒΓ ðz; P3Þ; ð12Þ

where dz=a ¼ 1. For the summation in Eq. (12) to
accurately reproduce Eq. (11), both the real and imaginary
parts of the matrix element should be zero beyond zmax.
Practically, this is not always possible due to the finite
momentum boost and limited volume in the lattice formu-
lation. The choice of the cutoff zmax, which is anyway
limited up to L=2, requires an extensive study. We note that
systematic effects related to the reconstruction of the PDFs
is operator dependent, as each matrix element may have
different large-z behavior. We will show the results of such
analysis in Sec. VII B.
From the finite-momentum quasi-PDF, it is possible to

obtain the light-cone parton distribution function (infinite

momentum) through the so-called matching procedure.
This is accomplished through a convolution of the quasi
distribution with a kernel evaluated in continuum pertur-
bation theory within the large momentum effective theory
(LaMET) [72,81]. The matching formula reads

qðx; μÞ ¼
Z

∞

−∞

dξ
jξjC

�
ξ;

μ

xP3

�
q̃

�
x
ξ
; μ; P3

�
; ð13Þ

and the factorization scale μ is chosen to be the same as the
renormalization scale. The matching kernel C contains
information on P3 which, in principle, is eliminated in
qðx; μÞ. However, there is residual P3 due to the limitations
in accessing large values of momentum from lattice QCD
(see, e.g., Ref. [52]) and the matching kernel being
available to limited order in perturbation theory. Most of
the calculations of the matching kernel have been per-
formed to one-loop level (see, e.g., Refs. [30,82–89]).
Recently, the computation of the kernel C was extended to
two loops [88,90–92]. In this study, we employ the kernel
in the MMS-scheme which is known at one-loop level [52].
This matching kernel relates the quasi-PDFs defined in the
MMS scheme at some scale, to the light-cone PDFs in the
MS at the same scale. For the unpolarized and helicity we
choose a scale of 2 GeV, while for the transversity we
choose

ffiffiffi
2

p
GeV.

To calculate the antiquark distributions from qðxÞ, we
exploit the crossing relations [93], that is

q̄fðxÞ ¼ −qfð−xÞ; Δq̄fðxÞ ¼ Δqfð−xÞ; δq̄fðxÞ ¼ −δqfð−xÞ: ð14Þ

III. LATTICE SETUP

The computation is performed using one gauge ensemble ofNf ¼ 2þ 1þ 1 clover-improved twisted mass fermions and
the Iwasaki improved gluonic action [94] generated by ETMC [95]. The fermionic action of the light quarks in the “twisted
basis” takes the form

Sltmðχl; χ̄l; UÞ ¼ a4
X
x

χ̄lðxÞ
�
DW ½U� þ iμlγ5τ3 þml þ

i
4
cSWσμνFμν½U�

�
χlðxÞ: ð15Þ

Here, χTl ðxÞ ¼ ðu; dÞ is the light quark doublet in the twisted basis, DW ½U� is the massless Wilson-Dirac operator and
Fμν½U� is the field strength tensor. The last term is weighted by cSW, the Sheikoleslami-Wohlert [96] clover coefficient. The
heavy quark twisted mass action is similar to the light quark action in Eq. (15). However, it contains an additional term,
proportional to the parameter μδ, due to the nondegeneracy of the heavy quarks and reads

Shtmðχh; χ̄h; UÞ ¼ a4
X
x

χ̄hðxÞ
�
DW ½U� þ iμσγ5τ3 þmh − μδτ1 þ

i
4
cSWσμνFμν½U�

�
χhðxÞ; ð16Þ

where χThðxÞ ¼ ðs; cÞ. Moreover, μl and μσ are the twisted
mass parameter. The mass terms ml and mh are the
(untwisted) Wilson quark masses tuned to the critical value

mcrit (i.e., at maximal twist), which ensures automaticOðaÞ
improvement [97] for parity even operators. The equivalent
discussion for nonlocal operators can be found in
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Refs. [66,76,98,99]. Fields in the “physical basis” can be
obtained from the twisted basis through the transformation

ψ̄ðxÞ≡ χ̄ðxÞeiα2γ5τ3 ; ψðxÞ≡ ei
α
2
γ5τ3χðxÞ; ð17Þ

with α ¼ π=2 at maximal twist. From now on we will use
fields in the physical basis.
The ensemble we use has lattice volume V ¼ 323 × 64,

with a lattice spacing of a ¼ 0.0938 fm. The pion mass is
approximately equal to mπ ¼ 260 MeV and mπL ≈ 3. In
Table II, one can find the summary of the main parameters
characterizing the ensemble. For further details see
Ref. [95].

A. Numerical methods

1. Connected diagrams

To improve the overlap between the states generated by
the interpolating field NαðxÞ ¼ εabcuaαðxÞðdbTðxÞCγ5ucðxÞÞ
and the proton ground state we employ Gaussian smearing
[101,102]. In addition, we use APE smearing for the gauge
links that enter the Gaussian smearing. The optimal
parameters for the Gaussian and APE smearing techniques,
determined in Ref. [103], are ðαG; NGÞ ¼ ð4.0; 50Þ and
ðαAPE; NAPEÞ ¼ ð0.5; 50Þ, respectively. Moreover, to fur-
ther improve the overlap with the boosted proton ground
state, we use momentum smearing [104], as it has been
proven to drastically reduce the statistical noise in the
matrix elements of boosted hadrons [35]. In Ref. [62] and
in this work, the momentum smearing parameter has been

tuned to ξ ¼ 0.6, which minimizes the statistical errors.
The momentum smearing operator S on a quark field ψðxÞ
reads

SψðxÞ ¼ 1

1þ 6αG

�
ψðxÞ þ αG

X3
j¼1

UjðxÞeiξP⃗·ĵψðxþ ĵÞ
�
;

ð18Þ

where ξ is the momentum smearing parameter and j runs
over the spatial directions, with UjðxÞ being the link in the
spatial j-direction.
To evaluate the connected contributions to the three-

point functions, we employ the sequential method [105]
through the sink. Moreover, to further increase the number
of measurements, we compute the three-point functions
with Nsrc different source positions on each configuration
and we boost the nucleon along all the spatial directions
and orientations, i.e., �x;�y;�z, with the Wilson line
always taken in the same direction as the nucleon boost.
Indeed, in Ref. [52] it was found that the statistical
uncertainty decreases as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NsrcNdirs

p
for all the operators

under consideration, with Ndirs ¼ 6 being the number of
directions of the nucleon boost. The number of source
positions employed depends on the nucleon boost, and is
Nsrc ¼ 8 for the two lowest values of the momentum and
Nsrc ¼ 14 at P3 ¼ 1.24 GeV for the third. The source-sink
separation is ts ¼ 0.94 fm for the lowest momentum value,
and ts ¼ 1.13 fm for the two highest ones. The value
employed for ts at P3 ¼ 1.24 GeV is expected to be large
enough to suppress excited-states contamination [52]. In
Table III we report the number of measurements for the
connected contributions at each value of P3.

2. Disconnected contribution

The evaluation of the disconnected quark loops with a
Wilson line in the boosted frame constitutes the most
computationally demanding aspect of this work. The
isoscalar three-point function of Eq. (2) (τ ¼ 1 and
ψðxÞ ¼ ðuðxÞ; dðxÞÞT) reads

C3ptðP⃗; tins; ts; 0Þ ¼ P̃αβ

X
x⃗;y⃗

e−iP⃗·x⃗hΩjJ NðxÞ½ūðyþ zÞΓWðzÞuðyÞ þ d̄ðyþ zÞΓWðzÞdðyÞ�J̄ Nð0ÞjΩiβα: ð19Þ

The three-point function C3pt contains a connected and disconnected part. The latter is given by

Cdisc
3pt ðP⃗; tins; ts; 0Þ ¼ −P̃αβ

X
x⃗;y⃗

e−iP⃗·xhðJ NðxÞJ̄ Nð0ÞÞβαTr½ðGuðy; yþ zÞ þ Gdðy; yþ zÞÞΓWðzÞ�i; ð20Þ

where x ¼ ðts; x⃗Þ, y ¼ ðtins; y⃗Þ and z ¼ ð0; 0; 0; zÞ. The
quantity Gfðx⃗; tx; y⃗; tyÞ is the all-to-all propagator with
quark flavor f ¼ u, d, s, from each lattice point x to any

point y. Equation (19) is a correlation of two parts: the
nucleon two-point function and the quark loop with a
Wilson line. The latter can be written as

TABLE II. Parameters of the ensemble used in this work. The
nucleon mass ðmNÞ, the pion mass ðmπÞ and the lattice spacing
(a) are determined in Ref. [100].

β ¼ 1.726, cSW ¼ 1.74, a ¼ 0.0938ð3Þð2Þ fm

323 × 64, L ¼ 3.0 fm

aμl ¼ 0.003
mπ ≈ 260 MeV

mπL ≈ 3
mN ¼ 1.09ð6Þ GeV
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Luþdðτ; z;ΓÞ ¼
X
y⃗

Tr½ðGuðy;yþ zÞ þGdðy;yþ zÞÞΓWðzÞ�

¼
X
y⃗

Tr½ψ̄ðyþ zÞΓWðzÞψðyÞ�; ð21Þ

where the trace in the second line is intended over volume,
spin, and flavor indices. Due to the presence of the all-to-all
propagator Gfðx⃗; tx; y⃗; tyÞ, the exact evaluation of the
disconnected contribution in Eq. (21) would require
≈107 inversions of the Dirac operator per configuration
for the lattice that we are considering. In contrast, stochastic
techniques allow to carry out the computation of the
disconnected loops with a feasible but yet high computa-
tional cost compared to the currently available resources.
Stochastic techniques employ noise sources ξrðxÞ that obey
two properties

1

Nr

X
r

ξrðxÞ ¼ 0þO
�

1ffiffiffiffiffiffi
Nr

p
�

1

Nr

X
r

ξrðxÞ ⊗ ξ�rðyÞ ¼ δðx; yÞδαβδab þO
�

1ffiffiffiffiffiffi
Nr

p
�
; ð22Þ

where the product between source vector has to be intended
as a tensor product in volume, spin and color subspaces.
Given the set of vectors ξrðxÞ, the all-to-all propagator can
be constructed by solving the equation

Mðx; yÞϕrðyÞ ¼ ξrðxÞ; ð23Þ

Mðx; yÞ being the Dirac twisted-mass operator. Having the
set of solutions ϕrðxÞ, the all-to-all propagator can be
estimated via

Gðx; yÞ ¼ 1

Nr

X
r

ϕrðxÞξ†rðyÞ þO
�

1ffiffiffiffiffiffi
Nr

p
�
: ð24Þ

The number of stochastic vectors required so that the
stochastic error becomes comparable to the gauge error
should be much smaller than calculating the all-to-all
propagator exactly. In addition, exploiting a property of
the twisted mass operator, it is possible to design a
stochastic algorithm that further reduce the computational
cost. Recalling the transformation of Eq. (17), the insertion
operator Γ in twisted basis reads

Γtm ≡ ei
α
2
γ5τ3Γeiα2γ5τ3 ; ð25Þ

with α ¼ π=2 at maximal-twist. Depending on the operator
Γ it is possible to exploit two properties of the twisted-mass
operator to evaluate the loop of Eq. (21) with a stochastic
technique [106,107]:

(i) If ½Γtm; γ5� ¼ 0 for a particular Γ, then τ3 appears in
the loop of Eq. (21) when expressed in the twisted
basis

Luþdðτ; z;ΓÞ ¼ Luþd
tm ðτ; z; iγ5τ3ΓÞ

¼
X
y⃗

Tr½ðGtm
u ðy; yþ zÞ

− Gtm
d ðy; yþ zÞÞiγ5ΓWðz; 0Þ�: ð26Þ

In this case, we apply the standard one-end trick,
that exploits the following property of the twisted
mass operator

Gtm
u − Gtm

d ¼ −2iμðM†
uMuÞ−1γ5; ð27Þ

with Mu being the Dirac twisted mass operator of
the u quark. The transversity operator Γ ¼ σ3j
belongs in this category.

(ii) If fΓtm; γ5g ¼ 0, then the loop in twisted basis
possess the same analytical form as in the physical
basis

Luþdðτ; z;ΓÞ ¼ Luþd
tm ðτ; z;ΓÞ

¼
X
y⃗

Tr½ðGtm
u ðy; yþ zÞ

þ Gtm
d ðy; yþ zÞÞΓWðz; 0Þ�: ð28Þ

The quantity of interest can be computed with the
generalized one-end trick, exploiting the following
property

Gtm
u þ Gtm

d ¼ 2γ5DWðM†
uMuÞ−1γ5; ð29Þ

where DW is the massless Wilson-Dirac clover
operator. Note that if the twisted mass parameter
becomes very small (close to the physical point) this
type of one-end trick is approaching the standard
definition in Eq. (24). The helicity operator
Γ ¼ γ5γ3 and the unpolarized Γ ¼ γ0 belong to this
category.

One of the technical aspects of the calculation is the
evaluation of the traces in Eqs. (26)–(28). With small quark
masses, the contribution to the loops coming from the low
modes of the spectrum of the Dirac operator may be
sizeable, and contributes significantly to the stochastic
noise [108]. Therefore, we compute the first Nev ¼ 200

eigenpairs λj; jvji of the squared Dirac operator MuM
†
u,

TABLE III. Number of measurements, Nmeas, used for the
connected diagrams. For each value of P3 we report the number
of configurations and source positions employed, as well as the
source-sink separation, ts, in physical units.

P3 ½GeV� Nconf Nsrc Nmeas ts ½fm�
0.41 50 8 400 0.94
0.83 194 8 1552 1.13
1.24 709 14 9926 1.13
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that allow us to reconstruct exactly the low-mode contri-
bution to the disconnected quark loops. At this stage,
stochastic techniques can be employed with the deflated
operator to evaluate the high-modes contribution to the
traces. To reduce the stochastic noise, we use the hierar-
chical probing algorithm [25], that allows us to reduce the
contamination to the trace coming from off-diagonal terms
up to a distance 2k. This improvement is achieved by
partitioning the lattice with 2dðk−1Þþ1 Hadamard vectors,
where d ¼ 4 is the number of dimensions of the lattice.
Finally, to remove the contamination from off-diagonal
terms in spin-color subspaces, we apply full dilution [109].
The number of stochastic vectors employed is Nr ¼ 1. We
check that for this number of Hadamard vectors conver-
gence with one stochastic vector is reached. The algorithm
employed in the present work has been successfully used in
other studies involving the evaluation of disconnected
contributions [17–20].
For each value of the proton boost P3 ¼ 0.41; 0.83;

1.24 GeV, we evaluated the two-point functions contrib-
uting to the disconnected diagram of Eq. (19) with
Nsrcs ¼ 200 source positions (see Sec. III B). In addition,
apart from averaging over all possible directions and
orientations of the nucleon boost, we also average over
forward and backward projections. In Table IV, we report
the total statistics collected for the disconnected three point
correlators. We note that, for the second largest value of the
momentum used, namely P3 ¼ 1.24 GeV we use ≈106
measurements. In addition, we also compute the matrix
elements for P3 ¼ 1.65 GeV and all Γ using approximately
the same statistics as the previous smaller boost. While this
number of statistics is not sufficient to obtain the same
statistical accuracy as lower momenta, it allows us to check
whether convergence with P3 is reached.

B. Two-point functions

The two-point functions enter the calculation through the
ratio of Eq. (4), but also contribute to the evaluation of
the disconnected diagram, as shown in Eq. (19). For this

reason, to obtain a significant amount of measurements for
the disconnected contributions we compute the two-point
functions with a large number of source positions,
N2pt

src ¼ 200, and consider boosts of the nucleon along
the different spatial directions and orientations. This
procedure allowed us to considerably reduce the statistical
error in the disconnected contributions at small computa-
tional cost because the same loops is combined with all 200
two-point functions on the same configurations. Given that
the computational cost of the two-points function is
considerably lower compared to the one required to
evaluate the disconnected quark loops, using multiple
source positions is highly beneficial. In Table IV we report
the number of measurements of the two-point function
performed at each nucleon boost P3.
The two-point function can be written as

C2ptðP⃗; t; 0Þ ¼
X
n

jhΩjNð0⃗; 0Þjnij2e−tEnðPÞ; ð30Þ

with jni being the nth energy state of the interpolatorNαðxÞ
and EnðPÞ its energy. We performed the analysis by
keeping up to two terms in the expansion of Eq. (30). In
particular, the two-state fit function of the two-point
correlator consists of

C2ptðP⃗; t; 0Þ ¼ c0e−tE0 þ c1e−tE1

¼ c0e−tE0

�
1þ c1

c0
e−ΔEt

�
; ð31Þ

while the effective energy reads

EEffðP⃗; t; 0Þ≡ log

�
C2ptðP⃗; t; 0Þ

C2ptðP⃗; tþ 1; 0Þ

�

¼ E0 þ log

�
1þ Be−ΔEt

1þ Be−ΔEðtþ1Þ

�
; ð32Þ

TABLE IV. Number of measurements (last column) for each momentum (first column) used for computing the disconnected
contributions. Nev is the number of eigenmodes (second column), Nr the number of stochastic vectors, Nconf (third column) the number
of configurations (fourth column) and Nhad the number of Hadamard vectors (fifth column). Ninv is the number of inversions per
configuration (seventh column), computed as the product of the number of stochastic vectors multiplied by Nsc (sixth column) which
takes into account the spin-color dilution. The number of source positions for the two-point functions Nsrcs (eighth column) contributes
to the total statistics Nmeas of the disconnected diagrams, as well as the number of directions and orientations of the nucleon boost Ndir
(ninth column).

Loops Two-point functions

P3 ½GeV� Nev Nr Nconf Nhad Nsc Ninv Nsrcs Ndir Nmeas

0.41 200 1 330 512 12 6144 200 6 396 × 103

0.83 200 1 349 512 12 6144 200 6 418.8 × 103

1.24 200 1 1103 512 12 6144 200 6 1.3236 × 106

1.65 200 1 1160 512 12 6144 200 6 1.392 × 106
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with ΔE ¼ ðE1 − E0Þ and B ¼ c1=c0. In Fig. 2, we show
the results of the two-state fits of the correlator and the
effective energy for the parameters E0, ΔE, c0 and c1=c0,
varying the low-end of the fit interval tmin. The results show
that the fits on the correlator or the effective energy lead
to the same ground state energy. Furthermore, the plateau
and two-state fits converge at ts=a ¼ 9 for momentum
1.24 GeV.
In Table V we report the parameters extracted using one-

and two-state fits. The results for E0 are obtained with the
plateau fit of the effective energy, and they are compatible

with the values extracted using two-state fit results. In
Fig. 3 we show the effective energy for the second largest
momentum P3 ¼ 1.24 GeV, together with the plateau fit
and two-state fit results. By iterating the fit procedure
described above over the data for the different nucleon
boosts, we reconstructed the dispersion relation

a2E2 ¼ a2m2
Nc

4 þ a2P⃗2c2; ð33Þ

with mN being the nucleon mass. In Fig. 3 we show the
observed trend of the energy with the nucleon boost P3

together with a linear fit performed with the function of
Eq. (33), giving a2m2

Nc
4 ¼ 0.2678ð8Þ and c2 ¼ 1.003ð7Þ.

As can be seen, the lattice data are fully compatible with the
dispersion relation for all values of P3.

IV. DISCONNECTED MATRIX ELEMENTS

Obtaining the disconnected contributions to the up-,
down- and strange-quark PDFs is the central goal, and most
laborious aspect of this work. We use the techniques
outlined in Sec. III A 2 to extract the matrix elements
and study systematic uncertainties, such as excited-states
contamination.

FIG. 2. Results of the two-state and plateau fits performed on the two-point correlator and on the effective energy at P3 ¼ 1.24 GeV as
a function of the lowest time, tmin used in the fit, using the expansion of Eqs. (31)–(32). In the lower panel we report the reduced χ̄2 for
each fitting procedure. The gray bands correspond with the selected values for E0 and the remaining parameters ΔE, c0, c1=c0,
respectively obtained with the plateau fit of the effective energy and the two-state fit of the correlator. The numerical results for the
parameters are reported in Table V.

TABLE V. Results for the parameters E0, ΔE, c1=c0 and c0 for
P3 ¼ 0; 0.41; 0.83; 1.24; 1.65 GeV. The remaining parameters
are obtained with the two-state fit of the two-point correlator
of Eq. (31).

P3 ½GeV� aE0 aΔE c1=c0 c0

0 0.5139(9) 0.51(9) 0.80(2) 8.99ð9Þ × 10−8

0.41 0.5504(9) 0.49(2) 0.82(2) 6.74ð7Þ × 10−8

0.83 0.647(4) 0.48(3) 0.88(4) 3.59ð5Þ × 10−8

1.24 0.784(2) 0.50(1) 1.14(1) 1.26ð1Þ × 10−8

1.65 0.942(3) 0.53(1) 1.34(2) 3.28ð5Þ × 10−9
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A. Excited-states contamination

To extract reliably the ground-state contribution to the
matrix elements, we evaluate the ratio between the three-
and two-point functions at seven source-sink separations,
ranging from ts ¼ 0.563 fm to ts ¼ 1.126 fm in steps of
a ¼ 0.0938 fm. For disconnected contributions, the evalu-
ation of different source-sink separations does not require
new inversions. This allowed us to study the excited-states
contamination to the matrix elements using several ts
values and three analysis methods: plateau fit, two-state
fit and summation method. We briefly summarize these
methods.
(1) Two-state fit. In Sec. III B, the two-point correlator is

expanded up to the first excited state. Likewise, we
can expand the three-point correlator keeping terms

up to the first excited state. This gives four terms,
that is

C3ptðP⃗; ts; τÞ ¼ A0;0ðP⃗Þe−E0ðP⃗Þts

þA0;1ðP⃗Þe−E0ðP⃗Þtse−ΔEðP⃗Þτ

þA1;0ðP⃗Þe−E1ðP⃗ÞtseΔEðP⃗Þτ

þA1;1ðP⃗Þe−E1ðP⃗Þts : ð34Þ

Being interested in the forward kinematic limit
allows one to reduce the number of independent
parameters, sinceA0;1 ¼ A1;0. We performed a fit of
the ratio of Eq. (4) with the function

hC3ptðP⃗; t; ts; 0i
hC2ptðP⃗; t; 0Þi

¼ A0;0

c0

½1þ ðA0;1=A0;0Þe−ΔEτ þ ðA0;1=A0;0Þe−ΔEðts−τÞ þ ðA1;1=A0;0Þe−ΔEts �
½1þ c1

c0
e−ΔEts � ; ð35Þ

where the parameters c1=c0 andΔE are determined through
the effective energy fit and the results are reported in TableV.
Thus, the parameters determined by fitting the ratio of three-
and two-point functions are A0;0=c0, A0;1=A0;0 and
A1;1=A0;0. A0;0=c0 corresponds to the matrix element we
are interested in. Such fits are weighted by the statistical
errors, and therefore the fit is driven by the most accurate
data. Since the statistics for the disconnected contributions
are independent of the ts value, we repeat the two-state fits
modifying, each time, the starting value of ts entering the fit
(tlows ). The results from the two-state fit method, allows us to
verify ground-state dominance by comparing the matrix
elements from the individual ts values.

(ii) Plateau fit. For 0 ≪ τ ≪ ts and ΔEts ≫ 0, the first
term in the ratio of Eq. (35) dominates. Thus, the
matrix elements can be extracted by performing a
constant fit on the ratio of Eq. (4) in the region
defined 0 ≪ τ ≪ ts, with large enough source-sink
separation. We exclude from the fit range three
points from left and right, i.e., we evaluate the
weighted average in the interval τ ∈ ½3; ts − 3�.
While the excited-states contamination decreases
with ts, at the same time the statistical uncertainty
exponentially increases. For this reason, the deter-
mination of the ground state of the matrix elements
with the plateau fit method is a challenging task, and

FIG. 3. Left panel: effective energy computed for P3 ¼ 1.24 GeV, together with the two-state fit (red) and plateau-fit (green) results.
Right panel: dispersion relation obtained using the plateau fit for P3 ¼ 0; 0.41; 0.83; 1.24 GeV (blue points). We also report the results
for the linear fit using Eq. (33) (red line).
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the results need to be compared with other analysis
techniques.

(iii) Summation method. Summing over the insertion
time τ of the ratio of the three- and two-point
functions we find [110,111]

SðtsÞ ¼
Xτ¼ts−2

τ¼2

hC3ptðP⃗; t; ts; 0i
hC2ptðP⃗; t; 0Þi

¼ ts
A0;0

c0
þ cþOðe−ΔEtsÞ: ð36Þ

Thus, the matrix elements corresponds with the
slope of the straight line SðtsÞ, and can be measured
by performing a linear regression.

Using the three aforementioned approaches we analyze
the excited-states effects on the matrix elements for the
unpolarized, helicity and transversity PDFs. In the next
three subsections, we present the analysis of the real and
imaginary parts of the matrix elements at P3 ¼ 1.24 GeV,
as a representative example.

1. Unpolarized

We start by discussing the analysis of the unpolarized
isoscalar uþ d disconnected matrix elements. In Fig. 4

we show the ratio of three- and two-point functions at
P3 ¼ 1.24 GeV for the unpolarized operator for z=a ¼ 3
and we compare the results obtained with the three
analysis methods reported in Sec. IVA. The real part of
the matrix elements shows no substantial dependence on
the source-sink separation, and the plateau fit results
obtained at different ts give all compatible results.
The dependence of the two-state fit on the lowest
source-sink separation tlows , included in the fit shows a
constant trend, which is also compatible with the results
obtained with the summation method. The reduced chi-
square χ2=d:o:f: ¼ 0.96 suggests that the function of
Eq. (35) provides a good description of the data. To
extract the matrix elements, we compute the constant
correlated fit of the plateau fit results starting from
tlows =a ¼ 9. In contrast to the real part, the imaginary part
shows a large effect due to the excited-states contamina-
tion. However, the two-state fit is compatible with the
plateau value using ts=a ¼ 11. Also, the results obtained
at different tlows using the summation method are com-
patible with the other methods within uncertainties. As
final results for the unpolarized matrix element, we report
the ones from the plateau fit for ts=a ¼ 11, which is
compatible with the results obtained with the two-state fit
and summation method.

FIG. 4. Left: results on C3ptðt; tsÞ=C2ptðtÞ for the unpolarized PDFs for P3 ¼ 1.24 GeV, at ts=a ¼
6ðgreenÞ; 8ðblueÞ; 10ðredÞ; 12ðpurpleÞ for z=a ¼ 3. The data for ts=a ¼ 7, 9, 11 are omitted to improve the readability. The two-
state fit results (gray band), and the value of the two-state fit of Eq. (34) evaluated at the same ts as the data points are also shown. Only
the data points with open symbols are taken into account in the two-state fit procedure. Center: the plateau fit results as a function of
ts=a. Each source-sink separation is associated with a different color. The orange band is the predicted ts dependence of the function in
Eq. (34) at tins ¼ ts=2. Our final value for the matrix elements is determined as the correlated constant fit of the plateau values shown
with open symbols. Right: results of the two-state fit (navy blue) as a function of the lowest source-sink separation tlows included in the fit.
The empty data point is the selected two-state fit result, which corresponds to the gray band. For each tlows we report the reduced χ2 of the
two-state fit. The results obtained with the summation method are reported with the red open crosses as a function of tlows .
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2. Helicity

The disconnected contributions to the helicity isoscalar
matrix elements is purely real and exhibits a non-negligible
dependence on the source-sink separation. This can be seen
in Fig. 5, where we show the ratio of the three- and two-
point functions at P3 ¼ 1.24 GeV for the helicity operator
for z=a ¼ 3. We observe a decreasing behavior as ts
increases, which is a behavior also observed in the axial
charge [18]. In addition, the plateau fit for ts=a > 10 are
compatible with the two-state fit. Therefore, we use the

plateau fit for ts=a ¼ 10 as our final results, so that
statistical uncertainties are controlled.

3. Transversity

The ratio of the three- and two-point functions for the
disconnected contributions to the isoscalar transversity
matrix elements does not shows dependence on the
source-sink separation for both the real and imaginary
parts (see Fig. 6). Thus, the matrix elements are computed

FIG. 5. The same as Fig. 4 but for the isoscalar helicity matrix elements.

FIG. 6. The same as Fig. 4 but for the isoscalar transversity matrix elements.
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from the plateau fit for ts=a ¼ 9, both for the real and the
imaginary parts.
Using the criterion adopted for selecting the final results for

each PDF case we compared the extracted matrix elements in
Fig. 7 for all values of z. In summary, the plateau fits are
evaluated at ts=a ¼ 9, 10, 9 (ts=a ¼ 11, 10, 9) for the real
(imaginary) part of the unpolarized, helicity and transversity,
respectively. For the summation method, we employ all ts
values available, except for the imaginary part of the
unpolarized and the real part of the helicity matrix elements,
where ts=a ¼ 6 is excluded as explained above. The two-
state fit is performed in the range ts=a ∈ ½6; 12� in all cases,
except for the imaginary part of the unpolarized and trans-
versity matrix elements, where the ts=a ¼ 6 value, as
explained, is not included in the regression.
Our conclusions for the isoscalar disconnected matrix

elements apply also to the strange matrix elements, with the
excited-states contamination showing similar effects.

B. Momentum dependence

As explained in Sec. II C, the matrix elements and the
quasi-PDFs have a dependence on the nucleon boost P3,
which also enters the matching formula leading to the PDFs.
An important aspect of the study is the investigation of the
momentumdependence of thematrix elements, which affects
the convergence to the light-cone PDFs. In Fig. 8, we present
the results for the renormalized strange and isoscalar dis-
connected matrix elements as a function of the momentum
boost. For the unpolarized case, the real part decreases in

magnitude as theP3 increases, and becomes compatible with
zero. In contrast, its imaginary part is nonzero and shows
convergence for the two largest values ofP3. We find that the
isoscalar disconnected matrix elements share the same
qualitative behavior as the strange-quark ones.
First results on the helicity distribution appeared in

Ref. [26]. Here we show results with increased statistics,
and with the addition of P3 ¼ 1.65 GeV. The matrix
elements show a mild residual dependence on the momen-
tum. The imaginary part of the renormalized matrix
elements arises entirely from the complex multiplication
with the renormalization function and the bare matrix
elements [see Eq. (10)]. Indeed, as mentioned already in
Sec. IVA 2, the disconnected contribution to the bare
matrix element for the helicity distribution is purely real.
The real part of the matrix elements for the trans-

versity distribution exhibit a strong dependence on the
nucleon boost, changing dramatically as we increase P3

from 0.83 GeV to 1.24 GeV. However, results obtained for
P3 ¼ 1.65 GeV show agreement with those for P3 ¼
1.24 GeV albeit the large uncertainty. From the current
results it is still unclear if convergence is reached. However,
in order to fully check this would require a larger
momentum and much more measurements to reach the
required accuracy. This is beyond the current study and will
be tested in a followup work. We thus, construct the PDFs
using the results for P3 ¼ 1.24 GeV. In Sec. VII D 2, we
comment on the region of x affected by the gap observed in
the real part of the matrix elements as momentum increases.

FIG. 7. Comparison of the matrix elements obtained from the one- (red points) and two-state (green points) fits and the summation
method (blue points) for the disconnected isoscalar matrix elements at P3 ¼ 1.24 GeV. From top to bottom we show the unpolarized,
helicity and transversity PDFs. See text for more details.
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In contrast, the imaginary part is fully compatible with zero
for the two lowest momenta, while it is slightly nonzero at
large z at the highest momentum.

V. CONNECTED MATRIX ELEMENTS

The evaluation of the connected matrix elements contrib-
uting to the three types of PDFs has been studied in our

previous works. In particular, we refer the reader to the study
ofRef. [52],where several sources of systematic uncertainties
were discussed in great detail. For completeness, we briefly
discuss here the connected contributionswhich are needed for
the flavor decomposition. In Fig. 9, we show the momentum
dependence of the bare connected contributions to the
isoscalar and isovector matrix elements for the three types

FIG. 8. Momentum dependence of the renormalized matrix elements for the strange (upper figure) and isoscalar disconnected (lower
figure) unpolarized (top panels), helicity (middle panels) and transversity (bottom panels) distributions. We show the matrix elements
computed at P3 ¼ 0.41 GeV (blue), 0.83 GeV (green), 1.24 GeV (red) and 1.65 GeV (yellow). Data points are slightly shifted to
improve readability.
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FIG. 9. Momentum dependence of the bare connected contributions to the matrix elements. The first two rows show respectively the
isoscalar connected contribution and the isovector unpolarized matrix elements. The left column shows the real part and the right the
imaginary part. The same flavor combinations are reported respectively for the helicity and transversity distributions in the 3rd and 4th

rows, and in the last two rows. We show the matrix elements at P3 ¼ 0.41 GeV (blue), 0.83 GeV (green) and 1.24 GeV (red). Data
points are slightly shifted to improve readability.
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of PDFs. In all cases, as the nucleon boost increases, the real
part of the matrix elements decay to zero faster, and the
magnitude for the imaginary part increases in the region
z=a≲ 9. The unpolarizedmatrix elements show convergence
with P3 while the imaginary parts of the helicity and trans-
versity distributions increase in magnitude. We note that in
order to compute the connected contributions for a fourth
larger boost would require new inversions and large number
of measurements to reduce the errors sufficiently enough to
check convergence. Thus for the current work we opt to use
the results for P3 ¼ 1.24 GeV for the connected parts since
the focus of this work is the evaluation of the disconnected
contributions. The uncertainty on the unpolarized distribution
is smaller as compared to the other two distributions. This
behavior is due to the fact that both the three- and two-point
functions share the same projector, ð1þ γ0Þ=2, which
increases the correlation between the two quantities and, as
a result, drastically decreases the noise-to-signal ratio. We
note also that the transversity distribution reported here is the
average over the two insertions σ3j with j ¼ 1, 2.

VI. NUCLEON CHARGES

The nucleon charges are usually extracted from the
nucleon matrix elements of local operators. This limit is

obtained from the matrix elements of nonlocal operators at
z ¼ 0. Since the charges are frame independent, any value
of P3 may be used. Indeed, in Sec. V we demonstrate that
the z ¼ 0 have little dependence on P3 For the discon-
nected contributions, we have the matrix elements at
P3 ¼ 0 (rest frame). For the connected contributions to
the charges, we use the lowest momentum, so we control
statistical uncertainties. In what follows, we will show the
results obtained for the isovector u − d, isoscalar uþ d
and strange-quark vector, axial and tensor charges, gV , gA
and gT .
First, we describe our results for the disconnected

contributions, whose total number of measurements in
the rest frame is Nmeas ¼ 66 × 103. In Fig. 10 we show
our results for the renormalized disconnected vector, axial
and tensor charges. The integral over the volume (i.e.,
Fourier transform at zero momentum transfer) of the trace
of the vector current ψ̄ðxÞγ0ψðxÞ is zero because quark and
antiquark loops contributions cancel each other. Thus, the
disconnected contribution to the unpolarized isoscalar and
strange matrix elements in the absence of the Wilson line
and at P3 ¼ 0 expected to be zero is verified and this
constitutes a consistency check of our computations. Due to
excited-states contamination, the disconnected isoscalar

and strange vector charges guþdðdiscÞ
V and gsV obtained with

FIG. 10. Isoscalar u − d (left) and strange (right) disconnected contributions to the renormalized gV (top panels), gA (middle panels)
and gT (bottom panels). In each subplot we show the results obtained with the plateau fit (open green squares), two-state fit (open blue
circles) and summation method (open red crosses) as a function of tlow. We also include χ2=d:o:f: for the two-state fit. The horizontal
band corresponds to the selected plateau fit result.
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the two-state and plateau fits are not compatible with zero at
small source-sink separation. In particular, the two-state fit
results become compatible with zero when tlow ≥ 10. The
results obtained with the summation method have the
largest uncertainties and are compatible with zero.
The axial charge shows the larger contamination from

excited states. In particular, the plateau fit results show a
decreasing trend with the tlow, converging to a constant
value for tlow=a ≥ 11 for the isoscalar and tlow=a ≥ 8 for
the strange charges, which are selected as our final values.
In contrast, both the results obtained with two-state fit and
summation are constant and compatible with the selected
plateau fit results. We find

guþdðdiscÞ
A ¼ −0.104ð10Þ; gsA ¼ −0.0320ð28Þ: ð37Þ

The results on the disconnected contributions of the
tensor charge show very mild excited states effects. We use
the plateau value extracted by fitting the ratio to a constant
for ts=a ≥ 9 for the isoscalar connected tensor charge

guþdðdiscÞ
T and for ts=a ≥ 8 for gsT. Our final results for
these two quantities are

guþdðdiscÞ
T ¼−0.00818ð91Þ; gsT ¼−0.00265ð60Þ: ð38Þ

We stress that despite the agreement of the strange tensor
charge with the value extracted using local operators
[12,112], a direct comparison is not meaningful since we
are using gauge ensembles simulated with heavier than
physical pion mass. It thus comes with no surprise that the
disconnected isoscalar tensor charge differs from the value
obtained at the physical pion mass.
The connected contributions to the nucleon charges are

computed for the smallest momentum P3 ¼ 0.41 GeV.
Using these results we can extract the values for each
quark flavor for the vector, axial an tensor charges. The
details on the computation of the connected isoscalar and
isovector contributions are given in Sec. V. The connected
contributions used to extract the charges are obtained from
plateau fits with ts=a ¼ 12. The nucleon axial and tensor
charges are given in Table VI. We note that for the vector
charge gV we find results that are consistent with charge
conservation.

VII. PARTON DISTRIBUTION FUNCTIONS

A. Isoscalar and isovector renormalized
matrix elements

In Fig. 11 we show the momentum dependence of the
total renormalized isoscalar and isovector matrix elements,
including disconnected contributions. The renormalized
matrix elements are reported as a function of zP3. We
renormalize and apply the matching procedure independ-
ently for the isoscalar and isovector distributions, allowing
us to obtain the individual up and down quark PDFs.
The source-sink separation used is ts ¼ 0.94 fm for the

lowest momentum and ts ¼ 1.13 fm for P3 ¼ 0.83 and
1.24 GeV. From previous studies of the isovector distri-
butions (see, e.g., Ref. [52]) and nucleon charges [18], we
expect that excited-states contamination is more significant
for the nucleon three-point correlators of the axial and
tensor currents as compared to the vector. However, the
statistical uncertainty is larger for these quantities and
within our current errors the source-sink separation
employed at the highest momentum is sufficient to suppress
excited states to this level of accuracy [52].
A summary of the results for the connected matrix

elements in the absence of the Wilson line are reported
in Table VII. The momentum dependence of all the matrix
elements analyzed is negligible for z ¼ 0 as expected For
example, the isoscalar connected matrix elements for the
unpolarized distribution, huþdðz ¼ 0Þ, for the largest
momentum differs from the others by less then 1%. The
isovector unpolarized matrix elements at z ¼ 0 is indepen-
dent of the momentum boost, and equal to 1, as expected
from charge conservation. Regarding the isoscalar helicity
case, we still find agreement for different P3 within
uncertainties, but with larger fluctuations of the mean
values, as the disconnected contribution is about ∼17%
of the connected part. We note that the Δhu−dðz ¼ 0Þ is
compatible with the experimental value gu−dA ¼
1.27641ð56Þ [113]. Insensitivity to the momentum boost
is also observed in the transversity case.

B. Truncation of the Fourier transform

In order to construct the x-dependence of PDFs we
need to take the Fourier transform. Since the matrix
elements are determined for discrete finite number of
z values, we study the dependence on the cutoff zmax
to understand systematic effects related to the

TABLE VI. Results for the isovector (first column), isoscalar connected (second column) and disconnected (third column) and for the
up (fourth column), down (fifth column) and strange (sixth column). We show our results on the axial (second row) and tensor (third
row) nucleon charges.

u − d uþ d (Connected) uþ d (Disconnected) u d s

gA 1.25(4) 0.66(7) −0.104ð10Þ 0.90(2) −0.35ð2Þ −0.0320ð28Þ
gT 1.11(2) 0.68(2) −0.00818ð91Þ 0.89(1) −0.22ð1Þ −0.00265ð60Þ
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reconstruction. In particular, for all types of distributions
we verify that a zmax exists such that, addition of
information for z > zmax in the Fourier transform leaves
the PDF unchanged within statistical uncertainties. This
value of z is selected as the maximum value zmax included
in the Fourier transform and, typically, the matrix ele-
ments at this value has a vanishing real part. Note that the

latter is just a qualitative criterion and in practice we
always check by increasing z for convergence.
In Fig. 12 we show the dependence on the cutoff zmax for

the isoscalar and isovector distributions at P3 ¼ 1.24 GeV.
We compare the results obtained with the discrete Fourier
transform of Eq. (12) with the results from the Bayes-
Gauss-Fourier transform (BGFT) [114]. The latter is an

FIG. 11. Real (left) and imaginary (right) parts of the renormalized matrix elements as a function of zP3. From top to bottom and in
rows of two we show the isoscalar and the isovector matrix elements for the unpolarized, helicity and transversity cases, respectively.
The points included in the Fourier transform of Eq. (11) are shown with open symbols. Each subfigure shows the momentum
dependence of the corresponding matrix element, where the blue circles correspond to P3 ¼ 0.41 GeV, the green squares to P3 ¼
0.83 GeV and the red triangles to P3 ¼ 1.24 GeV.
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advanced reconstruction technique based on Gaussian
process regression, which allows to obtain an improved
estimate of quasi-PDF for continuous values of x, starting
from a discrete set of data obtained with lattice QCD
computations. The chosen values of zmax for each quark
flavor and each operator are given in Table VIII. From
Fig. 12 it is clear that increase of the cutoff beyond the
reported values of Table VIII, does not affect the results for
the PDFs. We also find agreement between the discrete
Fourier transform and the results obtained using BGFT in
all cases, except for the large x region of the transversity
distributions, in which case we observe a somewhat
smoother decay to zero when using BGFT as compared
to DFT.

C. Isoscalar and isovector distributions

The isoscalar and isovector PDFs are extracted from the
corresponding renormalized matrix elements shown in

Fig. 11. For the isoscalar combination, we add both the
connected and disconnected contributions. We plot the
matrix elements against zP3, which is the argument of
the exponential in the Fourier transform.
In all cases, we find that the matrix elements for the

lowest momentum P3 ¼ 0.41 GeV do not decayed to zero
for large z, demonstrating, as expected, that the momentum
is not large enough. By increasing the momentum to
P3 ¼ 1.24 GeV, the matrix elements become consistent
with zero within their uncertainties. While the imaginary
parts show a residual momentum dependence, the con-
vergence must be checked at the level of the reconstructed
PDF. This is due to the fact that P3 enters the matching
kernel and affects the convergence. Therefore, to address
the momentum convergence as we increase P3, we show in
Fig. 13 the momentum dependence of the isoscalar and
isovector PDFs. We use the standard Fourier transform,
with the values of zmax given in Table VIII, as discussed in

TABLE VII. Momentum dependence of the unpolarized, helicity and transversity isovector (first column) and isoscalar (second
column) matrix elements at z ¼ 0.

P3 hu−dðz ¼ 0Þ huþdðz ¼ 0Þ Δhu−dðz ¼ 0Þ Δhuþdðz ¼ 0Þ δhu−dðz ¼ 0Þ δhuþdðz ¼ 0Þ
0.41 GeV 1.005(4) 3.046(4) 1.25(4) 0.52(5) 1.11(2) 0.67(2)
0.83 GeV 1.004(8) 3.053(8) 1.26(11) 0.45(9) 1.04(6) 0.69(5)
1.24 GeV 1.000(4) 3.026(5) 1.23(5) 0.52(5) 1.08(3) 0.69(3)

FIG. 12. Cutoff dependence (zmax) of the isoscalar (left) and isovector (right) unpolarized (upper panels), helicity (middle panels) and
transversity (bottom panels) at P3 ¼ 1.24 GeV. Results from BGFT are shown with a blue band. The distributions corresponding to the
value of the cutoff reported in Table VIII are reported in red.

FLAVOR DECOMPOSITION OF THE NUCLEON UNPOLARIZED, … PHYS. REV. D 104, 054503 (2021)

054503-19



Sec. VII B. As can be seen in Fig. 13, the overall
dependence on the two largest values of the momentum
is relatively small. Dependence on P3 is observed in the
unpolarized isoscalar PDF. In general, the PDFs for the
smallest momentum, do not show convergence, and exhibit
nonphysical oscillations due to the presence of systematic
effects in the reconstruction of the x-dependence. However,
such oscillations are suppressed for the higher values of P3.
The isoscalar and isovector helicity distributions have a
similar magnitude and exhibit milder dependence on the
boost as compared to the unpolarized. In particular, both
isoscalar and isovector helicity distributions are consistent
for P3 ¼ 0.83 GeV and P3 ¼ 1.24 GeV. Finally, the iso-
scalar and isovector transversity distributions also show
nice convergence with P3 for the two largest values. These
distributions will be used for the flavor decomposition

presented in Sec. VII D together with comparison of our
data with phenomenology.

D. Flavor decomposition and comparison with
phenomenology

1. Light quark distributions

Our results on the isoscalar and isovector distributions
presented in Sec. VII C allow us to extract the up and down
quark contributions for the unpolarized, helicity and trans-
versity distributions. The disconnected contributions are
taken into account in all cases. We stress that the com-
parison with phenomenology can only be qualitative for a
number of reasons: (i) We use an ensemble with larger than
physical pion mass. We know from previous studies that
there is a non-negligible pion mass dependence on the
PDFs; (ii) lattice systematics, such as cutoff effects, are not
taken into account; (iii) the renormalization ignores mixing
present in the case of the unpolarized and helicity singlet
PDFs; and (iv) errors are still sizable and may hide
systematics, such as convergence with the boost.
However, it is still interesting to compare with phenom-
enology keeping these caveats in mind. The results for the
unpolarized PDF at the largest momentum are compared
with data by NNPDF3.1 [115], while the helicity distri-
bution is compared with JAM17 [116] and NNPDFPOL1.1

TABLE VIII. Values of zmax=a used in the Fourier transform for
each type of distribution. Each triplet of numbers corresponds to
the cases for P3 ¼ 0.41, 0.83 and 1.24 GeV, respectively.

Isoscalar Isovector Strange

Unpolarized 15,14,12 15,13,10 15,12,12
Helicity 15,10,10 15,12,12 14,14,14
Transversity 15,11,10 15,11,11 14,12,12

FIG. 13. Results for the isoscalar (left) and isovector (right) unpolarized (first row), helicity (middle row) and transversity (bottom
row) PDFs for different values of P3. Each subfigure shows the momentum dependence of the corresponding distribution, where the
blue line corresponds to P3 ¼ 0.41 GeV, the green line to P3 ¼ 0.83 GeV, and the red one to P3 ¼ 1.24 GeV.
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[2]. Finally, the quark transversity distribution obtained in
this study is compared against the SIDIS data [117] and
SIDIS data constrained by the value of tensor charge gT
computed in lattice QCD [117]. For the antiquark region for
the NNPDF3.1 data, we include the crossing relations of
Eq. (14), such that we show the antiquark distributions in
the negative-x region.
The light-quark contributions to the unpolarized PDF

show good agreement with phenomenology in the region
0.2≲ x≲ 0.5. Also, in the region x≲ −0.2 both estimates
are compatible with zero. Note that lattice results for the
small-x region (jxj≲ 0.15) suffer from uncontrolled uncer-
tainties due to the reconstruction of the PDFs and the values
of the lattice spacing used. The case of the helicity
distributions is very interesting, as it has non-negligible
contribution from the disconnected diagram. Our results for
the up quark helicity show similar features as the NNPDF
data, but are have higher values. The down quark distri-
bution gives compatible results both with NNPDFPOL1.1
and JAM17 data for all x in the physical region ½−1; 1�. The
transversity distribution is the least known collinear PDF
and it is not well-constrained by SIDIS data. As a result,
global fits for the light quark δqðxÞ carry large relative error
of ≈50–100% [117]. A more precise phenomenological

estimate of the transversity PDFs can be obtained by
constraining the distributions with the value of the tensor
charge gT computed within lattice QCD [117]. A com-
parison with the latter, reveals a similar agreement as for the
helicity PDFs. We would like to stress that the overall
qualitative agreement is very promising, as this computa-
tion is done using simulations with heavier than physical
pions. In addition, we also include the BGFT results in
Fig. 14, since as mentioned in Sec. VII B we observe that
the results for the transversity distributions obtained with
BGFT slightly differ from the ones obtained with DFT in
the large-x region.

2. Strange quark distributions

The strange distributions presented here are computed
using the renormalized matrix elements shown in Fig. 8.
The values of zmax employed in the Fourier transform
defining the quasi-PDF are reported in Table VIII. The
criterion adopted to select zmax is to analyze the dependence
of the PDF as zmax is increased, as discussed in the previous
section. In Fig. 15 we show the unpolarized, helicity and
transversity PDFs. The antiquark distribution reported here
takes into account the crossing relations in Eq. (14),
showing the antiquark distributions in the negative x

FIG. 14. Up (left) and down (right) quark unpolarized (upper panels), helicity (middle panels) and transversity (bottom panels)
distributions at P3 ¼ 1.24 GeV (red band). We also show the NNPDF results [2,115,118] (blue band) and JAM17 [116] (orange band)
phenomenological results. For the transversity PDF we compare against the SIDIS data [117] (green band) and SIDIS data constrained
by the value of tensor charge gT computed in lattice QCD [117] (gray band). For the transversity distributions we also include the results
obtained with the BGFT technique (magenta).
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region. Although the unpolarized PDFs extracted from the
matrix element using the two largest momenta tend toward
the phenomenological result, there is still some residual
dependence, which points to the need to increase the
momentum boost to check the independence on P3. Due
to the simultaneous suppression of the real part of the
matrix elements and the enhancement of the imaginary part,
s̄ðxÞ becomes symmetrical with respect to x ¼ 0 as the
momentum boost increases. This symmetry feature is
exploited in the global fits. The results for the helicity
distribution are approximately symmetric in the quark and
antiquark regions, and are compatible with the results from
the NNPDFPOL1.1 [2] and with JAM17 global fits analysis
both of which have larger uncertainties. Our results, thus,
provide valuable input for phenomenological studies. In
fact, this is more evident for the strange transversity
distribution where experimental results are lacking. We
obtained results on the transversity PDF with small
uncertainties that show no residual momentum dependence
for the two largest momentum values.
Besides the individual sðxÞ and s̄ðxÞ distributions, there

is also an interest on the strange-quark asymmetry. This is
partly due to the fact that there is no symmetry to suggest
that the two distributions have to be the same. The strange
and anti-strange asymmetry has been discussed within
chiral effective theory [119,120], perturbative evolution
of QCD [121], and a physical model for parton momenta
[122]. Constraints on the sðxÞ − s̄ðxÞ asymmetry have also

been discussed in Ref. [123] using lattice results for the
strange form factor with predictions based on a baryon-
meson fluctuation model. Here, we study the asymmetry
using our data for P3 ¼ 0.41, 0.83, 1.24 GeV, and the
results are shown in Fig. 16. In contrast to the individual
sðxÞ and s̄ðxÞ distributions, here we find that there is no
momentum dependence in the strange-quark asymmetry.
We also note that the difference between sðxÞ and s̄ðxÞ is a

FIG. 15. Results on the strange unpolarized (top panel), helicity (center panel) and transversity (bottom panel) distributions for three
values of P3. We compare with the NNPDFPOL1.1 [2,118] (light blue) and JAM17 [116] (light purple) phenomenological data. Lattice
data for P3 ¼ 0.41, 0.83, 1.24 GeV are shown with green, red and dark blue bands, respectively.

FIG. 16. The strange-quark asymmetry for the unpolarized PDF
for three values of P3. We compare with NNPDF [118] (pink)
phenomenological data. Lattice data for P3 ¼ 0.41, 0.83,
1.24 GeV are shown with green, red and dark blue bands,
respectively.
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nonsinglet combination and, thus, does not mix with the
gluon PDFs. Focusing on the most accurate results at P3,
we find that the asymmetry vanishes at x≳ 0.2 and is small
but non negligible in the small-x region. This conclusion is,
at present stage, qualitative, and an investigation of
systematic effects is needed before drawing quantitative
conclusions. We observe that our conclusions are similar to
those of Ref. [123], that is, the sðxÞ − s̄ðxÞ asymmetry is
very small with its peak value less than 0.01.

E. Moments of nucleon PDFs

In this section, we calculate the moments hxni of the
three PDFs considering n ¼ 0;…; 3. The nth moment of
the unpolarized, helicity and transversity distributions are
defined as

hxniq¼
Z

1

0

xn½qðxÞþð−1Þnþ1q̄ðxÞ�dx¼
Z

1

−1
xnqðxÞdx;

hxniΔq¼
Z

1

0

xn½ΔqðxÞþð−1ÞnΔq̄ðxÞ�dx¼
Z

1

−1
xnΔqðxÞdx;

hxniδq¼
Z

1

0

xn½δqðxÞþð−1Þnþ1δq̄ðxÞ�dx¼
Z

1

−1
xnδqðxÞdx;

ð39Þ

where we employed the crossing relations of Eq. (14), to
write the moments as a function of the quark distributions
only. We compute the distributions on a grid of points in the
range x ∈ ½−1;−10−4� ∪ ½10−4; 1�. Simpson’s rule is
employed to evaluate the integrals that give the moments
from the lattice data.
In Table IX we report the results for the isovector,

isoscalar and flavor diagonal moments. We report the
statistical uncertainty only, since the moments are affected
by the same sources of systematic uncertainties as the
PDFs and their evaluation will be addressed in future
studies. The zeroth moments are compatible with the
nucleon charges reported in Table VI. This is a nontrivial
check, as the calculation of the charges follows a totally
different procedure and undergoes a Fourier transform and
matching.

VIII. CONCLUSIONS

In this work we present a study of the x-dependence of
proton collinear quark PDFs from lattice QCD considering
both connected and disconnected diagrams. These contri-
butions are necessary to determine the individual-flavor
contributions to PDFs. We present results for the up, down
and strange quark for the unpolarized, helicity and trans-
versity PDFs. This work extends our first calculation for the
flavor decomposition of the helicity PDFs [26]; here we
increase the statistics by about a factor of two, and include
results on the unpolarized and transversity PDFs.
The main goal of this work is to explore the feasibility of

the calculation of disconnected quark loops with nonlocal
operators. To this end, we provide the necessary details on
technical and theoretical aspects, as well as the examination
of some sources of systematic uncertainties. The calcu-
lation is carried out using one ensemble of Nf ¼ 2þ 1þ 1
twisted mass fermions simulated with quark mass value
that produces a pion mass of 260 MeV. Using a single
ensemble, we can address excited-states contamination,
reconstruction of the x dependence, and the convergence
with increasing the momentum boost in the final PDFs.
The matrix elements contain nonlocal operators with the

length of the Wilson line extending up to half the spatial
extend of the lattice. The proton states are boosted with
momentum using three values, namely P3 ¼ 0.41, 0.83,
1.24 GeV. Several values of the source-sink time separation
are considered. As we increase the boost we also increase
the source-sink time separation in order to investigate the
effect of excited states; we employ up to ts ¼ 1.13 fm for
the highest momentum (see Figs. 4–7). Both the isovector
and isoscalar flavor combinations are calculated, with the
latter receiving contributions from the connected and
disconnected diagrams. All matrix elements are renormal-
ized multiplicatively using the RI0 scheme and evolved to
the modified-MS scheme at a scale of 2 GeV (unpolarized
and helicity) or

ffiffiffi
2

p
GeV (transversity). The renormaliza-

tion is followed by the transform to the momentum space,
x, which produces the quasi-PDFs. We apply the standard
Fourier transform that is confirmed using the Bayes-Gauss-
Fourier transform, finding compatible results (see Fig. 12).

TABLE IX. Moments of the unpolarized, helicity and transversity PDFs. We refer to the zeroth moment hx0i as h1i.
PDF u − d uþ d u d s

Unpolarized hxqi 0.28(1) 0.75(2) 0.51(2) 0.234(9) 0.030(2)
hx2iq 0.118(5) 0.23(1) 0.176(8) 0.058(4) −0.00054ð46Þ

Helicity h1iΔq 1.26(6) 0.50(6) 0.88(5) −0.38ð3Þ −0.033ð3Þ
hxiΔq 0.49(2) 0.32(2) 0.40(2) −0.087ð9Þ −0.00029ð26Þ
hx2iΔq 0.127(9) 0.067(7) 0.097(7) −0.030ð4Þ −0.0019ð4Þ

Transversity h1iδq 1.06(4) 0.67(4) 0.86(3) −0.20ð2Þ −0.0015ð6Þ
hxiδq 0.49(2) 0.33(2) 0.41(2) −0.075ð7Þ −0.00038ð37Þ
hx2iδq 0.118(6) 0.086(5) 0.102(5) −0.016ð2Þ 0.00038(9)
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The quasi-PDFs are matched to the light-cone PDFs using
one-loop perturbation theory. The matching kernel contains
information on the renormalization scheme and scale for the
quasi-PDFs (modified-MS scheme at 2 or

ffiffiffi
2

p
GeV), which

are thenmatched to the light-cone PDFs in theMS scheme at
the same scale. In this proof-of-principle studyweneglect the
mixing with the gluon PDFs for the unpolarized and helicity
case. The extraction of the latter has its own challenges and
will be included in our future studies. To test the influence of
systematic uncertainties, we calculate the charges by inte-
grating the PDFs (Table VI), and compare with the values
obtained directly from the matrix elements (Table IX). We
find good consistence among the results.
We find that the light-quark disconnected contributions

have the most impact for the helicity PDF, while the
transversity disconnected contribution is very small.
Regardless, a clear nonzero signal is found in all cases.
The strange-quark PDFs are nonzero up to x ∼ 0.5, with the
unpolarized and helicity having a similar magnitude, and
the transversity being an order of magnitude smaller, as can
be seen in Fig. 15. These distributions are very challenging
to extract from experimental data due to the lack of
sensitivity to the strange-quark. In a qualitative comparison
of our results with phenomelogically extracted PDFs we
find: (i) our results on the unpolarized have a statistical
precision which is similar to the NNPDF data; (ii) the
helicity strange-quark PDF is significantly more accurate
than the JAM and NNPDF results and (iii) our results for
the strange-quark transversity PDF serve as a prediction.
There are a number of improvements that one can do to

quantify and eliminate systematic uncertainties. These
include, but not limited to, pion mass dependence, mixing
under matching with the gluon PDFs for the unpolarized
and helicity case, and address the inverse problem using,
e.g., Bayesian reconstruction methods. One can also
address finite-volume and discretization effects, which

require extracting the PDFs using multiple ensembles.
However, this work clearly demonstrates the great potential
in the extraction of the x-dependence of individual quark
PDFs from lattice QCD.
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