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In this work we discuss in detail the nonperturbative determination of the momentum dependence of the
form factors entering in semileptonic decays using unitarity and analyticity constraints. The method contains
several new elements with respect to previous proposals and allows to extract, using suitable two-point
functions computed nonperturbatively, the form factors at low momentum transfer q2 from those computed
explicitly on the lattice at large q2, without any assumption about their q2-dependence. The approach will be
very useful for exclusive semileptonic B-meson decays, where the direct calculation of the form factors at low
q2 is particularly difficult due to large statistical fluctuations and discretization effects. As a testing ground we
apply our approach to the semileptonic D → Klνl decay, where we can compare the results of the unitarity
approach to the explicit direct lattice calculation of the form factors in the full q2-range. We show that the
method is very effective and that it allows to compute the form factors with rather good precision.
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I. INTRODUCTION

In this work we present an extended study of two- and
three-point lattice correlation functions which are used,
together with dispersive techniques [1–9], to constrain the
lattice predictions for the form factors (FFs) relevant to
exclusive semileptonic decays. The form factors are then
obtained in a substantially nonperturbative way and without
any specific assumption on their momentum dependence.
To achieve this goal a complex strategy and several
improvements with respect to the original proposal of
Ref. [10] are introduced and applied to several calculations.
This strategy will be described in detail in the following.
The measurement of the weak charged-current b → c

and b → u transitions, more specifically the semileptonic
B → Dð�Þlνl decays, received an increasing attention in
the recent past. The first reason is the precise determination
of two of the fundamental parameters of the Standard
Model, namely the Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements jVcbj and jVubj [11]. The second reason is
the apparent tension between inclusive [12,13] and exclu-
sive determinations of jVcbj, which may be related to other
lepton anomalies which have been observed experimen-
tally; see for example [14] and references therein. Among
the others let us mention the deviations from lepton-flavor
universality (LFU) in the measurements of RDð�Þ [15],
the ratios of the branching fractions B → Dð�Þτν over
B → Dð�Þlν, l ¼ e, μ, made by Belle, BABAR and
LHCb [16–24]. These deviations may be interpreted as a
hint of the presence of New Physics (NP) [25–34].
Anomalous values of the ratios of the branching fractions
BRðB → Kð�Þμþμ−Þ to BRðB → Kð�Þeþe−Þ have also been
interpreted as further signals of a possible violation of LFU;
see [35] and references therein. The tension between
inclusive and exclusive determinations of jVubj is even
larger and without a satisfactory explanation so far
[14,36,37]. From the experimental point of view new data
and a better understanding of the experimental systematics
could still change the present scenario.
An improvement of the theory, mainly if not uniquely,

for exclusive decays is expected from progress in lattice
QCD calculations of the relevant form factors. Indeed, most
of the reliable information about the form factors relevant
in semileptonic B decays is given by first principles
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calculations made in lattice QCD. One is however limited
by the cutoff effects induced by the presence of a quark as
heavy as the b-quark in calculations done at a finite lattice
spacing a. Actually, most of the numerical simulations with
heavy quarks are performed at a larger than about 0.05 fm,
so that for the physical b-quark mass we have mba ≳ 1 and
an extrapolation inmb from unphysical values is necessary.
In this context discretization errors affect the value of the
form factors at zero recoil and make it difficult to study the
momentum dependence of the form factors at large recoil,
namely at small q2, where q ¼ pB − pDð�Þ is the lepton pair
momentum in the decay.1 For this reason, for example,
results for the B → D form factors from lattice QCD
[38,39], together with their uncertainties and correlations,
are only available in the range 9.3GeV2≲q2≲11.7GeV2,
much smaller than the physical range, 0≲q2≲11.7GeV2.
More recently the first, preliminary results for the momen-
tum-dependence of the form factors in B → D�lν decays
appeared, but the kinematical region is always restricted
at small recoil and not all the form factors are determined
with good accuracy [40,41]. There exist also calculations of

the form factors relevant for Bs → Dð�Þ
s decays, as well as

recent updates of these quantities [42–44].
In order to supply the lack of information from explicit

calculations of the form factors in the full kinematical
range, both the experimental analyses (in order to account
for efficiencies and response functions) and the theoretical
studies have to assume some parametrization of the form
factors. It is well possible then that the extraction of jVcbj
from experiments is biased by the theoretical model
adopted in the fits of the data. In the years most of the
analyses used two popular parametrizations called Boyd-
Grinstein-Lebed (BGL) [4–6] or Caprini-Lellouch-Neubert
(CLN) [7,8] after the name of the authors.
An important step in constraining in a model indepen-

dent way the q2-dependence of the semileptonic FFs,
extracted on the lattice, along the full kinematical range
was proposed by L. Lellouch in a pioneering work [10].
This proposal uses the dispersive techniques mentioned
before [4–6], see also the original proposal in Refs. [1–3,9],
applied to lattice data and introduces a formalism to take
into account the errors of the lattice results. In spite of the
use of the form factors derived from first principles in
lattice QCD, the proposal of Ref. [10] relies, for the
unitarity constraints, on the perturbative calculation of
the two-point current correlation functions. To our knowl-
edge, in spite of the large use of the dispersive techniques
discussed above, no one has systematically used the lattice
two-point correlators computed nonperturbatively in
numerical simulations to constraint the FFs in semileptonic
decays, not even in the original work [10].

In this work we present an extended study of the two-
and three-point lattice correlation functions which are used,
together with the dispersive techniques, to constrain the
lattice predictions for the form factors. This approach will
require a detailed understanding of dispersion relations
on the lattice, the combination of perturbative and non-
perturbative calculations, the renormalization of lattice
T-products, the control of lattice artefacts and the peculiar
treatment of the statistical errors to be discussed in the
following. At the end we will be able to constrain FFs in a
substantially nonperturbative way.
With respect to the proposal by L. Lellouch [10] and

other previous studies, the main novelties in this work are
as follows:
(1) The nonperturbative determination of the relevant

two-point current correlation functions on the lattice
which are then used to implement the dispersive
bounds;

(2) The possibility of implementing the constraints from
the two-point correlation function computed non-
perturbatively also in regions where the perturbative
calculations used in previous analyses are nonreli-
able and could not be used;

(3) The reduction of lattice artefacts in the two-point
correlation functions using fixed-order perturbation
theory on the lattice and in the continuum;

(4) A quite simpler treatment of the lattice uncertainties
with respect to the method proposed in Ref. [10];

(5) A new approach to a realistic estimate of the
systematic errors present at small values of q2,
namely at large momenta of the final meson, both
at finite lattice spacing and in the continuum limit,
based on the results of Refs. [45,46].

We stress an important feature of the method that will be
presented in this work. Consider a set of lattice data for a
form factor evaluated at a series of values q2j of the squared
4-momentum transfer (j ¼ 1;…; N). The data are distrib-
uted according to a multivariate distribution with given
uncertainties and correlations. The (nonperturbative) uni-
tarity bounds act as a filter by selecting only those
combinations of the data that satisfy unitarity and analy-
ticity. Since the two-point correlation functions provide an
extra information, in general a new multivariate distribution
is obtained, which may even correspond to a more precise
(and differently correlated) dataset. Using the new distri-
bution the method of Ref. [10] reproduces exactly each
of the data point when q2 → q2j . It behaves like a fitting
procedure passing exactly for the given dataset. This is at
variance with what may happen adopting the BGL or CLN
parametrizations. Indeed, in these cases there is no guar-
antee that the parameterization reproduces exactly the
dataset and, therefore, the impact of the unitarity filter
may be different.
We have applied the method described in this work to the

analysis of the lattice data of the semileptonic D → Klνl

1In some cases the dependence of the form factors on q2 in the
whole allowed kinematical region is supplemented by using also
the results of QCD sum rules calculations at small q2.
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decays obtained in Ref. [47]. We use this process as a
training ground for the dispersive approach to show that
starting from a limited set of data at large q2 it is possible to
determine quite precisely the form factors in a model
independent way in the full kinematical range, obtaining
a remarkable agreement with the direct calculations
from Ref. [47]. This finding opens the possibility to obtain
nonperturbatively the form factors entering the semilep-
tonic B decays in their full kinematical range. The
extension of the nonperturbative dispersive approach
described here to B decays requires a remarkable effort
in the reduction of discretization effects due to the large
masses and momenta involved and it will be the subject of a
forthcoming publication.
The plan of the paper is as follows. The definition of the

relevant FFs entering in semileptonic decays is introduced
in Sec. II, where we also give their expressions in the Heavy
Quark Effective Theory (HQET) [8]. The definition of the
hadronic tensors from the two-point Green functions of
suitable bilinear currents and their expression in terms of
the form factors is given in Sec. III, where we also recall the
dispersive bounds that can be extracted from these two-
point Green functions. The material in Secs. II and III can
be found in several papers. It is, however, useful to have it
collected before its use in the present analysis. In particular,
we recall the basic features of the dispersive matrix
approach of Ref. [10] and in the Appendix A we also
provide new analytical expressions for the numerical
evaluation of the unitarity bands of the form factors. The
Euclidean lattice correlation functions corresponding to the
Minkowskian Green functions that we used in our numeri-
cal simulation are presented in Sec. IV. In Sec. V we discuss
the treatment of the statistical and systematic errors with the
dispersive bounds and in the presence of kinematical
constraints among different form factors. This Section will

give us the opportunity of discussing briefly the treatment of
the statistical and systematic errors using the Bayesian
approach of Refs. [45,46], which is different from the
treatment of the errors suggested in the original proposal
by L. Lellouch in Ref. [10]. In Sec. VI we give the results of
the calculation of the two-point correlation functions in
perturbation theory both in the continuum and on the lattice,
while in Sec. VII the two-point correlation functions are
evaluated making use of the gauge ensembles produced by
the Extended Twisted Mass Collaboration (ETMC) with
Nf¼2þ1þ1 dynamical quarks [48,49] (see Appendix B).
The perturbative calculations are used to reduce discretiza-
tion errors and to improve the extrapolation of the numerical
nonperturbative results to the continuum limit. In Sec. VIII
the dispersive matrix approach is applied to theD → K form
factors obtained in Ref. [47] both in the continuum limit and
at finite lattice spacing (using the same gauge ensembles
adopted for the evaluation of the two-point correlation
functions). Finally, Sec. IX contains our conclusion and
outlooks for future developments.

II. FORM FACTORS IN SEMILEPTONIC DECAYS

In this Section we introduce the relevant FFs for semi-
leptonic decays and convert them in the form used in the
HQET, which is particularly suitable for the expansion in
inverse powers of the heavy quark mass. For definiteness,
since this is our final goal, the formulas will refer to B → D
and B → D� decays. With trivial modifications, the same
formalism can be applied to D → K and D → K� semi-
leptonic decays, which is the case study for which we
present a complete numerical analysis here, as well as also
to K → π and other semileptonic decays.
We use the following form factor classification:
(i) vector current matrix elements

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p hDðpDÞjVμjB̄ðpBÞi ¼ fþðpB þ pDÞμ þ f−ðpB − pDÞμ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p hD�ðpD; ϵDÞjVμjB̄ðpBÞi ¼ ifVϵμναβϵ�DνpDαpBβ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB�mD

p hDðpDÞjVμjB̄�ðpB; ϵBÞi ¼ ifV̄ϵ
μναβϵBνpDαpBβ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mB�mD�
p hD�ðpD; ϵDÞjVμjB̄�ðpB; ϵBÞi ¼ −½f1ðpB þ pDÞμ þ f2ðpB − pDÞμ�ðϵ�D · ϵBÞ ×þf3ðϵ�D · pBÞϵμB þ f4ðϵB · pDÞϵ�μD

− ½f5pμ
B þ f6p

μ
D�ðϵ�D · pBÞðϵB · pDÞ; ð1Þ

(ii) axial current matrix elements

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p hD�ðpD; ϵDÞjAμjB̄ðpBÞi ¼ fA1
ϵ�μD − ½fA2

pμ
B þ fA3

pμ
D�ðϵ�D · pBÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mB�mD
p hDðpDÞjAμjB̄�ðpB; ϵBÞi ¼ fĀ1

ϵμB − ½fĀ2
pμ
B þ fĀ3

pμ
D�ðϵB · pDÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mB�mD�
p hD�ðpD; ϵDÞjAμjB̄�ðpB; ϵBÞi ¼ iϵμναβf½f7ðpB þ pDÞν þ f8ðpB − pDÞν�ϵBαϵ�Dβ þ ½f9ðϵ�D · pBÞϵBν

þ f10ðϵB · pDÞϵ�Dν�pDαpBβg; ð2Þ
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where the weak currents are given by

Vμ ¼ c̄γμb; Aμ ¼ c̄γμγ5b; ð3Þ
fi ¼ fiðq2Þ is the generic hadronic FF that depends only on
the squared 4-momentum transfer q2 ¼ ðpBð�Þ − pDð�Þ Þ2,
which is the only nontrivial Lorentz-invariant quantity,
and ϵDðBÞ is a polarization 4-vector. Although the initial
state is always a B̄ð�Þ meson containing a b quark, rather
than a Bð�Þ meson, to simplify the notation in the following
we will omit the bar. The normalization of the states differs
from the Feynman one by a factor equal to the square root
of the meson mass, jpMiFeynman ¼

ffiffiffiffiffiffiffiffi
MM

p jpMi, because this
is more convenient in the framework of the HQET.
One can define the recoil variable w, given by the

scalar product of the meson four-velocities, namely w ¼
vBð�Þ · vDð�Þ , related to squared 4-momentum transfer q2 by

w ¼ m2
Bð�Þ þm2

Dð�Þ − q2

2mBð�ÞmDð�Þ
; ð4Þ

and a new dimensionless variable r≡mDð�Þ=mBð�Þ . In
Ref. [8] Caprini, Lellouch and Neubert introduced the
quantities hi, which are linear combinations of the FFs fi
previously defined, expressed as functions of the recoil
variable w rather than of q2 (the index i labels a generic
form factor). The hi describe the decompositions (1)–(2)
in terms of the meson 4-velocities instead of the meson
4-momenta, according to the following classification:

(i) scalar FFs

SBD1 ¼ hþ −
1þ r
1 − r

w − 1

wþ 1
h−;

SB
�D�

2 ¼ h1 −
1þ r
1 − r

w − 1

wþ 1
h2;

SB
�D�

3 ¼ w

�
h1 −

1þ r
1 − r

w − 1

wþ 1
h2

�
þ w − 1

1 − r
½rh3 − h4

þ ð1 − wrÞh5 þ ðw − rÞh6�; ð5Þ
(ii) vector FFs

VBD
1 ¼ hþ −

1 − r
1þ r

h−;

VB�D�
2 ¼ h1 −

1 − r
1þ r

h2;

VB�D�
3 ¼ w

�
h1 −

1 − r
1þ r

h2

�
þ 1

1þ r
½ð1 − wrÞh3

þ ðr − wÞh4 þ ðw2 − 1Þðrh5 þ h6Þ�
VBD�
4 ¼ hV ;

VB�D
5 ¼ hV̄ ;

VB�D�
6 ¼ h3; ;

VB�D�
7 ¼ h4; ð6Þ

(iii) pseudoscalar FFs

PBD�
1 ¼ 1

1þ r
½ðwþ 1ÞhA1

− ð1 − rwÞhA2

− ðw − rÞhA3
�;

PB�D
2 ¼ 1

1þ r
½rðwþ 1ÞhĀ1

− ðr − wÞhĀ2

− ðrw − 1ÞhĀ3
�;

PB�D�
3 ¼ h7 −

1 − r
1þ r

h8; ð7Þ

(iv) axial FFs

ABD�
1 ¼ hA1

;

AB�D
2 ¼ hĀ1

;

AB�D�
3 ¼ h7 −

w− 1

wþ 1
h8 þ ðw− 1Þh10;

AB�D�
4 ¼ h7 þ

w− 1

wþ 1
h8 þ ðw− 1Þh9;

ABD�
5 ¼ 1

1− r
½ðw− rÞhA1

− ðw− 1ÞðrhA2
þ hA3

Þ�;

AB�D
6 ¼ 1

1− r
½ð1−wrÞhĀ1

þ ðw− 1ÞðhĀ2
þ rhĀ3

Þ�;

AB�D�
7 ¼ h7 −

1þ r
1− r

w− 1

wþ 1
h8: ð8Þ

The last classification of the FFs allows to separate
different values of spin and parity quantum numbers from
each other. For simplicity, all scalar, pseudoscalar, vector
and axial quantities have been presented indicating initial
and final states as superscripts, so that we can easily
remember to which process each form factor refers to.

III. TWO-POINT CORRELATION FUNCTIONS

The bounds on the different FFs are derived from the
two-point functions of suitable currents. The starting point
is the Fourier transform of the T-product of two hadronic
currents, which generalizes the definition of the hadronic
vacuum polarization (HVP) tensor. Assuming x0 > 0 we
haveZ

d4xeiq·xh0jTfJμ†ðxÞJνð0Þgj0i

¼
Z

d4xeiq·x
X
n

h0jJμ†ðxÞjnihnjJνð0Þj0i

¼
X
n

Z
d4xeiq·xe−ipn·xh0jJμ†ð0ÞjnihnjJνð0Þj0i

¼
X
n

ð2πÞ4δð4Þðq − pnÞh0jJμ†ð0ÞjnihnjJνð0Þj0i; ð9Þ
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where q is the current 4-momentum transfer and pn the
4-momentum of the intermediate n-particle state. A similar
result can be derived for the case x0 < 0. The completeness
sum runs over all possible intermediate hadronic states and
in particular we will focus our attention onto either a single-

particle Bð�Þ
c -meson state or two-particle states composed

by a Bð�Þ-meson and a Dð�Þ-meson. Note that pseudoscalar
(scalar) particles will be characterized only by their four-
momentum pμ while the vector (axial) mesons will be
distinguished also by their polarization four-vector ϵμ. The
link between the two-particle states appearing in the
completeness sum (9) and the classification of the FFs
introduced in Eqs. (1) and (2) is given by the substitution

hDð�ÞjJμjBð�Þi → hBð�ÞDð�ÞjJμj0i; ð10Þ

which can be simply realized by inverting the sign of pDð�Þ

and by analytic continuation of the FFs in q2 from m2
l ≤

q2 ≤ ðmBð�Þ −mDð�Þ Þ2 to ðmBð�Þ þmDð�Þ Þ2 ≤ q2 ≤ ∞. Thus,
the amplitudes entering in semileptonic decays are strongly
correlated to the T-product in Eq. (9), which is the reason
why the latter is so important to constrain the form factors.
The Fourier transform of the T-product defines the

following HVP tensors:

Πμν
V ðqÞ ¼ i

Z
d4xeiq·xh0jTfVμ†ðxÞVνð0Þgj0i

¼ ðqμqν − gμνq2ÞΠ1−ðq2Þ þ qμqνΠ0þðq2Þ; ð11Þ

Πμν
A ðqÞ ¼ i

Z
d4xeiq·xh0jTfAμ†ðxÞAνð0Þgj0i

¼ ðqμqν − gμνq2ÞΠ1þðq2Þ þ qμqνΠ0−ðq2Þ; ð12Þ

where Vμ, Aμ are defined in Eq. (3) and the subscripts
0�,1� represent spin-parity quantum numbers of the
intermediate states. Note that inserting a completeness

sum between the vector or axial four-currents we are able
to relate these expressions to Eq. (9).
The quantities Π0� , Π1∓ are called polarization func-

tions. In particular, the term proportional to Π0þ (Π0− )
represents the longitudinal part of the HVP tensor with
vector (axial) four-currents, while the term proportional to
Π1− (Π1þ) is the transverse contribution to the HVP tensor
with vector (axial) four-currents.

A. Dispersion relations and analytic expressions
for exclusive B decays

The imaginary parts of the longitudinal and transverse
polarization functions introduced in Eqs. (12) are related
to their derivatives with respect to q2 by the dispersion
relations

χ0þðq2Þ≡ ∂
∂q2 ½q

2Π0þðq2Þ� ¼
1

π

Z
∞

0

dz
zImΠ0þðzÞ
ðz − q2Þ2 ;

χ0−ðq2Þ≡ ∂
∂q2 ½q

2Π0−ðq2Þ� ¼
1

π

Z
∞

0

dz
zImΠ0−ðzÞ
ðz − q2Þ2 ;

χ1−ðq2Þ≡ 1

2

� ∂
∂q2

�
2

½q2Π1−ðq2Þ� ¼
1

π

Z
∞

0

dz
zImΠ1−ðzÞ
ðz − q2Þ3 ;

χ1þðq2Þ≡ 1

2

� ∂
∂q2

�
2

½q2Π1þðq2Þ� ¼
1

π

Z
∞

0

dz
zImΠ1þðzÞ
ðz − q2Þ3 :

ð13Þ

In what follows we will denote by χ a generic suscep-
tibility. From a dimensional point of view note that the
longitudinal (scalar/pseudoscalar) susceptibilities χ0� are
dimensionless, while the transverse (vector/axial) ones
have dimension ½E�−2, where E is an energy.
The two-particle contribution to the polarization func-

tions can be expressed in terms of the FFs defined in the
previous Section:

(i) scalar channel

q2ImΠ0þ;2p½wðq2Þ� ¼
mBð�ÞmDð�Þ

8π

X3
i¼1

ð1þ δi2Þ
ðw2 − 1Þ1=2ðwþ 1Þ

4

2 ðβ2i − 1ÞjSij2
ðβ2i − wþ1

2
Þ2 ; ð14Þ

(ii) vector channel

q2ImΠ1−;2p½wðq2Þ� ¼
mBð�ÞmDð�Þ

96π

�X3
i¼1

ð1þ δi2Þðw2 − 1Þ3=2 β2i jVij2
ðβ2i − wþ1

2
Þ2 þ

X7
i¼4

ðw2 − 1Þ3=2 2jVij2
ðβ2i − wþ1

2
Þ
�
; ð15Þ

(iii) pseudoscalar channel

q2ImΠ0−;2p½wðq2Þ� ¼
mBð�ÞmDð�Þ

32π

X3
i¼1

ð1þ δi3Þðw2 − 1Þ3=2 β2i jPij2
ðβ2i − wþ1

2
Þ2 ; ð16Þ
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(iv) axial channel

q2ImΠ1þ;2p½wðq2Þ� ¼
mBð�ÞmDð�Þ

24π

�X4
i¼1

ðw2 − 1Þ1=2ðwþ 1Þ
4

2 2jAij2
ðβ2i − wþ1

2
Þ

þ
X7
i¼5

ðw2 − 1Þ1=2ðwþ 1Þ
4

2

ð1þ δi7Þ
ðβ2i − 1ÞjAij2
ðβ2i − wþ1

2
Þ2

�
; ð17Þ

where wðq2Þ is given by Eq. (4) and the quantity βi is
defined as

βi ¼
mBð�Þ þmDð�Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBð�ÞmDð�Þ

p : ð18Þ

Note that the above expressions hold for a single two-
particle Bð�Þ −Dð�Þ intermediate state. If there are several,
essentially degenerate, such states, differing for example by
the replacement of an up with a down quark (such as B− −
D̄0 with B0 −D−), then we have to sum up their con-
tributions to ImΠJP;2p.
We will also need the expression for the one-particle

contribution of mesons to the imaginary part of the
polarization functions. In the case of the vector B�

c and
of the pseudoscalar Bc mesons the one-particle current
matrix elements are defined as

h0jAμjBci ¼ fBc
pμ
Bc
;

h0jVμjB�
c; λi ¼ fB�

c
MB�

c
ϵμλðpB�

c
Þ ðλ ¼ 1; 2; 3Þ; ð19Þ

with f
Bð�Þ
c

being the decay constants of the aforementioned

mesons,M
Bð�Þ
c
their masses, λ the B�

c polarization and ϵλ the

corresponding polarization vector. The one-particle con-
tributions to the polarization functions are then given by

q2ImΠ0−;1pðq2Þ ¼ πδðq2 −M2
Bc
Þf2Bc

M2
Bc
;

q2ImΠ1−;1pðq2Þ ¼ πδðq2 −M2
B�
c
Þf2B�

c
M2

B�
c
: ð20Þ

These one-particle contributions can be opportunely
subtracted from the corresponding susceptibilities through
the dispersion relations. Thus, we can define

χ0−ðq2Þjsub ≡ χ0−ðq2Þ −
XN
n

f2Bc;n
M2

Bc;n

ðM2
Bc;n

− q2Þ2 ;

χ1−ðq2Þjsub ≡ χ1−ðq2Þ −
XM
m

f2B�
c;m

M2
B�
c;m

ðM2
B�
c;m

− q2Þ3 ; ð21Þ

where in general we can consider N pseudoscalar and M
vector poles (see, e.g., Ref. [50] for reference values of
the masses and the decay constants of such poles). The
generalization to possible one-particle states below the

annihilation threshold in the scalar and axial-vector chan-
nels is straightforward.

B. Dispersive bounds

First of all, we will describe the general ideas behind
the dispersive method of Refs. [1]−[9] thanks to which
one can obtain bounds for a generic form factor fðq2Þ.
We define

t� ¼ ðmB �mDð�Þ Þ2 ð22Þ

and we use the analytic continuation of the amplitudes from
the kinematical decay region, where m2

l ≤ q2 ≤ t−, to the
single-meson or pair production region, where m2

Bc
≤ q2 or

tþ ≤ q2. By means of the dispersion relations we can use
the two-point correlation functions computed in QCD to
obtain the constraints on fðq2Þ and then use analyticity to
translate these constraints into the physical FFs relevant
to semileptonic decays.
The dispersion relations that we will consider in this

work have already been introduced in Eqs. (13). We also
recall that the derivatives of the various polarization
functions can be determined in perturbative QCD only
for values of q2 that are far from the region of production of
resonance states, namely

ðmb þmcÞΛQCD ≪ ðmb þmcÞ2 − q2; ð23Þ

where mb ∼ 4.2 GeV and mc ∼ 1.3 GeV are approximate
values of the bottom and charm quark masses, respectively.
A possible choice is thus also the value q2 ¼ 0, which
has been widely used in the past, particularly in all the
calculations that used the perturbative expression of the
susceptibilities χðq2Þ. On the contrary, with a nonpertur-
bative determination of the two-point correlation functions
we can use the most convenient value of q2 at disposal,
namely the value which will allow the most stringent
bounds on the form factors.
By inserting a complete set of states with the same

quantum numbers of a generic current J we have2

2For simplicity we omit Lorentz indices and other complica-
tions that are immaterial for the present discussion.
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ImΠ0�;1∓ ¼ 1

2

X
n

Z
dμðnÞð2πÞ4δð4Þðq − pnÞjh0jJjnij2;

ð24Þ

where dμðnÞ is the measure of the phase space for the set of
states n. As the completeness sum is semipositive definite,
we can restrict our attention to a subset of hadronic states
and thus produce a strict inequality. This consideration
allows us to rewrite the dispersion relations for χðq2Þ as

1

πχðq2Þ
Z

∞

tþ
dt

WðtÞjfðtÞj2
ðt − q2Þ3 ≤ 1; ð25Þ

where fðtÞ is the generic form factor and WðtÞ is a
computable function that depends on the particular form
factor under consideration and is related to phase space
factors. These have been given explicitly in Eqs. (14)–(17)
for all the possible bilinears.
We can now use analyticity to turn the result (25) into a

constraint for the semileptonic region. To achieve this goal,
it is necessary that the integrand is analytic below the pair-
production threshold t < tþ. To this end we define

zðt; tsÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − ts

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − ts

p ; ð26Þ

which is real for ts < tþ, zero for t ¼ ts and a complex
number on the unitary circle for t ≥ tþ. We can remove the
poles of the integrand of Eq. (25) by multiplying it by
appropriate powers of the zðt; tsÞ s, as determined by the
positions ts of the subthreshold poles. Each pole has a
distinct value of ts, and the product zðt; ts1Þk1zðt; ts2Þk2…
removes all of them. Hence, we reexpress Eq. (25) as

1

π

Z
∞

tþ
dt

���� dzðt; t0Þdt

���� × jΦ̃ðt; t0ÞPðtÞfðtÞj2 ≤ 1; ð27Þ

where t0 is an arbitrary point that we will define below and
we have introduced the Blaschke factor PðtÞ. The latter is a
product of many quantities of the form (26) at the position
of the subthreshold poles (i.e., ts ≤ tþ), and the outer
function Φ̃ðt; t0Þ, which is defined for the vector/axial
channel as

Φ̃ðt; t0Þ ¼ P̃ðtÞ
�

WðtÞ
jdzðt; t0Þ=dtjχ1�ðq2Þðt − q2Þ3

�
1=2

: ð28Þ

In the last expression P̃ðtÞ represents a product of the
zðt; tsÞ’s and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
zðt; tsÞ

p
’s that remove the subthreshold

singularities and cuts in the kinematical part WðtÞ.
Regarding the choice of t0 in Eq. (27), there are several
possibilities which may be more or less convenient depend-
ing on the quantity at hand. We have followed the common
lore and, in the remaining of the paper, we used t0 ¼ t−,

so that the allowed kinematic interval ½0; t−� corresponds to
the range ½zmax; 0�. The physical values of zmax for different
semileptonic decays are given in Table I. In a lattice
calculation zmax will depend on the values of the initial
and final meson masses at which the simulations are
performed.
A way to account for the bounds imposed by the

susceptibilities on the form factors is provided by the
two popular parametrizations BGL [4–6] or CLN [7,8].
Coming back to Eq. (27), the quantity Φ̃ðt; t0ÞPðtÞfðtÞ can
be expanded in a set of orthonormal functions, proportional
to powers of zðt; t0Þ. The consequence of this strategy is
that the form factor fðtÞ in the semileptonic region can be
expressed as

fðtÞ ¼ 1

PðtÞΦ̃ðt; t0Þ
X∞
n¼0

anzðt; t0Þn; ð29Þ

where, because of Eq. (27), the coefficients an have to
satisfy the unitarity condition

X∞
n¼0

janj2 ≤ 1: ð30Þ

In the case of B → Dð�Þ decays, since zmax < 0.07, the
series present in Eq. (29) are usually truncated after the first
two or three terms, introducing only small uncertainties in
the theoretical predictions.
In this work we do not adopt the BGL or CLN approach,

since there is another alternative formulation [10], which
is very convenient for translating the information given by
the susceptibility χðq2Þ into a bound on the form factors.
Indeed, we make the transformation

1þ z
1 − z

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t
tþ − t−

r
; ð31Þ

or

z ¼
ffiffiffiffiffiffiffiffiffi
tþ−t
tþ−t−

q
− 1ffiffiffiffiffiffiffiffiffi

tþ−t
tþ−t−

q
þ 1

; ð32Þ

which corresponds to z ¼ zðt; t−Þ. For values of t in the
range relevant for semileptonic decays (i.e., ½0; t−�) we map
the complex t-plane into the unit disc in the variable z,
whereas the integral around the cut in Eq. (27) becomes an

TABLE I. Maximum values of the conformal variable z ¼
zðt; t−Þ for various decay processes.

D → π D → K B → D B → D�

zmax 0.33 0.10 0.065 0.056
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integral around the unit circle. Then, a generic integral of
the form given in Eq. (25) can be written as an integral
over z [9,10]

1

2πi

Z
jzj¼1

dz
z
jϕðz; q2ÞfðzÞj2 ≤ χðq2Þ; ð33Þ

where the kinematical functions ϕðz; q2Þ for the different
form factors entering B → Dð�Þ decays will be specified in
Eq. (40) below. At this point, by introducing an inner
product defined as

hgjhi ¼ 1

2πi

Z
jzj¼1

dz
z
ḡðzÞhðzÞ; ð34Þ

where ḡðzÞ is the complex conjugate of the function gðzÞ,
the inequality (33) can simply be written as

0 ≤ hϕfjϕfi ≤ χðq2Þ; ð35Þ

where we have also used the positivity of the inner product.

C. Extending the method of the dispersive bounds

Following Refs. [9,10], we define the function gtðzÞ as

gtðzÞ≡ 1

1 − z̄ðtÞz ; ð36Þ

where z̄ðtÞ is the complex conjugate of the variable zðtÞ
defined in Eq. (32) and z is the integration variable of
Eq. (34). It is then straightforward to show that

hgtjϕfi ¼ ϕðzðtÞ; q2ÞfðzðtÞÞ;

hgtm jgtli ¼
1

1 − zðtlÞz̄ðtmÞ
: ð37Þ

Let us introduce the matrix

M ¼

0
BBBBBBBB@

hϕfjϕfi hϕfjgti hϕfjgt1i � � � hϕfjgtni
hgtjϕfi hgtjgti hgtjgt1i � � � hgtjgtni
hgt1 jϕfi hgt1 jgti hgt1 jgt1i � � � hgt1 jgtni

..

. ..
. ..

. ..
. ..

.

hgtn jϕfi hgtn jgti hgtn jgt1i � � � hgtn jgtni

1
CCCCCCCCA
:

ð38Þ

In a numerical simulations of lattice QCD the values
t1;…; tn will correspond to the squared 4-momenta at
which the FFs have been computed nonperturbatively and
that will be used as inputs for constraining the FF in regions
nonaccessible to the calculation.
Note that the first matrix element in (38) is the quantity

directly related to the susceptibility χðq2Þ through the

dispersion relations, see Eq. (35). To be more specific,
in the case of B → D decays, in terms of the longitudinal
and transverse susceptibilities χ0þðq2Þ and χ1−ðq2Þ we
have that:

hϕ0f0jϕ0f0i ≤ χ0þðq2Þ;
hϕþfþjϕþfþi ≤ χ1−ðq2Þ; ð39Þ

where ϕ0;þ are kinematical functions

ϕ0ðz; q2Þ ¼
ffiffiffiffiffiffiffi
2nI
3

r ffiffiffiffiffiffiffiffiffiffiffi
3tþt−
4π

r
1

tþ − t−

1þ z

ð1 − zÞ5=2

×

�
ρð0Þ þ 1þ z

1 − z

�
−2
�
ρðq2Þ þ 1þ z

1 − z

�
−2
;

ϕþðz; q2Þ ¼
ffiffiffiffiffiffiffi
2nI
3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

πðtþ − t−Þ

s
ð1þ zÞ2
ð1 − zÞ9=2

×

�
ρð0Þ þ 1þ z

1 − z

�
−2
�
ρðq2Þ þ 1þ z

1 − z

�
−3
;

ð40Þ

where nI is an isospin Clebsch-Gordan factor and

ρðq2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

tþ − t−

s
: ð41Þ

When analyticity does not hold, i.e., when a form factor
has, for instance, N poles at t ¼ tP1; tP2; � � �…; tPN , it is
sufficient to modify the kinematical function ϕ according to

ϕðz; q2Þ → ϕPðz; q2Þ

≡ ϕðz; q2Þ × z − zðtP1Þ
1 − z̄ðtP1Þz

× � � � × z − zðtPNÞ
1 − z̄ðtPNÞz

; ð42Þ

and the previous definitions will continue to be valid.
The positivity of the inner products (37) guarantees that

the determinant of the matrix (38) is positive semidefinite,
namely

detM ≥ 0: ð43Þ

This condition can be rephrased in the second order
inequality

αhgtjϕfi2 þ 2βhgtjϕfi ≤ γ; ð44Þ

with
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α≡ detMfð1;1Þ;ð2;2Þg;

β≡Xn
i¼1

ð−1Þ1þi detMfð1;1Þ;ð2;iþ1Þghgti jϕfi;

γ ≡ χðq2Þ detMfð1;1Þg

−
Xn
i;j¼1

ð−1Þiþj detMfð1;1Þ;ðiþ1;jþ1Þghgti jϕfihgtj jϕfi;

ð45Þ

where Mfði1;j1Þ;ði2;j2Þ;���g is the minor obtained by deleting
the rows i1; i2; � � � and the columns j1; j2; � � �. Calling Δ the
discriminant of the inequality (44), one can show that

Δ ¼ detMfð1;1Þg × detMfð2;2Þg ≡ Δ1 × Δ2; ð46Þ

so that at the end the relevant quantities will only be α, β,
Δ1, Δ2. Note that α and Δ2 are t-independent, i.e., they are
given numbers once the susceptibility χðq2Þ and the lattice
QCD inputs are chosen. On the contrary, β and Δ1 are
t-dependent. Moreover, only the quantities β and Δ2

depend on the chosen value of q2.
At this point, since Δ1 ≥ 0 by construction, the inequal-

ity (44) will have an acceptable solution only whenΔ2 ≥ 0.
If this condition is satisfied, by expressing the scalar
product hgtjϕfi according to Eq. (37) we obtain the
following unitarity constraints on the form factor fðtÞ:

floðt; q2Þ ≤ fðtÞ ≤ fupðt; q2Þ; ð47Þ

where

floðupÞðt; q2Þ≡ −βðt; q2Þ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1ðtÞΔ2ðq2Þ

p
αϕðzðtÞ; q2Þ : ð48Þ

Thus, by using a direct lattice measurement of the form
factors at the points t1; t2;…; tn and the two-point functions
of the suitable currents we can constrain the form factors
in regions of momenta which for several reasons may not
be accessible to lattice simulations. The application to
the case of the semileptonic D → K decays will be
presented in Sec. VIII.
The positivity of the inner product implies that α and Δ1

are strictly positive, in such a way that, when also
Δ2ðq2Þ ≥ 0, the bounds in Eq. (48) are well defined. We
stress that the unitarity filter Δ2ðq2Þ ≥ 0 is t-independent,
which implies that, when it is not satisfied, no prediction for
fðtÞ is possible at any value of t.
We point out an interesting feature of the dispersive

approach based on the matrix (38). When the momentum
transfer t coincides with one of the data points, i.e., when
t → tj, the determinant Δ1ðq2Þ → 0 and the quantity
β=α→ϕðzðtjÞ;q2ÞfðzðtjÞÞ, so that floðupÞðt;q2Þ→fðzðtjÞÞ.
In other words the form factor fðtÞ, obtained from the

dispersive matrix method, reproduces exactly the given set
of data points. This is at variance with what may happen
using the BGL or the CLN parametrizations, i.e., when the
number of powers of z included in Eq. (29) is truncated
below the number of data points. In this case there is no
guarantee that the parameterization reproduces exactly the
set of input data.
Explicit analytical expressions for floðupÞðt; q2Þ, which

are very useful for their direct numerical evaluation, are
given in Appendix A.

IV. EUCLIDEAN TWO-POINT FUNCTIONS

In this Section we discuss in details the approach that has
been followed in order to constrain the values of the FFs
from the two-point correlation functions computed
nonperturbatively by numerical QCD simulation on the
lattice. Many of the definitions and formulas introduced in
this Section have been used on the lattice to compute the
HVP function of two electromagnetic currents [51] and
its isospin-breaking corrections [52] contributing to the
muon g − 2.

A. Basic definitions

We compute the correlation functions at the Euclidean
four-momentum Q≡ ðQ0; Q⃗Þ, given in terms of the
Minkowskian momentum q≡ ðq0; q⃗Þ by the relationsQ0¼
iq0 and Q⃗ ¼ q⃗. With this choice Q2 ¼ −q2. Furthermore,
we perform a Wick rotation on the coordinates, so that we
pass from the Minkowskian coordinates xM ¼ ðτ; x⃗Þ to the
Euclidean ones x ¼ ðt; x⃗Þ, with t ¼ iτ. The vector and axial
HVP tensors take the form

Πμν
V ðQÞ ¼

Z
d4xe−iQ·xh0jTfVμ†

E ðxÞVν
Eð0Þgj0i

¼ ð−QμQν þ δμνQ2ÞΠ1−ðQ2Þ −QμQνΠ0þðQ2Þ;

Πμν
A ðQÞ ¼

Z
d4xe−iQ·xh0jTfAμ†

E ðxÞAν
Eð0Þgj0i

¼ ð−QμQν þ δμνQ2ÞΠ1þðQ2Þ −QμQνΠ0−ðQ2Þ;
ð49Þ

where we have introduced the currents

Vμ
E ¼ c̄γμEb; Aμ ¼ c̄γμEγ

5
Eb: ð50Þ

defined in terms of Hermitian, Euclidean Dirac matrices
satisfying the anticommutation relations

fγμE; γνEg ¼ 2δμν: ð51Þ

In the following we will omit the explicit subscript E in the
definition of the Euclidean currents and γ-matrices.
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B. Correlators and derivatives of the polarization
functions on the lattice

A convenient choice is to work with the momentum
Q ¼ ðQ0; 0⃗Þ so that

Q2Π0þðQ2Þ ¼ −
Z

∞

−∞
dt0e−iQt0C0þðt0Þ;

Q2Π1−ðQ2Þ ¼ −
Z

∞

−∞
dt0e−iQt0C1−ðt0Þ;

Q2Π0−ðQ2Þ ¼ −
Z

∞

−∞
dt0e−iQt0C0−ðt0Þ;

Q2Π1þðQ2Þ ¼ −
Z

∞

−∞
dt0e−iQt0C1þðt0Þ; ð52Þ

where the explicit expressions of the various correlators
computed at the time distance t are

C0þðtÞ ¼
Z

d3x⃗h0jTfb̄ðt; x⃗Þγ0cðt; x⃗Þc̄ð0Þγ0bð0Þgj0i;

C1−ðtÞ ¼
1

3

X3
i¼1

Z
d3x⃗h0jTfb̄ðt; x⃗Þγicðt; x⃗Þc̄ð0Þγibð0Þgj0i;

C0−ðtÞ ¼
Z

d3x⃗h0jTfb̄ðt; x⃗Þγ0γ5cðt; x⃗Þc̄ð0Þγ0γ5bð0Þgj0i;

C1þðtÞ ¼
1

3

X3
i¼1

Z
d3x⃗h0jTfb̄ðt; x⃗Þγiγ5

× cðt; x⃗Þc̄ð0Þγiγ5bð0Þgj0i: ð53Þ

By recalling the definition of the spherical Bessel
functions

j0ðzÞ ¼
sinðzÞ
z

; j1ðzÞ ¼
sinðzÞ
z2

−
cosðzÞ

z
ð54Þ

and given that

∂
∂Q2

cosðQtÞ ¼ −
t2

2
j0ðQtÞ; ð55Þ

we get

χ0þðQ2Þ ¼
Z

∞

0

dt0t02j0ðQt0ÞC0þðt0Þ;

χ1−ðQ2Þ ¼ 1

4

Z
∞

0

dt0t04
j1ðQt0Þ
Qt

C1−ðt0Þ;

χ0−ðQ2Þ ¼
Z

∞

0

dt0t02j0ðQt0ÞC0−ðt0Þ;

χ1þðQ2Þ ¼ 1

4

Z
∞

0

dt0t04
j1ðQt0Þ
Qt0

C1þðt0Þ: ð56Þ

In this work, in view of a comparison with the results
obtained by using the perturbative calculation of the
susceptibilities, we will take Q2 ¼ 0. In this case j0ð0Þ¼1
and limx→0 j1ðxÞ=x ¼ 1=3, so that the derivatives of the
longitudinal and transverse polarization functions are equal
to the second and the fourth moments of the longitudinal
and transverse Euclidean correlators, respectively. We point
out again that, by using the two-point correlation functions
determined nonperturbatively, we may constrain the form
factors also at Q2 ≠ 0.

C. Ward Identities

Some relations, which will be particularly useful in the
analysis of the numerical results, can be derived using the
Ward Identities (WIs) that the vector and axial vector quark
currents satisfy

∂μb̄ðxÞγμcðxÞ ¼ ðmb −mcÞb̄ðxÞcðxÞ;
∂μb̄ðxÞγμγ5cðxÞ ¼ ðmb þmcÞb̄ðxÞγ5cðxÞ; ð57Þ

where mb and mc are the (bare) masses of the bottom and
charm quarks, respectively. Hence, by defining two further
(Euclidean) polarization functions connected to the scalar
and the pseudoscalar currents, namely

ΠSðQ2Þ≡
Z

d4xe−iQ·xh0jTfb̄ðxÞcðxÞc̄ð0Þbð0Þgj0i;

ΠPðQ2Þ≡
Z

d4xe−iQ·xh0jTfb̄ðxÞγ5cðxÞc̄ð0Þγ5bð0Þgj0i;

ð58Þ
the WIs imply that

QμQνΠV
μνðQÞ ¼ ðmb −mcÞ2ΠSðQ2Þ;

QμQνΠA
μνðQÞ ¼ ðmb þmcÞ2ΠPðQ2Þ; ð59Þ

from which we obtain

−Q4Π0þðQ2Þ ¼ ðmb −mcÞ2ΠSðQ2Þ;
−Q4Π0−ðQ2Þ ¼ ðmb þmcÞ2ΠPðQ2Þ: ð60Þ

Moreover, by performing a double derivative with respect
to Q2 we get

�
−2

∂
∂Q2

−Q2
∂2

∂2Q2

�
½Q2Π0þðQ2Þ�

¼ ðmb −mcÞ2
∂2

∂2Q2
ΠSðQ2Þ;�

−2
∂

∂Q2
−Q2

∂2

∂2Q2

�
½Q2Π0−ðQ2Þ�

¼ ðmb þmcÞ2
∂2

∂2Q2
ΠPðQ2Þ: ð61Þ
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At this point, we can define the scalar and pseudoscalar
analogues of Eqs. (53):

χSðQ2Þ ¼ −
1

2

� ∂2

∂2Q2

�
ΠSðQ2Þ

¼ 1

4

Z
∞

0

dt0t04
j1ðQt0Þ
Qt0

CSðt0Þ;

χPðQ2Þ ¼ −
1

2

� ∂2

∂2Q2

�
ΠPðQ2Þ

¼ 1

4

Z
∞

0

dt0t04
j1ðQt0Þ
Qt0

CPðt0Þ; ð62Þ

where the scalar and pseudoscalar Euclidean correlators are
defined as

CSðtÞ ¼
Z

d3x⃗h0jTfb̄ðt; x⃗Þcðt; x⃗Þc̄ð0Þbð0Þgj0i;

CPðtÞ ¼
Z

d3x⃗h0jTfb̄ðt; x⃗Þγ5cðt; x⃗Þc̄ð0Þγ5bð0Þgj0i: ð63Þ

The WIs offer thus the possibility to express the
derivatives of vector longitudinal and axial longitudinal
polarization functions in a different way, namely

χ0þðQ2Þ ¼ ðmb −mcÞ2χSðQ2Þ − 1

2
Q2

∂
∂Q2

χ0þðQ2Þ ¼ 1

4

Z
∞

0

dt0t04
j1ðQt0Þ
Qt0

½ðmb −mcÞ2CSðt0Þ þQ2C0þðt0Þ�

χ0−ðQ2Þ ¼ ðmb þmcÞ2χPðQ2Þ − 1

2
Q2

∂
∂Q2

χ0−ðQ2Þ ¼ 1

4

Z
∞

0

dt0t04
j1ðQt0Þ
Qt0

½ðmb þmcÞ2CPðt0Þ þQ2C0−ðt0Þ�: ð64Þ

Thus, when settingQ2 ¼ 0, we can compute the derivatives
of the longitudinal vector and axial-vector polarization
functions directly through the fourth moments of the scalar
and pseudoscalar correlators, respectively. The advantage
of the above procedure based on the WIs will be clarified in
Sec. VII.
Equations (56) and (64) represent the basic formulas for

the evaluation of the dispersive bounds in terms of
Euclidean correlators (calculable on the lattice) for space-
like values of q2 ¼ −Q2, i.e., q2 ≤ 0. Timelike values of q2,
which are relevant for the semileptonic form factors,
corresponds to Q2 < 0. This requires the use of imaginary
values for the Euclidean four-momentum Q, i.e.,
Q ¼ ðiq; 0⃗Þ. Thus, the formulas from which we can extract
the derivatives of the polarization functions on the lattice
for 0 ≤ q2 ≲ ðmb −mcÞ2 are

χ0þðq2Þ ¼
1

12

Z
∞

0

dt0t04H1ðqt0Þ

× fðmb −mcÞ2CSðt0Þ − q2C0þðt0Þg;

χ1−ðq2Þ ¼
1

12

Z
∞

0

dt0t04H1ðqt0ÞC1−ðt0Þ;

χ0−ðq2Þ ¼
1

12

Z
∞

0

dt0t04H1ðqt0Þ

× fðmb þmcÞ2CPðt0Þ − q2C0−ðt0Þg;

χ1þðq2Þ ¼
1

12

Z
∞

0

dtt04H1ðqt0ÞC1þðt0Þ; ð65Þ

where

H1ðxÞ≡ 3

x2

�
coshðxÞ − sinhðxÞ

x

�
ð66Þ

with H1ð0Þ ¼ 1. For q≲mb −mc all the above integrals
over the Euclidean time t0 are finite, because at large
time distances the Euclidean correlators behave as
exp½−ðmb þmcÞt0�, while H1ðqt0Þ ∝ expðqt0Þ.
In general, on the lattice, the WIs are modified by

discretization terms [53] that vanish in the continuum limit,
namely when the lattice spacing a → 0. For example, with
improved fermion actions like Wilson improved [54,55],
Maximal Twisted [56–58] and DomainWall Fermions [59],
we have

ZV∂μb̄ðxÞγμcðxÞ ¼ ðmb −mcÞb̄ðxÞcðxÞ þOða2Þ;
ZA∂μb̄ðxÞγμγ5cðxÞ ¼ ðmb þmcÞb̄ðxÞγ5cðxÞ þOða2Þ;

ð67Þ

where ZV and ZA are appropriate renormalization constants
for the lattice vector and axial-vector currents [53].
Further discretization effects may enter in the T-products

computed on the lattice, that we use in our analysis.
We propose to reduce discretization errors by using a
combination of nonperturbative and perturbative subtrac-
tions which were found very effective in the past (see later
Sec. VII).

V. STATISTICAL AND SYSTEMATIC ERRORS
WITH DISPERSIVE BOUNDS IN THE PRESENCE

OF KINEMATICAL CONSTRAINTS

In this Section we discuss the treatment of the statistical
errors and of the systematic effects when the bounds on the
values of the form factor fðtÞ are derived using the values
fðtiÞ computed at the points ti with i ¼ 1; 2;…; n, and the
appropriate susceptibility χ discussed in the previous
Sections. Besides the statistical errors which affect all
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the quantities computed in numerical simulations of lattice
QCD, we have also systematic effects. In particular dis-
cretization errors, which may become rather severe when
studying heavy quark transitions, can modify in an impor-
tant way the continuum unitarity relations and introduce
inconsistencies in the equations introduced in Sec. III.
Without any loss of generality we consider in this

Section the case of the semileptonic scalar f0ðtÞ and vector
fþðtÞ form factors, which have to fulfill the kinematical
constraint f0ð0Þ ¼ fþð0Þ at zero four-momentum transfer.
Although the treatment of the statistical errors in the

presence of kinematical constraints was already discussed
in Ref. [10], in this work we introduce a different method
which looks to us simpler to implement. This method,
together with the skeptical Bayesian approach of
Refs. [45,46], allows us also to treat the effects induced
by discretization and other systematic effects.

A. Generation of the bootstrap events

The machinery described in Sec. III allows us to compute
the lower/upper bounds of f0ðþÞðtÞ, once we have chosen
our set of input data, i.e., fχ0þð1−Þ; f0ðþÞðt1Þ;…; f0ðþÞðtnÞg.
Thus, the input dataset is made of 2nþ 2 quantities: the n
values of the scalar form factor f0, the n values of the
vector form factor fþ and the two susceptibilities χ0þ and
χ1− . For sake of simplicity we are considering the same
number of data points for both the scalar and the vector
form factors evaluated at the same series of values
ti (i ¼ 1;…; n).
The crucial question is, however, how to propagate the

uncertainties related to these quantities into the evaluation
of the FFs f0ðþÞðtÞ at a generic value of t. To answer this
question, we propose a method different from the one
described in Ref. [10]. We start by building up a multi-
variate Gaussian distribution with mean values and covari-
ance matrix given, respectively, by ff0ðt1Þ;…; f0ðtnÞ;
fþðt1Þ;…; fþðtnÞg and Σij ¼ ρijσiσj, where f0ðþÞðtiÞ are
the form factors extracted from the three-point functions in
our numerical simulation on a given set of gauge field
configurations, σi are the corresponding uncertainties, and
ρij is their correlation matrix (including also correlations
between the two form factors).
There are two possible analyses that can be applied to the

lattice results:
(A) When we have direct access to the data of the

simulations, as it is the case of theD → K transitions
discussed in Sec. VIII, we can generate by ourself
jackknife or bootstrap sets of all the quantities
defined above. At the same time we use the non-
perturbative susceptibilities evaluated on the same
jackknife/bootstrap sets used to compute the values
of the form factors f0ðþÞðtiÞ;

(B) When we use data produced by other groups that
provide their values of f0ðþÞðtiÞ, σi and ρij, we

generate Nboot bootstrap events according to the
expected probability distributions. In this case we
generate Nboot values of the nonperturbative suscep-
tibilities χ0þð1−Þ through normal distributions defined
by their mean values and standard deviations.

The first option is certainly to be preferred to reduce the
statistical noise by taking properly into account all the
correlations of the data.
For each jackknife/bootstrap event we consider the

ðnþ 1Þ × ðnþ 1Þ matrices M0 and Mþ [see Eq. (38)]
corresponding to the scalar and vector form factors,
respectively. Since Δ0

1 ¼ Δþ
1 is non-negative by definition,

the positivity condition (46) implies that both Δ0
2 and Δþ

2

should be positive. Thus, we computeΔ0ðþÞ
2 and verify their

signs. If either Δ0
2 or Δþ

2 results to be negative, then the
event is eliminated from the sample. From the physical
point of view, this step can be read as a consistency check
between all the input data, namely the susceptibilities and
the FFs for that particular bootstrap. At the end of the
procedure, we will be left with Ñboot ≤ Nboot events.

B. Implementation of the constraints

At t ¼ 0 the FFs f0 and fþ are subject to the constraint

f0ð0Þ ¼ fþð0Þ: ð68Þ

In order to satisfy this condition, in the subset of the Ñboot

events satisfying the unitarity filters Δ0ðþÞ
2 ≥ 0, we select

only the N�
boot ≤ Ñboot events for which the dispersive

bands for f0 and fþ overlap each other at t ¼ 0. This
corresponds to impose the conditions

f0;upð0; q2Þ > fþ;loð0; q2Þ;
fþ;upð0; q2Þ > f0;loð0; q2Þ; ð69Þ

where flo;upðt; q2Þ were defined in Eq. (48) for a generic
form factor f. Omitting for simplicity the argument q2 at
which the susceptibilities χ0ðþÞ are calculated, the con-
ditions (69) can then be rephrased as

jϕþðzð0ÞÞβþð0Þ − ϕ0ðzð0ÞÞβ0ð0Þj

≤
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ1ð0Þ

p �
ϕþðzð0ÞÞ

ffiffiffiffiffiffiffi
Δþ

2

q
þ ϕ0ðzð0ÞÞ

ffiffiffiffiffiffi
Δ0

2

q �
: ð70Þ

As already said, the above condition select N�
boot ≤ Ñboot

events. Following Ref. [10] for each of the N�
boot events

we define

f�loð0Þ ¼ max½fþ;loð0Þ; f0;loð0Þ�;
f�upð0Þ ¼ min½fþ;upð0Þ; f0;upð0Þ�; ð71Þ

so that, putting fð0Þ≡ f0ð0Þ ¼ fþð0Þ, one has
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f�loð0Þ ≤ fð0Þ ≤ f�upð0Þ: ð72Þ

We now consider the form factor fð0Þ to be uniformly
distributed in the range given by Eq. (72) and we add it to
the input dataset as a new point at tnþ1 ¼ 0. To be more
precise, for each of N�

boot events we generate N0 values of
fð0Þ with uniform distribution in the range ½f�loð0Þ; f�upð0Þ�,
obtaining a new sample having N̄boot ¼ N�

boot × N0 events,

each of them satisfying by construction both the unitarity

filters Δ0ðþÞ
2 ≥ 0 and the kinematical constraint (68).

We then consider two modified ðnþ 2Þ × ðnþ 2Þmatri-
ces, M0

C and Mþ
C , that have one more row and one more

column with respect to matrices M0 and Mþ and contain
the common form factor fðtnþ1 ¼ 0Þ, namely matrices of
the form

MC ¼

0
BBBBBBBBBBBB@

hϕfjϕfi hϕfjgti hϕfjgt1i � � � hϕfjgtni hϕfjgtnþ1
i

hgtjϕfi hgtjgti hgtjgt1i � � � hgtjgtni hgtjgtnþ1
i

hgt1 jϕfi hgt1 jgti hgt1 jgt1i � � � hgt1 jgtni hgt1 jgtnþ1
i

..

. ..
. ..

. ..
. ..

. ..
.

hgtn jϕfi hgtn jgti hgtn jgt1i � � � hgtn jgtni hgtn jgtnþ1
i

hgtnþ1
jϕfi hgtnþ1

jgti hgtnþ1
jgt1i � � � hgtnþ1

jgtni hgtnþ1
jgtnþ1

i

1
CCCCCCCCCCCCA
: ð73Þ

For any point t at which we want to predict the allowed
dispersive band of the form factor fðtÞ (which can be either
f0ðtÞ or fþðtÞ) without directly computing it in our
simulation, we compute the matrix MC and using
Eq. (48) we get floðtÞ and fupðtÞ. This can be done for
each of the N0 events. Let us indicate the result of the k-th
extraction by fkloðtÞ and fkupðtÞ, respectively. Then, for each
of the N�

boot events the lower and upper bounds f̄loðtÞ and
f̄upðtÞ can be defined as

f̄loðtÞ ¼ min½f1loðtÞ; f2loðtÞ;…; fN0

lo ðtÞ�;
f̄upðtÞ ¼ max½f1upðtÞ; f2upðtÞ;…; fN0

up ðtÞ�: ð74Þ

At this point we can generate the bounds of the form
factor fðtÞ. To achieve this goal, we combine all the N�

boot

results f̄ilo;upðtÞ (i ¼ 1;…; N�
boot) to generate the corre-

sponding histograms and fit them with a Gaussian Ansatz,
as it is shown in Fig. 1 in an illustrative case. From these fits
we extract the average values floðupÞðtÞ, the standard
deviations σloðupÞðtÞ and the corresponding correlation
factor ρlo;upðtÞ ¼ ρup;loðtÞ, namely

floðupÞðtÞ ¼
1

N�
boot

XN�
boot

i¼1

f̄iloðupÞ; ð75Þ

σ2loðupÞðtÞ ¼
1

N�
boot − 1

XN�
boot

i¼1

½f̄iloðupÞðtÞ − floðupÞðtÞ�2; ð76Þ
FIG. 1. Histograms of the values of f̄up (upper panel) and f̄lo
(lower panel) for the bootstrap events that pass the unitarity filter
in the case of the vector form factor fþðt ¼ 0 GeV2Þ of the
D → K transition.
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ρlo;upðtÞ ¼ ρup;loðtÞ ¼
1

N�
boot − 1

XN�
boot

i;j¼1

½f̄iloðtÞ − floðtÞ�

× ½f̄jupðtÞ − fupðtÞ�: ð77Þ

It is understood that the above procedure is applied for
both the scalar f0ðtÞ and the vector fþðtÞ form factors.
An important aspect of the full procedure is a good

determination of the correlations among the matrix ele-
ments in Eq. (73), namely among the corresponding form
factors. This is automatically achieved by generating the
jackknife/bootstrap events with the procedure A) described
in Sec. VA, whereas an accurate determination of the
correlation matrix of the form factors must be provided
when one wants to use data produced by other groups.

C. Combination of the lower and upper bounds
for each FF

After the steps described before, for any choice for t we
obtain from the bootstrap events (pseudo-Gaussian) dis-
tributions for f0;loðtÞ, f0;upðtÞ, fþ;loðtÞ and fþ;upðtÞ as well
as the corresponding mean values, standard deviations
and correlations. We combine them according to the
following procedure.

Let us consider a single bootstrap event in which fL is
the lower bound and fU is the upper one for a generic FF at
the given value of t (for sake of simplicity we omit the
t-dependence for a while). We associate to the FF f a flat
distribution between fL and fU

PðfÞ ¼ 1

fU − fL
Θðf − fLÞΘðfU − fÞ; ð78Þ

where f ¼ f0ðþÞ, fU ¼ f0ðþÞ;up, fL ¼ f0ðþÞ;lo and Θ is
the Heaviside step function. The mean value and the
variance associated to the distribution (78) are, respectively,
given by

1

fU−fL

Z
fU

fL

dffΘðf−fLÞΘðfU−fÞ¼fUþfL
2

; ð79Þ

1

fU − fL

Z
fU

fL

df

�
f −

fU þ fL
2

�
2

Θðf − fLÞΘðfU − fÞ

¼ ðfU − fLÞ2
12

: ð80Þ

It is however necessary to average over the whole set of
bootstrap events. Since the lower and the upper bounds of a
generic FF are strongly correlated, we adopt a multivariate
Gaussian distribution to describe them, i.e.,

PLUðfL; fUÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detC−1

p

2π
e−

1
2
½C−1

LLðfL−floÞ2þ2C−1
LUðfU−fupÞðfL−floÞþC−1

UUðfU−fupÞ2�; ð81Þ

where floðupÞ represents the mean of the lower(upper)
bound over all the bootstrap events, given by Eq. (75),
and C is the covariance matrix

C ¼
�

σ2lo ρlo;upσloσup

ρup;loσloσup σ2up

�
ð82Þ

with σloðupÞ and ρlo;up ¼ ρup;lo being given by Eqs. (76) and
(77), respectively. In Eq. (81) the normalization has been
chosen so that

Z þ∞

−∞

Z þ∞

−∞
dfUdfLPLUðfL; fUÞ ¼ 1: ð83Þ

Using the product of the distributions (78) and (81) we can
compute the final values of the form factor fðtÞ and its
variance σ2fðtÞ as

fðtÞ ¼ floðtÞ þ fupðtÞ
2

; ð84Þ

σ2fðtÞ ¼
1

12
½fupðtÞ − floðtÞ�2

þ 1

3
½σ2loðtÞ þ σ2upðtÞ þ ρlo;upðtÞσloðtÞσupðtÞ�: ð85Þ

D. Systematic effects and the skeptical approach

In various analyses of the lattice data that we performed
to test our method we have encountered the following
phenomenon. For some of the bootstrap events no solution
could be found, either because Δ2 < 0 or because there is
no overlap between the allowed regions for f0ð0Þ and
fþð0Þ. This may obviously happen for a statistical fluc-
tuation of the sample at hand. When, however, the fraction
of rejected bootstrap events is large, say much larger than
50%, one may argue that systematic effects come into play
(e.g., lattice artefacts), that have not been corrected for,
which may jeopardise the unitary relations. In cases like
these, however, it is still possible to extract the relevant
information, which in our case is the allowed interval for
the form factors, by using different statistical approaches
like the skeptical one discussed in Refs. [45,46].
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We stress that the above issue is not important in the case
of the D → K semileptonic decays for the analyses of the
lattice data either extrapolated to the physical point and
to the continuum limit (see Sec. VIII A) or obtained at
finite lattice spacing and unphysical pion masses (see
Sec. VIII B). In these cases we see that practically all
the bootstraps generated for the FFs survive after both the
unitarity and the kinematical constraints. We anticipate that
the skeptical approach, instead, turns out to be useful in the
study of the b → c transitions, where we expect much
larger discretization effects which may manifest as apparent
violation of the unitarity constraints. Focusing our attention
for instance onto the B → D case, the skeptical approach
is useful when the matrix procedure explained in this work
is applied to the FFs presented by MILC [39]. Indeed only
the ∼15% of the initially generated events survive to the
simultaneous application of the unitarity and kinematical
constraints. On the contrary, the introduction of the
skeptical method described below allows the largest part
of the generated bootstraps events to pass both filters. This
fact will be properly illustrated in a forthcoming paper
about the application of the matrix method to the b → c
transitions.
In the reminder of this Section we explain the general

idea of the skeptical approach.
Probability theory helps us in building up a model in

which the values and uncertainties of the physical
quantities about which we are in doubt are allowed to
vary from the nominal ones. Obviously, the model is not
unique, as not unique are the probability distributions that
can be used. The simplest choice consists in enlarging the
reported standard deviations σi of the measured points, by
assuming the true standard deviations, σti are related to
the σi by a factor ri, one for each of the measured points,
σti ¼ riσi, whereas the average values f̄i is the same.
All the points i are treated democratically and fairly,
i.e., our prior belief of each ri has expected value equal to
one; its prior distribution does not depend on the point;
we are skeptical, and hence each ri has a priori a wide
range of possibilities described by a probability distri-
bution, with a prior 100% standard uncertainty on ri,
i.e., σðriÞ=E½ri� ¼ 1.
The simplest model is to introduce a Gamma probability

distribution for the variable r ≥ 0

PskeptðrÞ ¼
1

BΓðAÞ
�
r
B

�
A−1

e−r=B: ð86Þ

The parameters A and B are fixed by imposing that
this distribution has both mean value and variance equal
to 1. A simple calculation shows that this request corre-
sponds to the choice A ¼ B ¼ 1, i.e., PskeptðrÞ ¼ e−r. At
this point, we slightly modify the procedure described in
Secs. V B–VC, namely we build up a multivariate
Gaussian distribution whose covariance matrix now is

Σij ¼ ρijσiσj × r2; ð87Þ

where the σ’s are the uncertainties of the measured points
in the numerical simulation and ρij the corresponding
correlation matrix.
Thus, to summarize, according to Eq. (86) we extract Nr

values of r and we produce Nboot bootstrap events for the
FFs using the covariance matrix (87). Thus, in the skeptical
case we have a sample of Nr × Nboot events. At this point,
we proceed with the unitarity filter related to the sign of Δ2

and with the implementation of the constrained matrix MC
as explained in the previous Sections.

VI. VACUUM POLARIZATION FUNCTIONS
IN PERTURBATION THEORY
AND LATTICE ARTEFACTS

In this Section we discuss the perturbative calculation
of the susceptibilities in the continuum and on the lattice,
and the subtraction/reduction of lattice artefacts that can
be obtained by using the perturbative calculation of the
polarization functions. Although in what follows we will
consider lattice QCD in the Twisted Mass Fermion (TMF)
regularization, the main arguments of our discussion are
general and can be applied to any lattice regularization of
the theory. One peculiarity, which is however common to
other regularizations, is the on-shell OðaÞ improvement of
the physical particle spectrum and of the matrix elements
of local bilinear operators. Thus the lattice artefacts for
physical quantities related to these matrix elements are
of Oða2Þ.
In lattice simulations performed at finite lattice spacing

one can attempt to obtain the physical results either by
extrapolating the lattice quantities to the continuum or by
reducing the discretization effects by a subtraction pro-
cedure based on perturbation theory. A combination of the
two strategies is indeed the most effective one. Some of the
lattice artefacts can also be eliminated nonperturbatively
using, for example, the WIs of the theory [53]. In this
Section we shall deal with the perturbative approach which
can be implemented in one-loop (or higher-loops) order
by computing for a given quantity, say the polarization
function or its derivatives, the corresponding Feynman
diagrams, at finite lattice spacing. In the analysis of lattice
data we will also discuss the extrapolation of the results to
the continuum theory which can be combined with the
perturbative subtraction of lattice artefacts discussed in
this Section.
Recalling the definitions of Πμν

V;A given in Sec. IV, we
analyze the structure of a twisted fermions loop, the
graphical representation of which, at lowest order, corre-
sponds to the first Feynman diagram on the left in Fig. 2.
Given the on-shell OðaÞ improvement of the vector

current correlators at physical distances we focus on the
impact of contributions to the Fourier sum from small and
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zero distance. Formally, we are interested in the expansion
of the generic polarization function ΠðQ2Þ≡ Π0�;1∓ðQ2Þ

ΠðQ2Þ ¼
X
k≥−6

Ckak; ð88Þ

where one can show that C1 ¼ 0 with maximally TMF.
In the following we discuss as an example the case of the

vector current. In this case the coefficients of the expansion
can be derived from the generic form of the lattice
polarization tensor using the symmetries of the lattice
action [60]

Πμν
V ðQ2Þ ¼ Πμν

VconðQ2Þ þ
�
Z1

a2
þ Z̃1

�
−S6 þ

1

2
S25

	
0

�
δμν

þ Zþ
μ2
ðμ21 þ μ22Þδμν þ Z−

μ2
ðμ21 − μ22Þδμν

þ ðZQ2Q2δμν þ ZQQQμQνÞ
þOða2; operators of higher dimensionÞ; ð89Þ

where ΠVconðQ2Þ is the continuum polarization tensor, S5
and S6 are defined by the expansion of the lattice action
close to the continuum limit

Seff ¼ S4 þ aS5 þ a2S6 þ a2S7 þ…; ð90Þ

where Sk ¼
R
d4xLk with the terms Lk containing linear

combinations of fields with mass dimension k, and h…i0
stands for vacuum expectation value of some combination
of operators, either local, e.g., hS6i0, or nonlocal, hS25i0. We
will indicate explicitly the dependence of ΠμνðQ2Þ or of the
χ’s on the quark masses only when it will be necessary for
the discussion of the results.
Luckily enough all the divergent or mass dependent

lattice artefacts in the first line of Eq. (89) disappear when
we apply the derivative with respect to Q2 to obtain the
susceptibilities χ’s, see Eqs. (13). There are however terms
of Oða0Þ which remain and that, in some cases, can even
make the longitudinal polarization function different from
zero even with degenerate quark masses μ1 ¼ μ2. Besides
these terms there are discretization errors of Oða2Þ or
higher which remain. The strategy to reduce their effect is
that widely used in literature, see for example Ref. [61].

In our case it is even simpler since the quantities that
we consider, namely the χ’s, are finite in perturbation
theory. Let us call χLATðQ2; aÞ the generic susceptibility
computed nonperturbatively on the lattice, χðQ2; aÞ the
corresponding susceptibility computed in lattice perturba-
tion theory, χ̃ðQ2Þ the expression resulting from χðQ2; aÞ
by neglecting all contributions which vanish for a → 0,
lima→0 χðQ2; aÞ → χ̃ðQ2Þ, χconðQ2Þ the susceptibility com-
puted perturbatively in the continuum theory. We introduce
the following quantities:

Δ1χðQ2; aÞ ¼ χðQ2; aÞ − χ̃ðQ2Þ;
Δ2χðQ2Þ ¼ χ̃ðQ2Þ − χconðQ2Þ; ð91Þ

where Δ1χðQ2; aÞ represents the discretization errors that
we want to subtract, and Δ2χðQ2; aÞ the finite terms which
are different in the continuum with respect to the lattice
case. For local operators a typical example of these kind of
corrections is represented by the current renormalization
constants, JμðxÞ ¼ ZJJ

μ
LðxÞ. In order to extract the sub-

tracted susceptibility we construct then the combination

χsðQ2; aÞ ¼ χLATðQ2; aÞ − Δ1χðQ2; aÞ − Δ2χðQ2Þ
¼ χLATðQ2; aÞ − χðQ2; aÞ þ χconðQ2; μÞ: ð92Þ

Thus, up to a certain order in perturbation theory and up to
nonperturbative effects, χsðQ2; aÞ reduces to the continuum
result without discretization errors. If one uses the one-loop
perturbative calculations, the discretization error then
reduces to Oðαsa2Þ.
This procedure can easily be extended to higher orders in

αs. In higher orders in perturbation theory, for the trans-
verse susceptibilities, it will be also necessary to renorm-
alize the quark masses. For two-point correlation functions
involving scalar or pseudoscalar densities, it will be also
necessary to renormalize these bilinear operators in some
chosen renormalization scheme. We assume that we use the
same renormalization scheme, e.g., MS or the on-shell
scheme for the quark masses. Strictly speaking then,
we should write Δ2χðQ2; μÞ ¼ χ̃ðQ2; μÞ − χconðQ2; μÞ to
account for the scale(s) at which the strong coupling
constant and, eventually, the quark masses are renormal-
ized. In this respect we should also write χLATðQ2; a; μÞ and
χ̃ðQ2; μÞ since these quantities will contain the contribution
of the counter terms necessary to renormalize the strong
coupling constant or the quark masses.
After the subtraction procedure we expect then to have

discretization errors of Oðαnsa2Þ, where n depends on the
order at which we have computed perturbatively the
current-current correlation functions, or nonperturbative
discretization errors of Oða2Λ2

QCDÞ. Note that χsðQ2; aÞ
is the quantity to be used at finite lattice spacing for
extracting the bounds on the form factors fðtÞ according to

FIG. 2. One- and two-loop Feynman diagrams for the polari-
zation function. The crosses represent the bilinear operators and
the curly line the gluon propagator.
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the procedure explained in Sec. III. A detailed discussion of
the counter terms up to two-loop perturbation theory will be
given in a future publication where the subtraction pro-
cedure will be extended to Oðαsa2Þ.

A. An instructive example: The vector current
polarization tensor at one loop

In order to illustrate the procedure followed to reduce
the discretization errors, as an instructive example we
discuss in details the one-loop perturbative calculation of
the vector current polarization tensor and of the corre-
sponding susceptibilities.
At lowest order in perturbation theory, by calling k the

internal momentum, we may easily compute the correlator
of two local vector currents on the lattice

Πμν
V ðQ;aÞ¼

Z þπ=a

−π=a

d4k
ð2πÞ4Tr

�
γμG1

�
kþQ

2

�
γνG2

�
k−

Q
2

��
;

ð93Þ

where the integration interval represents the first Brillouin
zone. Here Gi¼1;2 indicates the tree-level Wilson twisted-
mass propagator, namely

GiðpÞ ¼
−iγμp

∘
μ þMiðpÞ − iμq;iγ5τ3

p
∘ 2 þM2

i ðpÞ þ μ2q;i
; i ¼ 1; 2; ð94Þ

where we have defined on the lattice

p
∘
μ ≡ 1

a
sinðapμÞ; MiðpÞ≡mi þ

ri
2
ap̂2

μ;

p̂≡ 2

a
sin

�
apμ

2

�
: ð95Þ

In order to make the calculation it is convenient to define
the dimensionless quantities

ρμ ≡ pμa; m̃≡ma; μ̃≡ μa; ð96Þ

and express Eq. (94) as

GiðρÞ ¼ a
−iγμρ

∘
μ þMiðρÞ − iμ̃q;iγ5τ3

ρ
∘2 þM2

i ðρÞ þ μ̃2q;i
; i ¼ 1; 2: ð97Þ

Taking into account the change of the integration variables,
we have that

Πμν
V ðQ; aÞ

¼ 1

a2
Pμν

V ðQaÞ

¼ 1

a2

Z þπ

−π

d4ρ
ð2πÞ4 Tr

�
γμG1

�
ρþQa

2

�
γνG2

�
ρ −

Qa
2

��
;

ð98Þ

where Pμν
V ðQaÞ is a dimensionless quantity which can only

depend on dimensionless quantities (Qa;m1a;m2a;…). At
this point we may obtain the χ’s by applying the appropriate
derivatives with respect to Qμ to the expression given in
Eq. (98). Note that any derivative with respect to Qμ we
make to obtain the χ’s implies the appearance of a factor a
in front of the rhs of Eq. (98), since the integral only
depends on the product Qa. A particularly convenient
choice ofQ in the evaluation of the lattice integral (98), and
the corresponding expression at two loops, is Q ¼ ðQ0; 0⃗Þ,
Q2 ¼ Q2

0, ∂=∂Q2 ¼ 1=ð2Q0Þ∂=∂Q0, see Eqs. (52)–(56).
When we want to obtain the continuum expression (at

this order we do not need to define the renormalization
scheme since everything is finite) it is enough to take the
limit a → 0 in the integrand (93) and apply to Pμν

V ðQaÞ the
derivatives with respect to Q0.
It is useful to start by discussing the case of the

susceptibilities at Q ¼ 0. In this case, in the continuum,
one obtains

ðm2
2χ1−ðQ2 ¼ 0ÞÞcon ¼

Nc

96π2ð1− u2Þ5 fð1− u2Þð3þ 4u− 21u2 þ 40u3 − 21u4 þ 4u5 þ 3u6Þ þ 12u3ð2− 3uþ 2u2Þ log½u2�g

ðχ0þðQ2 ¼ 0ÞÞcon ¼
Nc

24π2ð1− u2Þ3 fð1− u2Þð1− 4uþ u2Þð1þ uþ u2Þ− 6u3 log½u2�g; ð99Þ

where Nc is the number of colors and the quantities on the
lhs being dimensionless can only depend on the ratio
u≡m1=m2. In what follows m2 will always denote the
heavier of the two valence quarks in the decaying meson,
namely the b quark for B → Dð�Þ decays, the charm for
D → Kð�Þ decays and the strange for kaon semileptonic

decays. Note that in the limit m1 → m2 (i.e., u → 1) the
longitudinal susceptibility χ0þðQ2Þ vanishes because the
currents are conserved in this limit. Also on the lattice, as
a → 0, the χ’s can only depend on u and thus, in
perturbation theory we expect
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ðm2
2χ1−ðQ2 ¼ 0; aÞÞLAT ¼ ðm2

2χ1−ðQ2 ¼ 0ÞÞcon þ a2m2
2δχ

0
1−ðu; a2m2

2Þ;
ðχ0þðQ2 ¼ 0; aÞÞLAT ¼ ðχ0þðQ2 ¼ 0ÞÞcon þ δχ0þðuÞ þ a2m2

2δχ
0
0þðu; a2m2

2Þ; ð100Þ

where the quantities δχð0Þi can be eliminated in perturbation theory following the scheme described in Eq. (92). The lattice
susceptibilities ðm2

2χ1−ðQ2 ¼ 0; aÞÞLAT and ðχ0þðQ2 ¼ 0; aÞÞLAT are obtained by applying the appropriate derivatives with
respect toQ0 to the expression in Eq. (98) and puttingQ0 ¼ 0. The four dimensional integral can be performed numerically
without difficulties.
Since we are able to compute the polarization tensor nonperturbatively, in principle we are also able to enforce the

unitarity constraints on the FFs atQ2 ≠ 0. Thus in order to reduce the lattice artefacts we also need the lattice and continuum
perturbative calculation in this case.
At one loop, in the continuum, for Q2 ≠ 0 we may construct two dimensionless quantities, namely u as before and

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=m2

2

p
. In terms of these variables we obtain [8]

χ1−ðQ2 ¼ z2m2
2Þ ¼

Nc

16m2
2π

2ðz2Þ3


−
ð1 − u2Þ log½u2�ð2z4 þ 2Λ−Λþ þ z2ð3Λ− þ ΛþÞÞ

2z2

−
12Λ−Λ2þ þ 3z2Λþð7Λ− þ 3ΛþÞ þ z4ð3Λ− þ 19ΛþÞ

6Λþ

− log

�
Λ− þ Λþ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ−Λþ

p
Λ− þ Λþ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ−Λþ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ−Λþ

p
8z2Λ−Λ2þ

½8Λ2
−Λ3þ þ 8z2Λ−Λ2þð2Λ− þ ΛþÞ

þ z4Λþð5Λ2
− þ 18Λ−Λþ þ Λ2þÞ þ z6ð−Λ2

− þ 6Λ−Λþ þ 3Λ2þÞ�
�
; ð101Þ

χ0þðQ2 ¼ z2m2
2Þ ¼

Nc

16π2ðz2Þ2


2ðz2 þ Λ−Þðz2 þ 2ΛþÞ

þ
log

�
Λ−þΛþþ2

ffiffiffiffiffiffiffiffiffi
Λ−Λþ

p
Λ−þΛþ−2

ffiffiffiffiffiffiffiffiffi
Λ−Λþ

p
�
ðz2 þ Λ−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ−Λþ

p ð4Λ−Λþ þ z2ð3Λ− þ ΛþÞÞ
2z2Λ−

þ ð1 − u2Þ log½u2�ð4Λ−Λþ þ z2ðΛ− þ 3ΛþÞÞ
2z2

�
; ð102Þ

where Λ� ¼ ð1� uÞ2 − z2. Also in this case χ0þðQ2 ¼
z2m2

2Þ vanishes for m1 → m2 (u → 1). The corresponding
lattice quantities are easily obtained as before by applying
the appropriate derivatives with respect to Q0 to the

expression in Eq. (98) and putting Q0 ¼
ffiffiffiffiffiffi
Q2

p
≠ 0.

On the lattice there is another equivalent way to compute
the correlation function in perturbation theory, which is
more suited for perturbative calculations at higher orders
(more loops). Let us continue the discussion with the
example of the vector current. We define the free propa-
gator of the quark (and in higher orders also of the gluon
propagator) by numerical Fourier transform of the momen-
tum-space propagator given in Eq. (97)

Giðx; yÞ ¼
1

a4

Z þπ

−π

d4ρ
ð2πÞ4 e

−iρ·ðx−yÞGiðρÞ; ð103Þ

where x≡ ðt; x⃗Þ, y≡ ðt0; y⃗Þ and we have elected one of the
lattice directions to our Euclidean time. At one loop we
define

Πμν
V ðt; x⃗Þ ¼ Tr½γμG1ðx; 0ÞγνG2ð0; xÞ�;
Gμν

V ðtÞ ¼ a3
X
x⃗

Πμν
V ðt; x⃗Þ: ð104Þ

It is straightforward to show the relations

G00
V ðtÞ ¼ C0þðtÞ;

1

3

X
i¼1;2;3

Gii
VðtÞ ¼ C1−ðtÞ; ð105Þ

where the quantities C0þðtÞ and C1−ðtÞ are those defined in
Eq. (53). We can then obtain the susceptibilities using the
expressions in Eq. (56).
The difference between this latter way of computing

the χ’s, that we will call the x-space method, and the
calculation of the χ’s from the derivatives applied to
Eq. (98), that we denote as the Q-space method, is the
following. Equation (98) refers to a discretized, infinite
volume lattice. The Fourier transform in Eq. (103), how-
ever, must be done, in practice, on a finite lattice of volume
L3 and time extent T
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Giðx; 0Þ ¼
1

a4TL3

X
ρi¼2πni=L;ρ0¼2πn0=T

e−iρ·xGiðρÞ: ð106Þ

Thus, in order to compare the results with the two different
methods we must extrapolate the results obtained from
Gμν

V ðtÞ on a finite lattice to the infinite volume limit. We
have done the calculation in the two ways for different
values of Q and found very good agreement between them.
A further advantage of the x-space method is that we can
perform the calculation on the same finite volume used for
the nonperturbative calculation of the two-point function.
In order to further reduce lattice artefacts we may extend

the subtraction procedure of Eq. (92) by computing the
lattice and continuum quantities at OðαsÞ for arbitrary
quark masses and values of Q2. The relevant Feynman
diagrams are shown in Fig. 2 where the crosses represent
bilinear operators and the curly line the gluon propagator.

This will be implemented in the future study of
B → Dð�Þ decays for which discretization effects are much
larger than in the D → K decays considered in the
present study.

VII. LONGITUDINAL AND TRANSVERSE
SUSCEPTIBILITIES

In this Section we present a detailed description of the
nonperturbative, lattice QCD calculation of the longitudinal
and transverse susceptibilities. The information about the
gauge field configurations, quark masses, extrapolations to
the physical point and to the continuum, as well as about all
the relevant renormalization constants (RCs) used in this
work, are given in Appendix B. Using the ETMC gauge
ensembles of Table VIII, we have evaluated the following
two-point correlation functions:

C̃0þðtÞ ¼ Z̃2
V

Z
d3xh0jT½q̄1ðxÞγ0q2ðxÞq̄2ð0Þγ0q1ð0Þ�j0i;

C̃1−ðtÞ ¼ Z̃2
V
1

3

X3
j¼1

Z
d3xh0jT½q̄1ðxÞγjq2ðxÞq̄2ð0Þγjq1ð0Þ�j0i;

C̃0−ðtÞ ¼ Z̃2
A

Z
d3xh0jT½q̄1ðxÞγ0γ5q2ðxÞq̄2ð0Þγ0γ5q1ð0Þ�j0i;

C̃1þðtÞ ¼ Z̃2
A
1

3

X3
j¼1

Z
d3xh0jT½q̄1ðxÞγjγ5q2ðxÞq̄2ð0Þγjγ5q1ð0Þ�j0i;

C̃SðtÞ ¼ Z̃2
S

Z
d3xh0jT½q̄1ðxÞq2ðxÞq̄2ð0Þq1ð0Þ�j0i;

C̃PðtÞ ¼ Z̃2
P

Z
d3xh0jT½q̄1ðxÞγ5q2ðxÞq̄2ð0Þγ5q1ð0Þ�j0i; ð107Þ

where q1 and q2 are the two valence quarks with bare
masses aμ1 and aμ2 given in Table VIII, while the
multiplicative factors Z̃Γ (Γ ¼ fV; A; S; Pg) are the appro-
priate RC of the bilinear currents, which will be specified in
a while. We consider either opposite or equal values for the
Wilson parameters r1 and r2 of the two valence quarks,
namely either the case r1 ¼ −r2 or the case r1 ¼ r2. Since
our twisted-mass setup is at its maximal twist, in the case
r1 ¼ −r2 we have Z̃Γ ¼ fZA; ZV; ZP; ZSg, while in the
case r1 ¼ r2 we have Z̃Γ ¼ fZV; ZA; ZS; ZPg. Upon re-
normalization of the bilinear currents, the correlation
functions C̃jðtÞ with j ¼ f0þ; 1−; 0−; 1þ; S; Pg corre-
sponding to either opposite or equal values of the Wilson
parameters r1 and r2 differ only by effects of order Oða2Þ.
The statistical accuracy of the meson correlators (107)

can be significantly improved by adopting the one-end trick
stochastic method [62,63], which employs spatial stochas-
tic sources at a single time slice chosen randomly.

We start by considering the longitudinal and transverse
susceptibilities of both the vector and the axial-vector
currents evaluated at Q2 ¼ 0, namely χjð0Þ with
j ¼ f0þ; 1−; 0−; 1þg, defined in Eqs. (107) as either the
second or the fourth moments of the corresponding longi-
tudinal and transverse Euclidean correlators CjðtÞ. For each
gauge ensemble the values of χjð0Þ have been evaluated for
the various combinations of the two valence quark masses
m1 ¼ aμ1=ðZPaÞ andm2 ¼ aμ2=ðZPaÞ, chosen in the light,
strange and charm regions of Table VIII.

A. The c → s transition

In this work we limit ourselves to the quark mass
combinations aμ1 ¼ aμc and aμ2 ¼ aμs, which correspond
to the c → s transition. The simulated susceptibilities χjð0Þ
(j ¼ f0þ; 1−; 0−; 1þg) are smoothly interpolated at m1 ¼
aμc=ðZPaÞ ¼ mphys

c and m2 ¼ aμs=ðZPaÞ ¼ mphys
s , i.e., at
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the physical charm and strange quark masses given
in Table IX.
The results for the vector and axial longitudinal suscep-

tibilities are shown in Fig. 3 and those for the transverse
ones in Fig. 4 at either opposite or equal values of the
valence-quark Wilson parameters, which will be denoted
hereafter by ðr;−rÞ and ðr; rÞ. Differences among the
results corresponding to the two r-combinations are
expected to occur because of (twisted-mass) discretization
effects, but it can clearly be seen that such differences are
much larger in the longitudinal channels with respect to the
transverse cases.
Moreover, because of charge conservation, the suscep-

tibility χ0þð0Þ evaluated for m1 ¼ m2 should vanish in the
continuum limit. This is strongly violated for the ðr;−rÞ
combination, as shown in Table II for the degenerate
case m1 ¼ m2 ¼ mphys

c .
The above observations point toward the presence of

extra contributions coming from possible contact terms
related to the product of two currents, which appear in all

the correlators (107). The issue of contact terms, which
may affect the evaluation of the correlators for any lattice
formulation of QCD, has been throughout investigated
for our ETMC setup in Refs. [52,60] in the case of the
HVP contribution to the muon (g − 2), which as known
involves the product of two electromagnetic currents (i.e.,
the degenerate case m1 ¼ m2). The presence of contact
terms is also evident from the explicit calculation in lattice
perturbation theory of Sec. VI. A strategy to subtract
nonperturbatively the largest contamination due to these
contact terms will be discussed in the following.
The main outcome is that contact terms may not vanish

in the continuum limit due to the mixing of the product of
two currents with terms proportional to second derivatives
of the Dirac delta function. Therefore, a quick inspection of
Eqs. (107) reveals that the longitudinal susceptibilities
χ0þð0Þ and χ0−ð0Þ are affected by contact terms (being
second moments), while the transverse ones χ1−ð0Þ and
χ1þð0Þ are not (being fourth moments). A way to avoid
contact terms is to replace the longitudinal susceptibilities

FIG. 3. Vector and axial longitudinal susceptibilities χ0þð0Þ (upper panel) and χ0−ð0Þ (lower panel) corresponding to the ETMC gauge
ensembles for the c → s transition. The susceptibilities are obtained after a smooth interpolation atm1 ¼ mphys

c andm2 ¼ mphys
s given in

Table IX. The empty markers correspond to the choice of opposite values ðr;−rÞ of the valence-quark Wilson parameters, while the full
ones refer to the case of equal values ðr; rÞ.
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in Eqs. (107) with the corresponding expressions (65)
derived using WI identities at q2 ¼ 0, namely

χ0þð0Þ ¼
1

12
ðm1 −m2Þ2

Z
∞

0

dt0t04CSðt0Þ;

χ0−ð0Þ ¼
1

12
ðm1 þm2Þ2

Z
∞

0

dt0t04CPðt0Þ; ð108Þ

where CSðtÞ and CPðtÞ are given by Eqs. (107). In this way
the longitudinal susceptibilities are evaluated using the
fourth moments of the scalar and pseudoscalar correlators

and they become free from contact terms. Note that in the
degenerate casem1 ¼ m2 the susceptibility χ0þð0Þ given by
Eq. (108) vanishes at any finite value of the lattice spacing.
The results for the contact-free longitudinal susceptibil-

ities χ0þð0Þ and χ0−ð0Þ are shown in Fig. 5. The comparison
with the results of Fig. 3 indicates that the differences
between the two r-combinations are significantly reduced
when the effects of the contact terms are eliminated.
Moreover, for both r-combinations the relative impact of
the discretization effects on the contact-free longitudinal
susceptibilities appear to be similar to the one correspond-
ing to the case of the transverse susceptibilities shown in

FIG. 4. The same as in Fig. 3, but for the vector and axial transverse susceptibilities χ1−ð0Þ (upper panel) and χ1þð0Þ (lower panel).

TABLE II. Values of the vector longitudinal susceptibility χ0þð0Þ corresponding to either opposite (r;−r) or equal
(r, r) values of the valence-quark Wilson parameters in the degenerate case m1 ¼ m2 ¼ mphys

c . The three ETMC
gauge ensembles A30.32, B25.32 and D20.48 (see Table VIII) correspond to nearly the same pion mass and differ in
the values of the lattice spacing.

m1 ¼ m2 ¼ mphys
c A30.32 B25.32 D20.48

χ0þðr;−rÞ 2.55ð9Þ × 10−2 2.56ð4Þ × 10−2 2.58ð4Þ × 10−2

χ0þðr; rÞ 4.30ð10Þ × 10−4 4.30ð8Þ × 10−4 4.06ð4Þ × 10−4
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Fig. 4. For these reasons in this work we rely only on the
calculation of the longitudinal susceptibilities based on
Eqs. (108).
Even if Eqs. (108) are essentially free from contact

terms, it is, however, very interesting to investigate the
impact of the contact terms on the longitudinal suscep-
tibilities in Eqs. (107). In particular, from the observation
that χ0þð0Þ is much smaller for the combination ðr; rÞ, see
Table II, we deduce that in this case the contact terms are
much smaller than for the other combination ðr;−rÞ.
In general a sizeable reduction of the contact terms can

be achieved by using the subtraction procedure developed
in Sec. VI. The perturbative contribution, evaluated at order
Oðα0sÞ, can already explain the large impact of the contact
terms for the combination ðr;−rÞ. An even more effective
cancellation of the contact terms is obtained by using the
nonperturbative subtraction proposed below. A detailed,
general presentation of the numerical implementation of the
subtraction procedure will not be given here. We will
discuss it in detail in a forthcoming study of the b → c
transition, for which also discretization effects are much
larger than in the case of the c → sðlÞ decays considered in

the present work. We find that the subtraction turns out to
be beneficial also for reducing the discretization effects,
that for b → c are much larger, for both r-combinations.
Here we anticipate that the perturbative contribution to the
susceptibility χ0þð0Þ, evaluated at order Oðα0sÞ in the
degenerate case m1 ¼ m2 ¼ mphys

c , turns out to vanish
for the combination ðr; rÞ, while in the case ðr;−rÞ it is
equal to ≈0.016 for the three ensembles A30.32, B25.32
and D20.48, see Appendix B, which represents ≈60%
of the corresponding nonperturbative value (≈0.026)
shown in Table II.
An alternative, rather effective, way to get rid of the

contact terms in the susceptibility χ0þð0Þ is to subtract the
contact terms evaluated nonperturbatively at m1 ¼ m2,
more precisely by using the formula

χ̄0þð0;m1; m2Þ≡ χ0þð0;m1; m2Þ

−
χ0þð0;m1; m1Þ þ χ0þð0;m2; m2Þ

2
;

ð109Þ

FIG. 5. The same as in Fig. 3, but using the definitions (108) based on the use of the WI. The vertical scales are kept the same as in
Fig. 3 to show the impressive improvement obtained by the use of correlations based on the fourth moments.
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obtaining in this way that χ̄0þð0;m1 ¼ m2Þ ¼ 0 as in the
case of the WI-based formula (108).
In Fig. 6 the results obtained using the nonperturbative

subtraction in Eq. (109), upper panel, are compared with
the ones based on the WI identity (108), lower panel,
already given in the upper panel of Fig. 5. We give the two
plots in the same figure, using the same scale, in order to
make the comparison between the two determinations
easier. The discretization effects appear to be different
within the two procedures. In particular, the subtraction
procedure leads to quite small cutoff effects in the case of
the ðr; rÞ combination. After Eq. (112) below it will be
shown that the continuum limits of the data for χ0þð0Þ
based on the two possible different determinations agree
very nicely.
Since the subtraction procedure given in Eq. (109) is not

applicable to the axial longitudinal susceptibility χ0−ð0Þ, in
what follows we make use of the longitudinal susceptibil-
ities based on the Ward identities and shown in Fig. 7. Note
that for both r-combinations the impact of the discretization
effects on the WI-based longitudinal susceptibilities appear

to be similar to the one corresponding to the case of the
transverse susceptibilities shown in Fig. 4.
The transverse and longitudinal susceptibilities shown in

Fig. 4 and 5 exhibit a quite mild dependence on the light-
quark mass mud, since the latter comes entirely from the
light sea quarks. Therefore, we fit the lattice data separately
for each of the two r-combinations by adopting a simple
linear ansatz in the light-quark mass mud as well as in the
values of the squared lattice spacing a2, since in our lattice
setup the susceptibilities are OðaÞ-improved, namely

χjð0;mud; a2Þ ¼ χjð0Þ½1þ A1ðmud −mphys
ud Þ þD1a2�;

ð110Þ

where, for sake of simplicity, χjð0Þ stands for

χjð0;mphys
ud ; 0Þ and we have not written explicitly depend-

ence of the coefficients A1 and D1 on the specific channel j
(j ¼ f0þ; 1−; 0−; 1þg). The quality of the various fits is
always very good (χ2=ðd:o:f:Þ≲ 0.6) and our findings for
the extrapolated quantities χjð0Þ are collected in Table III.

FIG. 6. Vector longitudinal susceptibility χ̄0þð0Þ obtained using the subtraction procedure given by Eq. (109) (upper panel) and χ0þð0Þ
based on the Ward identity (108) (lower panel).
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Averaging over all the eight branches [64] of our
bootstrap analysis, see also Appendix B, and over the
results corresponding separately to the two r-combinations
our final results for the longitudinal and transverse sus-
ceptibilities relevant for the c → s transition are

χ0þð0Þ ¼ 9.29ð64Þ × 10−3;

χ1−ð0Þ ¼ 7.88ð41Þ × 10−3 GeV−2;

χ0−ð0Þ ¼ 2.48ð15Þ × 10−2;

χ1þð0Þ ¼ 4.89ð29Þ × 10−3 GeV−2; ð111Þ

where the errors include both the statistical uncertainties
related to the Monte Carlo simulations and the systematic
errors, which are mainly dominated by the uncertainties
due to discretization effects.

B. Subtraction of the ground-state contribution

The susceptibilities χf0þ;1−;0−;1þgð0Þ obtained in the
previous Section represent upper limits to the dispersive
bounds on the form factors relevant in the semileptonic
D → KðK�Þlνl decays. Such limits can be improved by
removing the contributions of the bound states from the
Euclidean correlators CjðtÞ for j ¼ f0þ; 1−; 0−; 1þg,
Eqs. (53). In particular, according to the Particle Data
Group (PDG) [37] the meson states D�

s0, D
�
s , Ds and Ds1,

which are relevant for the channels j ¼ 0þ; 1−; 0−; 1þ, have

FIG. 7. Vector and axial longitudinal susceptibilities χ0þð0Þ (upper panel) and χ0−ð0Þ (lower panel) given, respectively, by Eqs. (108),
based on the use of the Ward identities.

TABLE III. Values of the longitudinal and transverse suscep-
tibilities χjð0Þ with j ¼ f0þ; 1−; 0−; 1þg relevant for the c → s
transition averaged over the 1st − 4th and 5th − 8th branches of our
bootstrap analysis after extrapolation to the physical pion point
and to the continuum limit of the lattice data corresponding
separately to the two r-combinations.

χjð0Þ
1st − 4th branches 5th − 8th branches

ðr;−rÞ ðr; rÞ ðr;−rÞ ðr; rÞ
χ0þð0Þ × 103 9.89 (65) 9.50 (17) 8.47 (30) 9.31 (15)
χ1−ð0Þ × 103 ðGeV−2Þ 7.52 (40) 8.10 (29) 7.72 (27) 8.17 (25)
χ0−ð0Þ × 102 2.46 (4) 2.66 (19) 2.47 (3) 2.35 (9)
χ1þð0Þ × 103 ðGeV−2Þ 5.11 (13) 4.57 (22) 5.15 (11) 4.71 (13)
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masses below the threshold of the production of a pair ofD
and KðK�Þ mesons. Thus, their contribution to the sus-
ceptibilities χf0þ;1−;0−;1þgð0Þ can be removed in order to
improve the dispersive bounds on the semileptonic D →
KðK�Þlνl decays. In this Section we describe such a
subtraction.
As well known, at large time distances one has

CjðtÞ !
t≫a;ðT−tÞ≫a

Zj

2Mj
½e−Mjt þ e−MjðT−tÞ�; ð112Þ

whereMj is the mass of ground-state meson Hj
12 and Zj is

the matrix element Zj ≡ jhHj
12jq̄1Γjq2j0ij2 with Γj ¼

fγ0; γ⃗; γ0γ5; γ⃗γ5; 1; γ5g for j ¼ f0þ; 1−; 0−; 1þ; S; Pg.
Thus, the ground-state mass Mj and the matrix element

Zj can be extracted from the exponential fit given in
the rhs of Eq. (112) performed in the temporal region
t ¼ ½tmin; tmax�, where the effective mass Meff

j ðtÞ

Meff
j ðtÞ≡ log

�
Cjðt − 1Þ
CjðtÞ

�
ð113Þ

may exhibit a plateau. The temporal behavior of the
effective masses Meff

j ðtÞ is shown in Fig. 8 in two
illustrative cases. Since we use the WI in Eqs. (65) at
q2 ¼ 0 for evaluating the longitudinal susceptibilities, the
effective massMeff

j ðtÞ for j ¼ 0þ and j ¼ 0− correspond to
the scalar and pseudoscalar correlators given by Eqs. (108).
At large time distances the quality of the plateaux is good

for j ¼ 1− and j ¼ 0−, while it is definitely poor in the
cases j ¼ 0þ and j ¼ 1þ. The latter ones are likely to be
plagued by the effects of parity breaking (mixing with
j ¼ 0− and j ¼ 1−) present in our lattice formulation. We
stress that we do not useMeff

j ðtÞ to extract the ground-state
masses Mj, but we perform the exponential fit given in the
rhs of Eq. (112) in the temporal regions shown in Table IV
for the various ETMC ensembles. The quality of the

FIG. 8. The temporal behavior of the effective mass (113) for the correlators CjðtÞ with j ¼ f0þ; 1−; 0−; 1þg in the case of the
ensembles B35.32 (upper panel) and D20.48 (lower panel). Due to the use of the WT identities the effective massMeff

j ðtÞ for j ¼ 0þ and
j ¼ 0− correspond to the scalar and pseudoscalar correlators given by Eqs. (107). The (bare) quark masses and the combinations of the
Wilson r-parameters are specified in the insets and they roughly correspond to the case m1 ≈mphys

c and m2 ≈mphys
s .
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exponential fits turns out to be always acceptable
(χ2=d:o:f:≲ 0.5).
The values of the ground-state masses, interpolated at

m1 ¼ mphys
c andm2 ¼ mphys

s , are shown in Fig. 9 in the case
of the channels 0þ and 1−. Then, we extrapolate the lattice
data to the physical pion point and to the continuum limit
using the fitting function

Mjðmud;a2Þ¼Mj½1þAM
1 ðmud−mphys

ud ÞþDM
1 a

2�; ð114Þ

where, for sake of simplicity, Mj stands for Mjðmphys
ud ; 0Þ.

Our results for Mj are collected in Table V.

FIG. 9. Ground-state masses of the channels 0þ (upper panel) and 1− (lower panel) extracted from the exponential fit (112) and
interpolated atm1 ¼ mphys

c andm2 ¼ mphys
s . The black solid lines correspond to the experimental masses of the mesonsD�

s0 andD
�
s from

the PDG [37], namely: Mexp :
D�

s0
¼ 2.3178ð5Þ GeV and Mexp :

D�
s

¼ 2.1122ð4Þ GeV, respectively. The shaded areas correspond to the

extrapolated values of the D� masses to the physical pion point and to the continuum limit, averaged over all the eight branches of the
analysis (see Table V).

TABLE IV. Temporal regions chosen for performing the ex-
ponential fit of the rhs of Eq. (112) for the various ETMC
ensembles. The values of tmin=a for the different values of the
gauge coupling β correspond to the same value of tmin in physical
units, namely tmin ≃ 1.4 fm.

β V=a4 ½tmin=a; tmax=a�
1.90 243 × 48 [16, 22]

323 × 64 [16, 22]

1.95 243 × 48 [17, 22]
323 × 64 [17, 22]

2.10 483 × 96 [22, 30]
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Averaging over all the eight branches of our bootstrap
analysis and over the results corresponding separately to
the two r-combinations our results for the ground-state
masses relevant for the c → s transition are

M0þð0Þ ¼ 2.413ð65Þ GeV; ½Mexp:
D�

s0
¼ 2.3178ð5Þ GeV�;

M1−ð0Þ ¼ 2.099ð28Þ GeV; ½Mexp:
D�

s
¼ 2.1122ð4Þ GeV�;

M0−ð0Þ ¼ 1.949ð29Þ GeV; ½Mexp:
Ds

¼ 1.96834ð7Þ GeV�;
M1þð0Þ ¼ 2.40ð13Þ GeV; ½Mexp:

Ds1
¼ 2.4595ð6Þ GeV�;

ð115Þ

and within the uncertainties they compare nicely with the
experimental results given by the PDG [37].
We can now proceed to the evaluation of the ground-state

contributions to the susceptibilities, χðgsÞj ð0Þ, using the
results of the exponential fit (112), and to their subtraction
from the global susceptibilities χjð0Þ, namely

χðsubÞj ð0Þ ¼ χjð0Þ − χðgsÞj ð0Þ for j ¼ f0þ; 1−; 0−; 1þg:
ð116Þ

By repeating the analysis made in Sec. VII A for the global
susceptibilities χjð0Þ in the case of the subtracted ones

defined in Eq. (116), we obtain for the χðsubÞj ð0Þ (after
extrapolation to the physical pion point and to the con-
tinuum limit) the following values:

χðsubÞ
0þ ð0Þ ¼ 4.33ð1.33Þ × 10−3;

χðsubÞ1− ð0Þ ¼ 4.19ð36Þ × 10−3 GeV−2;

χðsubÞ0− ð0Þ ¼ 9.42ð91Þ × 10−3;

χðsubÞ
1þ ð0Þ ¼ 3.74ð56Þ × 10−3 GeV−2: ð117Þ

As a check of our subtraction procedure, we consider

the ground-state contribution to χðgsÞ1− ð0Þ and to χðgsÞ0− ð0Þ
given by

χðgsÞ1− ð0Þ ¼ f21−
M4

1−
; χðgsÞ0− ð0Þ ¼ f20−

M2
0−
; ð118Þ

where f1− and f0− are the (leptonic) decay constants
of the D�

s and Ds mesons, respectively. Using the
ETMC results fD�

s
¼ 268.8ð6.6Þ MeV from Ref. [65]

and fDs
¼ 247.2ð4.1Þ MeV from Ref. [66] as well as

the experimental values of the D�
s and Ds meson masses

[see Eqs. (115)], we get χðgsÞ1− ¼ 3.63ð19Þ × 10−2 GeV−2

and χðgsÞ0− ¼ 1.58ð5Þ × 10−2. By subtracting the above
values, which we stress have been evaluated using results
for the decay constants from other lattice calculations
and experimental values for the meson masses, from

the corresponding results (111) one obtains χðsubÞ1− ¼
4.25ð45Þ × 10−3 GeV−2 and χðsubÞ0− ¼ 9.0ð1.5Þ × 10−3 in
very good agreement with the results (117), which were
obtained, instead, by using only data extracted from our
simulations.
Equations (117) represent our nonperturbative results for

the vector and axial susceptibilities relevant for the semi-
leptonic D → KðK�Þlνl decays. We are planning to study
the case q2 ≠ 0 in a future study of the FFs in B → Dð�Þ
semileptonic decays where there is a hope that the strength
of the bounds may increase as q2 approaches this region as
suggested by Eqs. (16)–(19) of Ref. [10].

VIII. THE PROTOTYPE: EXTRACTION OF THE
FORM FACTORS FOR D → K DECAYS

Together with Sec. VII, this is the central Section of our
work where we show that from the knowledge of the form
factors in the large q2 region and of the susceptibilities it is
possible to determine the form factors with good precision,
without making any assumption on their functional depend-
ence on the squared momentum transfer q2. As an illus-
tration of the method we have used the recent results
calculation of the form factors in D → K decays from
Ref. [47]. In the next Sections we consider two analyses. In
the first one we adopt the results of Ref. [47] already
extrapolated to the physical point and to the continuum
limit. In the second analysis we make use directly of the
results obtained at finite values of the lattice spacing and for
unphysical pion masses.

A. Extraction of the form factors in the continuum

The values of f0ðq2i Þ and fþðq2i Þ with the corresponding
uncertainties, extrapolated at several values of q2i to the
physical point and to the continuum limit in Ref. [47], are
given in the second and third columns of Table VI.
On the same set of configurations we have computed the

two-point functions of the relevant vector and scalar
operators and extracted the longitudinal and transverse
susceptibilities, extrapolated to the physical point and to
the continuum limit. The longitudinal and transverse

TABLE V. Values of the ground-state masses Mjð0Þ with
j ¼ f0þ; 1−; 0−; 1þg relevant for the c → s transition averaged
over the 1st − 4th and 5th − 8th branches of our bootstrap analysis
after extrapolation to the physical pion point and to the con-
tinuum limit of the lattice data corresponding separately to the
two r-combinations.

Mj

1st − 4th branches 5th − 8th branches

ðr;−rÞ ðr; rÞ ðr;−rÞ ðr; rÞ
M0þ (GeV) 2.410 (62) 2.445 (48) 2.380 (76) 2.416 (53)
M1− (GeV) 2.104 (27) 2.106 (27) 2.095 (28) 2.092 (26)
M0− (GeV) 1.959 (29) 1.952 (29) 1.946 (25) 1.938 (26)
M1þ (GeV) 2.43 (15) 2.38 (11) 2.39 (15) 2.40 (11)
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susceptibilities, χ0þ and χ1− , have been evaluated in
Sec. VII, according to the strategy described in Secs. III
and IV. Their numerical values and uncertainties are

χ0þð0Þ ¼ 0.0043ð13Þ; χ1−ð0Þ ¼ 0.00419ð36Þ GeV−2:

ð119Þ

As already stated in the introduction one of the main
reasons to implement the dispersive bounds is that in the
case of B decays (B → Dð�Þ and B → π), in most of
present lattice simulations, one is able to access only the
kinematical region close to q2max where the final meson
has a small momentum. The dispersive bounds instead,
following the method discussed in Secs. III and IV,
allow us to determine with good accuracy also unacces-
sible points, close to the minimal q2, i.e., q2 ∼m2

l ∼ 0,
without assuming any specific functional form for the
q2-dependence of the FFs. Bearing in mind possible
differences and further difficulties, in order to check
the validity of this strategy, we have used only the lattice
QCD points for D → K decays at high-q2 (in boldface in
the Table VI). We have implemented our unitarity method
and then compared our results with the direct lattice
computations in the region at smaller q2 (see the first five
rows of Table VI).
Using the average values and errors given in Ref. [47] we

have first applied the procedure B) given in the Sec. VA.
Using 20000 bootstrap events we observe that only a
fraction of the events equal to ∼15% is rejected by the

Δ0ðþÞ
2 ≥ 0 condition [see Eq. (46)], while almost all the

survived ones respect the kinematical constraint fþð0Þ ¼
f0ð0Þ at q2 ¼ 0. In Fig. 10 we show our results. The orange
band represents the extrapolated vector FF fþðq2Þ, while
the cyan one corresponds to the scalar FF f0ðq2Þ. The three
red points at the largest values of q2, for each form factor,
are the bolded values in Table VI used as inputs for our

method, while the green and blue ones are the unbolded
values shown for comparison.
Our unitarity results shown in Table VI and Fig. 10

exhibit an excellent agreement with the lattice QCD values
from Ref. [47] and also a quite similar precision in the
whole kinematical range. In particular, our value of the
form factors at q2 ¼ 0 is

fþð0Þ ¼ f0ð0Þ ¼ 0.772ð30Þ; ð120Þ

which agrees very nicely with the corresponding result
0.765(31) from Ref. [47], having, we stress, a comparable
error even if only three points at large q2 have been used
as input.

B. Extraction of the form factors
from each ensemble

Since we have access to the original data of Ref. [47], we
can redo the analysis of that paper having computed in
Sec. VII A on the same ensembles also the susceptibilities.
The goal is now to implement the matrix method directly on
the lattice data points bootstrap by bootstrap and make a
totally model-independent extraction of the form factors
following the procedure A of Sec. VA.
As in Ref. [47], our analysis is divided in eight branches

which differ by the choice of the scaling variable, the fitting
procedures and the choice of the method used to determine
nonperturbatively the values of the mass renormalization
constant (see Appendix B). For every branch we generate
100 bootstrap events in order to take into account the
statistical uncertainties. We keep separate all the branches
until the continuum and physical pion point is reached.

FIG. 10. The D → K form factors fþðq2Þ (orange band) and
f0ðq2Þ (cyan band) obtained in this work and in Ref. [47] (dots
and diamonds). For each of the form factors, the three red points
at the largest values of q2 have been used as inputs for our study,
while the five points at lower q2 for each band are not. The latter
ones are plotted in order to show the agreement between the
lattice QCD data of Ref. [47] and the results for the FFs computed
with our method.

TABLE VI. Lattice determinations of the FFs entering theD →
Klν decay extrapolated to the physical pion point and to the
continuum limit in Ref. [47]. The bold values are those adopted as
inputs for our study. The fourth and fifth columns contain the
results obtained in this work by using the dispersive matrix
method. For this transition the kinematical range is 0≤q2≤ t−¼
ðMD−MKÞ2≃1.88GeV2.

q2 (GeV2) fþðq2ÞjLQCD f0ðq2ÞjLQCD fþðq2Þjunit f0ðq2Þjunit
0.0 0.765(31) 0.765(31) 0.772(30) 0.772(30)
0.2692 0.815(31) 0.792(28) 0.822(29) 0.800(26)
0.5385 0.872(31) 0.820(25) 0.878(30) 0.826(25)
0.8077 0.937(32) 0.849(23) 0.942(31) 0.853(21)
1.0769 1.013(34) 0.879(21) 1.015(34) 0.882(20)
1.3461 1.102ð38Þ 0.911ð19Þ 1.102(38) 0.911(19)
1.6154 1.208ð44Þ 0.944ð19Þ 1.208(44) 0.944(19)
1.8846 1.336ð54Þ 0.979ð19Þ 1.336(54) 0.979(19)
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There we combine the bootstrap events and also the
branches using Eq. (28) of Ref. [64]. As extensively
described in Ref. [47], the lattice data obtained using the
three-point correlation functions with the insertion of
vector and scalar densities are affected by non-negligible
hypercubic effects, which break Lorentz symmetry. The
latter ones can be sensibly reduced following the strategy of
Ref. [47]. An example of this procedure is shown in Fig. 11.
To implement this procedure, however, some functional
form for subtracting hypercubic effects, and consequently
some model dependence, was introduced.
For the D → K decay the lattice data of Ref. [47]

(already interpolated to the physical charm and strange
quark masses) cover indeed all the kinematical region
in q2. The idea is to mimic what happens in lattice
calculations of B decays where all the lattice data are
concentrated at q2 ∼ q2max. Thus, we have chosen to use,
for each form factor, only two points at large values of q2

corresponding to the D-meson at rest, shown as red
markers in Fig. 12. The great advantage of studying the
D → K decay is that we can compare our results obtained
with the unitarity procedure to the ones obtained from a

direct calculation of the form factors. We applied the
matrix method described in the previous Sections to the
determination of the FFS using 31 bins in q2 in the range
½−0.5 GeV2; q2max�. The susceptibilities χ0þ;1− are those
computed nonperturbatively for each ensemble in
Sec. VII. They have been obtained by eliminating the
one particle state both for χ0þ and χ1− . Thus, the
kinematical functions ϕ0ðþÞ have been modified accord-
ingly to Eq. (42) by including, respectively, the D�

s and
the D�

0ð2400Þ poles. Their masses have been calculated
on the same ensembles in Sec. VII B (see Fig. 9).
To illustrate the procedure we show in Fig. 12 the

comparison between our predictions for the allowed bands
of the form factors, obtained by using as inputs only the
points denoted as red markers at large q2, and the rest of
the lattice points that are not used as input in our analysis in
the case of the ETMC ensembles B25.32 and D30.48 (see
Appendix B). The agreement is excellent. These results
suggest that it will be possible to obtain quite precise
determinations of the form factors for B decays by
combining form factors at large q2 with the nonperturbative
calculation of the susceptibilities.

FIG. 11. The form factors fþðq2Þ (upper panels) and f0ðq2Þ (lower panels) as a function of q2 before (left panels) and after (right
panels) the subtraction of the hypercubic terms for the ensemble B25.32. Different markers represent different values of the final state
meson momentum. By Lorentz symmetry the extracted form factors should only depend on q2. This is not the case and an extra
dependence on the value of the meson momentum is clearly visible beyond the statistical uncertainties. After the subtraction of the
hypercubic terms this extra dependence is sensibly reduced. The form factors are already interpolated to the physical charm and strange
quark masses.
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We now combine the results for all the ensembles and
perform the extrapolation to the continuum limit and to the
physical pion point adopting the following ansatz:

fðq2; ml; a2Þ ¼ c0½1þ AKξl log ξl þ c1ξl þ c2ξ2l

þ c3a2 þ c4ξla2�; ð121Þ

where

ξl ¼ 2Bml

16π2F 2
; ð122Þ

being ml the renormalized light-quark mass, and B and F
the SUð2Þ low-energy constants entering the chiral
Lagrangian at leading order, whose values were determined
in Ref. [64]. In the fitting procedure the parameters c0, c1,
c2, c3 and c4, which depend on q2 and on the form factor,
are treated as free independent parameters for each bin in

q2, and the correlations among the different bins are
automatically taken into account by generating events
within the jackknife/bootstrap procedure. Differently, the
parameter AK is the coefficient of the chiral-log. We have
checked that it can be safely fixed at the value AK ¼ 1=2
predicted by the hard-pion SUð2Þ chiral perturbation theory
at q2 ¼ 0 (see Ref. [47]). For each value of q2 the quality
of the fit (121) with a total of 5 free parameters turns out
to be quite good being χ2=d:o:f: ∼ 1. We stress that no
assumption has been made concerning the q2-dependence
of the parameters appearing in Eq. (121).
At this point, we recombine the bootstrap events and

the branches of the analysis to obtain the final results. In
Fig. 13 we present the final bands for the vector and scalar
form factors, extrapolated to the physical value of the pion
mass and to the continuum limit. The bands agree with the
results of Ref. [47] and exhibit a good precision. This
demonstrates that the dispersive matrix method allows to
determine the semileptonic form factors in their whole
kinematical range with a quality comparable to the one
obtained by the direct calculations, even if only a quite
limited number of input lattice data for each FF (and the
nonperturbative susceptibilities) are used.3

In Table VII we provide explicitly our final results for the
vector and scalar form factors, computed at the eight values
of q2 adopted in Ref. [47], including their total uncertain-
ties. The latter ones take into account: (i) statistical
Monte Carlo errors of the simulations and their propagation
in the fitting procedure; (ii) the chiral extrapolation,
evaluated by combining the main results with the ones
obtained by putting c2 ¼ 0 in Eq. (121); (iii) the

FIG. 12. The D → K form factors fþðq2Þ (orange band) and
f0ðq2Þ (cyan band) obtained in this work and in Ref. [47] (dots
and diamonds) in the case of the ETMC ensembles B25.32 (upper
panel) and D30.48 (lower panel). The red markers (two points at
large values of q2 for each form factor) have been used as inputs
for our study, while the other ones are not. The lattice data of
Ref. [47] are interpolated to the physical values of the charm and
strange quark masses determined in Ref. [64].

FIG. 13. Momentum dependence of the form factors fþðq2Þ
(orange band) and f0ðq2Þ (cyan band), extrapolated to the
physical point and to the continuum limit, obtained using the
dispersive matrix method of this work. The markers represent
the lattice results computed in Ref. [47].

3We have explicitly checked that the results at q2 ¼ 0 shown in
Fig. 12 are stable against the addition of (red) points provided
they are taken in the large q2 region.
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discretization effects, calculated by combining the main
results with the ones obtained assuming c4 ¼ 0 in
Eq. (121). Our results shown in Table VII are consistent
within the uncertainties with the lattice data of Ref. [47].
To conclude we recall the advantages of the present

method. The first point is that the determination of the form
factors at values of q2 where there isn’t a direct lattice
calculation does not assume any functional dependence of
the FF on the momentum transfer. Indeed, the analysis at
each bin in q2 is independent of the others. In addition, the
results obtained by using only two points in q2 for each FF
and the susceptibilities are of comparable precision with the
direct lattice calculations in the full physical range of values
of q2 (see Fig. 12).We are confident that this will remain true
for B → Dð�Þ or B → π decays, where it is much harder, if
not impossible, to compute reliably the FFs at small q2. Last
but not least, in this analysis we used nonperturbative
susceptibilities. In the future, we will investigate the use
of susceptibilities at nonzero momentum.

IX. CONCLUSIONS

In this work we have presented an extended study of two-
and three-point correlation functions on the lattice, that
together with known dispersive techniques [1–10] allows to
constrain the lattice predictions for the form factors relevant
to exclusive semileptonic decays. The constraints on the
form factors have been implemented by using two-point
functions computed in a nonperturbative way. Contrary to
the perturbative calculation of the two-point function, this
approach will allow in the future to use the unitarity
constraints also at nonzero momentum. We also introduced
a straightforward, and simple to implement, treatment of the
uncertainties. This includes the cases where kinematical
constraints between form factors are present.
We have then applied the new method to the analysis of

the lattice data of the semileptonic D → K decays obtained

in Ref. [47]. We have used this example as a training ground
for the method and we have shown that it is possible
determine the form factors, in a model-independent way,
in the region at low q2 not accessible directly to lattice
calculations, as it is the case of exclusive semileptonic
B-meson decays. This was achieved by comparing the
results of the method with the direct calculation of the form
factors along the full kinematical range and allowed us to test
the validity of the approach. The application to exclusive
semileptonic B-meson decays will be presented elsewhere.
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APPENDIX A: DETERMINANTS AND
INEQUALITIES

In this Appendix we give some formulas which are
useful to simplify the numerical calculation of the deter-
minants of the matrixM and of the minorsMði;jÞ discussed
in Sec. III C. We consider explicitly the case of real
matrices only, because in practice this is the standard case.
The generalization to complex matrices is straightforward.
With respect to Sec. III C we make use of the explicit
expressions (37) of the inner products.
Let us start from the calculation of the determinant of

the N × N matrix corresponding to the inner products
hgti jgtji ¼ 1=ð1 − zizjÞ, where zi ≡ zðti; t−Þ are assumed
to be real numbers satisfying the conditions zi ≠ zj and
jzij < 1 with i; j ¼ 1; 2;…N. Thus, we want to calculate
the determinant of the following matrix:

G≡

0
BBBBB@

1
1−z2

1

1
1−z1z2

… 1
1−z1zN

1
1−z2z1

1
1−z2

2

… 1
1−z2zN

… … … …
1

1−zNz1
1

1−zNz2
… 1

1−z2N

1
CCCCCA: ðA1Þ

A simple evaluation by induction shows that

GNðz1;z2;…zNÞ≡det½G�¼ 1Q
N
i¼1ð1−z2i Þ

� YN
i<j¼1

zi−zj
1−zizj

�2

;

ðA2Þ

TABLE VII. Final results of this work for the vector and scalar
form factors extrapolated to the physical pion mass and to the
continuum limit (third and fifth columns) evaluated at the eight
values of q2 adopted in Ref. [47]. The errors correspond to the
sum in quadrature of the uncertainties related to statistical, chiral
extrapolation and discretization effects (see text). For comparison
the results of Refs. [47] are shown in the second and fourth
columns.

q2ðGeV2Þ fþðq2ÞjLQCD fþðq2Þ f0ðq2ÞjLQCD f0ðq2Þ
0.0 0.765(31) 0.724(43) 0.765(31) 0.724(43)
0.2692 0.815(31) 0.790(40) 0.792(28) 0.754(37)
0.5385 0.872(31) 0.866(40) 0.820(25) 0.790(33)
0.8077 0.937(32) 0.953(40) 0.849(23) 0.831(31)
1.0769 1.013(34) 1.050(40) 0.879(21) 0.876(29)
1.3461 1.102(38) 1.155(42) 0.911(19) 0.924(24)
1.6154 1.208(44) 1.265(48) 0.944(19) 0.965(21)
1.8846 1.336(54) 1.384(58) 0.979(19) 1.005(23)
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where in the case N ¼ 1 it is understood thatQ
N
i<j¼1ð…Þ → 1.
The matrix of which we want to calculate the determi-

nant is given by Eq. (38) of Sec. III C, namely it has
the form

M≡

0
BBBBBBBBBB@

χ ϕf ϕ1f1 ϕ2f2 … ϕNfN
ϕf 1

1−z2
0

1
1−z0z1

1
1−z0z2

… 1
1−z0zN

ϕ1f1 1
1−z1z0

1
1−z2

1

1
1−z1z2

… 1
1−z1zN

ϕ2f2 1
1−z2z0

1
1−z2z1

1
1−z2

2

… 1
1−z2zN

… … … … … …

ϕNfN 1
1−zNz0

1
1−zNz1

1
1−zNz2

… 1
1−z2N

1
CCCCCCCCCCA
;

ðA3Þ
where χ is the susceptibility that bounds the inner product
hϕfjϕfi and, we remind, ϕifi corresponds to the scalar
product hϕfjgtii for the known values of the form factor
fi ¼ fðziÞ, whereas ϕf is the scalar product hϕfjgti of the
form factor fðzðtÞÞ that we want to constrain. In order to
use a compact notation let us indicate the values of the
conformal variable z and of ϕðzÞfðzÞ as z0 and ϕ0f0,
respectively, so that in what follow the index i may run
from 0 to N.
A simple evaluation by induction, as before, yields

det½M� ¼ GðNþ1Þðz0; z1; z2;…zNÞ

×

�
χ −

XN
i¼0

ϕ2
i f

2
i ð1 − z2i Þ

� YN
m≠i¼0

1 − zizm
zi − zm

�2

þ 2
XN
i<j¼0

ϕifiϕjfj
ð1 − z2i Þð1 − z2jÞð1 − zizjÞ

ðzi − zjÞ2

×

� YN
m≠ði;jÞ¼0

1 − zizm
zi − zm

1 − zjzm
zj − zm

��
; ðA4Þ

where

GðNþ1Þðz; z1; z2;…zNÞ

¼ 1

1 − z2

�YN
i¼1

z − zi
1 − zzi

�2

GðNÞðz1; z2;…zNÞ: ðA5Þ

The unitarity bounds for the (unknown) form factor f0
result from the condition

det½M� ¼ αϕ2
0½−f20 þ 2β̄f0 − β̄2 þ γ̄� ≥ 0; ðA6Þ

which implies4

β̄ −
ffiffiffī
γ

p
≤ f0 ≤ β̄ þ ffiffiffī

γ
p

; ðA7Þ

where (after some algebraic manipulations)

α≡GðNÞðz1; z2;…zNÞ ≥ 0; ðA8Þ

β̄ ¼ 1

ϕ0d0

XN
j¼1

fjϕjdj
1 − z2j
z0 − zj

; ðA9Þ

γ̄ ¼ 1

1 − z20

1

ϕ2
0d

2
0

ðχ − χ̄Þ; ðA10Þ

χ̄ ¼
XN
i;j¼1

fifjϕidiϕjdj
ð1 − z2i Þð1 − z2jÞ

1 − zizj
; ðA11Þ

with

d0 ≡
YN
m¼1

1 − z0zm
z0 − zm

; ðA12Þ

dj ≡
YN

m≠j¼1

1 − zjzm
zj − zm

: ðA13Þ

Unitarity is satisfied only when γ̄ ≥ 0, which implies
χ ≥ χ̄. Note that d0 and ϕ0 depend on z0, while the
quantities dj and ϕj with j ¼ 1; 2;…N do not. Thus,
the values of β̄ and γ̄ depend on z0, while the value of χ̄ does
not depend on z0 and it depends only on the set of input
data. Consequently, the unitarity condition χ ≥ χ̄ does not
depend on z0.
Note that:
(i) When z0 goes toward one of the known values zj,

let us say z0 → zj�, one has d0 → dj� ð1 − z2j�Þ=
ðz0 − zj� Þ½1þOðz0 − zj� Þ�, so that one gets (as
expected)

β̄ → fj� ; ðA14Þ

γ̄ → 0: ðA15Þ

(ii) By expanding the factor 1=ð1 − zizjÞ in Eq. (A11)
for jzij < 1 one has

χ̄ ¼
X∞
k¼0

�XN
i¼1

fiϕidið1 − z2i Þzki
�2
; ðA16Þ

which implies χ̄ ≥ 0.
(iii) Since in terms of the squared 4-momentum transfer t

the variable z0 is given by

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t−

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t−

p ; ðA17Þ
4The relations of the coefficients β̄ and γ̄ with β and γ, defined

in Eq. (45), are: β̄ ¼ −β=ðαϕ0Þ and γ̄ ¼ ðβ2 þ αγÞ=ðαϕ0Þ2 ¼
Δ1Δ2=ðαϕ0Þ2.
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the annihilation threshold t ¼ tþ corresponds to
z0 ¼ −1, while t → −∞ corresponds to z0 ¼ 1.
From Eq. (A10) it follows that unitarity may have
no predictive power (i.e., γ̄ → ∞) both at the
annihilation threshold tþ and for t → −∞.

APPENDIX B: SIMULATION DETAILS

The gauge ensembles used in this work have been
generated by ETMC with Nf ¼ 2þ 1þ 1 dynamical
quarks, which include in the sea, besides two light mass-
degenerate quarks (mu ¼ md ¼ mud), also the strange and
the charm quarks with masses close to their physical values
[48,49]. The ensembles are the same adopted to determine
the up, down, strange and charm quark masses in Ref. [64]
and the bottom quark mass in Ref. [67].
In the ETMC setup the Iwasaki action [68] for the gluons

and the Wilson maximally twisted-mass action [56–58] for
the sea quarks are employed. Three values of the inverse
bare lattice coupling β and different lattice volumes are
considered, as it is shown in Table VIII, where the number
of configurations analyzed (Ncfg) corresponds to a sepa-
ration of 20 trajectories.
At each lattice spacing different values of the light sea

quark mass are considered, and the light valence and sea
quark masses are always taken to be degenerate, i.e.,
msea

ud ¼ mval
ud ¼ mud. In order to avoid the mixing of strange

and charm quarks in the valence sector we adopt a
nonunitary set up in which the valence strange and charm
quarks are regularized as Osterwalder-Seiler fermions [69],
while the valence up and down quarks have the same action
of the sea. Working at maximal twist such a setup guarantees
an automatic OðaÞ-improvement [58,70]. Quark masses are
renormalized through the RC Zm ¼ 1=ZP, computed non-
perturbatively using the RI0-MOM scheme (see Ref. [64]).

TABLE VIII. Values of the valence-quark bare masses in the
light (aμud), strange (aμs) and charm (aμc) regions considered for
the 15 ETMC gauge ensembles with Nf ¼ 2þ 1þ 1 dynamical
quarks (see Ref. [64]). Ncfg stands for the number of (uncorre-
lated) gauge configurations used in this work.

Ensemble β V=a4 Ncfg aμud aμs aμc

A30.32 1.90 323 × 64 150 0.0030 f0.0180, f0.21256,
A40.32 150 0.0040 0.0220, 0.25000,
A50.32 150 0.0050 0.0260g 0.29404g
A40.24 243 × 48 150 0.0040
A60.24 150 0.0060
A80.24 150 0.0080
A100.24 150 0.0100

B25.32 1.95 323 × 64 150 0.0025 f0.0155, f0.18705,
B35.32 150 0.0035 0.0190, 0.22000,
B55.32 150 0.0055 0.0225g 0.25875g
B75.32 75 0.0075
B85.24 243 × 48 150 0.0085

D15.48 2.10 483 × 96 90 0.0015 f0.0123, f0.14454,
D20.48 90 0.0020 0.0150, 0.17000,
D30.48 90 0.0030 0.0177g 0.19995g

TABLE IX. The input parameters for the eight branches of the analysis of Ref. [64]. The renormalized quark masses are given in the
MS scheme at a renormalization scale of 2 GeV. The last columns represent the averages of the previous four columns (according to
Eq. (28) of Ref. [64]). With respect to Ref. [64] the table includes an update of the values of the lattice spacing and, consequently, of all
the other quantities.

β 1st 2nd 3rd 4th 1st − 4th

a−1ðGeVÞ 1.90 2.224(68) 2.192(75) 2.269(86) 2.209(84) 2.224(84)
1.95 2.416(63) 2.381(73) 2.464(85) 2.400(83) 2.415(82)
2.10 3.184(59) 3.137(64) 3.248(75) 3.163(75) 3.183(80)

mphys
ud ðGeVÞ 0.00372(13) 0.00386(17) 0.00365(10) 0.00375(13) 0.00375(16)

mphys
s ðGeVÞ 0.1014(43) 0.1023(39) 0.0992(29) 0.1007(32) 0.1009(38)

mphys
c ðGeVÞ 1.183(34) 1.193(28) 1.177(25) 1.219(21) 1.193(32)

β 5th 6th 7th 8th 5th − 8th

a−1ðGeVÞ 1.90 2.222(67) 2.195(75) 2.279(89) 2.219(87) 2.229(86)
1.95 2.414(61) 2.384(73) 2.475(88) 2.411(86) 2.421(85)
2.10 3.181(57) 3.142(64) 3.262(79) 3.177(78) 3.191(83)

mphys
ud ðGeVÞ 0.00362(12) 0.00377(16) 0.00354(9) 0.00363(12) 0.00364(15)

mphys
s ðGeVÞ 0.0989(44) 0.0995(39) 0.0962(27) 0.0975(30) 0.0980(38)

mphys
c ðGeVÞ 1.150(35) 1.158(27) 1.144(29) 1.182(19) 1.159(32)
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The lattice scale is determined using the experimental
value of fπþ so that the values of the lattice spacing are
a ¼ 0.0885ð36Þ; 0.0815ð30Þ; 0.0619ð18Þ fm at β ¼ 1.90,
1.95 and 2.10, respectively, the lattice size goes from
≃2 to ≃3 fm.
The physical up/down, strange and charm quark masses

are obtained by using the experimental values for Mπ, MK

and MDs
, obtaining [64] mphys

ud ¼ 3.72ð17Þ MeV, mphys
s ¼

99.6ð4.3Þ MeV and mphys
c ¼ 1.176ð39Þ GeV in the MS

scheme at a renormalization scale of 2 GeV. We have
considered three values of the valence quark mass in both
the charm and the strange sectors, which are needed to
interpolate smoothly to the corresponding physical strange
and charm regions. The valence quark masses are in the
following ranges: 3mphys

ud ≲mud ≲ 12mphys
ud , 0.7mphys

s ≲
ms ≲ 1.2mphys

s and 0.7mphys
c ≲mc ≲ 1.1mphys

c .
In Ref. [64] eight branches of the analysis were con-

sidered. They differ in:
(i) the continuum extrapolation adopting for the match-

ing of the lattice scale either the Sommer parameter
r0 or the mass of a fictitious P-meson made up of
two valence strange(charm)-like quarks;

(ii) the chiral extrapolation performed with fitting func-
tions chosen to be either a polynomial expansion or a
Chiral Perturbation Theory (ChPT) Ansatz in the
light-quark mass;

(iii) the choice between the methods M1 and M2, which
differ by Oða2Þ effects, used to determine the mass
RC Zm ¼ 1=ZP in the RI0-MOM scheme.

In the present analysis we will make use of the input
parameters corresponding to each of the eight branches of
Ref. [64]. The central values and the errors of the input
parameters, evaluated using bootstrap samplings with
Oð100Þ events, are collected in Tables IX and X.
Throughout this work all the results obtained within the
above branches are averaged according to Eq. (28)
of Ref. [64].
Besides the RC ZP we need the RC’s of other

bilinear quark operators, namely ZV, ZA and ZS related,
respectively, to the vector, axial-vector and scalar
currents. They have been evaluated in the Appendix of
Ref. [64] in the RI0-MOM scheme for ZA and ZS, while for
ZV we adopt its determination based on the vector WI
identity.
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