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Summations of large logarithms by parton showers
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We propose a method to examine how a parton shower sums large logarithms. In this method, one works
with an appropriate integral transform of the distribution for the observable of interest. Then, one
reformulates the parton shower so as to obtain the transformed distribution as an exponential for which one
can compute the terms in the perturbative expansion of the exponent. We apply this general program to the
thrust distribution in electron-positron annihilation, using several shower algorithms. Of the approaches
that we use, the most generally applicable is to compute some of the perturbative coefficients in the
exponent by numerical integration and to test whether they are consistent with next-to-leading-log

summation of the thrust logarithms.
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I. INTRODUCTION

Parton shower event generators provide a way to
approximately sum large logarithms in QCD. Consider
an infrared safe observable labeled by J in hadron-hadron,
lepton-hadron, or lepton-lepton collisions at a large energy
scale py;. Suppose that one is interested in a cross section
6, (v) for the observable to take the value v. The observable
is characterized by a scale Q3(v), such that the &,(v) is not
sensitive to parton splittings at a scale smaller than Q%(v)
For instance, one might be interested in the k| distribution
in the Drell-Yan process in hadron-hadron collisions.
Then v =k, and Q3(v) ~k%. If Q3(v) ~u?, one can
use straightforward QCD perturbation theory to calculate
&,(v). However, if O%(v) < u2, the perturbative expansion
for &,(v) will contain large logarithms, log(u2/Q3(v)).

Often, one can analyze these logarithms by taking an
appropriate integral transform of ;(v). Then one calculates
a cross section o(r) depending on a variable or variables r.
The cross section o,(r) contains logarithms L(r) that are
large when r approaches a limit. For instance, one might
take the Fourier transform, with transverse position b, of the
Drell-Yan k| distribution. In this example, r stands for b,
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the limit is b> — oo, and the logarithm is L = log(b*u3).
Typically the cross section then has the form

o 2n

oy(r) = 00{1 T chm,j)as(ua)u(r)}. ()

n=1 j=0

The logarithms L/(r) arise in QCD from the soft and
collinear singularities of the theory. These same soft and
collinear singularities are contained in the splitting func-
tions of a parton shower algorithm. Thus running a parton
shower event generator to calculate 6,(r) will produce an
approximation to the series in Eq. (1). That is, the parton
shower approximately sums the large logarithms. The
object of this paper is to investigate the form of the result
of this summation.

To exhibit the summation of logarithms, we rearrange the
parton shower algorithm so that it is specialized to calculate
just o, (r) and so that it expresses o, (r) directly in terms of
an exponential

where T indicates ordering in y*. The integral of Sy (u*;r)
in the exponent has an expansion

'The analysis applies not just when o (r) represents an integral
transform of some other distribution, but also whenever the
operator O, (r) that we use to measure o, (r) after the shower has
an inverse. That is, O, (r) must have no eigenvalues equal to zero.
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The operator Sy (u?; r) is determined by the parton splitting
operator S(u?) in the original shower. This gives one direct
access to the coefficients e(n, j). With this representation,
one has the potential to prove that e(n,j) =0 for
j>n+1. The terms with j =n + 1 are called leading-
log (LL) terms and the terms with j = n are called next-to-
leading-log (NLL) terms. One also has the potential to
prove that e(n, j) for j = n+ 1 and for j = n are what is
expected in full QCD if a full QCD result is known.

There is a long history of investigations of how well
parton shower event generators reproduce the expectation
from full QCD for the large logarithm expansion of Eq. (3).
We can provide some examples. For instance, Marchesini
and Webber argued that a parton shower event generator
based on angular ordering would better sum large loga-
rithms than alternative formulations [1]. Ref. [2] found that
the event generator [1] of Marchesini and Webber, a
precursor to HERWIG [3.4], agreed with the analytic
QCD summation of double logarithms [5] for the
energy-energy correlation function in e e~ annihilation
better than an alternative event generator due to Gottschalk
[6]. In 1991, Catani, Webber, and Marchesini compared
QCD theory and the structure of parton shower algorithms
for several observables that involve large logarithms and
concluded that a small adjustment in the parton shower
algorithm could improve the summation of the large
logarithms [7]. The connection between parton showers
and large nonglobal logarithms was investigated in [8]. One
paper [9] argued that a dipole parton shower might not
properly sum the logarithms that are encoded in the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equation for the distribution of hadrons in a final
state parton. However, two investigations [10,11] showed
that this argument was not correct. A similar investigation
showed analytically that a virtuality ordered dipole shower
correctly sums the double logs that appear in the Drell-Yan
transverse momentum distribution [12]. Some issues in
large logarithm summations in dipole parton showers were
investigated in [13]. The logarithmic accuracy of final state
parton showers was investigated at order o2 in [14,15].
A more powerful analysis for ete™ annihilation was
undertaken in [16]. A very recent paper [17] addresses
corrections to the leading color approximation in a dipole
parton shower in order to maintain proper color factors for
leading logarithm terms.

Our plan for Secs. II through X of this paper is to develop
the general theory behind the representation (2) along the
lines of Ref. [18]. In this exposition, we also present the
main steps of the construction of Ref. [18] in a form that, in
our opinion, makes these steps more transparent. Then,
starting in Sec. XI, we apply the representation (2) to an

important example, the thrust distribution in electron-
positron annihilation. We consider just the thrust distribu-
tion and not other distributions involving large logarithms.
However, we look in some detail at how the exact form of
the shower algorithm affects the results.

Since the construction presented in this paper is simpler
for e™e~ annihilation than for hadron-hadron or electron-
hadron collisions and since Secs. XI through XXVIII are
quite self-contained, some readers may prefer to jump to
the later sections before reading the more general analysis
in the earlier sections.

II. PARTON SHOWER FROM
PERTURBATION THEORY

The starting point for the general analysis is the
perturbative cross section for an infrared safe observable
in hadron-hadron collisions. This starting point also applies
with some simplifications also to electron-hadron and
electron-positron collisions. We describe this structure
briefly here. A more detailed explanation can be found
in Ref. [18].

The parton shower is described as in our parton shower
event generator DEDUCTOR [19-26] using operators on a
vector space, the “statistical space,” that describes the
momenta, flavors, colors, and spins for all of the partons
created in a shower as the shower develops. The colors and
spins are quantum variables and are described using a
density matrix. With m final state partons plus two initial
state partons with labels “a” and “b,” the partons carry
labels a, b, 1,2, ..., m. The partons have momenta {p},, =
{Pa> Pv» P1»---» Pt and flavors {f},,. We take the partons
to be massless: pi2 = 0. For color, there are ket color basis
states |{c},,) and bra color basis states ({c},,|. We use the
trace basis, as described in Ref. [19]. For spin, there are ket
basis states |{s},,) and bra basis states ({s'},,|. Then the
m-parton basis states for the statistical space are denoted by
Hp,f.c.c,s,5'},). Avector |p) in the statistical space is a
linear combination of the basis states. The statistical space
is introduced in some detail in Secs. 2 and 3 of Ref. [19].
These sections also show how shower evolution is
expressed using evolution operators that act on the stat-
istical space. (However, in the present paper the names of
the operators follow Ref. [18] rather than Ref. [19].) The
spin basis is described in Sec. 5 of Ref. [19] and the color
basis is described in Sec. 7 of Ref. [19].

In Secs. II through X of this paper, we maintain a general
framework with full color and spin. Practical parton shower
programs [4,27,28] typically average over spins, so that
no spin quantum numbers appear in the shower equations.
One can then carry out the analysis of the summation of
large logarithms using the spin averaged shower, as we do
starting in Sec. XI. For color, parton shower programs often
use the leading color (LC) approximation, which provides
the leading term in an expansion in powers of 1/N2 = 1/9.
With this approach, the color states {c, ¢’},, do not affect
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the splitting probabilities, which are simply proportional to
a factor Cg or C,. Our program, DEDUCTOR, uses what is
called the LC+ approximation [22]. Thus we mostly use
full color in this paper with the understanding that one
could approximate to the LC+ or LC level if desired.
‘We discuss this further and relate the discussion to Ref. [17]
in Sec. XXV.

A. Perturbative cross section

If the QCD matrix element is calculated up to a given
order, X, the cross section is

0;(r) = (110, () Folp(uz)) + Oa5 ") + O(Agep/ Q5 (r))-
(4)

Here the renormalized perturbative QCD density operator
is represented by a vector in the statistical space |p(u2)).
It is based on the exact matrix elements and contains all
the possible partonic final states at order K. The density
operator is already renormalized, typically in the modified
minimal subtraction (MS) scheme, thus it is independent of
the renormalization scale, 3, up to the desired order

ﬂ%%m(ﬂ%» — O(af ). (5)

The next factor in Eq. (4) is the operator of the bare
parton distribution functions (PDFs),

Fo = [Frui)oK(ug)oZr(u)]- (6)

Here the circles, aob, represent convolutions in the
momentum fraction variables. The renormalized PDF
operator for the hadron-hadron initial state is Fy(u3).
The corresponding MS subtraction of initial state singu-
larities is done by the Z(u2) operator, which contains
factors 1/€" in dimensional regularization. As described in
Ref. [18], one should typically use something other than the
MS scheme to define the parton distribution functions used
internally in the shower. The factor KC(u2) transforms to
the shower scheme for the parton distribution functions
Fr(uz). The bare PDF is scale independent,

da

0 [Fr(u) oK (1) Zr (k)] = Ola™). (7)

U

This equation leads to the proper evolution equation of the
renormalized PDFs.

The next factor in Eq. (4) is the operator O,(r)
representing an infrared (IR) safe measurement, charac-
terized by a set of parameters r.

After applying these operators, we have a sum and
integral over basis states |{p, f,c,c’,s,s'},,). Finally, we

multiply by the statistical bra vector (1| and obtain a cross
section after performing the integrations using

(IH{p. fre s 8'},) = Hl{ehm s l{s ). (8)

(The spin states |{s},,) are orthogonal and normalized,
but the color states |[{c},,) in the trace basis that we use are
not orthogonal and some of them are not normalized
exactly to 1 [19]. The statistical bra vector (1| is defined
in Sec. 3.5 of Ref. [19].)

If the calculation includes perturbative contributions up
to aX, then there is an error term O(aX™!) in Eq. (4). The
formula is based on standard QCD factorization for infrared
safe observables. This has power suppressed corrections of
order [Agep/Q3(r)]” where Q3(r) is the lowest scale that
the measurement operator O, (r) can resolve and p > 0. In
the rest of this paper, we mostly omit explicit mention
of these error terms.

The expression in Eq. (4) simplifies substantially in
electron-positron annihilation. In this case, we can replace
the operator F, by 1.

We point out that Eq. (4) is valid only in d =4 —2¢
dimensions. It is not directly useful for practical
calculations.

B. IR singular operator

To define a good subtraction scheme for a fixed order
calculation one can use the IR singular operator D(u3, u2)
[18]. This operator has a perturbative expansion

D pd) =1+

n>1

a 1"
#] DR, @) (9)

The operators D (2, u2) are key to defining a parton
shower algorithm in a general framework. For a first
order shower, one uses only D) (u2, 42), but in a general
framework we consider D" (u2,u2) for any n. This
operator describes the IR singularity structure of partonic
states [p(u2)). When D) (42, u?) acts on a state |{p, f, c,
¢,s,s'},) it produces new states |{p, f. &, &, 8,5}, with
m < i < m+ n such that the IR singularities of

(. f. 6.8, 5,8 5 DY (ud, 1) |{p. fre e 5,8} )

match the singularities of nth order QCD Feynman dia-
grams that connect these two states. Here the singularities
include the factors 1/¢ from virtual loop diagrams and they
include the singular behavior of the diagrams when any two
or more momenta p become collinear or some of the p
become soft. A toy model with operators D) (43, u2)
beyond n = 1 is presented in Appendix A of Ref. [18].
The operator D" (uZ, u2) depends on two scales, the
standard renormalization scale x3 and the shower scale y2.
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The shower scale acts as an ultraviolet (UV) cutoff
that separates the IR and UV regions associated with
D" (u2, u2). All IR singularities are included, but only
regions near these singularities with a scale, specified by a
parameter k2, satisfying k> < u2 are included. There is, of
course, some freedom in choosing how the UV cutoff is
defined. Different prescriptions lead to differences in the
shower ordering prescription in the parton shower algo-
rithm produced by D" (uZ, u2).

The singular operator is based on the MS renormalized
matrix elements and is independent of the renormalization
scale. Thus we have

4 5 D) = O™, (10)

This allows us to choose the renormalization scale
conveniently.

In order to avoid large logarithms of u3/u3, it is useful
to relate the renormalization scale to the shower scale.
We define

Hi = Kefts- (11)

Then we can avoid large log(ky) factors by choosing ; of
order 1.
The singular operator is perturbative and we can always
define its perturbative inverse operator,
Dz, u3)D™ (i, 13) = 1, (12)
by working order by order in the perturbative expansion
of Eq. (12).

C. Fixed order cross section

We can make Eq. (4) more useful by inserting 1 in the
form DD!,

o,(r) = (110,(r)Fo

We notice that the expression D~ (2, u2)|p(uz)) is well
defined in d =4 dimensions since the inverse of the
singular operator removes all the IR singularities of
lp(u2)). Accordingly, we define the subtracted hard matrix
element by

D, 13)D7 (1 43)|p(ud)).  (13)

(k. 43)) = imD~ (g, i3) | (). (14)
e—0
This gives us

o,(r) = (110,(r)Fo

We will use Eq. (15) to explore parton showers. First,
however, suppose that we are interested only in the fixed

D(ug. pi3)lpu(uz- u3)).  (15)

order cross section. Then we can choose the scale y2 small
enough that the measurement operator O,(r) does not
resolve parton momentum scales of order u2. Then O,(r)
commutes with FoD(uz, u?), giving us

a,(r) = (1|1FoD(uz. #3) Oy (r) |pu(pz, 43)).  (16)
One can calculate (1|FyD(u3, p2) in d = 4 —2¢ dimen-
sions. The operator D(u2, u2) creates singularities, but the
initial state singularities are removed by the operator
Zp(uz) in F, and the final state singularities cancel after

we multiply by (1| and integrate over the parton variables.
Thus we obtain a finite result in the ¢ — 0 limit.

D. Operators V and X

The operators D(uZ,u2) and F, are defined only in
d = 4 — 2¢ dimensions and are singular as ¢ — 0 and as
parton momenta become soft or collinear. However, we
have noted that (1|/FyD(u, u2) is finite in d = 4 dimen-
sions. It will prove useful to introduce an operator,
V(uz, u?), that is finite in four dimensions, does not change
the number of partons, leaves the parton momenta and
flavors {p, f},, unchanged, and satisfies

(AW, 3) = lim(1|FD(pi, p3) Fre' (). (17)

The operator V(uZ, u?) leaves {p, f},, unchanged, but it
can act nontrivially on the color and spin space. Eq. (17)
does not fully define the color and spin content of
V(uZ, u?). We discuss the definition further in Sec. 1V,
but for now, we need only Eq. (17).

Using V(u2.p?) we define a

Xy (uk, pi3) as

singular operator

X (uz.p3) = FoD(ug i) Fr' () V" (uz. pd),  (18)

so that

(1 (o ) = (1. (19)

The “1” subscript distinguishes the operator X; from the
operator X’ used in Ref. [18] and suggests the normalization
condition (19).

With V and X, the cross section in Eq. (15) can be
written as

oy (r) = (1O, (r) X (uz, u3)V (s 13) Fr (13) s (175 153))-
(20)

This form will be useful to help us define a parton shower.

Before we continue with the discussion of the parton
shower cross section we introduce a more compact notation
for operators with renormalization scale dependence.
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According to Eq. (11) the renormalization scale is always
related to the shower scale; thus we can define

= |pH(KR/‘2’/'¢2))‘ (21)

The PDF operator depends only on the renormalization
scale and in this case the convention is a little different,

F(u*) = Frlreu?). (22)

The functions specified above then depend on xy, but we do
not display this dependence. With this more compact
notation, Eq. (20) is written as

o;(r) = (1O, (r) X, (1 )V(u*) F (1) lou(1?)).  (23)

E. Operator 4 and parton shower

The formula for the cross section ¢; given in Eq. (23) is
of limited usefulness if the scale Q3%(r), representing the
lowest scale that the measurement operator O,(r) can
resolve, is much smaller than the scale 7 of the hardest
momentum transfer in |p,,(#?)). When that happens, ¢; will
contain logarithms log(u3/Q3(r)) that need to be summed
by looking for the most important terms at all orders of
perturbation theory. To that end, one can use a parton
shower algorithm.

To provide a parton shower, first set the scale y? in
Eq. (23) to pji. Then define a scale 47 that is certainly
smaller than Q3 (r). Typically, one chooses ,u} on the order
of 1 GeV?. Finally, insert I = X, (u7) X7 u7) into Eq. (23),
giving

o;(r) = (1O, (r) X, (u7) X7 (u7) X1 (1)
X V(i) F (i) |pu(ud))- (24)

Since p7 < Qj(r), the operator O,(r) does not resolve
partons at the scale 4. Thus O, (r) commutes with X' (7),
giving us
o;(r) = (X1 () O, (r) X7 (u) X1 (i)

X V(i) F (i) o (ki) - (25)
With the use of Eq. (19), this is
o;(r) = (1O;(N X7 (u7) X () V() F (uh) low ().

(26)

The operator X7'(u7)X:(uf) is of special importance.
We give it the name

U, piy) = HmAT! (uF) X (). (27)

This is the shower operator. It generates a parton shower
starting at the scale x7 and ending at the scale /t?-. Because
of Eq. (19), the shower operator is probability preserving

(Ued (u, ) = (1]. (28)

Using the notation U (u7, ), the cross section is

oy (r) = (1O, (U7, pi) V(i) F (i) lpu (p7))- - (29)

We have perturbatively calculated matrix elements with
their IR divergences subtracted in |p,(uZ)). Then the
operator F(u%) supplies parton distribution functions.
The factor V(ui) serves to sum threshold logarithms
[18,26]. An approximation to this factor is contained in
DEDUCTOR although it is lacking in other current parton
shower event generators. Next, the operator U/ (;4},/4%[)
generates the parton shower and the operator O,(r)
measures the desired observable in the multiparton state
created by the shower. Finally, we multiply by (1| and
integrate to get the desired cross section. We discuss
U(u?, i) and V(uz) in more detail in Secs. V and VI.

III. OBSERVABLE DEPENDENT
SHOWER EVOLUTION

The operator O,(r) in Eq. (29) could represent any
infrared safe observable. In this paper, we have a particular
sort of operator in mind. Consider, for example, the
transverse momentum distribution of a Z boson produced
in the Drell-Yan process. The operator that measures the
transverse momentum k; of the Z boson is defined as

Ozk){p.f.c.¢'.s.5'},,)

= (27)?6%) (ks —kz({p}n)){p.f.c.c"o5.5'},). (30)
where ky({p},,) is the transverse momentum of the
observed Z boson. The standard method for summing
logarithms of k2 /M3 is to start with the Fourier transform

of the k | distribution. To measure this with a parton shower
event generator, we can use the measurement operator

Oz(B){p.f.c.c'.5.5'},,)

dky B
_ / ﬁebk (27)26@) (k, — k7 ({p},n)

x {p.f.e.c\s,5},)
= etk k) |{p. f.c ' s, 8'),). (31)
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We let Oz(b) serve as an example of the observable O, (r)
that we consider in this paper. There are many other similar
examples. We will need one property of the observable
O, (r) beyond infrared safety: we assume that the operator
O,(r) has an inverse O7'(r).

To analyze the cross section o,(r), we start with the
representation (23) with > = 2,

0;(r) = (1O, (r) X, (ui) V(i) F (i) low (i) (32)

Define an operator J(u?;r) that is finite in d = 4 dimen-
sions, leaves the number of partons and their momenta and
flavors unchanged, and is related to X'; by

(Y (u?ir) = (1O, (r) X, ()05 (r). (33)

Then define a new version of X} that depends on the
measurement parameters r by

Xy (uir) = O, ()X, ()07 ()Y~ (uhir). (34)
This gives us

(1 (w2, r) = (1] (35)

and
O, (X (u?) = X1 (1>, 1) Y(p*r)O,(r).  (36)

Then our cross section is

o;(r) = (11X (uf. 1) V(i) O (r)V (i) F (ud) lpu (i)
(37)

With the use of Eq. (35), and commuting O, (r) past V(u2)
and F(uZ), which do not change the partonic state, this
becomes

0;(r) = (Y uii; )V (i) F (i) Os (r) lpw (ki) (38)

Here we measure O, (r) at the hard state |p;, (7)), obtaining
typically a very simple result. Then we measure O,(r)
inside the operator Y(u2; r). This operator has the potential
to sum large logarithms.

We can also relate Y(u%;r) to the shower operator
U(u7,p*) with a small final scale y7. From Eq. (33),
we have

(U (u?:r)Oy(r) = (1O, (r) X, (1) (39)

Insert 1= X (u7)X7" (47) and use X7'(u7)X,(4) =
U7, 1*) from Eq. (27):

(U (u?:r)Oy(r) = (1O, (r) X, (up)U (. 42).  (40)

Since p7 < Qj(r), the operator O,(r) does not resolve
partons at the scale 47. Thus O, (r) commutes with X' (u7),
giving us

(1?5 1) Oy (r) = (X (1) Oy (NUpF, p?).  (41)
Recall from Eq. (19) that (1|/X,(4?) = (1|. This gives us
(UYW*:r)O;(r) = (1O, (U (3. 7). (42)

That is, we compare two calculations. In the first calcu-
lation, we generate a parton shower down to a very small
scale starting with any statistical state at a scale u”>. Then we
measure O, (r) inclusively using (1|O,(r). In the second
calculation, we first operate with O,(r) on the state at scale
u? then measure Y(u?;r) inclusively using (1|Y(u?;r).
These two calculations give the same result.

IV. THE OPERATOR MAPPING P

In Sec. IID we defined an operator V(u?) which is
to obey Eq. (17), (1[V(¢?) = (1|FD(?)F~'(4?). In
Sec. III, we defined an operator )(u?;r) in the same
way. In each case, we start with a singular operator .4 and
we want to define a second, nonsingular, operator 3 with
the property

(118 = (1] A. (43)

When the operator B acts on an m-parton basis state
H{p,f,c.c,s,5'},), it is to leave the number of partons,
their momenta, and their flavors unchanged. It may,
however, act nontrivially on the colors and spins.

These requirements do not fully specify 5. We can be
somewhat more definite by requiring that there be a linear
mapping 4 — B, which we write in the form

B = [Alp. (44)
This mapping must satisfy
(1[A]p = (114 (45)

and [A]p must leave m and {p, f},, unchanged,

S AU Sl

{2238},

x{p.f.8,¢.8,8},).  (46)

[Alp{p. f.c.cs5,5'},) =

The requirement (43) is then a restriction on the spin and
color matrix A,

054049-6
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(HAKp. f.c.c' s.5'},)
= Y (@ e )

{e.¢' 5.5},
< A(Lp. Fl)ECss )

We can place another requirement on [- - -|p: if A has the
property that it leaves m and {p, f},, unchanged, then

[Alp = A. (48)

One consequence of this is that [[A]p]p = [Alp.

These requirements do not fully specify the mapping
[-+]p. For now we do not need to be more specific.
However in Sec. XVIC we provide an example (without
spin) that is useful for the analysis of a first order shower.

We will find that the combination A — [A]p appears
frequently in formulas. It useful to define an operation

[-+]i_p by

[Alp = A= [Alp. (49)

V. GENERATOR OF SHOWER

We now turn to a more detailed study of the operator
u (u% %) that creates a parton shower between a hard scale
w2 and a small, cutoff scale ,u]%. The generator of this shower
evolution is the operator

L) = |0 it) xlmR, y] L (s0)

H H =K’

Here, we differentiate with respect to the shower scale.
Because of Eq. (10) [with the use of Egs. (17) and (18)],
this is the same as

1 0
/73(/‘2) _Xl_l(/‘2)a—#2X1(/‘2)' (51)
Because of Eq. (19),
(11S(u*) = 0. (52)

Equation (51) gives us a differential equation for U/

0

IS o U3 12) = U3, 1) S(u?). (53)
We use the notation
mdu* .,
My, Hy) = 1 EXp — ol
i) =Texp ([ 5s00)) (59
#H

to represent the solution of this equation. Here T indicates
the instruction to order the operators S(u*) with the
smallest y? to the left.

VI. THE THRESHOLD FACTOR

In Sec. I D we have defined an operator V(u2, u2). With
our notation in Eq. (21) for the scale dependence of V), the
crucial property given in Eq. (17) can be written

(1Y ()

In Eq. (29) or Eq. (38), the perturbative expansion of V(u2)
contains large logarithms [18,25,26]. These are the much
studied threshold logarithms [29]. We sum the threshold
logarithms by writing V(u2) as an exponential. Define

= (11FD(*) F (). (55)

Up(p3. 7)) =V (u3)V(ui). (56)

Then V(u?) can be written as
V(i) = V(up)Uy (7, 1) (57)

Define a generator operator Sy (u?) by

i 2N =172 dv(/"z)
”ZSV(/!)—V (w*) ar

(58)

Then Uy (43, u3) is the solution of the differential equation

, 0

8 > =Uy(p5, u*)Sy(?).  (59)

Uv(ﬂz» )

We write the solution of this equation as

K du®
i) =Tew ([ si0). 0
u

f

As long as we expand the running coupling a, in Eq. (60) to
some finite order in a,(u?), the integral in Eq. (60) is
convergent in the limit y7 — 0 [18]. Thus V(4?) at small
scales is almost the unit operator,

V(u]%) ~1. (61)
That is

V(pi) & Uy (u7., i) (62)

VII. PERTURBATIVE EXPANSIONS

The operator S(u?) can be expanded in powers of

ay(u7) = ay(kept?):
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sS4 =3 [M}"M w. ()

2r

In the general theory from Ref. [18], S(u?) is constructed
from the singular operator D (32, u3). If we use only the first
order part DU (u2, u2) of D because that is all we know,
then all we get is S()(4?). However, in a practical parton
shower program (such as the A-ordered DEDUCTOR), one
often takes a guess at approximate higher order contribu-
tions S". The approximate form is obtained by changing
the argument of a, in the splitting functions to xzk> and,
additionally, making a special choice for x;. Expanding
s (kgk>) in powers of @ (kzu?) then produces contributions
S (u2) for n > 1.

In DEDUCTOR, the first order contribution has three parts
[18,25]:

SO(2) = 810 (2) — [S10(42)]p + iSOV (42).  (64)

The operator S\'9) (4?) describes parton splitting, changing
an m parton state to an m + 1 parton state. The operator
[S19)(u?)]p leaves m and {p, f},, in an m parton state
unchanged, although it can modify the color state.” In a
leading color parton shower, the color is unchanged and the
eigenvalue of this operator then gives the order a, con-
tribution to the integrand in the exponent of the Sudakov
factor that represents the probability not to split between
two scales. The final operator, Si(,?'l>(;42), leaves m and
{p, f},, unchanged. It gives the imaginary part of virtual
graphs [18,25] and obeys (1|Si(,(:’1)(/42) =0.
The operator Sy,(42) has a perturbative expansion

®. g (keu?)]™
s =Y (20 "o, e

n=1 2”
The first order operator SS )(/42) has the form [18,25,26]

81 (12) = [819(5)]p + ReSpea (1)
= [F(2)oPOIF (), (66)

Here [S19)(4?)];, is proportional to the integral of the first
order splitting function over the splitting variables and
appears also in Eq. (64). In the third term, [F(u?)oP")]
denotes the convolution of F (4?) with the first order PDF
evolution kernel P(). In the second term,

1 0
5 Spen (1) = L?—Mz

POV e
u

My =Kept?

2[SU19(42)], was denoted by [F(42)o81 (42)] 1 (42) in
Ref. [18].

is the derivative with respect to the shower scale of the
singular operator for a one loop virtual graph. It is some-
times assumed that the effect of virtual graphs and PDF
evolution cancels the integral over the splitting variables
of parton splitting [30]. However, this cancellation is

not complete, so that the effect of Sg,l )(;42) is quite
important [26,30].

VIII. GENERATOR OF Yy

We now turn to a more detailed study of the operator
)i(,uz;r). This operator sums logarithms, so we want to
write it as an exponential. Define

1 d
P?Sy(ﬂz;") = y_l(ﬂzﬂ’)d—ﬂzy(/lz;")- (68)

This gives us a differential equation for y(,ﬂ;r)

d

Mzd—ﬂz (1) = Y(u*sr)Sy(p?sr). (69)

We solve this equation with a boundary condition at the
shower cutoff scale y?:

2 52
Yoiir) = Yiir) + [

— V(pr)Syp*r).  (70)
u M

Recall the defining condition Eq. (33) for Y(u?;r). At
#* = 7 this condition is

(U (ufir) = (1O, (X, (up) 07 (r).  (T1)

The measurement operator O,;(r) is an infrared safe
operator that is not sensitive to parton scales below a scale
Qj7(r). We suppose that 47 < Q3(r). Then O, (r) commutes

with X l(ptj%) and we can use Eq. (19), which gives us
(11Y(u7;7) = (1]. Thus we can define

V(upir) = L (72)
This allows us to write the solution of Eq. (69) as

2 =2
y(ﬂzﬂ')_l:/” o

2
up M

YGE:nSy(Esr).  (73)

We can also write Y(u4;r) as a hardness-ordered expo-
nential,

& dy?
Y(ui;r) = Texp </:l M—”ZSy(,uz;r)) (74)
I

To find the generator Sy(u*;r) we start with Eq. (42),
which we write as
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(Y (u?r) = (O, (U (uj. 1)O5 (r). (T5)
This applies for U(u7, u*) and Y(u?
order K of perturbation theory, with corrections of order
af . We can also use Eq. (75) if U(uj,p*) is an
approximate shower evolution operator as defined in a
particular parton shower algorithm. In this case, the shower
splitting operator S(u?) may be based on lowest order

perturbation theory. If U(u7,u*) is approximate, then

;r) evaluated at any

Eq. (75) defines the corresponding approximate operator
Y(u?;r) and Eq. (68) defines the corresponding approxi-
mate generator Sy(u?;r).

We can differentiate Eq. (75) with respect to x> and use
Eq. (69) for the derivative of ) and Eq. (53) for the
derivative of U (,uj% u?),

(Y r)Sy(usr) = (1O, (r)U (7. u)S(u?) 07 (r).

(76)
We insert 1 = O7!'(r)O,(r) to give
(Y1) Sy(p?ir) = (1O, (rU (uF. 4*) 05 (1)
x O,;(r)S(u?) 05! (r). (77)
Using Eq. (75) then gives us
(UY@*r)Sy(*ir) = (U r)O, (NS (u?) 05 (r).
(78)

The operators Y and &y are nonsingular operators that
leave the number of partons and their momenta and flavors
unchanged. Thus we can use the mapping |- - -|p defined in
Sec. IV to write this as

i) = V)0, Sw?) 07 (r)lp. (79)

The expansion of ) in powers of ¢ starts at Y =1+ -- -,
so a useful way to write this is

Sy(u*r) = [Y(u?:r) O, (r)S(u*) 07 (r)]p
—{V(u*sr) = 1}Sy(u*;r). (80)

Now we can use Egs. (80) and (73) recursively to
generate Sy, and ) in powers of a;. We write

ni [as Kt } 80 (r),
e

n=0

V(u?r)Sy(u?

} YO, (81)

with

VO (u%r) = 1. (82)

For Sy, Eq. (80) gives

(1) = [0;(r)S™ (u?) 07 (r)]p
n—1
+_IYI ) 0,(r)SY (1) 07 (1))
n—1 )
= VD () S (s r). (83)

This gives us ng)

for k < n.

For ) we use Eq. (73), in which an integration over an
intermediate scale ji> appears. We can expand a, (kpfi*) in
powers of a,(kzu?) in the form

R R I e

— 2w

if we know ng) for j <n and Y®

with coefficients y derived from the QCD p-function. Using
this expansion in Eq. (73), we obtain

W dp? i 5
/2 Z y(k+ j.ns i /u?)

j=1 k=l

0
x YO (2,r) S (72 7). (85)

This gives us Y if we know Y*) for k < n and ng)
for j < n.
These recursion relations successively generate Sg,]) ,

The first order terms are

Sy (rr) = 0,8V 07 ()]s (86)

YO (u2er) = / " ‘Z‘ 0,(NSVE)0F (P, (87)

IX. USING Y

We now outline how the operator J(u?;r) can be used.
This operator is the key to calculating an observable cross
section o (r) according to a parton shower algorithm. The
operator O,(r) that defines this cross section must be
infrared safe. That is, there is a scale Q%(r) such that o,(r)
does not resolve parton splittings at scales x> smaller than
Q% (r). In order to define y(;ﬂ; r), the inverse operator
O7!(r) must exist. The anticipated use case is that there is a
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distribution of direct interest that involves large logarithms
and the logarithms can be summed analytically by taking an
integral transform of the distribution that depends on
parameters r. Then o,(r) represents the value of this
integral transform. Starting in Sec. XI, we examine an
important example, the thrust distribution in electron-
positron annihilation. Then one uses the Laplace transform
of the thrust distribution and r is the Laplace parameter v.

In the applications that we have in mind, the perturbative
expansion of o,(r) contains powers of a large logarithm
L(r) when the parameter or parameters r approach some
limit. Typically, we have

o0
—co{l +ch n, j)a (2L (r )}. (88)
n=1 j=0
In favorable cases, there is an analytical formula that sums
these logarithms in the form

oo n+l
—cm%xp(ZZdnjas uz)L

).
n=1 j
It is crucial here that the maximum power of L at order o} is
j=n+1, not 2n. We can say that a o,(r) with this
property exponentiates. One never knows all of the coef-
ficients d(n, j), but when the coefficients for j = n + 1 are
known, we can say that the formula sums the logarithms at
the leading-log (LL) level. When the coefficients for j = n
are also known, we can say that the formula sums the
logarithms at the next-to-leading-log (NLL) level.

In some important cases, the color space for the partons
involved in the hard scattering process is trivial. For
instance, for shape observables in electron-positron anni-
hilation, there is only one color basis vector for the ¢g state
in eTe™ — ¢g. Then the coefficients d(n, j) are numbers.
The initial partonic state in hadron-hadron scattering has a
nontrivial color structure. Then the coefficients d(n, j) may
be integrals of matrices in the parton color space, with some
specification for the ordering of noncommuting matrices in
the exponent.

What does a parton shower algorithm say about o,(r)?
Different parton showers can give different answers, so we
should have a particular parton shower algorithm in mind.

We have seen that there are two ways to express o;(r) as
given by a parton shower. First, we can use Eq. (29),

0, (r) = (1O, (Ut )V (i) F (i) low (ki) (90)

Typically the splitting operator S in U(u7, u7) is based on
lowest order perturbation theory, as discussed at the
beginning of Sec. VII. Additionally, V(i) is present in
DEDUCTOR, but for many parton shower algorithms V = 1.
Equation (90) says to run the parton shower to its cutoff
scale and then measure the observable by applying

(1|Oy(r). The perturbative expansion of this result has
the form (88), but not directly the form (89). One can run
the corresponding parton shower event generator to obtain
a numerical result with statistical errors and other numerical
errors. Even with errors, it is possible [2,16] to use
numerical results from Eq. (90) to check these results
against a known QCD analytic result, as we will see later in
this paper.

The second way to express o, (r) as given by a parton
shower is contained in Eq. (38),

o,(r)

with Y(uz;r) given by Eq. (74) as an exponential of a
generator Sy,

2 du?
v =Te [" Y ss0n). o2

Hy

= (Ui )V (i) F (ki) Oy (r)low (i), (91)

The operator Sy, is obtained from the shower generator S
using Egs. (83) and (85). This second expression for o, (r)
gives exactly the same o, (r) as given by Eq. (90). However,
now the logarithms L appear in the exponent in Sy, Thus
we have a representation that is very close to the repre-
sentation in Eq. (89).

The exponent in ) is?

() = ‘jf‘ Sy(u:r). (93)

“
If we use the perturbative expansion of Sy, this is

2L [uhdp? [ag(kgu®) )" (n) ¢ 2.
Z/ﬂ% T[T SYwir). (94)

n=1

I(r)=

For Sg’ ) we have

85 (1) = [0, SV (W) 07 (r)]p + ASY (uir). - (95)
Here [0, (r)S™ (4?)O7' (r)]p is the first term in Eq. (83)
and is the only term for n = 1. For n > 1, AS;I)(yz;r) is
everything else in Eq. (83).

We can now expand Z(r) in powers of a,(uZ). The
perturbative coefficients will contain powers of the large
logarithm L(r). Let us divide Z(r) into two pieces

Z(r) =Zy(r) + AZ(r), (96)

where

3This includes, possibly, ordering of operators or matrices in
the exponential. For simplicity, we ignore questions of ordering
here.
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N [hidp? o (kep?) ]
70 =3 [
n=1 Y Hy H

x [0,(r)S" ()07 ()]

[k dp? o (kept®)]" oo
AI(r):Z/MZ |5 asp ). o7
n=2 f

If we use just Zy(r), we put just one shower splitting S into
the exponent. This is the candidate for the summation of
logarithms L(r) as given by the shower. Its lowest order
contribution, proportional to a,(u), will normally contain
two powers of L after integrating over . One power comes
from integrating over a momentum fraction z inside
Sg,l )(,uz;r) and the second power comes from integrating
over u?. Thus we have a LL contribution a!L?. We also
generate terms with higher powers of a,(u3), both from
expanding the factor a;(kyu?) inside the integral and from
using S™ (4?) for n > 1. With appropriate choices for the
algorithm that constitutes S(u4?), one may be able to
generate a whole series of terms of(uj)L""' and
o (uZ)L" that match a known QCD result at the LL and
NLL levels.

Suppose that Z(r) gives the expected QCD result for the
summation of logarithms at the NLL level. What, then,
does the complete shower algorithm give? For this, we

must examine AZ (r). We need to ask whether ASSS' ) (u*;r)
is sufficiently small that it does not ruin the result from
Zy(r). If AZ(r) contains no nonzero contributions propor-
tional to ) (u)L/(r) with j > N + 1, then the logarithms
L exponentiate. If there are no nonzero contributions with
j > N + 1, then the shower sums the logarithms at the LL
level. If there are no nonzero contributions with j > N, then
the shower sums the logarithms at the NLL level.

Equations (96) and (97) provide a way to check how
accurately the parton shower algorithm sums the large
logarithms L(r). Suppose that we wish to check whether
the shower sums the logarithms at NLL accuracy. The best
method is to prove analytically that AZ(r) meets the
requirement for log summation at NLL accuracy. A second
approach is to calculate the perturbative terms in AZ(r) as
numerical integrals and check how many powers of L(r)
they contain. Although one can never check every term in
AZ(r), this method has the advantage that if the check for
NLL summation fails for any one contribution, then we
know that NLL summation fails.

X. REMARKS ABOUT THE GENERAL ANALYSIS

It is, we think, of some importance to understand how
accurately a parton shower algorithm sums large logarithms
in an observable &;(v).

In analytical approaches to summing such logarithms,
one typically defines an integral transform of the original
distribution so that one considers a cross section o, (r) that

depends on parameters r. Then the perturbative expansion
of o,(r) contains large logarithms L(r).

Sometimes, one can compare the results of the shower
for o;(r) to the results in full QCD by writing the same
differential equations as for full QCD but applying the
differential operators to the shower approximation rather
than full QCD [10,12]. This method has the disadvantage
that one needs a separate and quite elaborate analysis for
each observable to be studied.

An alternative is to calculate the observable &;(v)
numerically with the parton shower event generator of
interest and to compare the result with a known QCD result
[2,16]. This method can work, at least for electron positron
annihilation, but presents significant numerical challenges.

We have presented a reformulation of the calculation of
o,(r) according to a parton shower so that the large
logarithms appear directly as an exponential. The exponent
can be expanded perturbatively. This gives us a path to an
analytical understanding the summation of these logarithms
in the parton shower. It also provides a simple way to test
this summation numerically.

In the sections that follow, we find interesting results for
the thrust distribution in electron-positron annihilation. The
analysis for electron-positron annihilation, we represent
Z(r) in a form that is somewhat less general than the form
presented above but is better adapted to practical applica-
tions. Then we analyze Z(r) analytically and numerically
for the trust distribution in electron-positron annihilation.

XI. ANALYSIS FOR ELECTRON-POSITRON
ANNIHILATION

As outlined in the previous sections, a parton shower
event generator can provide a QCD based approximation
for a cross section &, (v) for an observable J to take a value
v in hadron-hadron, lepton-hadron, or electron-positron
collisions. In the following sections, we concentrate on
electron-positron annihilation, which is simpler because
parton distribution functions do not appear. We begin in this
section by framing the issues in a little more detail than we
presented in Sec. L.

We suppose that the observable J is infrared safe with a
scale Q3(v) substantially greater than 1 GeV2. Then we
can, at least in principle, omit a model for hadronization in
the event generator. The QCD perturbative expansion for
&,(v) will contain logarithms, L = log(u?/Q3(v)), where
42 is the scale of the hardest interaction in the event.
Typically one finds perturbative contributions to &;(v)
proportional to o (uZ)L¥. If 1 GeV? < Q3(v) < ui,
and L% > 1/a,(u), one must try to sum the contributions
at each order of perturbation theory that have the most
powers of L.

For some observables J one can derive an analytical
approximation, &;(v; analytical), to 6;(v) that sums the
large logarithms in an appropriate sense. It is then of
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interest to see whether the parton shower generator sums
the large logarithms at a specified level of approximation.

Normally, the approximation &;(v; shower) obtained
with a parton shower is limited to a numerical result
obtained by averaging over many generated events. In
the limit of very large hard scattering scales 3,
6;(v; shower) should match 6;(v;analytical). However,
for yZ in the kinematic range of experiments, &, (v; shower)
contains effects that are numerically important but are not
included in &;(v; analytical). Thus it is difficult to tell
whether 6, (v; shower) agrees with &,(v; analytical).

One approach to comparing &;(v; shower) to
6;(v; analytical) is to directly calculate &;(v; shower)
for a sequence of very large hard scattering scales y2 that
are far from the range of experiments. This approach can
work [16], and in fact we use it to a limited extent in this
paper. However, it is difficult to maintain the required
numerical accuracy at very large values of uZ in a practical
parton shower event generator.

In an analytical approach, one typically starts by taking
an appropriate integral transform of &;(v). Then one
calculates a cross section o,(r) depending on a variable
or variables r. For instance, one may be interested in the
distribution of the thrust parameter, 7, so that one examines
6,(7) where 7 = 1 — T. Then one takes the Laplace trans-
form of 6,(z) with Laplace parameter v. Then we need to
sum logarithms L = log(v), which is large when v — co.

The aim of the following sections is to follow the general
method outlined in Secs. II through X so as to redesign the
calculation of the parton shower cross section so that it
produces the same result for the integral transform of the
cross section as before but so that it produces a calculation
of this quantity and not a cross section for other observ-
ables. The redesigned calculation gives the integral trans-
form of interest as an exponential of a quantity that can be
expanded in powers of the shower splitting operator. The
leading order term in the exponent is simple and is the
candidate for the summation of large logarithms produced
by the shower. If the higher order contributions to the
exponent are suitably small, then they to not interfere with
the summation represented by the leading order terms. In
some favorable cases, we can analyze all higher order
contributions to the exponent analytically. In other cases,
we calculate low order contributions to the exponent
numerically.

Our example is the thrust distribution. There is much to
be learned from this example. In particular, we learn that
the shower result depends on some details of the parton
shower algorithm that one might have thought are not
important.

XII. THE PARTON SHOWER FRAMEWORK

We begin with a brief review of the parton shower
framework that we will use, expanding on the material at
the start of Sec. 11, but simplifying this material with respect

to initial state partons, which do not appear in electron-
positron annihilation, and with respect to spin.

A parton shower can be described using operators on a
vector space, the “statistical space,” that describes the
momenta, flavors, colors, and spins for all of the partons
created in a shower as the shower develops. We use this
description in the parton shower event generator
DepUCTOR [18-25,31,32]. The general theory includes
parton spins but DEDUCTOR simply averages over spins, so
our explanation in the following sections will leave out
parton spins. With m final state partons in electron-positron
annihilation, the partons carry labels 1,2,...,m. The
partons have momenta {p}, = {pi,..., p,,} and flavors
{f}n- We take the partons to be massless: p? = 0. For
color, there are ket color basis states |{c},,) and bra color
basis states ({c’},,|. We use the trace basis (or color-string
basis), as described in Sec. 7 of Ref. [19]. Color appears in
the statistical space as the density matrix, with basis
elements |{c},,)({c'},,|- Then the m-parton basis states
for the statistical space are denoted by |{p, f, ¢, ¢'},,). The
statistical space is described in Secs. 2 and 3 of Ref. [19].
These sections also show how shower evolution is
expressed using evolution operators that act on the stat-
istical space. (However, in this paper the names of the
operators follow Ref. [18] rather than Ref. [19].)

Parton shower programs often use the leading color (LC)
approximation, which provides the leading term in an
expansion in powers of 1/N% = 1/9 [4,27,28]. With this
approach, the color states {c, ¢'},, obey {c'},, = {c},,- The
splitting probabilities are simply proportional to a factor Cg
or Cy, with Cg being equivalent to C,/2 within the LC
approximation.

Our program, DEDUCTOR [23], uses what is called the
LC+ approximation [22]. The LC+ approximation consists
of simply dropping some color operator contributions in the
splitting functions. The LC+ approximation is more power-
ful than the LC approximation because it has corrections
only for soft, finite angle emissions but is exact in the limit
of collinear emissions [22]. For this reason, the LC+
approximation is more accurate than the LC approximation
for summing large logarithms correctly in a parton shower.
Reference [17] analyzes the effect of various forms of the
LC approximation on the summation of large logarithms.

In this paper, we focus on the effect on the summation of
large logarithms from characteristics of the parton shower
formulation such as the ordering variable, the momentum
mapping, and the splitting functions. We do not focus on
the treatment of color. Thus we mostly use full QCD color
without approximation. Where we simply run DEDUCTOR
to produce the thrust distribution, we use DEDUCTOR’s
default color approximation, LC+. There, for the
DEDUCTOR default ordering variable and momentum map-
ping, we verify numerically that the LC+ approximation is
essentially exact for the thrust distribution. (See Fig. 4.) At
one point, in Fig. 5, we make contact with Ref. [17] by
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investigating what happens when one uses a less exact
color approximation that is one version of the LC
approximation.

DEDUCTOR uses specific choices with respect to shower
kinematics, the shower ordering variable, and the parton
splitting functions. In the remainder of this section, we
outline some of these choices that play a role in the analysis
of the following sections.

In DEDUCTOR, the default is to order splittings according
to decreasing values of a hardness parameter A? [24]. This
hardness parameter is based on virtuality. For massless
final state })artons in electron-positron collisions, the
definition is

(P1+ Pmi1)?
2p;- Q

Here the mother parton in a final state splitting has
momentum p; and the daughters have momenta p; and
D1 Here Q is the total momentum Q of all of the final
state partons, which remains the same throughout the
shower. It proves convenient to use a dimensionless
virtuality variable y = A%/Q?:

A2 = 02. (98)

PO 2

2p;-Q
Thus y decreases from one shower splitting to the next.
One could use a hardness parameter other than A to order
the shower. We will consider also a shower ordered by the
transverse momentum [25] in a splitting,

K = 2(1=2)(py + puer)? = (1= 2)yQ/ay.  (100)

where z is the momentum fraction in the splitting and

QZ
C2p- 0

We denote the hardness scale of a splitting by x>. When we
use the default ordering variable A for the shower, then
u?> = A% If we use kp ordering, then y? = k3.

To measure an infrared-safe observable O; in electron-
positron annihilation, we can use the notation

oy = (1O;U(ui. Q%) lpw).

Here |py) is the starting parton state for the hard scattering
process. If we were to evaluate |p,;) beyond leading order,
then it would contain appropriate subtractions to remove
infrared singularities. In this paper, we evaluate |p,) at
lowest order so that it is simply a gg state. We associate a
scale u% = Q2 with the hard scattering, where Q is the ¢g

ap . (101)

(102)

“In hadron-hadron collisions, Q in Eq. (98) is replaced by the
momentum Q) of the final state partons at the start of the shower.

momentum. The operator I/ (/4;», Q?) expresses the evolu-
tion of the system from the scale QO to a scale /1]20 of order

1 GeV?2, at which the shower is turned off. After this
evolution, we have a statistical state that can be expanded in
the basis states |{p, f, ¢, c'},,). This expansion is realized
as an integral, which takes the form of a Monte Carlo
integration that is obtained by generating many
Monte Carlo events. We then apply an operator O; that
embodies the desired measurement. We still have a sum and
integral of basis states. We take the product with the
statistical bra state (1|, which is defined by

(IKp. fre.c'}) = {hnl{ehn)-

This leaves us with the numerical result for ;. The use
of the statistical bra vector (1| is discussed in Sec. 3.5
of Ref. [19].

The shower operator U/ takes the form

(103)

w2 du?
i) =Texo ([ s02). (10
"

2

There is an instruction T that indicates that if we expand the
exponential, the operators S(u?) with the smallest values of
u? belong on the left. This is simply a compact way of
saying that U (u3, u?) obeys the differential equation

0
M%a_”%u(ﬂ%’ﬂ%) = U3 4u})S(u3). (105)

In general, the generator S(u?) is a sum of terms
with approximations to n, real emissions and n, virtual
exchanges,

S2) = > Shml().

ng.ny=0
nr+ny>1

(106)

In existing parton shower event generators like DEDUCTOR,
only the terms with ny 4+ n, = 1 are implemented. This is
also the case for other parton shower algorithms that we
consider here. Thus we assume

S(p?) = SM(w?) + SO G). (107)
The operator S!'%(4?) creates a splitting, changing an m
parton state to an m + 1 parton state. The operator
S01(4?) leaves the number of partons and their momenta
and flavors unchanged, although in a full color treatment it
modifies the parton color state. The operator SI!(4?) is
related to the inclusive sum over splitting variables in
S19(2) by (11801 (u2) = (1519 (42), so that

(1|S*) = 0. (108)
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If we had contributions to the shower generator with
ng +ny > 1, we would still have (1|S(u?) = 0 [18].

The operator S!'¥!(yQ?) in DEDUCTOR [22,25] is not
simple. However, in the cases for which we need an explicit
expression in our analytical formulas here, we need only its
form when y <1 and (1 —z) < 1. This is the limit in
which S0 (yQ?) expresses the soft x collinear double
singularity of QCD. (However, our numerical results use
the full S"%(yQ?).) In this limit, we have

Sy p.f.c.c'})

m

= YN ®T+ T ®T]|[{c.c'},)

=1 k=1
et

5

X ®<8(all’yk) <l-z< 1>|{ﬁ7}}n1+1)'

dz a,(Ag(1=2)y0?%/a;)
1-z 2r

(109)

There is a sum over parton indices / and k. We split parton /
with dipole partner parton k, creating a new parton m + 1,
which we consider to be a gluon. The momenta {p},,., of
the partons after the splitting are functions of the momenta
{p},, before the splitting and the splitting variables y, z, ¢,
as specified in Egs. (189) and (194).

In Eq. (109), [T, ® T}] and [T} ® T]] are operators on
the parton color space. The notation (Ci; ® Cgra) for color
operators represents the following. A color basis vector
{c,c'},,) in the statistical space represents the color
density operator |{c},,)({c'},|- Here |{c},,) and [{c'},,)
are basis vectors for color amplitudes. Let Cy,, and Cy,
be operators on color amplitudes for m partons that yield
color amplitudes for /71 partons with /71 > m. In the case of
SO (yQ?), m=m+1. The statistical space vector
(Cret ® C ){c.¢'},,) then represents the color density

operator Cyegl{c}, ) ({¢'} | Clye In the case of [T, ® T}].
the operator creates a new gluon with color index a by
inserting a color generator matrix 7 on the color line for
parton [/ in the ket state and inserting 7 on the color line for
parton k in the bra state.

The argument of @, in Eq. (109) contains the standard
factor [7]

CA(67 = 322) — 10nf> (110)

A = exp <_ 3(11Cx — 2ny)
The rest of the argument of a; is k%, Eq. (100), except that
we drop the factor z because we are interested only in small
1 — z. Although the operators S!'%(42) contain one power
of aj, this a, is evaluated at a scale that is not y>. Thus if we
expand S(u?) in powers of a,(u?), all powers will appear.

The parameter 9(/, k) is

(1, k) ==[1 —cos(O(L, k))], (111)

M| —

where 6(I,k) is the angle between partons [ and k in
{p.f.c.c'},,). With this definition, 9 ~ 6>/4 for small 6.
The angle &(, m + 1) between partons [ and m + 1 after a
splitting is given by

2

1 —cos(d(l,m+1)) = mﬁz Pt
~Zéaiyz> +OGR). (112)
For small y and small (1 — z), this gives
@(1,m+1)zlaiyz. (113)

Thus the lower limit on (1 — z) is equivalent to an upper
limit on the splitting angle, &(I,m + 1) < 8(I,k). The
splitting angle should be smaller than the angle between
the two partons / and k. The restriction (1 —z) < 1 gives a
lower limit on the splitting angle. The net range for the new
splitting angle is

ay <d(Lm+1) < (1, k). (114)

XIII. PREVIEW

In the following sections, we propose a way, for electron-
positron annihilation, to gain more direct access to the
summation of large logarithms in a parton shower than by
simply running the shower and examining the result
numerically. The analysis adapts the general formulation
of the method in Secs. II through X to the practical analysis
of first order parton shower algorithms. Our example is the
thrust distribution in electron-positron annihilation. Here is
a brief preview.

(i) We are interested in the thrust distribution g(7) with

7=1-—T, where T is the thrust.

(i) As in analytical approaches, we work with the
Laplace transform g(v) of g(z).

(iii) §(v) contains large logarithms, a,(u3)"log/(v) with
j <2n.

(iv) We suppose that we know the proper summation of
the log(v) factors in full QCD at a certain level of
accuracy, but a leading order parton shower is not
full QCD. We wish to know what result the parton
shower gives.

(v) The result of simply running the shower and
examining the result numerically can be expressed
as in Eq. (102),
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§(0) =~ (1OWUGE. 0)lp).

Oy

(115)

Here oy, is the total hard scattering cross section and
(1]---|py) indicates an ensemble average in the
statistical state |p,) representing the perturbative
hard scattering. Then U(u7, Q%) represents the
operator on the statistical space that generates the
shower. This gives us states consisting of tens of
partons. We could measure any operator O, that we
like in this many-parton state. We apply a simple
operator O(v) that measures the Laplace trans-
formed thrust distribution on this state.
(vi) In this paper, we rewrite g(v) in the form

90) = (Texp(Z@)OWpr).  (116)

H

The notation T indicates an ordering instruction for
the exponential, as in Eq. (104) and later in
Eq. (145). In the example used in this paper, the
operator O(v) applied to the hard state |py;) simply
gives an eigenvalue 1.

(vii) With this form, we have expressed g(v) in terms of
the exponential of an operator Z(v). This operator
has an expansion

I(v) = iz[k] (v), (117)
k=1

where each term in Z¥ (1) contains k factors of the
splitting operator S.

(viii) We can further expand in powers of a, evaluated at a
fixed scale Q%/v:

TH() = f: {M} "ILk] ). (118)

o 2w

(ix) The most important feature of Eq. (116) is that the
operators Z¥/(v) can be computed using two fairly
simple recursion relations.

(x) The first order contribution, Z!!/(v), is obtained
rather trivially from one power of the shower
splitting operator S(u?). This operator is then the
obvious candidate for the exponentiation of g(v)
generated by the shower. If S(u?) is suitably defined,
ZW(v) matches the exponentiation in full QCD.

’In Secs. 11 through X, we expanded operators in powers of
a,(u?) at a running scale y? appropriate to the operator. Here, we
expand operators in powers of the splitting operator S of the
parton shower. This technique simplifies the analysis of a shower
algorithm that is based on lowest order perturbation theory.

(xi) If ZI1(v) generates the desired exponentiation, then
T (v) for k > 2 should be small, so as not to destroy
the desired exponentiation.

(xii) For next-to-leading-log summation (NLL), this im-
plies that Z o (v) should not contain more than n — 1
powers of log(v).

(xiii) In one case examined in this paper, we can show

analytically that T (v) does not contain more than
n — 1 powers of log(v).

(xiv) The operator I[zz](y) is of special interest. It should
not contain more than one power of log(v).

(xv) In some cases, we can show analytically that 7 [22] (v)
does not contain more than one power of log(v).

(xvi) We can write the integral for Z,;'(v) and evaluate it
numerically to see if it contains more than n — 1
powers of log(v).

(xvii) For some shower algorithms examined here, 7 Lz ] (v)
passes this test. For one algorithm examined, it fails.

XIV. THE THRUST DISTRIBUTION AND ITS
LAPLACE TRANSFORM

We will examine the distribution of thrust, 7', defined for
parton momenta {p},, by [33,34]

2oilpi-ria| 1 _
- = \/‘Q‘z'n}i?XZ|plnT| (119)

T = max

o 2ilPil

The axis defined by the unit vector 7, that maximizes the
sum is the thrust axis. We will be interested in the behavior
of the thrust distribution for small values of

t=1-T. (120)
We can write 7 in a useful form by defining sets R and L

of partons by p; i, >0 for i € R and p;-7ii; <0 for
i € L. Then,

Using the thrust axis, we define + components of
vectors by

pE=[p £ P -7l /V2. (122)

Then we can write
(123)

T=1Tp + 7L,

where, using Q? =20*Q~ with 0+ = Q~,
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o = g—i Z (124)
ieR

tEL

In order to use a parton shower to analyze the thrust
distribution, we begin with the cross section

g(r) = Ldo

—, 125

oy dr (125)
where oy is the hard scattering cross section, equal to
do/dr integrated over 7. We wish to analyze the small 7
behavior of g(z). For this purpose, it is standard to work
with the Laplace transform of g(z),

30) = A ” dreg(7). (126)

The coefficient of @ in the perturbative expansion of ¢(7) is
not a normal function but is a distribution with log/~!(z) /7
singularities at 7 =0. In order to work with normal
functions, we define the integral of g(z),

f(2) = /g’aw9<%>. (127)

The coefficients in the perturbative expansion of f(7)
are functions with log/(z) integrable singularities. The
cross section ¢(7) vanishes for 7> 1/2, so f(z) =1
for z > 1/2.

Consider the Laplace transform of f(z):

F) = /0 " dre v f (7). (128)
We have
fw) = Aoo di'e™" /OTI drg(7)
:A dTg(T)[ dr'e™"
= —/oo drg(r)e™ (129)
vJjo
Thus
fy =2 (130)

The function f(z) is given by the inverse Laplace transform

of f(v):

£(2) _i_/dyew@. (131)

27 e v

The contour C runs from v, — ico to vy + ico parallel to the
imaginary v axis, where v > 0 so that the contour is to the
right of the singularity of g(v)/v at v = 0.

We expect the coefficient of @} in the perturbative
expansion of f(z) to contain terms proportional to
log/(z) for ¢ — 0. To see how this translates to §(v), we
can start by noting that

f@)=m"=gw)=T1+Ap™ (132)
Thus
o= Mlogi(e) =
=0/
gv)=T(1+A) i n Alog/ (133)
=

Matching powers of A, we learn that logarithms of 7 for
small 7 translate into logarithms of v for large v.

We wish to use the parton shower formalism to find an
analytical formula that sums the logarithms of v in §(v). We
can then compare what we find to the standard QCD
formula that sums these logarithms. The final step needed
to obtain something that can be compared to experiment
would be to perform the inverse Laplace transform (131).
This step is the same for the parton shower method or the
normal analytical methods. We discuss this step only
briefly in this paper.

XV. THE MEASUREMENT OPERATOR

If we want to measure the thrust distribution, then we
define, following Eq. (102),

o(z) =~ (116(z

- (134)

— Top JU(UF, 1) )

where 7 is a real number times the unit operator on the
statistical space and 7, is the operator defined by

topl{pofreech) = eph)p foe ), (135)
where 7({p},,) is 1 — T for partons with momenta {p},,, as
defined in Egs. (123) and (124). Here oy, = (1]py). This is
the Born cross section for ete™ — ¢g since, in this paper,
we evaluate |p,,) at lowest order.

Rather than measuring g(z), we wish to measure the
Laplace transform g(v). For this we have, using Eq. (126)
in Eq. (134),

ﬁﬂ—éﬂ@@%ﬁ@%m% (136

where
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Ov) = e V. (137)
We will analyze §(v) in the subsequent sections. For this
analysis, it is important that O(v) has an inverse

O(v)™! = e*™, (138)

XVI. SETTING UP THE SHOWER ANALYSIS

Equation (136) allows us to calculate §(v) numerically
using the shower evolution operator I/ (,uj%, uz). We would
now like to reformulate the shower result so that it takes the
form of an exponential in which the exponent can be
perturbatively calculated.

A. The operators Y and S,

We begin with an operator )(u?; v), which is defined in
Secs. III and VIII using the all-order formalism of Ref. [18]
for describing parton shower algorithms. The operator
Y(u?;v) is defined to have two properties. First, it does
not change the number of partons or their momenta or
flavors. Second,

(WY v) = (HOWU (k7. u*)O7 (). (139)
These properties apply either for electron-positron, hadron-
hadron, or electron-hadron collisions. Now, we consider
only electron-positron annihilation. Although Y(u?;v)
does not change the number of partons or their momenta
or flavors, it can change the parton colors. There is some
freedom to define what J)(4?;v) does to the parton color
state. We will define the action of ))(4?;v) on states in the
statistical space in Eqgs. (170) and (171) below.

The property Eq. (139) can be written as

(HOWU(ui. p?) = (1Y (W )O).  (140)

This result allows us to rewrite §(v) as given by Eq. (136) as

90) = (V@5 IOWlp).  (141)

H

We see that instead of generating a complete parton shower
as in Eq. (136) and then measuring O(v) for the resulting
many parton state, we can measure O(v) just on the hard
state and then apply the operator Y(u?; v) that depends on v
but leaves the number of partons unchanged.

How can one evaluate )(u?;v)? We note first from the
form of Eq. (139), that Y(u?;v) has a perturbative expan-
sion beginning with Y(u*v) = 1+ O(a) and at y* = p7
it is exactly

V(uiv) = 1. (142)

We define an infinitesimal generator Sy(u?;v) for

Y(u*:v) by
L Syli) = Y )L (143)
e d?
Then Y(u?;v) obeys the differential equation
d
;ﬂﬁyoﬂw) =Y(hv)Sy(w*v),  (144)

with boundary condition y(,u%;y) = 1. We can use the
notation

vorso) = Tew ([ Dosyi) (149

Ky

to indicate the solution to Eq. (144). The instruction T
indicates that the operators Sy(ii?;v) with the smallest
values of fi> belong on the left.

We will sometimes adopt the notation

2 2
LORY R0 (146)

Hy

when the upper integration limit is Q% and we do not need
to explicitly display Sy (u?;v).°

B. Relation of Sy, to the shower generator S

We can relate Sy(u?,v) to S(u?). From Eq. (105),
we have

2 0
ou?

Using Eqgs. (147) and (144) to differentiate Eq. (139),
we have

(1Y 0)Sy(?sv) = (HOWUWF. 12)S(W*) O~ (v).
(148)

W UG 12) = UG ) )SW?). (147)

Using Eq. (140), this becomes

(1Y 0)Sy(psv) = (1Y (1) O(v) S (1) O~ (v).
(149)

We can also use Eq. (144), together with the boundary
condition (142), to write an equation for y(/ﬂ;v),

2 d—2
Y(phv) =1+ /” p_@y(ﬂz;V)Sy(ﬁz;V)-

“

(150)

®This is a useful definition even though Y(u%;v) is not the
exponential of Z(v) because of the T instruction in Eq. (145).
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C. Operator mapping P
To use Eq. (149), we introduce some useful notation,
expanding on Sec. IV. Let A be an operator that increases
the number of partons or leaves the number of partons
unchanged and changes momenta, flavors, and colors. Let
B be an operator on the statistical space that leaves the
number m of partons and their momenta and flavors
{p,f},, unchanged, although it can change the parton
color state.” Let B be defined such that
(1|B = (1|A. (151)
We will define a linear relation .4 — B that realizes this
relation. To represent this linear relation, we adopt the
notation

B =[Alp. (152)
The needed construction is straightforward. Suppose that
A maps states with m partons into states with 7 partons,

with 71 > m. Let A have the form

A= (Ciee ® C} )R, (153)

where R acts on the momentum and flavor factor of the
statistical space and (Cye ® C,im) acts on the color factor.
Recall from Sec. XII the meaning of the color operators
(Cret ® C). Letting |{c},,) and |{c'},,) be basis vectors

for color amplitudes, a color basis vector |{c, ¢},,) in the
statistical space represents the color density operator

{ch){c'}ul- Then (Cie ® Cyy)l{c.c'},,) represents
the color density operator Cye|{c},,) ({¢'} | Cr

Let us evaluate (1|A|{p. f.c.c'},,) for an arbitrary m-
parton basis state |{p, f, ¢, c¢'},,). The inner product of (1|
with a statistical basis state is given in Eq. (103). We insert a
sum over the basis states [19] with 7 partons,

(HAKp. f.c.c'} )

1 .
= [d{p,f}ﬁ,]{; (1{p.F.2,¢}5)

x ({2,2}4]Ca ® Clrl{e. ¢'},0)

< ({p. FYal RI{P. [ 1m)- (154)

For the color, this gives us the trace of the color density
operator obtained by applying Cy ® Cy, to |{c.c'},,),
namely the trace of Cye|{c},,)({c'},,|C}

bra- The result is

In Sec. IV, A is sometimes an operator that is defined in
d = 4 — 2¢ dimensions that contains poles 1/¢ and singularities
when the momenta of partons created by A become soft or
collinear. However, (1|4 is well defined in d =4 dimensions.
Then B is well defined in 4 dimensions.

(1AL p. f.e.c'b)
= <{c,}m|cgracket|{c}m>

< a0 130 PhalRHp. £1,). (159)
We now need to define B = [A]p so that
(1][Alp = (1]A. (156)

We distinguish two cases. First, if i1 = m we leave the
color operator in 4 unchanged,

[(Cree ® CLIRIp{p. frc.¢'})
= (Cket ® Czra)Hp’fv c, C/}m)

<o o I1)b PhalRIp. 1) (157

Evidently, this satisfies (1|[A]p = (1].A.
Second, if 7,z > m we define, with one exception,

[(Cket ® Cl;ra)R][P’Hp’ f’ ¢, C/}m)

|
= 5 (Cl;racket ® 1 + 1 ® Czracket”{p’ f, c, C/}m)
1 ”, A
=1 [ 1D SYal (P, fYalRI{p. f1m)- (158)

This also satisfies (1|[A]p = (1].A.

The one exception concerns the first order splitting
operator describing real emissions, SO/, This operator
contains a number of terms. There are some terms with
color content that can be written in a shorthand notation as
t; ® t;. This describes the splitting of parton / in the ket
state interfering with the splitting of parton k in the bra
state. Parton [ is treated as the splitting parton in the
momentum dependent part of the splitting function, while
parton k is the dipole partner parton. We can have k = [.
When the newly created parton is a gluon, we can also have
k # 1. There are also terms in the splitting operator of the
form t',[ ® t; in which the roles of the bra and ket color
states are reversed. For S, we define

1 @ tlp=1® 11,

1 ®1)p = 11; @ 1. (159)
In the case k=1, the color operator is (tlT Rt + t,t ®1)/2,
so one simply averages over the two cases in Eq. (159).8
This asymmetric definition that depends on whether the
dipole partner parton is in the bra state or the ket state

8Additionally, for k = [, the operators tkt';' and t,tj; are color
Casimir operators, Cg, Cy, or Ty, so the two cases in Eq. (159)
are really the same.
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makes the definition of [S!'%], match the definition of
the virtual splitting operator S! in the LC+ approxi-
mation [22].

There is a special case of some importance. Suppose
that 71 = m and, in addition, A leaves the momenta and
flavors of all partons unchanged. That is, |{p, f},,) is an
eigenvector of R:

RUp. 1) =r({p. fr)l{p. f1a). (160)
Then A applied to |{p.f.c,c'},,) takes the form
AP, fre,Y) = (Coa ® CL)r({p 1)
< [{p.foe.c}). (161)
In this case, the definition (157) gives us
Alp = A. (162)

There is some freedom available in fixing the color

part of [(Cye ® C})R]p, as discussed in Sec. VID of
Ref. [18]. We could add any operator A’ to [A]p if A’ has
the property that (1|.4" = 0. The form in Egs. (157), (158),
and (159) is recommended by its simplicity, so we will use
it in this paper.

This defines the operator [A]p in general. However,
when [A]p acts on the ¢g initial hard scattering state in
e e annihilation, the action of [A]p is simpler. The color
space for gg contains only one basis vector, |{c,c},),
with {c'}, = {c}; and (Leoior[{c. c}2) = ({c}al{c}y) = 1.
Therefore CbraCket ® lorl® C]_ Ce acting on |{c,c},)
can only return an eigenvalue:

bra

[Cgracket ® 1”{6‘, C}Z) = [1 ® C:)racket”{c’ 0}2)

= lcolor'{c’ C}2>’ (163)

where
Acolor = <{C}Z|C}Zracket|{c}2>'
This tells us that |{p, f,c, c},) is an eigenvector of [A]p:
[Alpl{p. [, ¢c.c}s) = Aal{p. fr e c}r).

Using (1{p. f, ¢, c}>) = ({c}al{c},) = 1, we have a very
simple result for the eigenvalue,

(164)

(165)

Aa = (1AKp. f.c.chy). (166)

D. Recursive definition of S,,

We can now define Sy(u?;v) so that it satisfies
Eq. (149). Recall that Y(u*;v) = 1 + O(a,). Because of

this, it is possible to isolate Sy(u?;v) on the left-hand side
of Eq. (149):

(1Sy(u*sv) = I{Y (1) OW)S(*) O~ (v)
+ [1 = Y(*0)|Sy(u*v)}. (167)
Using the operator mapping [- - -]p, this is
Sy(?v) = V) 0W)SE) O™ (v)]p
+[[1 =Y )|Sy(u*;v)lp. (168)

Note that the operators Y(u?; v) and Sy, (u?; v) in the second
line of Eq. (168) leave the number of partons, their
momenta, and their flavors unchanged. Thus Eq. (162)
applies and the [- - -]p operation has no effect.

Equation (168) can be used to define Sy(u*;v) and
Y(u?;v) recursively. We can write Sy (u?;v), Y(u?;v), and
Z(v) as expansions in powers of the shower evolution
operator S:

) =D Sy ),
k=1

Vitiv) =1+ W),
=1

Sy(p*v

I(v) = iz[k] (v), (169)

where each of Sglj] (u?;v), YM (u?;v), and ZH (1) contain k
factors of S. Then we can write Eq. (168) as

8y (iv) = V(2 0) 0)S ()07 (v)]p
k=1
= VG208 (350, (170)
=1
Similarly, we can write Eq. (150) as
Y /#— s, (1)
u M
These equations apply for k = 1,2, ... with Y% (4?;0) = 1.

We now illustrate this for the first two orders. At order 1,
Eq. (170) gives us

Sy ) = [0W)SEHO W)]p.  (172)

At order a2, we have

054049-19



ZOLTAN NAGY and DAVISON E. SOPER

PHYS. REV. D 104, 054049 (2021)

S5 (utv) = VU (2 0)0W)SE) O~ ()]

- V(2:0)83) (2 v). (173)
From Eq. (150) at first order, we have
2 -2
V(2 0) = /” d_izsgﬂ](ﬁ%u). (174)
u M
For Sg] (u%;v) we can use Eq. (172). This gives us
v dp? P
S50 = [ T 0WSE0 Wl
Hy
x [OW)S(*) O~ ()], _plp- (175)
Here we use the abbreviation
[A]I—P =A- [A][P- (176)

The operator Sy(u*;v) is a complicated operator in
general. However, it is significant that, because of
Egs. (165) and (166), the initial gg state is an eigenvector
of Sy(u*v):

Sy v){p. f.e.chr) = As,{p. f.e.chr),  (177)

where

Asy = (1Sy(u*v){p.f.c.ch). (178)

XVIL EVALUATION OF 83 (i)

Let us see what we can say about S[;] (1%;v) as given in
Eq. (172). In a first order shower, like DEDUCTOR, we
divide S(y?) into its real emission and virtual parts as in
Eq. (107). Then Eq. (172) gives us

1 _
8y (W) = [0)SM ()07 ()

+O0W)SHW)0 W), (179)

The virtual operator SI!/(42; 0) leaves the momentum and
flavor state unchanged, so this is

Sy (i) = [0W)SMI (W) (v) + SO (). (180)

Recall from Eq. (108) that (1|S%!(42) = —(1|SI0(u?).
This tells us that

[5[0’1](/42)]@ = _[5[1’0] (/12)][@-

Using Eq. (181), Eq. (180) becomes

(181)

SY(21v) = [0W)SI (1) 0 () = S1(2) . (182)
This is a convenient form for calculations.

XVIII. CHANGE IN = INDUCED
BY A SPLITTING

The operator O(v)S!1% (42)O~! (v) appears in Eq. (182)
for S[;] (1%;v). This operator is

O(I/)S[I’O] (/42)(9_1 (y) — ¢ VT SI10] (ﬂ2)€+yr"f’. (183)
The operator S!"?(4?) is a sum of operators,
SOw) = 81w, (184)

=1

where [ is the label of the parton that splits. When we apply
SEI’O] (1) to a state |{p, f,c,c'},), the splitting operator
creates a new state |{p, f,&,¢&'},.,;) as long as [ < m. For
[ > m, §; just gives zero. The operators 7, measure the
values of 7 before and after the splitting. Thus

({p.]. 2.2}t OW)S 12O W) p. foc. c'Y)

= e {p F. 2,8}t IS W) P, foes ),
(185)

where 7 = 7({p},,) and = = 7({p},. ). Thus we need to
know how 7 changes in a splitting. We are looking for the
leading contributions to logarithms of v, so we can use the
approximations that z is small and that the splitting is nearly
soft or collinear.

We start with momenta { p},, and suppose that the parton
that splits is in the right thrust hemisphere, / € R. The
splitting produces a new parton / and a parton m + 1. After
the splitting, we have partons with momenta {p},, . .

The emission of a parton changes the thrust axis.
However, in the case of a nearly soft or collinear splitting
of a parton in a state with small 7, the sum of the
momenta of the daughter partons is very close to the
momentum of the mother parton, so that the thrust axis
changes by very little [35]. For this reason, we calculate
7({P},41) for the new parton state using the thrust axis
of the old parton state {p},. We also assume that after
the splitting partons / and m + 1 are still in the right
thrust hemisphere.

Now we turn to the calculation of 7 —7. We use the
definition, Eqgs. (123) and (124), to write
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= pl +pm+1 Z pz Zpl l )
i€R ieL
i#{lm+1}
(186)
Now we need to evaluate (p; + p;,., — pi)/Q and

(pi — pF)/O*. Following the notation of Appendix B of
Ref. [25], we define

hy =(1+y+2)/2,

A=4/(1 +y)* —4ay,
Q2

2p;-Q°

where y was defined in Eq. (99). We suppose that y < 1.

We define a lightlike vector n; by

2p;- 0
Q2
Note that n; is independent of the normalization of Q.

We write the momentum vectors for partons / and m + 1
after the splitting as

ar (187)

n;= 0-p. (188)

pr=hyzpi+h_ (1 —2)n +ky,

Pmir=h (1 —2)p;+h_zn; -k, (189)
where k| - p; = k| - n; = 0. The splitting is specified by y,
the momentum fraction z in Eq. (189), and the azimuthal
angle ¢ of k l The magnitude of k| is determined by the

condition p7 =0 or p2,_, = 0:
—k3 = z(1 = 2)y2p;- Q. (190)
Define
Py=pi+ pwsr = hyp+hon. (191)

This gives us P,2 = 2p; - Qy. Using these results we obtain

(Q - P1)2 = (Q - Pz)z- (192)

We require that momentum be conserved in the splitting,
so that

Q_plzzpi’ Q—PIZZIA% (193)
'}Zz' '}Z'
The relation (192) allows the p; for i & {l,m + 1} to be

obtained from the p; by a Lorentz transformation,

pr=ANpy, i E{lLm+1}. (194)

The needed Lorentz transformation can be a small boost in
the p; — QO plane. Let

pi=aip;+Pfin + pi s (195)

where p; | - p; = p; -n; =0. Then define p; for i &
{l,m+ 1} by
pi=e"ap;+ e pin + piy. (196)
The needed boost angle is small:
w=y+00(?). (197)
Using Eq. (194) in Eq. (186), we have
PO P1+Pm+1 pl+ZA_ 5
'lilf
ry
+> (A - 8)) o (198)
ieL
We will see momentarily that (p; + p;,.., — p;)/Q~ is

small, of order y. This allows 7 — 7z to be of order y.

In the third term, for i €R, (A) —&;) is of order y.
The thrust axis defines the & components of vectors in
Eq. (198). If p, were exactly aligned with the thrust axis,
then the only nonvanishing index choice for A; would be
v=—. But p; /0~ <1 for i €R, since this quantity is
of order 7 and we suppose that 7 < 1. This restriction on
the index choices is not exact. However, for i € R,
the components p¥/Q~ for ve {1,2} are of order
p/O~ ~[pip7]"?/Q~, which is at most of order /7.
The component p?/Q~ for v =+ can be of order 1.
However, A7 = A~ is at most of order y* since A =
exp(ww) where w is given by Eq. (197) and the first order
contribution to A~~ vanishes because the generator matrix
wH is antisymmetric. Thus the second term in Eq. (198) is
of order y times a small factor, either z, 1/z, or y. The same
reasoning applies to the third term.

We conclude that the only surviving term in Eq. (198) is
the first:

%_Tzw_ (199)
Q
We have

Pr A+ P — P (L=—a)yp; + aiyny
o o

(200)

With our kinematic conventions,
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Pl 1 —cosO(l,nr)

o 2a, ’
n_i 1+ cosd(l, ny) ’ (201)
2al
where
cosO(1,iiy) — P |’ . TT| (202)
!
This gives us
Pit Dy =P
l tl ! ~ §Iy7 (203)
Q
where
1 -
E=1- (1 ——> [1 —cos(6(l,nr))].  (204)
261[
That is
T—TrREY. (205)
The same result holds for /€L if we change

1 —cos(0(1,7it)) to 1 4 cos(O(1, 7ir)).

If we are splitting the quark or the antiquark in the
two parton state created initially in e*e™ annihilation, then
a;=1and 0(l,7it) = 0. Then &, = 1.

In the general case, 0 < 1 —cos(@(l,nt)) < 1 forl € R
and 1/2 < (2a;-1)/(2a;) < 1, so

0<¢ <. (206)
We get £, — 0 only when 6; — /2 and parton [ is very
soft, 1/a; = 0. Notice that there is no singularity for
0, — r/2, so there is no singularity for & — 0. There is
a singularity for 6(l,7iy) — 0 for all partons [. This
corresponds to & — 1. Thus in the general case we can
treat £; as being close to 1. We will argue in Appendix A
that for the purpose of finding next-to-leading logarithms of
v we can simply set &; to 1.

We conclude that the effect of the operators O(v) in a
splitting of parton [/ can be approximated by

OW)S N (W)O W) {p. f.c.c'},)

1,0 Py,
~ SR e D p e ch,).(207)
where &P is an operator that, acting on a state
H{p,f,c,c'},,), has eigenvalue & as defined in Eq. (204)
as long as [ < m. For [ > m, we can simply define &; to
have eigenvalue 1. We recall that &; is generally of order 1

and equals 1 exactly in the case of a splitting of one of
the partons in a two parton state. Using this in Eq. (182)
gives us

S (250) % =3 IS (1 = ).
l

(208)

XIX. 8[31,] FOR A QUARK-ANTIQUARK STATE

For the ¢gg state created initially in electron-positron
annihilation, Eq. (208) simplifies considerably. First, the
index [ denoting the parton that splits can take only the
values [ = 1 (for the quark) and [ = 2 (for the antiquark).
Each choice gives the same result, so we can take [ = 1
and multiply by two. Also, the color factors are trivial. In

[SEI'O] (1*)]p we encounter color operators T, - T, T, - T,
and T, -T,, where T;-T; =}, T¢T¢ and T{ inserts a
color matrix 7 on parton line i. The operators T - T and
T, - T, simply give an eigenvalue Cg times the unit color
operator, while T'; - T gives —Cg. This gives us a result of

the form

S[)],](,uz;vﬂ{p,f, c.c'}h)

H=(l—e™)Ay){p.f.e.c'}). (209)

The eigenvalue A(y) is obtained in a straightforward
calculation from the ¢ — ¢ + ¢ splitting functions used
in DEDUCTOR [22]. There is an integral over the splitting
variables z and ¢. The ¢ integral is trivial and gives simply
a factor 2z. The integration over the momentum fraction z
remains,

1 a,(Ag(1 = 2
Aly) = 26 /0 dz{ R =0T (o)

2r
Iy Q?
a‘(gizQ)fmg(z, y) }

+ (210)

The argument of a, contains the standard factor Ay,
Eq. (110), and, in the first term, a factor (1 —z), as
in Eq. (109) with a; = 1. The functions f.(z,y) and
freg(z,y) are taken directly from DEDUCTOR and are quite
complicated. However, they are simple in the relevant
limits, y — 0 with fixed z and y - 0 with 1 —z xy. In
these limits, they are

2
S
l—z+y
freg(z7y) rl-z

fsing(z’ y) R
(211)

Note that fig(2,0) + freg(2) = (1 +2%)/(1 = 2) is just
the DGLAP splitting kernel for ¢ — g + g. However in
fsing(2.y) the singularity at (1 —z) — 0 is regulated by
adding y in the denominator.
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We have written these results in the form used in
DEDUCTOR. In fgp,(2,y), we could recognize that the
second term could have been transferred to fiey(2, ).

We would now like to compare this to the standard
results for the summation of logs of 7 in Ref. [35]. We begin
by inserting Eq. (211) into Eq. (210):

2n l—z+y

s ()'R(l - Z)sz) as(/lRyQ2)
2n 2t 2n (1- Z)}

A(y) = 2Cg Al dz{as(ﬂlz(l -2)y0?%) 2

(212)

We will want to evaluate this approximately for small y
in such a way that if we expand the result in powers
of ay(yQ?) we retain all terms proportional to
a(yQ?)log"(y) and o (yQ?)log"~!(y). After integrating
over i = yQ? as in Eq. (145), this will give contributions
' (Q?)log"!(v) and & (Q?)log"(v). These are the lead-
ing log (LL) and next-to-leading log (NLL) terms. In A(y),
we neglect contributions proportional to fewer powers of
log(y) or to powers of y.

In order to carry out this approximate evaluation, we note
first that we can use

a (Ap?) = a,(1?) = Polog(A)a; (u?) + O(a),  (213)

where ) = (11C, —2n;)/(12x). Then we can omit the
Ar(1 —z) factor in the argument of a in the second
term in Eq. (212) and the Ag in the third term, since
these terms do not have 1/(1 —z+y) singularities that
could produce log(y) factors after integration. In the first
term, there is a 1/(1 —z+y) singularity. For this term,
we need to keep the a? contribution in Eq. (213). After
performing the z integration in the last two terms, this
gives us

l(y)z4CFAId(l _2)

l—-z+y

a,((1 = 2)yQ?) = Py log(Ap )5 ((1 — 2)yQ?)
2w
- 3cp"‘f(2yﬂQ2). (214)

Now we note that the y in the denominator in the first
term of Eq. (214) places an effective lower cutoff on
(1 —z) at about (1—z)=y. This observation suggests
that the integration over (1 — z) can be written in a simpler
form:

Ld(1
4cF/ 2=

L G ((1=2)y0?) = fylog(ir)ai((1 = 2)y0?)

2

a,(yQ?)
-3Cg————. 215
2t (15)
In fact, this correctly reproduces the a’log"(y) terms and
the a”log"~!(y) terms in the expansion of the integral. To
see this, one can approximately solve the renormalization
group equation for a, in the form [36]

L1+ fylog(A)ay(w?)
a,(Ap?) a,(u?)

h

+ 5, log(l +fo log(A)a,(u?)) +---.  (216)

with y> = y0? and A = 1 — z. Here f8; = (17C —5Can,—
3Cgny)/(24x*). This yields a,(Au?) as a series

{ +Za

+d,log" ' (A) + - ]}

@ (Ap?) = )[elog" (A)

(217)

Then one can check that the integral (214) agrees with the
integral (215) at the NLL level.

The current code in DEDUCTOR does not include
the f; contributions in evaluating the z dependence of
a,((1 —z)yQ?). This appears to be not particularly sig-
nificant numerically, but it is significant in principle
because it means that some of the NLL contributions to

S[;] (u%;v) are absent.
We can now compare to Ref. [35] by changing the
integration variable to ¢*> = (1 —z)yQ?:

Q* dg? 2) — B 1 2( 2
) wacy 4 A0 ala) o oeh)esta)
yo* 4 2w
a,(yQ?)
- T o, 21
3Cr 2 (218)

This agrees with the result in Eq. (64) of Ref. [35] for the
LL and NLL contributions to A(y).

We have been seeking a formula for the summation of
logarithms of v in the Laplace transform g(v) of the thrust
distribution. We use Eq. (141) for g(v), choosing for |py;)
the state with a quark and an antiquark with opposite
momenta. The operator O(v) acting on this state is just 1.
Then

o) —6—1H<1|y<Q2;u> o). (219)
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We approximate )(Q?;v), using Eq. (145), as the expo-
nential of the integral of the first order generator S [;], which
we take from Eq. (209). This gives

i e (- [ Lia-emi).

Here A(y) can be either the exact function from DEDUCTOR,
as in Eq. (210), or else the approximate function given in
Eq. (215). The factor (1 —e™) puts an effective lower
cutoff on the y integration at y = 1/v. Then a factor log"(y)
in A(y) produces a factor log"*!(v) in the exponent
of Eq. (220).

We have seen that one can start with Eq. (136) for §(v) as
given by a parton shower and rearrange the operators to
express g(v) in the form Eq. (219). Then approximating

(220)

Sy(u*;v) by 8[;] (4*;v) in Y gives us a candidate result
(220) for the summation of logarithms of v in §(v). We do
note that the shower splitting functions contain ingredients
related to the argument of a, in the parton splitting
function. These ingredients are somewhat ad hoc from
the perspective of just representing the soft and collinear
singularities of a single splitting. Their purpose was to build
into the first order splitting functions some approximation
to splitting functions beyond leading order so as to improve
the effectiveness of a parton shower in summing large
logarithms. We have seen the effect of these ingredients in
giving us the standard summation of thrust logarithms at
the NLL level.

Our analysis uses primarily the Laplace transform g(v)
of the thrust distribution. One can take the inverse Laplace
transform of §(v) to obtain the thrust distribution ¢(z),
Eq. (125), itself. The function g(z) is the derivative of f(7),
Eq. (127):

(221)

We can follow Ref. [35] to evaluate f(z) at NLL accuracy:

L £1(0) !
o =e (~ gl L1+ 50} =y
(222)
Here
A = Poay(Q?)log(1/7), (223)
the LL function f(1) is
F1(A) = (1 =24)log(1 = 22) = 2(1 = 2) log(1 — 4),
(224)

the NLL function f,(4) is

b

__ b 2
=% 2log

2(1 = 2) + 2L log?(1 - 22)

2p
1-2
+ 2fyg log < 5 /1>

(2 o) o1

ﬂolog(l—/l)

f2(4)

_1)2
)
(225)

where yg is Euler’s constant, and the function y(4) is

2C 1-2
1) = = Fiog (122,

ﬂ'ﬂo 1-24
The logarithm of f(z) contains LL contributions propor-
tional to a,(Q?)"log"*!(1/7) and NLL contributions
proportional to a,(Q?)"log"(1/7), but contributions pro-

portional to a,(Q?)"log/(1/7) with j < n are dropped. Of
course, a parton shower does not drop terms beyond NLL.

(226)

XX. RESULT FROM THE PARTON SHOWER

We have manipulated the operators used in a parton
shower to produce a candidate formula (220) for the
summation of logarithms for the thrust distribution. We
have seen that this formula reproduces the known result
[35] for g(v) in QCD at the NLL level. We now ask what
the result for §(v) is in a first order parton shower that uses
the DEDUCTOR algorithm or another algorithm of interest.
That is, what do we get from Egs. (136) and (104),

30) = - (1low)Tes [ %500 ).

227
- (227)
when the shower generator S(u?) represents a first order
shower? This must be the same as the result of using
Eq. (145) in Eq. (141),

2

1 0 du
9(v)=—(1|Tex (/ Sy (u?
w=-amen( [ sy

f

;v>)0<u>|pﬂ>. (228)

Here we take |py) to be the initial gg state in ee”
annihilation (with massless quarks). Then there is some
simplification because O(v)|py) = |py). There is a more
significant simplification because |py) is an eigenvector of
Sy(u?;v). We use Eq. (177), Eq. (178), and (1|py) = oy to
give

) e [7 fj‘ S0 pf.crcha) ).

(229)
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Here [{p, f,c,c},) is a color singlet ¢g basis state with

p1 + p2 = Q. The results are independent of the direction

of p; =-p, and independent of the quark flavor

f1 = —f>. There is only one possible color state. The

basis state is normalized to (1|{p, f,c,c},) =1 [19].
We use the operator Z(v) defined in Eq. (146),

Q* du?
Iw=4-§@wm, (230)
to write Eq. (229) as
9(v) = exp[(HZ(v)|{p. f.c.c}y)]. (231)

In Eq. (231), Z(v) is obtained from just S(u?), not from any
higher order splitting functions that might be present in a
higher order shower algorithm. The result for g(v) in
Eq. (231) could be very different from g(v) as given by
Eq. (220) because a first order parton shower is not the
same as full QCD.

Using Eq. (169), we expand Z(v) as a series of terms
TW(v), where T (v) contains k powers of the shower
splitting operator S(u2). Thus Z/(v) contains k powers
of a, evaluated at a running scale inside the integrations that
give ZIM(v). We can expand ZH(v) in powers of a;
evaluated at a fixed scale. A convenient choice’ is
p2 g = 0*/v. Thus we write

TH() = i [M} ).

232
2| 2 (232)

InZ ,[(k] (v) there are k integrations over scale variables y

and k integrations over momentum fractions z, so Igck] (v)
could contain 2k factors of log(v). Changing the scale in a;
can produce one more factor log(v) for each factor ay, so
that 7.\ (v) could contain n + k factors of log(v). However
the exponent in §(v) in Eq. (220) contains only contribu-
tions proportional to of(Q?/v)log/(v) with j<n+ 1.
Thus a minimal expectation for the parton shower is that
IL,k](v) contains only j factors of log(v) with j <n+ 1.
If this is the case, we can say that the log(v) factors
exponentiate.

If we expand the QCD result for the exponent in §(v) as
given by Eq. (220) in powers of a,(Q?/v), the coefficients
of & (Q?/v)log"" ! (v) and o (Q?/v)log" (v) take particular

°In Sec. XIX, we used u2 ., = Q°. Using Eq. (216), one can
transform between expansions Y. ¢(n, j)a(Q?/v)log/ (v) and
> (n, j)ak (Q*)log/ (v) with j < n in each case, so both choices
of yfixed work equally well in an analytical treatment. In a
numerical evaluation, ,u%ixed = Q?/v has the advantage that this
scale is closer to the running scale at which «a; is evaluated inside
the integrals for ZK(v).

values. These values are generated by Z!!/(v) using a, with
its argument suitably specified by the shower algorithm.

Thus for k > 2, T\ (v) must not contain a factor log"*! ()
if we are to maintain the logarithmic summation at LL level
and additionally must not contain a factor log” (v) if we are
to maintain the logarithmic summation at NLL level.

We investigate how many powers of log(v) are contained

in T ](y) in the following two sections.

XXI. PARTON SHOWER AT LEADING LOG

In this section we examine the operators S[Jl,c] (u*;v) with
the aim of discovering the behavior of §(v) as given by a
leading order parton shower using the A-ordered
DEDUCTOR algorithm with exact QCD color. The
Laplace transform of §(v) can be represented according
to Eq. (231) in terms of the integral Z(v) of Sy(p*v)
defined in Eq. (146). We write the definition in the form

I(v) = A ”%sy(xgm; ). (233)

Here we have defined a standard scale Q”/v and a scale
variable x that gives the ratio of y? to this standard scale:
u? = xQ?/v. If we expand the exponential (not just the
exponent) in Eq. (231) in powers of a,(Q?/v), we will find
terms proportional to o (Q?/v)log/ (v) with j < 2n.

The simplest expectation would be that Z (v) also has an
expansion with terms a (Q?/v)log/(v) with j < 2n. Such a
representation would not be very useful, even if we knew
all of the coefficients for j = 2n. It is much more useful if
there are nonzero contributions o (Q?/v)log/(v) only for
j<n+1 and we knew the coefficients for terms with
j=n+1. We then call the j =n + 1 terms the leading
log, LL, terms.

In the notation of this paper, the operator Z'(1) is
proportional to one power of the shower splitting operator
and thus to one power of a running o, rather than the fixed
a,(Q?/v). As we have seen, this operator generates a whole
LL series o/ (Q?/v)log/(v) with j = n + 1. We may hope
that this is all that survives at the LL level. That is, we may
hope that ZK(v) for k>2 generates only terms
a'(Q?/v)log/ (v) with j < n. If so, we will say that §(v)
as given by the leading order parton shower exponentiates
at the LL level.

In this section, we demonstrate that §(v) does exponen-
tiate at the LL level in this sense. In the following section,
we will turn our attention to the NLL level.

We will need a small preliminary analysis. We see

from Eq. (175) that for S[;](xQz/y; v) we will need
OW)SE)O™ (V)]p and [0W)SE)O™ ()], _p.

For [O(v)S(ii?)O~! (v)]p, we briefly repeat the deriva-
tion that gave us Eq. (208). We use Eq. (107), then
Eq. (181), then Egs. (184) and (207):
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OW)SEe* WO W)
= (OWS Q)07 (1) + SO (xQ2 1)
~ [0S (xQ? /)07 (1) = SI (xQ e

Z "0 v)e e = 81 (x@? /1)
= 08 w2 0)lp (1 - ). (234)
l |
[OW)S(x0>/1)0™ V)],_p = {OW)SI (x0* /)0 (v) + S

M(xQ/v) = [O)SM O (xQ* /1) O
={0W)SMI(xQ*/v)O7 (1) = [OW) S (xQ? /) O

For [O()S(#?)O~'(v)],_p, we need a somewhat
different argument. We use Egs. (176) and (107). Then
we note that [S*!(xQ?/v)]p = S (xQ?/v) according to
Eq. (162) because SI!/(xQ?/v) leaves the parton momenta
and flavors unchanged. Then we use Eqgs. (184) and (207).
Finally, we use the definition (176) again. This gives

'(v) + SN (xQ? /v)]p}
1(’/)]P}

_{ZS“( Q*/)e= " =3[! (xQ/v)p '§7px}
1

(xQ*/v)],_pe ™.

e

Now we can start with Sy(xQ*/v;v) at first order.

Equation (208) gives us the result on the right-hand side
of Eq. (234):

Z S[l 9) (x0?/V)]p(1—e8").

1

(xQ*/viv) ~— (236)

Recall that the eigenvalue & of &7, given by Eq. (204), is

of order 1. We will also need Y (xQ?/v;v). When we
substitute Eq. (236) into Eq. (174), we obtain

W(xQ*/viv)

/de S0 /0)p (1 — ).

(237)

Here, and in the remainder of this section, we set the
infrared cutoff /tj% to zero. We notice that the factor
(1 —e™5%) is small for ¥ < 1 and approaches zero like
X when X — 0. This provides an infrared cutoff for the X
integration.

Now look at Sy(xQ?/v;v) at second order. We use
Eq. (175):

SU(x02 i) = / I 100)S30H) O W)

< [0W)S(xQ* /)07 (V)] ple.  (238)

With the results (234) and (235), we obtain

(235)

et ) ==Y [T w0 )e1 - )
Ll

< [SM Q2 W) pe e (239)
We integrate this to form the contribution to Z, Eq. (146),
with two powers of S:

72() = A ’ %slyﬂ (xQ?/v;). (240)

There are potentially two log(v) factors from the z
integrations inside the two factors of SEI‘O]
the running couplings in SEI’O], at order a(Q?/v) there
could be a total of n factors of log(v). Then we integrate
over x and Xx. This could produce two more factors of
log(v), giving log"*?(v) at order a?(Q?/v). But what
happens in the x and X integrations that we find based
on Eq. (239)? If ¥ < 1, the factor (1 — e~¢) is small, so
that the X integration is effectively limited to the range
1 <x If 1 <x, the factor e~ is small, so that the x
integration is effectively limited to the range x < 1. We also
have x < x. Thus the net effective integration range is
1 <x <x < 1. This leaves only X ~x ~ 1. There are no
log(v) factors from the X and x integrations.

A contribution to Z?! proportional to & (Q? /v)log" ! (v)
can be designated leading log. The result (239) shows
that there is no LL contribution to Z?/. Rather, the LL

contributions to the integral Z of Sy, come from S[;] after
we account for the argument of the strong coupling a; in
S, Eq. (218). This leaves the possibility of a NLL,
a(Q?/v)log" (v), contribution to Z'2. We will investigate

. After expanding
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the NLL contribution in the following section by looking at
the z integrations in 8[5].

We will also need some qualitative information about the
behavior of V2. From Eq. (171) we have

W (xQ*/vv) = /x? {S[;] (xQ?/v;v)
0
+ VI(RQ?/v;0)SY (20 v; 1/)}. (241)

Using Egs. (239), (236), and (237),

dx; [~ dx
Y
X { HS“’U] (szz/u)} (1 - e_‘f?;“)
<[s

Py,
)]
e—f?;«w)

YA(xQ*/viv) =

+ 81 merm)]
<o), (1))
(242)

In both terms we have a factor (1 — e™*2*) so there is an
effective integration range 1 < x, < x; < x. This implies
that Y2 (xQ2 Jv;v) = 0 for x < 1. In the first term, there is
a factor e™*1™, so that the integrand is small for 1 < x;.
However the second term contains no such factor.
The operators SE}’O] (x,0?/v) and 52’0] (x,0Q%/v) can give
us logarithms of their arguments. For this reason,
VA (xQ?/v;v) can grow slowly, like a power of log(x),
for 1 < x.

If we take x = 1 in Eq. (242), the effective integration
range for x; and x, is 1 Sx, < x; < 1. Thus xy ~x; ~ 1.
Then there are no factors of log(v) produced by the

integrations over x; and x,. Each factor of SEI’O](QZ/ v)
contains one factor of log(v). Thus Y% (Q?/v;v) contains
at most 2 factors of log(v).

We can generalize these observations to suggest induc-

and Y% for k > 2:

(1) The operator S ;[)I}{] (xQ?*/v;v) is suppressed by a factor
x times logarithms for x — 0 and by an exponential
e~ times logarithms for x — oo. Its only unsup-
pressed region is for x ~ 1.

(2) The operator Y(xQ?/v;v) is suppressed by a
factor x times logarithms for x — 0 and grows at
most logarithmically for x — oo.

(3) The operators S[)I;](QZ/I/; v) and Y (Q?/v;v) each
contain at most k factors of log(v) at order a*(Q?/v).

tion hypotheses for Sg;]

In property 3, we note that the operators ng](Q2 /U;v)
and YM(Q?/v;v) contain higher powers of a,(Q?/v) that

arise from expanding the running couplings in their
definitions in powers of a,(Q?/v). This expansion can
yield one more power of log(v) per power of a,(Q*/v).
Thus there are at most n powers of log(v) at order
o (02 /).

We have found that these properties hold at order k = 2.
We now establish that they hold for any larger order by
assuming that they hold at order k and showing that they
hold at order k + 1.

Begin with S% . From Eq. (170) we have

S[Hl 0*/v;v)

(x
[JJ (xQ*/vv)

< {0 0w - SUxe* )]
%1 [y[kﬂ—l( Q*/v; 1/)8[]( Q*/v; V)Lj,

— Q2 /508K (x02 13w) | (243)

We use Eq. (172) to simplify the first term and Egs. (174)
and (172) to simplify the last term:

S[kH] (xQ?*/v;v)
[ (XQZ/M V)[O(V)S(XQZ/V)O(V)]I—P}[P’
1

k—

[

X [Jlj(xQz/l/ 1/)] .

|:y[k+1—j (xQZ/I/ I/)S[j (xQz/v U)LFD

xd

)_c

><|

S(xQ*/V)OW)]p

%N

(244)

Now we can use Eq. (235) in the first term and Eq. (234) in
the last term, giving us

Syt(xQ2/usw)

:Z[W<xQ2/v;u> (s | e

1-P1P

k=1
Z[JJV‘“‘J (xQ*/v; IJ)S[J (xQ?*/v; 1/)}
=

J

[l

X 8[3],(] (xQ?/v; 1/)] .

P

wor o], (1- )
(245)

In the first term, property 2 for V¥ (xQ?/v;v) implies that
this term is unsuppressed only for 1 < x, while the factor
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exp(—¢&,"x) implies that this term is unsuppressed only for
x < 1. Thus this term is unsuppressed only for x ~ 1. In the
second term, property 1 for S[JJ,] (xQ?*/v;v) implies that this
term is unsuppressed only for x ~ 1. In the third term,
property 1 for Sg,{] (xQ*/v;v) implies that this term is
unsuppressed only for x ~ 1. This gives us property 1
for Sg’jﬂ](xQz/v; v).

Now set x = 1 in Eq. (245). There is an integration over
X in the third term, but, accounting for the factor
[1 —exp(—&Px)], the integration region is 1 <X < 1.
That is, X ~ 1. We can then use property 3 for the operators
that appear in order to count the maximum possible number
of factors of log(v) in each term. At order o¥*!, this gives
the maximum number of factors of log(v) as k + 1, thus
verifying property 3 for S[JI,CH](Q2 Jviv).

Now we examine ) (xQ?/v;v). We use Eq. (171) to
write for k > 1,

y[Hl](xQZ/U; y)

_[* % V(302 /v;0)SY (02 /v;v)
0

ko py s ;
n Z/O %y[k+1—j]()‘cQ2/y; y)S[JJ;]()_CQZ/I/;IJ)
=2

* / S (302151, (246)
0

X

We use Eq. (172) and (234) to simplify the first term:
y[kH] (xQz/IJ; y)
xdx
== [Ty ) [ 0]
7 0o X P

x (1 —e&"™)
k x dx; il

+ Ykl 0% Juy ) SY (x, 0% Jvs v
S [Tt ) S (g% s0)

—|—/X%S[yk“](x1Q2/y;u). (247)
0 X

In each term, condition 2 for YW (x,0Q%/v;v) or
Y17l (x, 0% Ju;v) or condition 1 for S[Jljﬂ](lez/u;v)
implies that the integrand of the x; integration is unsup-
pressed only for 1 < x;. Since x; < x, V¥ (xQ?/v;v) is
unsuppressed only for 1 < x. This establishes property 2
for YE(xQ?/v;v).

Now set x = 1 in Eq. (247). There is an integration over
x; in each term, but the integration region is 1 <x; < 1.
We can then use property 3 for the operators that appear in
order to count the maximum possible number of factors of
log(v) in each term. At order af*'(Q?/v), this gives the

maximum number of factors of log(v) as k+ 1, thus
verifying property 3 for Y1(Q2/v;v).

We call the properties 1,2, and 3 above the LL expo-
nentiation property of Sy (u?; v), as discussed at the start of
this section. In the following section we analyze the NLL
contributions to Sy(u?;v).

XXII. PARTON SHOWER AT
NEXT-TO-LEADING LOG

We have seen that S, (1*;v) has the proper perturbative
structure to allow §(v) as given by a leading order parton
shower using the A-ordered DEDUCTOR algorithm to
exponentiate correctly at the leading log level.

First, the operator S[;] (u*;v), constructed from one
power of the shower splitting operator S(u?) has the right
structure to reproduce the known QCD result [35] at LL
accuracy and even at NLL accuracy, provided that the
argument the running coupling @, in S(u?) is properly
defined. For ZI'(v), we can state this in terms of an
expansion in powers of a,(Q?/v). We consider the integral
TW(w) of S/(u%v) defined in Eq. (233). When the
running a; in Z!(v) is expanded in powers of
a,(Q?/v), the coefficients of o?(Q?/v)log"t!(v), that is
the LL coefficients, are correct and the coefficients of
a?(Q?/v)log"(v), the NLL coefficients, are also correct.

Second, each of the operators S[J]j] (u*;v) for k > 2 has

the right structure so that in the integral Z"(v), the
coefficient of a7(Q?/v)log"*!(v), which contributes to
the exponent in g(v) at LL accuracy, vanish. That is, the
coefficient ZX (1) of (02 /v) in T (1) contains at most n
powers of log(v).

This LL exponentiation property arises from two features
of S[Jlj] (u*;v). First, ng] (1*;v) is suppressed for y?> > Q% /v
and for u?> < Q?/v, so that only the integration region

u* ~ Q?*/v contributes to Z¥(v) and no factor of log(v)
arises from integrating over y? from Q?/v to Q. Second,

S[Jlf] (Q*/v;v) at order @ (Q?/v) contains at most n factors
of log(v).

Now, if the coefficients of o(Q?/v)log"(v) in ZH(v)
were to vanish for k > 2, then Z¥ (v/) would not contribute
to g(v) at NLL level. Then the only NLL contributions to
g(v) would come from the expansion of the running
coupling in Z!!/(v). Since these contributions match the
known QCD result [35], we would conclude that the first
order parton shower according to the DEDUCTOR algorithm
generates the known QCD result at NLL accuracy.

Remarkably, this is the case: in ZI (1) for k > 2 the
coefficients Z¥ (v) of a?(Q?/v) contain at most n — 1
powers of log(v) for large v. The proof of this result, with
exact color, is somewhat involved, so we present it in
Appendix A.

054049-28



SUMMATIONS OF LARGE LOGARITHMS BY PARTON SHOWERS

PHYS. REV. D 104, 054049 (2021)

XXIII. NUMERICAL BEHAVIOR OF Z2(v)

We have considered analytically the coefficient 7 H (v) of
[a,(Q*/v)/(27)]" in K (v), Bq. (230). We have seen
analytically in Secs. XXI and XXII and in Appendix A
that 7 (v) for k > 2 contains no more than n — 1 powers of
log(v) for large v.

The first nontrivial example of this is that 7 [22] (v), when
calculated at large log(v), is proportional to log(v) plus a
constant but has no log?(v) contribution. Similarly, Z [32] (v)
has at most a log?(v) contribution at large v. We can check
these results numerically.

We define the second order term in the exponent in §(v),
Eq. (231):

Q* du?

(T)(w) = / SIS lpfcock). (249

We expand (ZP(v)) in powers of a,(Q?/v)/(2z) and
calculate numerically the first two coefficients, (1[22] (v))
and (Z5)(v)),

2w = @ o) (2L

- (2L

o (249)

The state |{p, f,c,c},) in Eq. (248) is a color singlet,
flavor singlet, gg state with p; + p, = Q. The results are
the same with any quark flavor choice and there is only
one possible color state. The state is normalized to
(1{p, f,c,c},) = 1. The operator S[;] (1%;v) is calculated
using the exact DEDUCTOR splitting functions according to
Eq. (175). We use the exact definition of thrust to calculate
7 in O(v), Eq. (137). The calculation is performed with
full color, not just leading color or the LC+ approximation.
The integrals over scale in (7 z (v)) are infrared convergent
so there is no need to impose a lower cutoff on the shower
scale y*. Then the coefficients (7 5 (v)) are independent
of Q2.

We plot (Z [22] (v)) versus log(v) as the solid red curve in

Fig. 1. We first note that <I[22] (v)) is small. For instance,
log(v) = 8 corresponds roughly to 7=e®~3x10™
in the thrust distribution. For log(v) <8, we find
|<I[22](1/)>| < 1. Then if we take a,~0.1, we have
o,/ (27)2(Z¥ (1)) $0.0003. The function TP ()
appears in the exponent of the Laplace transform of the

thrust distribution, but for such a small value of Z?(v), one
would not have needed to exponentiate it.

A ordering, DEDUCTOR

6 -
— (TP W)
- (TP (v)) /dlog(v)
,8 N <I£ ](V)>), approx. |
| | | | | | |
0 2 4 6 8 10 12 14 16

log(v)

FIG. 1. Plot of (Z7(v)), Eqs. (248) and (249), versus log(v)
(solid red curve). For large log(v) the graph is approximately a
straight line, corresponding to only one factor of log(v),

indicating that the shower generates (I[;] (v)) at NLL accuracy.

The dashed blue curve is d(Z[zz] (v))/dlog(v). The dotted red

curve shows an approximate version of (I[ZZ] (v)) described in the

text. These calculations and calculations of (IE] (v)) in later
figures use full QCD color.

Our primary concern is the behavior of (7 [22] (v)) for very

large log(v)."” Our analytical results indicate that (Z [22] (v))
should be a straight line for large log(v). The numerical
result supports this conclusion. We also evaluate the

integrand for d(Z [22] (v))/dlog(v) analytically and then
integrate this expression numerically and display the result
as the dashed blue curve in Fig. 1. The analytical result

implies that d(Z [22] (v))/dlog(v) should approach a constant
for large log(v) and the numerical result supports this
conclusion.

In our analysis, we argued that 7 — 7 = y should be a
good approximation in the second splitting for the purpose
of determining how many powers of log(v) can appear in
<I[22](y)>. We tried calculating (7. [22] (v)) with this approxi-
mation. The result is shown as the dotted red line in Fig. 1.
This curve is, as expected, a straight line for large log(v)

and has the same slope as the curve for the exact (Z. [22] (v)).

""The function z({p},,) is a complicated function of the parton
momenta. Evaluation of this function becomes numerically
unstable for parton states {p},, that give very small 7. For this
reason, in this and later figures, we limit log(v) to log(v) < 16,
although in some cases the numerical results appear to be reliable
for larger values of log(v).
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A ordering, DEDUCTOR

— (TP )
--- AT (v)) /dlog(v)

1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16
log(v)

FIG. 2. Plot of (Z7(v)), Egs. (248) and (249), versus log(v)
(solid red curve). The dashed blue curve is d(I[;] (v))/dlog(v).
For large log(v) the graph of d(Igz] (v))/dlog(v) is approx-
imately a straight line, indicating that the shower generates
(T gz] (v)) at NLL accuracy.

We were a bit surprised to find that (Z[ZZ] (v)) with the exact
7 — 7 differs by a noticeable amount from the result with the
approximate thrust value. The difference is in the direction
of making |(Z [22] (v))| smaller. We do not have an analytical
explanation for this behavior.

We also calculated <Ig2] (v)) as a numerical integral.
We plot <Z§] (v)) versus log(v) as the solid red curve in

Fig. 2. We note first that [,/ (27[)}3|<I£2] (v))] is small for
log(v) <8 if we take @, ~0.1. Our analytical results
indicate that for large v the highest power of log(v) in

(T [32] (v)) should be log?(v). This implies that for large v the

highest power of log(v) in d(Z gz](y)> /dlog(v) should be
log! (v). The numerical result, graphed as the dashed blue
line in Fig. 2, supports this conclusion.

XXIV. NUMERICAL BEHAVIOR OF THE
THRUST DISTRIBUTION

We have seen that the operator Sy(u?;v) directly
generates the Laplace transform §(v) of the thrust distri-
bution according to Eq. (231). The first order term

S[Jl,] (u%;v) in this operator is obtained from the shower
splitting function for a first order A-ordered parton shower.
We have further seen that this term generates the known
[35] summation of logarithms of 7 at the NLL level as
long as the shower splitting function is suitably defined.

Furthermore, the higher order terms ng] (u*;v) obtained

from this first order shower splitting function generate only
contributions beyond the NLL level.

According to Eq. (227), the same result for §(v) as in
Eq. (231) is obtained by running the A-ordered shower and
measuring the Laplace transform of the thrust distribution.
However, we do not need to take the Laplace transform. We
can simply run the A-ordered shower and measure the
thrust distribution g(7), as in Eq. (134). Will this give the
same result as the NLL analytical result listed in Eqs. (221)
and (222)?

In this section, we try this experiment. It is not useful to
set Q2 = M%, which would be relevant for LEP (large
electron positron) experiments because a parton shower
needs an infrared cutoff. We can take the cutoffs on allowed
shower splittings to be A > 1 GeV and kt > 1 GeV, but
then there is not much range between (1 GeV)? and the
starting scale Q7 of the shower. The result is that there is not
a wide range in 7 in which we can examine the dependence
of g(z) on log(1/z7) free of the effects of the infrared
cutoffs. Instead, we retain (1 GeV)? cutoffs but set
Q2 = (10 TeV)?. We then run the A-ordered DEDUCTOR
shower with the LC+ approximation for color [22]. We turn
off the top quark, so that the shower is based on
5-flavor QCD.

We compare 7g(z) according to DEDUCTOR with 7g(7)
according to the NLL formula, Egs. (221) and (222), in
Fig. 3. We see that the DEDUCTOR curve is a bit higher than
the NLL curve around 7 = 0.01 and a bit lower at the

A ordering, DEDUCTOR @ 10 TeV

TYYTYY[ T T TYYYYY[ T T TTYTYY[
0.2
« 0.15F
=
~
S
s}
&
L 01
E
—— DEDUCTOR
0.05 NLL =
0\\\\\\\ Lol Lol
1073 1072 1071
T
FIG. 3. Plot of (z/6y)do/dr according to DEDUCTOR with A

ordering at Q% = (10 TeV)? compared to the NLL expectation,
Egs. (221) and (222). In DEDUCTOR, we use a cutoff for splittings:
kr > 1 GeV and A > 1 GeV. The DEDUCTOR curve is higher
than the NLL curve at 7~ 0.01 and lower for small 7. The
DEDUCTOR calculation uses the LC+ approximation for color.
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smallest values of 7. Generally, the results agree to within
about 0.01.

Do these results agree within the expected errors?

(i) The DEDUCTOR shower produces contributions be-
yond the NLL level. If we look at 7 = 0.01 so that
log(1/7) = 4.6, NNLL terms lack a factor 4.6
compared to NLL terms. A simple calculation shows
that the NLL terms contribute approximately —0.03
to zg(z) at  =0.01. Thus we might expect that
the NNLL terms in DEDUCTOR would contribute
+0.03/4.6 ~ +0.007 to zg(z). This gives us an error
estimate from terms in DEDUCTOR beyond NLL
of £0.007.

(i) There are typically about 20 parton splittings be-
tween the 10 TeV scale at which the shower starts
and the 1 GeV scale at which it ends. We cannot be
confident that there are not 0.1% errors for each
splitting resulting from approximations within the
DEDUCTOR code, so we cannot rule out a 2%
systematic error in g(r) resulting from these ap-
proximations. A 2% error on the value 7g(7) ~ 0.2 at
7 =0.01 amounts to an error of +0.004 in zg(7).

(ii1)) The infrared cutoffs have some effect. The most
important effect comes from the limit on the trans-
verse momentum in a splitting, which we set to
kr > 1 GeV. To test for sensitivity to this cutoff,
we change the cut to kt > 3 GeV. In the range
0.0005 < 7 < 0.2, we find that this change in cutoff
produces a change in zg(z) that is generally smaller
than 0.003. Thus we estimate an error of +0.003 in
7g(7) due to the influence of the infrared cutoff.

(iv) The DEDUCTOR splitting kernel omits the f; term
in Eq. (216) for evaluating the dependence of o ((1 —
z)yQ?)on (1 — z). This changes the DEDUCTOR result
at the NLL level. We examine this effect below.

(v) The LC+ approximation used by default in DEDUC-
TOR is not the same as exact color. This can
introduce spurious terms of order 1/N2 times
logarithms of 1/7 into the LC+ DEDUCTOR result,
where N, = 3 is the number of colors. We examine
this effect below.

We examine the effects of missing NLL terms and of
color in Fig. 4. Here the NLL curve is copied from Fig. 3
and the DEDUCTOR curve from Fig. 3 is displayed as a
dashed (black) line. The remaining two curves are modified
versions of the curves in Fig. 3.

We first address the fact that DEDUCTOR omits the S
term for evaluating the dependence of a,((1 —z)yQ?)
on (1 —z). This means that in the summation of logari-
thms of log(1/7), DEDUCTOR is missing the term
—=(1/Po) log((1 = 22)/(1 = 24)) in f»(4) in Eq. (225).

In order to see the effect of this term, we calculate the ratio

r(z) = gni(7)

s , (250)
gNL([l,(T)

A ordering, DEDUCTOR @ 10 TeV

T T TTTTT T T T T TTTTT T T T T TTTTT
0.2 -
L 015
=
~
S
=
g
£ o01f
N
--- DEDUCTOR
0.05 / g —— DucT-corr |
—— DucT-corr-color
— NLL
P11l il L1l
1073 1072 10!
T

FIG. 4. Plots of (z/0y)do/dz using DEDUCTOR with A ordering
at Q% = (10 TeV)?. The black dashed curve is the DEDUCTOR
curve from Fig. 3. The blue solid curve is the NLL formula from
Fig. 3. The red solid curve is the DEDUCTOR result corrected with
the factor r(r) to include more exact a; evolution. The purple
solid curve, with noticeable statistical fluctuations, is the cor-
rected DEDUCTOR result with two units of extra color beyond the
LC+ approximation.

where ¢4 (z) is obtained by omitting the term
—(B1/Po) log((1 =2?)/(1 =24)) in the calculation of
g(z). Then we correct the DEDUCTOR result for g(z) by
multiplying it by r(z). We plot the corrected DEDUCTOR
curve in Fig. 4. We see that the corrected DEDUCTOR curve
is quite close to the uncorrected curve. However the
difference is visible in Fig. 4 and acts in the direction of
reducing the discrepancy between the analytical summation
of logarithms and the numerical DEDUCTOR result."’

We next address the fact that in Fig. 3 we used the default
color approximation in DEDUCTOR, the LC+ approximation
[22]. This approximation is an improvement over the
leading color approximation, but it is far from being exact.
In the LC+ approximation, we replace the exact first
order splitting function S(u?) = S (42) 4- SO (42) by
an approximate version Sy ¢, (4?) = Sgéol (1?) —|—S[LO(':]J]r (1?).
DEDUCTOR has the option of expanding in powers of
S(u?) — Sy, (1?) and keeping terms up to and including
[S(u?) — Si.c(4?)]", where n can be chosen by the user
[31]. In order to assess what difference a more exact
treatment of color could make, we plot in Fig. 4 the result of
calculating the thrust distribution at 10 TeV with n = 2 for

"In a future version of DEDUCTOR, we may add this con-
tribution to the splitting kernel, although its practical effect is
quite small.
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those splittings that have A > 10 GeV. We have corrected
this result using the factor r(z) from Eq. (250). Of course,
using n = 2 slows the calculation down, increasing the
statistical errors. Within the statistical errors, we find that
improving the color treatment makes no difference.

In summary, we have made a numerical comparison of the
expected NLL result for the thrust distribution and a direct
calculation using a A-ordered parton shower with a global
momentum mapping, setting Q% to (10 TeV)? so as to allow
log(1/7) tobe adequately large to provide areal test. We have
found good agreement within the estimated errors.

XXV. COLOR AND LOGARITHMS

Our analysis in this paper mostly does not examine the
effect of approximating color on the summation of loga-
rithms in the thrust distribution. For instance, the analytical
analysis in Secs. XXI and XXII and the numerical results in
Figs. 1 and 2 use exact QCD color. The DEDUCTOR result in
Fig. 3 is calculated with the LC+ approximation, which is a
numerically very good color approximation for the thrust
distribution, as seen in Fig. 4. It would certainly be of
interest to examine analytically or numerically as in Figs. 1
and 2 whether the use of the LC+ approximation preserves
the NLL accuracy of a parton shower that has NLL
accuracy with exact color. Such a study is beyond the
scope of this paper. However, we provide some brief
comments on color approximations in this section.

Typically, parton shower event generators use the LC
approximation [4,27,28]. In the simplest formulation,
the LC approximation is obtained by using U(3) as the
color group and then dropping all terms suppressed by a
factor 1/N2. Then at every step of the shower the color
state {c,c'},, has {c'},, = {c},, and there is a factor
Cy/2 for every gluon emission vertex. At some places,
one can include a 1/N? correction by changing C,/2
to Cp = (Ca/2)(1 = 1/N2).

DEeDUCTOR uses the LC+ approximation [22]. The
generator Sy ¢, (u?) of splittings with the LC+ approxima-
tion differs from the generator S(u?) with full color."
Define

AS(u?) = S(u?) = Sies (1) (251)
For the first splitting from the initial ¢g state in ete”
annihilation, the LC+ approximation is exact in color

AS(u?)|{p. f.c.c}y) =0. (252)

Furthermore, as noted in Sec. XI, for later splittings the
difference AS(u?) is singular only for fixed angle soft

The LC+ approximation, including the calculation of the
overlap ({¢},,|{c},,) at the end of each event, is computationally
efficient. The code for ({c'},,|{c},,) is available in the DEDUC-
TOR code at [37] and [38].

splittings but not for collinear splittings or soft x collinear
splittings [22].

We can illustrate this with an example adapted from a
1993 paper [39] by Gustafson that sorted out the C,/2
versus Cg choice for gggg production in electron-positron
annihilation. Let us start with a state containing a quark
with momentum p;, an antiquark with momentum p, and a
gluon with momentum p;. Now we can emit the fourth,
soft, gluon with momentum p,. The other partons have
momenta py, p,, p; after the splitting. We take p, to be
very small, so that we can neglect recoil and take p; = p;
for i € {1,2,3}. We denote the energy of p; in the rest
frame of the total momentum Q by E; and we denote the
angles between p; and p; in the rest frame of Q by 6,;. We
assume that 6, is not small since 6, ~ 7 most probably
and 0, < 1 is not probable. Without loss of generality, we
can assume that 8,3 < 6,3. We consider both the possibility
that 65 is of order 1 and the possibility that 8,3 < 1.

For the emission of gluon 4 use just the dipole approxi-
mation for soft gluon emissions. With this approximation,
the emission probability is

Dy = Aﬁkw?lipde- (253)

Here w5 is the familiar probability density for emitting a
soft gluon with index 4 from parton / with interference from

emitting the same soft gluon from a different parton k,

2Pk - Py
“Da Piba Py

_ dipole

Wy =4na (254)

This probability density is symmetric under interchange of
[ with k. In a partitioned dipole shower like DEDUCTOR, as
distinct from an antenna dipole shower line VINCIA [40],
we distinguish the emitting parton / from the dipole partner
parton k by multiplying by a partitioning function A}, with
A, + A}, = 1. DEDUCTOR uses

Pa- prbi- QO
PaPxbPi- Q+ Da- PiDi- Q

Ap{PYs) = . (255)

where Q is the total momentum of the final state.

The emission probability is accompanied by an operator
on the partonic color state. Let us call the color state after
the emission

Cu= Y Hehagul{e. ) {{e}al.
{ec'ha

(256)

Here |{c},) are color basis states for gggg states in the
“trace” or “string” basis used in DEDUCTOR [19]. In the
notation of Ref. [19], we will need basis states [1, i3, iy, 2]
for a state with a quark with index 1 and an antiquark with
index 2 joined by a color string with gluons is, i, along the
string. The probability associated with this color state is then
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TrCy = Z ' al{eta)an{c. ¢'}s)-
{ec'ts

(257)

The color state of the starting ggg state, in the notation used
for qgggq states, is

[1,3,2]),

Hels) =1
| = ([1.3,2]].

{c'}s (258)

After the emission of the soft gluon, the statistical state is
proportional to

C%Cn = (I[1.4,3,2]) = [[1,3,4.2]))([1.4.3,2]|
+1(1,4,3,2)({[1.4,3,2]| = ([1,3,4,2]]),

= Cx = ([[1.3,4,2]) - [[1,4,3,2]))([1.3,4,2]|

+101,3,4,2)({[1, 3,4, 2]| = ([1,4,3,2]]),

> |[1,3,4,2))(([1, 3,4, 2]] = ([1. 4,3, 2]]),
CiFCn = |[1,4,3,2])([1,3,4,2]]
+[1,3,4.2])([1,4.3.2]],
C%cﬂ = [[1.3,4.2])([1.4,3.2]|

+1[1,4,3,2])([1,3,4,2]|. (259)

The trace of these states (using the normalization con-
ventions of Ref. [19]) is

TrC31 = TrC32 = TI'C13 = TrC23 = T” - TX’

TrClz = TI'C21 = TX? (260)

where

(261)

This is with full color. We can use the LC+ approxi-
mation, which is a very simple approximation on the color
operators [22]. Let us define the difference between the
color states obtained with full color and the color states
obtained with the LC+ approximation:

AClk == Clk - C}‘kc+. (262)
Then the LC+ approximation [22] gives
AC31 = O,
AC32 - 0,
AC3 = —(Cg/2)([1,4,3,2])([1.3.4,2]|
- (Cr/2)|[1,3,4,2])([1.4,3,2]|,
ACy; = —(Cp/2)|[1,3,4,2])([1.4,3,2]|
- (Cr/2)|[1,4,3,2])([1.3.4,2]|,
AC; = (Cr/2)|[1,4,3,2])([1,3,4.2]]
+ (Ce/2)([1.3.4,2])([1.4.3.2]|,
ACy = (Cr/2)|[1,3,4,2])([1,4.3.2]]
+ (Cg/2)|[1,4,3,2])([1,3.4,2]. (263)
The traces of these states are
TFAC31 = TTAC32 = 0,
TFAC13 = TrAC23 = _TX’
TrAC,, = TrACy, = T. (264)

This shows us what the LC+ approximation leaves out in a
shower that has just two soft gluon emissions:

z Zq)lkTrAClk = (@1p = Pp3) T + (P21 — P3)T .
=

(265)

We note first that this is color suppressed compared to the
result using full color, Cy, since a factor 1/(2N.) replaces a
factor Cr. Second, we see immediately from Egs. (253),
(254), and (255) that (®, — ®3) is not singular when p,
becomes collinear with p, ps, or p,. Similarly (®,; —
®,3) has no collinear singularities. These functions still
have a soft singularity: they have a 1/E? singularity when
E, — 0 at a fixed 04, 0,4, and O34.

Although EZ > @, TrACy; is never singular, it can be
large in certain angular regions. Consider the case that
013 < 1. Then E2(®,, — ®,3) is never large. Additionally,
E3(®), — @y3) is not large when 6,4 < 03 because @3
cancels @, in this limit. However, when 6,3 < 6,4, E1® 3
is small and EZ®, o« 1/63, is large when 0,3 < 0, < 1.
Thus we can approximate

Z Z O TrAC) ~ 0(0)3 < 014) P57 .
kA

(266)
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This is a good approximation when 813 < 1 and works also
when 63 is not small since then (03 < 0,4)E7®, is
never large.

We have seen that the LC+ approximation is sufficient
to capture most of the enhanced contributions to
E2Y ®,TrCy, leaving just the contribution in
Eq. (266) (assuming 63 < 68,3). Using the LC+ approxi-
mation, the probability density associated with the emission
of gluon 4 is

C
D) BUTICIE = (D3 + Psy) 7A + (@13 + Do3)Cr.
[ay="

(267)

Compare the terms proportional to ®3; and @5. The

emission probabilities @5; and @5 contain the same dipole

factor wir"® = P They differ in their partitioning

factors A%, and A);, which are positive and satisfy
A%, +Aj; =1. The factor A}, is dominant when the
direction of the momentum p, of the new gluon is closer
to the direction of the first gluon than it is to the direction of
the quark. In this case, the color factor in the emission
probability is C, /2. The factor A|; is dominant when the
direction of p, is closer to the direction of the quark than it
is to the direction of the first gluon. In this case, the color
factor in the emission probability is Cg. The analogous
conclusion applies to the dipole formed by the first gluon
and the antiquark.

Adding the contribution from Eq. (266), we have
(assuming 63 < 053)

C
Z Z O, TrCy ~ (P31 + P32) TA + (P13 + Pp3)Cre
=
1

—-0(0 014)D ), —.
(013 < 614) 122Nc

(268)
The added term is important when 0,3 < 04 < 1. In this
region, @, ~ @3, and the added term changes the coef-
ficient of @3, from C,/2 to Ckg.

We have discussed the case of four partons in electron-
positron annihilation. For cases with an arbitrary number of
partons, the LC+ approximation remains accurate up to
corrections that may be large in some angular regions but
that lack collinear singularities. The calculation of proba-
bilities by taking the trace of the color density matrix is
simple and is built into DEDUCTOR.

We have emphasized the real emission operators in the
preceding discussion. There are also virtual exchange
operators that create the Sudakov factor in a probability
preserving shower. With full color, the virtual exchange
operators can change the color vectors |{c, ¢'},,) to which
they are applied. However, with the LC+ approximation,
applying the color operators to a vector |{c, ¢'},,) returns

just an eigenvalue times the vector. For gluon emission, the
eigenvalue is either C,/2 (for emission from a gluon)
or Cr (for emission from a quark). Thus the Sudakov
operators are simple in the LC+ approximation. They are
part of DEDUCTOR.

Unfortunately, we do not currently know of a way to
enhance the LC+ approximation so as to incorporate
contributions like those in Eq. (266) while still avoiding
the possibility that the revised virtual exchange operators
change the color vectors |{c,c'},,) to which they are
applied, making it difficult to build the Sudakov operators
in a computationally manageable way. Although we do not
know of a practical way to put the virtual exchange parts of
AS into a Sudakov exponential, it is possible to calculate
the contributions from AS perturbatively [31]. Typically,
we have found that these contributions are numerically
small, as in Fig. 4.

The result on the right hand side of Eq. (268) was found,
with a different notation, by Gustafson in 1993 [39] as
being a good approximation to the full gggg cross section.
The analysis used what are now called Lund diagrams. In
order to account for the 1/N, terms that distinguish Cg
from C, /2, Gustafson called on the idea of color coherence
for wide angle soft gluon emission from partons with nearly
collinear momenta. According to color coherence, we are to
add amplitudes, not probabilities. In the formalism of the
present paper, color coherence does not need to be invoked
separately. It is built in because we add color amplitudes
in Eq. (259).

After the present paper was submitted [41,42], Hamilton,
Medves, Salam, Scyboz and Soyez [17] extended the
analysis of Gustafson to more parton emissions in elec-
tron-positron annihilation, providing prescriptions for mak-
ing the choice between color factors Cy /2 or Cg for real
gluon emissions. This paper omits direct analysis of color
amplitudes or the effect on color amplitudes of the virtual
exchanges needed to build a Sudakov operator.13 For more
than four partons, a direct, term-by-term analysis like that
given above is cumbersome because there are many terms
and because the color state before the soft gluon emission
now has {c’},, # {c},,. For this reason, we do not under-
take a comparison to the results of Ref. [17] here.

We have, however, undertaken a simple calculation to
check the effects on the thrust distribution of degrading
the LC+ approximation to just an LC approximation.
DEDUCTOR has the capability to turn off the LC+ approxi-
mation at some point in the shower by changing the color
group from SU(3) to U(3). With this treatment, a gluon is
the same, in color, as a quark-antiquark pair. Then splittings
with color connections that produce 1/N? factors are

PThe paper states that for four or more partons “one should
worry about amplitude-level evolution [43], which is beyond the
accuracy and scope of this article.”
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A ordering, DEDUCTOR @ 10 TeV
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FIG. 5. Plots of (z/0y)do/dr using DEDUCTOR with A ordering

at Q% = (10 TeV)2. All three curves are DEDUCTOR results
corrected with the factor (7) to include more exact a, evolution.
The red solid curve uses the LC+ approximation and is taken from
Fig. 4. In the green solid curve the color approximation is reduced
from LC+ to color using U(3) as the color group. This puts a factor
Cy/2 at qqg vertices. The purple dashed curve also uses U(3) as
the color group but inserts a factor Cg at the first emission.

omitted. This gives a variety of LC approximation with a
factor C, /2 factor at each splitting.

In Fig. 5, we compare the thrust distribution calculated
with this U(3) leading color approximation to the thrust
distribution calculated with the LC+ approximation, taken
from Fig. 4. In both cases, we apply the correction factor
r(7) that was used in Fig. 4. We see that replacing the LC+
approximation with this LC approximation makes a sub-
stantial difference. The first splitting must be ¢ - q + g,
for which a factor Cr would be more sensible than a factor
Ca/2, even though these are equivalent within the LC
approximation. We tried the same calculation with C, /2
replaced by C in the first splitting. This gives the dashed
curve in Fig. 5. This results in substantially improving the
agreement with the LC+ curve. The discrepancy is reduced
by a factor of roughly 7.

XXVI. ky ORDERING

The default ordering variable in DEDUCTOR is A,
Eq. (98). However, there is an option to use kr ordering,14
still with exact color. We can define 72/ (v) with ky ordering
using Egs. (175) and (248). We simply set the scale

"“For ky ordering, k% = —k% where the vector k, is orthogonal
to the momentum p, of the emitting parton and to Q, rather than
being orthogonal to p; and the momentum p, of the dipole
partner parton.

parameters to u?> = k3 for the first splitting and > = k>
for the second splitting. Then k ordering means that k% <
K3 in Eq. (175).

With kg ordering, the reasoning supporting NLL accu-
racy of the A-ordered shower from Sec. XXI and
Appendix A is lost. However, it appears that we can still
get cancellation of log(v) factors in Z [22] (v) at the NLL level.
That is, the integral has contributions proportional to
log*(v) at large log(v), but after these contributions are
summed, only terms proportional to log'(v) and log®(v)
remain. The mechanism is that the contributions from the
two terms specified by the [- - |,_p operation in the last line
of Eq. (175), representing real emissions and virtual
emissions, cancel each other. A complete proof is beyond
the scope of this paper, but we present an argument that
makes this conclusion plausible in Appendix B.

We can check the effect of the choice of ordering variable
on the summation of log(v) factors in the thrust distribution
by calculating <I[22](z/)> numerically using the DEDUCTOR
shower algorithm with kt ordering and exact color. The
result is shown as the solid red curve in Fig. 6. We see that
<I[22](1/)> is quite small, |<I[22](1/)>| < 2 for log(v) < 8. For
NLL accuracy, this curve should be linear for large log(v).
To quite good, but not perfect, accuracy, it is.

We have also checked the behavior of (IE] (v)) as a
function of log(v). The results are shown in Fig. 7. For

large v the highest power of log(v) in (Z [32] (v)) should be
log?(v). This implies that for large v the highest power

of log(v) in d(I[;] (v))/dlog(v) should be log!(v). The

kr ordering, DEDUCTOR

— (@)
== Az (v))/dlog(v)

~12 | | | | | |
0 2 4 6 8 10 12 14 16

log(v)

FIG. 6. Plot of <Z[22] (v)) versus log(v), as in Fig. 1, for the
DEDUCTOR shower algorithm with kt ordering. The blue dashed

curve is d(I[Zz] (v))/dlog(v).
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kp ordering, DEDUCTOR
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FIG. 7. Plot of (1[32] (v)) versus log(v), as in Fig. 2, for the
DEDUCTOR shower algorithm with k1 ordering. The blue dashed

curve is d(I[;] (v))/dlog(v).

numerical result, graphed as the dashed blue line in Fig. 7,
supports this conclusion.

We have investigated only (Z. [22] (v))and (Z ?] (v)). Wehave
found results consistent with NLL accuracy for the
DEDUCTOR shower with kt ordering, but there could still

be inconsistencies with NLL accuracy for (Z, H (v)) for other
values of k and n. A promising approach to investigating this

issue would be to automate the calculation of (Z o (v)) sothat
these functions could be calculated numerically for any not-
too-large values of k£ and n. We leave this approach to
future work.

We can also look directly at (z/oy)do/dr with
Q? = (10 TeV)2. We use either DEDUCTOR with its default
A ordering or DEDUCTOR with kt ordering, both with LC+
color. The result with A ordering, from Fig. 4, includes the
correction factor r(z) from Eq. (250). The result with kr
ordering needs no correction factor because k% in o, (Agk?)
in the DEDUCTOR splitting function is the same as the
ordering variable. We do not include hadronization. Thus
we examine only perturbative effects and the effects of the
shower cutoff. With A ordering, the shower stops at
A =1 GeV and there is also a cut that prevents the kg
in any splitting from being smaller than 1 GeV. With kt
ordering, the shower stops at kt = 1 GeV. The result is
shown in Fig. 8. We see that the shower ordering does make
a difference. Although (z/0y)do/dr calculated with ky
ordering is similar to the NLL expectation zg(z) from
Egs. (221) and (222), the difference between these two
results is greater than the expected uncertainties discussed
for A ordering in Sec. XXIV.

A vs. kt ordering, DEDUCTOR @ 10 TeV
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FIG. 8. Plotof (z/0y)do/dr with A ordering and kr ordering at

Q? = (10 TeV)?. Both are compared to the NLL expectation,
Egs. (221) and (222). We use a cutoff on the transverse
momentum in splittings: kt > 1 GeV.

As an alternative, we can follow the method of Ref. [16]
and calculate (z/0y)do/dr for various values of Q?, and
thus for various values of a,(Q?). We choose Q% =
(1 TeV)?, (10 TeV)?, and (100 TeV)?, corresponding to
a,(0%) = 0.087, 0.069, and 0.058." For each value of 02,
we calculate the expected NLL function z¢(7), Egs. (221)
and (222). Then we plot the ratio

(T/O'H)dO'/dT.

R 0 ="

(269)

The results are displayed in Fig. 9. In the case
Q? = (100 TeV)?, there are typically around 100 partons
produced in each event. This causes DEDUCTOR to operate
very slowly, which leads to substantial statistical fluctua-
tions that are visible in the plot.

If the log summation is working at the NLL level, the
ratio plotted should be close to 1 and should get closer to 1
as Q7 increases. We note two features of the results. First,
for any fixed value of Q?, rg() fails to match the parton
shower result for sufficiently small z. The value of 7z at
which this failure sets in decreases as Q% grows. For larger
values of 7, but still with z < 0.1, R(z, Q?) is approximately
constant:

R(z. Q%) ~ Ry(Q?). (270)

Reference [16] considers a,(Q?) as small as 0.005, corre-
sponding to Q% ~ (107° GeV)? but DEDUCTOR is not capable of
working with values of Q2 as large as this.
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kt ordering, DEDUCTOR, ratio to NLL
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FIG. 9. Ratio of (¢/0y)do/dr with kr ordering to the NLL
expectation, 7g(7), Egs. (221) and (222). The ratio is calculated
at 0% = (1TeV)?, Q0?=(10TeV)2, and Q%= (100 TeV)>.
We use a cutoff on the transverse momentum in splittings: kp >
1 GeV in each case.

These values (Ry = 1.190, 1.112, 1.070) are shown as
dashed lines in Fig. 9. Second, we note that R(z, Q?) is
fairly close to 1 and gets closer to 1 as Q? increases. In fact,
to within about 10%,

Ry(Q%) — 1~ 2303(Q?). (271)
This is consistent with the expectation that Ry(Q?) — 0 as
a,(Q?) = 0. We tentatively conclude from these results
that the kt-ordered DEDUCTOR shower is correctly sum-
ming thrust logarithms at the NLL level, even though the
difference between the shower result and the NLL ana-
lytical result is larger for kt ordering than for A ordering.

XXVIIL. EFFECT OF THE MOMENTUM
MAPPING FOR A ORDERING

Recall from Sec. XVIII that in a splitting
pi = P+ Dma1, we always have p; # p; + p,,41- Inorder
to conserve momentum, we need to map the momenta p;
into new momenta p; such that

m+1 m
Z pi= Z Pi-
i=1 i=1

In the DEDUCTOR algorithm, this is accomplished by using
a Lorentz transformation [19]

(272)

pi=nApt,  iE{lm+1}. (273)

The Lorentz transformation is defined to be a boost in the
plane of p; and Q. We have found in Sec. XVIII that the
boost angle w is small, of order y, and that the effect of this
small Lorentz transformation on the thrust is small com-
pared to the order y effect produced by the splitting itself.

For any parton shower, one will need a momentum
mapping that preserves the total momentum. The global
mapping produced by a Lorentz transformation is not the
only possibility. A more widely used local choice is
provided by the Catani-Seymour dipole splitting formalism
[44] or the local mapping in PYTHIA [45]. For the Catani-
Seymour choice, we start with the parton / that splits and its
dipole partner k, with momenta p; and p;. After the
splitting, we have a new parton m + 1 and new momenta
Dis Pmy1 and py. The definition is

Pmir = (1 =2)pi +2ypi + ko,
pr=zpi+ (1 =2)ypr — ki,

P =(1=Y)ps (274)

with k, - p; =k, - pr = 0. Here z, y, and k, are different
from z, y and k| defined for DEDUCTOR kinematics. The
momenta of the other partons are unchanged:

bi = pi i¢{lk,m+1}. (275)
With this definition,
Pi+ Pk =Di+ Pms1 + Pr (276)

Thus the total momentum is conserved. We have p,,,| +
P1=pi+ypi so
y:pl'pm-‘rl. (277)
Pi- Pk

From p2 ., =0 we derive

_ki =z(1 = 2)y2p; - ps- (278)

Note that if we start with a two parton state, m = 2, and
let one of the two partons, /, split to produce parton m + 1,
then there is precisely one parton i with i € {I,m + 1} in
Eq. (273) and this is the same as parton k in Eq. (274). That
is, the global and local mappings are the same for
S[;] (u*;v) for m = 2. The operators 8[3],‘] (1%;v), with k real
or virtual splittings, do depend on the choice of momentum
mapping for k > 2.

The local momentum mapping has a feature for thrust
that one might regard as peculiar. Suppose that parton / is in
the right thrust hemisphere, / € R. Then for a small angle
splitting, the daughter partons / and m + 1 will also be in
the right hemisphere. In the case that k € R, we split a
dipole that is entirely in R. Then Egs. (275) and (276) imply
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that both 7z and 7; in Eq. (124) are unchanged by the
splitting, so that ¢ = 7g + 7. is unchanged. Since, in this
class of choices for the dipole that splits, the thrust is not
changed, the real-virtual cancelation between S!'%(42) and
SO1(4?) simply removes contributions of these dipoles
from the calculation of the thrust distribution.

With A ordering and a local momentum mapping, the
argument in Sec. XXI that the shower sums logarithms of
thrust at the LL level still works, but the argument in
Appendix A for cancellations at the NLL level fails. Thus
we cannot expect a A-ordered parton shower that uses a
local momentum mapping following Egs. (275) and (276)
to properly sum the logarithms of v at NLL accuracy.

We can check what happens numerically by calculating

(T [22] (v)), Eq. (248), using the A-ordered DEDUCTOR parton
shower algorithm with exact color but with the Catani-
Seymour momentum mapping substituted for the global
momentum mapping. The result is shown as the solid red
curve in Fig. 10. We note immediately that this result is
completely different from the result in Fig. 1: in the range

log(v) < 8, |(I[22] (v))| with the global momentum mapping
is less than 1 while with the local mapping it reaches values

greater than 30. Leaving aside the magnitude of (7 [22] (v)), if
the parton shower algorithm with a local momentum
mapping produced NLL accuracy for summing log(v)
factors, the graph of <I[22] (v)) would be a straight line,

but it is not. The dashed blue curve is d(Z [22] (v))/dlog(v).
This curve is not a constant but rather a straight line.

A ordering, DEDUCTOR-LOCAL
I | I I I I |

120 |- y

— (TP W)
== (TP (v)) /dlog(v)

100 -

log(v)

FIG. 10. Plot of (Z(v)), as in Fig. 1, for the DEDUCTOR
splitting functions with the Catani-Seymour local momentum

mapping [44]. (I[ZZ] (v)) is approximately quadratic in log(v),
indicating that I[Zz} (v) changes the NLL result.

This implies that at large log(v), (Z [22] (v)) is has contribu-
tions up to log?(v).

We conclude from the combination of the analytical
argument and the numerical results that using a local
momentum mapping destroys the NLL accuracy of the
result from a A-ordered parton shower, although LL
accuracy is maintained.

XXVIII. LOCAL MOMENTUM MAPPING
WITH OTHER ORDERINGS

As we have seen in Sec. XXVII, a parton shower
algorithm needs to conserve momentum while accommo-
dating the approximation that a parton that splits to two
partons was on shell before the splitting. DEDUCTOR uses a
global recoil strategy that spreads the needed momentum
over all of the other partons in the event. With a local
momentum mapping in the style of Catani-Seymour,
Eq. (274), the recoil momentum is taken up by a single
parton, possibly a very soft parton. For this reason the
global recoil strategy seems less likely to lead to problems
than the local recoil strategy.

Nevertheless, a local momentum mapping can certainly
work. Indeed, we present an argument in Appendix B that

1[22] (v) in DEDUCTOR with ky ordering is well behaved. In
this construction, the local and global momentum map-

pings were equivalent in the limits considered. Thus 7 [22] (v)
with kt ordering and a local momentum mapping should be
well behaved.

We can investigate this issue by calculating <I[22] (v))
using two shower algorithms with a local momentum
mapping following Eq. (274). The algorithms we use
follow closely the PANLocAL shower of Ref. [16], but
with color treated exactly. In the first algorithm that we
use, the parameter S that defines the ordering variable in
the PANLocAL algorithm is set to f = 0. That corre-
sponds to kt ordering. In the second algorithm, we
choose f = 0.5. Roughly, that is half way between kt
ordering and A ordering. Reference [16] claims that these
PaNLocAL showers sum the trust distribution at NLL
accuracy at leading color.

The results are shown in Figs. 11 and 12. In each case, in

the range log(v) < 8, \(I[zz] (v))| reaches values greater than
10, while for DEDUCTOR with A ordering this same
quantity is less than 1. Nevertheless, in each case, we
see that <I[22] (v)) is, to a good approximation, a linear
function of log(v) for large log(v). This is consistent with
NLL accuracy for summing logarithms of v.

In Figs. 13 and 14, we plot (1[32](1/» for the two
PANLocAL shower algorithms. To be consistent with

NLL accuracy, (Z [32] (v)) at large log(v) should not contain

terms log/ (v) for j = 3 or higher. The numerical results are
consistent with this NLL expectation. In fact, in each case
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8 =0.0 (k) ordering, PANLOCAL

T I | T T I |

20 |- n

— (TP )
== AT (v)) /dlog(v)

15

log(v)

FIG. 11. Plot of (1[22] (v)), as in Fig. 1, for a shower with ky
(# = 0.0) ordering and the Catani-Seymour local momentum
mapping [44] according to an algorithm based on the PANLOCAL
dipole shower of Ref. [16] with exact color. For large log(v),
z [22] (v)) is approximately linear in log(v), indicating that Zgz] (v)
leaves the NLL result intact.

6 = 0.5 ordering, PANLOCAL
[ [ [ [ ] [ [

— (7P W)
== AT (v)) /dlog(v)

T

30

0 2 4 6 8 10 12 14 16
log(v)

FIG. 12. Plot of (1[22] (v)), as in Fig. 1, versus log(v), for a
shower with f = 0.5 ordering and the Catani-Seymour local
momentum mapping [44] according to an algorithm based on the
PANLocAL dipole shower of Ref. [16] with exact color. For large
log(v), (Z [22] (v)) is approximately linear in log(v), indicating that
1[22] (v) leaves the NLL result intact.

B =0.0 (k) ordering, PANLOCAL

500 =
— TP W)
== (T () fd1og(v)

FIG. 13. Plot of <Z[32] (v)), as in Fig. 2, for a shower with kr
(# = 0.0) ordering and the Catani-Seymour local momentum
mapping [44] according to an algorithm based on the PANLOCAL
dipole shower of Ref. [16] with exact color.

the highest power of log(v) numerically is log'(v). The
coefficient of log?(v) vanishes to a good approximation.
This tells us that the average value of the scale of the
coupling inside the integrations is about Q?/v.

[ = 0.5 ordering, PANLOCAL
I | I I I | |

800 |-

— TP w))
- d(zf(v)) fdlog(v)

600

200

FIG. 14. Plot of <I[32] (v)), as in Fig. 2, versus log(v) for a
shower with = 0.5 ordering and the Catani-Seymour local
momentum mapping [44] according to an algorithm based on the
PaNLocAL dipole shower of Ref. [16] with exact color.
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XXIX. CONCLUSIONS

In Secs. 1I through X, we presented a general program
for gaining direct access to how a parton shower sums large
logarithms in either hadron-hadron, electron-hadron, or
electron-positron collisions. We provided some summariz-
ing remarks on the general program in Sec. X. In Secs. XI
through XXVIII, we applied this program to electron-
positron annihilation. We have limited ourselves to just one
example, the thrust distribution. We have, however, looked
at results for more than one shower algorithm.

The method that we propose works with the appropriate
integral transform of the distribution of interest. In this case,
we need the Laplace transform §(v), Eq. (126), of the thrust
distribution. We seek to find how §(v) behaves for large v.

We rearrange the cross section calculation so as to write
g(v) in the form from Eq. (231),

9(v) = exp((1IZW){p. £, ¢, ¢}2))-

Here |{p, f,c,c},) is a color and flavor singlet ¢g basis
state with p; + p, = Q and the operator Z (v) is an integral,

(279)

* di? _
1) = [ LSy,

“

(280)

We expand Z (v) in powers of the shower evolution operator
S(u?). Then the coefficients Z/(v), proportional to k
powers of S(u?), can be further expanded as

24) - 3 (2] 2,

2 = (281)
in which the strong coupling is evaluated at a fixed scale
Q?/v. Thus the shower result is quite directly expressed in
exponentiated form in terms of an operator Z(v) with a
known perturbative expansion.

For the DEDUCTOR shower algorithm with either A or ky

ordering, Z'/(v) provides the standard NLL summation of

log(v) factors.'® In order for the contributions 7. L,k](y) for

k > 2 to not spoil the NLL summation, Z o (v) should not

contain more than n — 1 powers of log(v).
For the DEDUCTOR shower algorithm with its default A

ordering, we find analytically that Z o (v) does not contain
more than n — 1 powers of log(v).
We have no such result for DEDUCTOR with kt ordering,

but we outline an argument in Appendix B that real-virtual

cancellations in 1[22] (v) reduce its large v behavior from

log*(v) to log!(v).

'The current DEDUCTOR code with A ordering, as distinct
from the algorithm that it is based on, lacks the term with
coefficient ff; needed to evaluate the dependence of ay((1—
z)sz) on (1 — z). This changes the DEDUCTOR result at the NLL
level.

We evaluate I[zz] (v) numerically. In order not to spoil

NLL summation, its large v behavior should be no more
than log! (). For the DEDUCTOR algorithm with A ordering
but with a local momentum mapping instead of the global
momentum mapping used in DEDUCTOR, we find log?(v)
behavior, implying a failure of NLL accuracy (Fig. 10). In
other cases, we find log!(v) behavior, consistently with
NLL accuracy. These cases include DEDUCTOR-A (Fig. 1),
DebpucTORr-kt (Fig. 6), PANLOCAL-(ff = 0) (Fig. 11), and

PANLOCAL-(f = 0.5) (Fig. 12).

We also evaluate Igz] (v) numerically for the shower

algorithms DEDUCTOR-A (Fig. 2), DEDUCTOR-kT (Fig. 7),
PaNLocAL-(f = 0) (Fig. 13), and PANLOCAL-(f = 0.5)
(Fig. 14). In each case, we find large log(v) behavior with
no more than 2 powers of log(v), consistently with NLL
accuracy.

We emphasize in this paper writing the appropriate
integral transform of the distribution of interest, such as
the thrust distribution, as an exponential and examining the
exponent Z (v). However, it is also possible to simply look
directly at the distribution of interest as it is generated by a
given parton shower. For this, one needs to simulate
collisions at large values of Q?. We have not pushed this
method to nearly as large a value of Q2 as in Ref. [16].
However, we find that, at least for electron-positron
annihilation, this direct method can be useful.

Specifically, we examine directly the thrust distribution
7g(r) for DEDUCTOR with A and ky ordering, using
Q% = (10 TeV)?2. With A ordering, this works well
(Figs. 3 and 4). With kr ordering (Fig. 8), the agreement
with the analytic NLL expectation is not as good. However,
when we compare zg(z) to the NLL expectation at a
sequence of values of @2, we find what appears to be
convergence to the NLL result as Q? increases (Fig. 9).

For both analytical and numerical analyses of Z, Lk] (v),
we have used exact QCD color. For direct calculations
of the thrust distribution using DEDUCTOR we have used
the LC+ approximation for color. We have seen in
Fig. 4 that the LC+ approximation is numerically very
accurate for the thrust distribution, although we have
noted in Sec. XXV that the LC+ approximation may

change the coefficients of some log(v) factors in A (v)
from what they are with full color. We have also seen in
Sec. XXV that the use of just the leading color approxi-
mation can lead to loss of accuracy if one does not
carefully adjust the choice between Cg and Cy/2, as
studied in Ref. [17].

There are several avenues available for future research
that extends the results of this paper.

First, the method of this paper applies to several
observables in electron-positron annihilation. We have
tried variations on the shower algorithm examined, but
have looked at only one observable, the thrust distribution.
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It is certainly worthwhile to see what patterns emerge if we
look at other observables.

Second, the method developed in Secs. II through X
applies to observables in hadron-hadron collisions as well
as in electron-positron collisions. It is of interest to see how
this method works in practice for some hadron-hadron
observables, starting with the k7 distribution in the Drell-
Yan process.

Third, we construct numerical implementations of

A [22] (v) and T gz](u) for the particular observable examined
and for several shower algorithms. This allows one to test

numerically if the large v behaviors of 7. [22] (v) and 7 [32] (v)
are consistent with NLL summation. When we find for a
certain shower algorithm that NLL summation fails at the

level of 1[22] (v) or Igz] (v), then NLL summation fails for
that shower algorithm and observable. However, if NLL

summation is not spoiled by Z [22] (v)orZ [32] (v), it could still

fail in 7 (v) for some larger values of k and n. Thus it
would be valuable to have numerical implementations of

¥ ](1/) for some larger values of k and n. Then one would
have more stringent numerical tests of NLL summation for
a given shower algorithm and a given observable.

Fourth, it would be helpful to have analytical insight into
the behavior of the operators ZI¥l (1) for k > 3in cases that are
similar to the thrust distribution using a kp-ordered shower.

Fifth, it would be worthwhile to examine in detail the
effect of using the LC+ approximation for color instead of
exact color for maintaining LL or NLL summation of large
logarithms.

Sixth, although the LC+ approximation for color is
numerically quite accurate in cases like that exhibited in
Fig. 4, we have seen in Eq. (266) that it leaves out some
contributions that are potentially important. Thus it would
be worthwhile to find an improved approximation for color
in a parton shower.

We close with the observation that it is expecting a lot
to expect that a first order shower algorithm will sum
logarithms at the LL or NLL level. If we had a parton
shower based on splitting functions at order &) [18], then
we could expect to correctly produce contributions to Z (v)
of order a’log/(v) with n < N, j < n+ 1. We might not
correctly produce contributions of order a’log/(v) with
n> N, j<n+1 because we lack the order o} contribu-
tions to the shower splitting functions. However, contribu-
tions of order o/log/(v) with j > n+ 1 should vanish
because these contributions can never be provided by af
contributions to the shower splitting functions. Currently,
all that we have (in several variations) is a first order
shower, N = 1. Thus we can expect to correctly produce
contributions of order a!log?(v) and a!log! (v). We can also
expect to obtain exponentiation of logarithms of v: con-
tributions of order a”log/ (v) with j > n + 1 should vanish.
With care, we can hope to have LL or NLL summation of

log(v) factors, but this relies on incorporating the most
important parts of higher order splitting operators into the
first order operator S.
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APPENDIX A: STRUCTURE OF Sy,
AT NLL ACCURACY

We examine Sg’;] (xQ?/p) for x of order 1 and k > 2. We
prove that this operator has at most n — 1 factors of log(v)
at order o'(Q?/v).

Recall from Sec. XXI that V¥ (xQ?/u) for x of order 1
and k > 2 has at most n factors of log(v) at order o (Q?/v).

We also note that SEI‘O] (xQ?*/v) for x of order 1 has one
power of log(v) at order a,(Q?/v), where the log(v) factor
arises from an integration d(1—z)/(1—z) down to a
lower limit proportional to 1/v, as in Eq. (215). Thus
SEI’O] (xQ?/v) for x of order 1 has at most n powers of
log(v) at order o (Q?/v).

To proceed, we prove that S[yk] (xQ?/u) with k=2
contains at most n—1 factors of log(v) at order
a?(Q*/v) and we prove that if this property holds for
k=2,3,...,N, then it holds for k = N + 1.

Consider Eq. (245) for Sg’,{H] (xQ?/v;v) for k > 2. In the
first term, at order a**!(Q?/v), there are k powers of log(v)
from y[kJ and one power from SEI’O]. In the second term (if
k > 3) at order a**!(Q?/v) there are there are k + 1 — j
powers of log(v) from ¥~/ and j — 1 powers from Sg’},
for a total of just k powers of log(v). That is, this
contribution is NNLL. In the third term, at order
akt1(Q?/v) there is one power of log(v) from SEI’O] and

k — 1 powers of log(v) from S[Jlj], for a total of k powers of
log(v). That s, this contribution is NNLL. If we expand the
NNLL contributions to higher order in a,(Q?/v), we add
just one power of log(v) per aj, so the contributions remain
NNLL. This gives us

Sy 0 i)
=3 V0 /i) |8 N (x Q2 w)| | e
> S]]

P

+ NNLL. (A1)

This leaves us with an NLL contribution if the NLL
contribution does not cancel. This result does not include
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Sy] For S22, Eq. (239) gives us 2 powers of log(v) at order
a?(Q?). This is an NLL contribution if the NLL contribu-
tion does not cancel.

If we use Eq. (A1), then we need information on YK, We
can use Eq. (247) for Y*+1(xQ? /v;v) for k > 1. In the first
term at order ¥ *!(Q? /v) there are k powers of log(v) from

VM and one power of log(v) from SEI’O], giving us a total
of k + 1 powers of log(v). This is an NLL contribution. In
the second term (for k > 2) at order a‘*!(Q?/v) there are
|

y[k+1](xQ2/y V)

Z/ Ay (x10%/vs V)[ ](x1Q2/v)}P(1 — ¢~&"1) 4+ NNLL.

k+1—j powers of log(v) from Y¥*+1=/l and j — 1 powers
of log(v) from Sy giving us a total of k powers of log(v).
This is an NNLL contribution. In the third term at order
a1(Q?/v) there are k powers of log(v) from S[yk+1]. This
is an NNLL contribution. Again, if we expand the NNLL
contributions to higher order in a,(Q?/v), we add just one

power of log(v) per aj, so the contributions remain NNLL.
This leaves us with

(A2)

This derivation does not include Y. For 1!l we can use Eq. (237), which gives us just Eq. (A2) with )%/ replaced by 1 and

no NNLL additional contribution.

Equation (A2) gives us a recursion relation that we can solve to NLL accuracy in the form

yWuvau>—04V2:U/‘h{/ndh"/ﬁli?[[”%xgwm]( -

x [st o) (1-

We can substitute this solution for V¥ into Eq. (A1) to give us

S[ka (xoQ?/v;v)

xhﬂ@@ﬁ%@—ﬁ%
+ NNLL.

The explicit exponential factors restrict the x; integrations
to x; of order 1 (as we have already seen). We now want to
find how many factors of log(v) are contained in the
operators SEI’O] (xQ?/v). Since log(x/v) is equivalent for
this purpose to log(1/v) when x is of order 1, we can
replace all of the x; factors in the arguments of

SELO] (xQ?/v) by 1.

In Eq. (A4), we have factors exp(—&;"x;). The param-
eters &, are defined in Eq. (204). They are close to 1: &, — 1
is proportional to [1 — cos(@(l, 7it))]. It is a good approxi-
mation to take the thrust axis 7y to be the direction of either
the quark or the antiquark in the ¢ — g state at the start of

Sy @ wiv)[{p. foe c'},) =

/Xodxl/xl d.XZ /Xkldxk
10 Ay

/ 0 d.X1 /xl dX2 /xk—l % |:|:S[1
Xk

x [81; <Q2/v)] —em[s
x {p,f.c,c'},) +NNLL.

e ) S0 n@2/w)| (1= e ) + NNLL. (A3)
[tz (1) -
) [z (1= ) [S 0wz m)] | e
(A4)

|
the shower. Then the angle between p, at a later stage of the
shower and 7 is determined by the emission angles at the
intervening stages. But in order to accumulate the maximal
number of log(v) factors in these splittings, all of these
emission angles must be small. That is, if we expand
exp(—¢&;x;) in powers of [1 — cos(6)], where 0 is one of the
splitting angles, then a factor [1 — cos(6)] will eliminate a
log(v) factor in an integration dcos(@)/[1 — cos(6)] with
limits analogous to the limits in Eq. (114). We conclude that
for the purpose of our present NLL calculation we can set
all of the &P factors in Eqgs. (A4) to 1.
These changes gives us

Q)] (1 - e

@m)|, (-S| e

_ (AS)
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The first SE]"O](Q2 /v) factor in Eq. (A5) is

(S0 /)12 = S (%)~ 1S (Q ).

The contribution from [SE’O] (Q*/v)]p is rather simple and
we will consider it later.
We begin by considering the contribution from
10 “(Q*/v). This
{p,f,c,c'},,), produces a linear combination of states
with m + 1 partons, [{p, f,&, & }nit)s

operator, acting on the state

S8 el {p. fc.c'},)
lo=1

STt

lp=1 ko=
o= kO;elO

/d¢0 / dzy a;(Ar(1—20)Q%/(vay,))
1- 20 2z

O ——2—<1- 1
) <V19(lo’ko) = )

x e 1P, -

(A6)

Here we use the approximate form of SI'%(Q?/v) given in
Eq. (109). We split parton [, with dipole partner parton k,
creating a new parton m + 1, which we consider to be a
gluon. The color operator is

Collo-ko) =T}, ® T} +T), ® T} . (A7)

as defined below Eq. (109). We have specified a scale
argument based on the transverse momentum for the
splitting for a,. The new momentum p,,,,; and the new
momentum p,; are given by the splitting variables y = 1/v,
zo and ¢po. The new momenta p; for i #1[,, m + 1 are
slightly different from the starting momenta, as specified by
the momentum mapping.

Let us consider what the one of the operators,

[551_1'0](Q2 /V)|p, in Eq. (A5) does to this state. We consider
the quantity

m+1
14) = Y IS NQ W) (1 = e [{p. J 2.8} i)

=

(A8)

Again, we use the approximate form of S!'%/(Q?/v) given
in Eq. (109), so that

m—+1 m+1

= Y ek
=1 k;;
dz a,(Ax(1-2)0%/(va)))

x/@
2r ) 1—z2 2r

( 1 -z 1)
X O — <— <
vl k) a q
X (1= e™){p. [, &, &} i)

(A9)

Here the hats in f9(l , k) and @, indicate that these quantities
are based on the momenta in |{p, f},,. ;). In Eq. (A9), we
split parton / with dipole partner parton k, creating a new
parton m + 2, which we consider to be a gluon.17 However,
the [- - -|p operation, Egs. (157) and (158), returns us to the
starting momentum and flavor state |{p, f},..). With the
[--+]p operation, Eq. (159), the color operator is

CL)=[®T,+T, ®T]lp

In the first term in the second line, the operator T, - T,
operates on the bra color state and leaves the number of
partons in the color state unchanged. The operator inserts a
color matrix 7% with gluon color index a on line / and
another 7% on line k. The dot in T - T; indicates a sum
over a. In the second term, the same operator is applied to
the bra state.

There is an integration over the splitting variables ¢ and
z. It will prove helpful to define a function L(w, u) given by
performing this integration,

" 2
L(w,u) = /2”@ udx a,(ArxQ”/v) (A11)

0o 27 )i X 27
This function is to be expanded in powers of a,(Q*/v).
At lowest order, this integration gives simply
[,/ (27)] log(w/u). At higher orders in an expansion in
powers of a,(Q?/v) the result is more complicated. With
this notation,

m+1 m+1

ZZClk

¢1

x (L= e™){p.f. 2.8} ).

Wd(1,k), &)

(A12)
We break up the sums in the form

""We omit splittings g — ¢g since these splittings lack a soft
singularity. For a ¢ — gg or g — gg splitting from an m + 1
parton state, the daughter gluon is labeled m + 2.
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{5 et

WAL k), +ZC lo. k)
=1 k=1

Iy k# k;élo

+C(lg,m + V)L (lp.m + 1), a,) + C(m + 1, 1y)L(v8(m + 1,1,), amﬂ)}a —e™)|{

Now, as long as neither [/ nor k equals m + 1, the angle
variable §(1, k) is very close to the corresponding angle
variable 9(/, k) in the state |{p, f, ¢, c’},,) before the first
splitting. The angle variable 3}(m + 1, k) for k # [, is very
close to 9(ly, k) in the state before the first splitting, since
partons /, and m + 1 are nearly collinear in the integration
region that can lead to a log(v) factor in the first splitting.
Thus we regard these angles as fixed when calcula-

ting S[§+1](x0Q2/1/; v){p.f.c.c'},,). On the other hand,

9(ly, m + 1) is the angle variable for the first splitting and is
thus an integration variable in this calculation. Integrating
over this variable can produce a log(v) factor. Thus we treat
9(ly. m + 1) as potentially small in Eq. (A13), but we treat
the other angle variables as being finite. For the purpose of
finding log(v) factors, we simply replace these finite angle
variables by 1. These substitutions give us

m m+l m
{ZZCZk (v.ay) + > Clly. k)L(v. &)

=1 k=1 k=1
Iy Kkl ktlo

+ZCm+1 kK)L(v.

k#lo

+C(lgym + 1)L@A(ly,m + 1), &,
T Cllgem + VLAl m + 1>,am+1>}

x (1=e™)|[{p.].2

C’a/})n+l)'

m+l)

(A14)

In two of the terms in Eq. (A14), the parameter a,,,
appears. This parameter is large when the momentum
fraction 1 — z; of parton m + 1 in the first splitting is small:

aj

o (A15)

&m-H ~
1 -z

We also note that the angle variable 9(ly,m + 1) is
proportional to 1/(1 — zq) according to Eq. (113). We have

A ap
lg,m+ 1) ———. Al6
( 0 ) l/(l _ ZO) ( )

Combining these equations gives us
dppy V(1. m + 1), (A17)

L®(ly. k). ;) + > Clm+ 1L K)L@d (m + 1.k). &y 1)

kil

N

p.fe.@},0). (Al3)

With this replacement, the function L, Eq. (A11), in the last
term in Eq. (A14) is approximately

Ld(lo,m+1),41) ® L(@y1, i) = 0. (AI8)

In the fourth term in Eq. (A14), we use this replacement to

eliminate d(ly, m + 1) in favor of a,,.,. With these sub-
stitutions, we have

m m+l1 m
{Zic LR)L(v.&) + Y Cllg. k)L(v. &)

=1 k=1 k=
ki

1
Il kel Io

+ ZC(m +1, k)L(l/, &m-H)

k=

k)
- Clloam + L.}
x (1=e™){p.f.e.&} 1)

Using the definition (A11) of L(w,u), this function in
the last term can be written as

(A19)

L(ayy1.a;,) = —L(v, @py) + L(v. 4y)). (A20)
In the sum in the second term in Eq. (A19) we can add and
subtract a contribution from k = m + 1. After adding this
contribution, the sum includes k = m + 1, so that this sum
can be combined with the sums in the first term. Then in the
first term we can include / = [, in the sum over /. In the third
term in Eq. (A19) we can add and subtract a contribution
from k = [y, so that after adding this contribution the sum

includes k = [,. With these changes, we have

{imfcm

l/a,

m

+ ZC(W! +1, k)L(l/, &m+l)
k=1
- 26([0, m —+ 1)L(1/, é\lm-d—l)}

x (1=e™){p. ..} 1) (A21)

In the first term in Eq. (A21), we can use color
conservation to write
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m+1 m+1
L) =>T T, ®@1+1QT, T
[ kAl
=1, T)®1+1Q®T, T
= -2C[1 ® 1], (A22)

where C; = C, if parton [ is a gluon and C; = Ck if parton
[ is a quark or antiquark. The same applies to the second
term:

iam +1,k)=2C,[1®1],  (A23)
k=1

where we have used C,,,; = Cj4 since parton m + 1 must
be a gluon in order to give a leading log(v) contribution.
These substitutions give us

A) ~ {Z 26,1 ® 1L(v. &)
=1

+2[Ca[l ® 1]+ C(lg, m + 1)]L (v, &m+1)}

x (1= e™)[{p. f .} i) (A24)

Consider now the term in Eq. (A24) that contains a color
operator C(ly, m + 1), defined in Eq. (A10). We apply this
operator after the color operator for the initial splitting,
Co(ly, ky), defined in Eq. (A7). This gives us an operator
with four terms,

Ci= (T, -Ty)T), ® TZU +7,® TZO(TIO “Tpit)
+ (T Thg1) Ty ® TITO + Ty, ® TZ)(TZO “Thi1)
(A25)
There can be several factors of [SEI’O] (xQ?/v)]p in Eq. (A5)
and in some of those factors we can select the C(l, m + 1)

term in Eq. (A24). Finally, there is a [- - -]p operation. This
gives us a sum of color operators of the form

Cle = [Ty, Toui1)* Ty, @ Ty (Thy - Toni)®

+ (Ty, - Ty ) Ty, ® T[TO(TIO “Tyi1)Plp.  (A26)
Using Eq. (158), this becomes
[Clp = (T}, - Ti)*T), ® TZO
+ Ty, ® T (Th, - Tpt)* Pl (A27)

Now consider the color operator Ty - T, T} .In diagrams,

parton [, emits a gluon with label m + 1, leaving parton [,
in a new color state. Then a gluon is exchanged between

partons [, and m + 1. This gives us a color triangle
diagram,
Tlo : TerlT?O = ifabcTZ, T?O (A28)

Then we can use

. 1. | Ca
lfabcTZ,TICO = Elfabc [TZ)’ Tfo] = Elfabclfbch?; = _—TZJ

2
(A29)
Thus
C
Ty, Ty TS = —7‘* T (A30)

This gives us

T, T, AT, QT = _Ca A+BT T A31
(T Tpis) 1 ®Ty, > L ®T;,.  (A31)

The second term in Eq. (A27) gives the same result, so that
the net color operator defined in Eq. (A26) is

C A+B
[Clp = [— A] [T, @ T} + Ty, T} ]p. (A32)

2

We conclude that when C(ly, m + 1) in Eq. (A24) is part

of Sg’,{H] (xoQ?/v;v) in Eq. (AS5), we get the same result for
S[J]jJrl](onz /v;v) by making the replacement

Clly.m+1) > —Ca[l ® 1. (A33)

There is a factor 2 for each C4 here because there are two

T, ® T,to terms and two T, @ T Z} terms in Eq. (A25).
With this replacement, the terms in Eq. (A24) propor-

tional to L(v, a,,,1) cancel. Thus we get the same result for

S[yk+1](xOQ2 /v;v) by making the replacement

|A) — A7), (A34)

where

m

AST) & 201 @ 1L (v ) (1 = e ™) [{p. F. 6.8} )

=1
(A35)

Note that |A$T) is a number, which we may call 4;, times the
starting state vector,

AST) = Ll{p. f. e, &Y in)- (A36)

054049-45



ZOLTAN NAGY and DAVISON E. SOPER

PHYS. REV. D 104, 054049 (2021)

Return now to Eq. (A5) for S[J],CH] (xoQ?/v;v) applied to
the starting state |{ p, f, ¢, ¢'},,). In the last factor, we have

dealt with the operator SE)’U](Q2 /v), which creates a new

parton with label m + 1. Now we turn to the remaining

8, (/)b
state |{p, f,c,c'},,), produces a linear combination of
states with m partons, |{p, f, ¢, ¢'},,). Here the momentum
and flavors are the same as in the initial state, but the colors
change. More precisely,

operator, —| This operator, acting on the

SIS W) pe {p. foe '}

l=1

<= 30 (€l kool (p S )

lp=1 ko=
= kO;&lO

a, (R (1 = 20) 0%/ (vay,))

/d¢0/ dzy a
1- 20 2w

O ————<1-— 1
. (19(10»/%) Z°<>

Let us consider what the one of the operators,
[851_1'0]( 0?/v)]p, in Eq. (AS5) does to this state. We consider
the quantity

(A37)

SIV /)| (1=e)l{p.f.2.2,). (A38)

With an analysis similar to but simpler than our previous
analysis, we obtain

B~ Y200 @ L)1 = lp. £.2.2),).
i (A39)
This gives us

|Bi) = Lil{p. f.¢.¢'},), (A40)
where the eigenvalue 4; is exactly the 4; in Eq. (A36).

We can substitute Eqs. (A40) and (A36) into Eq. (AS) to
obtain

Sy (k0@ /v:v){p. £ e.¢'} )

R A PR
Xk

Z[[s[l 0] Qz/y } } e|{p. f.e '},

+ NNLL. (A41)

However

s, ] = [st @ m-[shem)] ]
=[S, - [si ),
=0. (A42)

Thus the NLL contributions to gS’[ka](on2 /v;v) vanish:

Sy 0@ /wi){p. foe.¢'},) = NNLL. (A43)

APPENDIX B: CANCELLATION
WITH kt ORDERING

In this appendix, we explore the cancellation of large
log(v) factors in I[zz](y) with kp ordering. We can write
(T2 w){p.7.2.¢1,) in the form

)P, f. e

(v , o'}
-9 // K-
x O (ky < kp)(1 - e”“-’) (1S (ke 7, )

x {81 (k. 71, ) — [SUO) (k. 7. )] }
x {p.f.e.¢},).

We begin with a ¢gg state with parton momenta p; and p,
aligned along the + and —z axis, respectively. Then one of
these two partons splits, producing parton 3. We suppose
that it is parton 1 that splits. After the splitting, we have
partons with momenta py, p,, and p3. The value of 1 — T in
this state is 7 and we suppose that 7 < 1. Then there is a
second splitting, producing partons with momenta p, p,,
D3, and p, with a thrust variable 7 <« 1. We consider either
the splitting of parton 3 with parton 2 as the dipole partner
or the splitting of parton 2 with parton 3 as dipole partner.
Other splitting possibilities are not as important and we
omit consideration of them here. We limit our consideration
to the leading color approximation.

We begin with the first splitting, which we describe with

splitting variables kr, 7, ¢ that relate p; to p; and p,:

(1|Z%

(B1)

D3 = e"—Pl + 6’_" Ptk (B2)

0]

Here |Q] = [0*]'* = [2p, -
orthogonal to p; and p,:

IQI

P,]'/% and k| is a vector that is

(B3)

We have defined the scalar ky by
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kr = [-K3]'2. (B4)
This definition gives p3 = 0. The variable 7 is the rapidity
of p3. We need one more splitting variable, the azimuthal
angle ¢ of k.

For emission from parton 1, the splitting function is
small for 7j < 0. There is a maximum value of 7 for fixed kr,
set by the condition for a maximally collinear emission

el—=1. (B5)

When # is close to this upper bound, the splitting
function tends to zero. Thus we integrate over the splitting
variables with measure dijdlog(kr/|Q|) over the range
0 <# < —log(kr/|Q|). In this range, as long as # is not
near either endpoint, the splitting function is approximately
constant. For small kr, this is a large range. The integration
gives us a large logarithm, which comes from integrating
over the interior of the range, omitting the regions near the
endpoints:
0 < 7j < —log(kr/|0)). (B6)

We will assume that 7 lies in this range in the analysis that
follows.

For an emission from parton 1, we define the momentum
of parton 1 after the emission to be

l?T}N
l—el—|p +
P [ ol)”"

With this definition, p? = 0 and p,
in the direction of p,:

k1|0

— = 5, —k,. (B7
l—e”kT/|Q\p2 1 ( )

— P1 + p; lies entirely

e_ﬁI;T/|Q|

_— B8
1= eikr/l0] (B8)

pPr—Di+p3=

Finally, we need to define the momentum p, of parton 2
after the splitting so that momentum is conserved:

p1+ p>»+ p3s = p1 + pr. Using Eq. (B8) we obtain p,
by applying a small boost in the z direction to p,:
e kr/|Q
P = [1 - ,f"] P, (B9)
/10|

This is the exact relation. In the integration range (B6), this
relation becomes

pr—pame b
2 PpaRe T
IQI
We use Eqgs. (123) and (124) to calculate the thrust for
the state after the first splitting:

(B10)

1
TI@(PTJFPEJFP?)

1
"0

We can use p; = pj = 0. Then we can use p; = O~ and
Eq. (B10) for p; — p5. This gives 7 ~ e7kr/|Q| or

—(p; —p5 + P71 +P2) (B11)

~kT
vt ve T —

[}

This relation is significant because this emission is
accompanied by a measurement function exp(—vz). The
measurement function is approximately 1 for vz << 1 but
approximately zero for 1 < vz. Thus we effectively inte-
grate over the range

(B12)

vt < 1. (B13)

In the analysis that follows, we will need a relation
between 2p5 - Q and the values of 77 and kg for the splitting.

We can use Eq. (B2) with > 0 together with 2p; - Q =
Q? to give
2ps - 7 k
D3 . Q T (B14)
0 “Tor

We now turn to the second splitting. We will describe the
splitting using variables and a momentum mapping that are
slightly different from what is used in DEDUCTOR with kt
ordering. In fact, we will use a local momentum mapping.
However, in the kinematic limit of interest, the description
used here reduces to the description used in DEDUCTOR.
The splitting kinematics are illustrated in Fig. 15. We
describe the second splitting with splitting variables kr, 7,
¢ that relate p, to p, and ps:

. k _k
Ps = A32€"ﬁpz + Ape "‘—&Pz +ki, (B15)
where
A [ 0> p,- Q} 12
2 2pypaps-0)
0* p;-0]'2
Az = [2172 *P3 PZ -0 ‘ (B16)

Here k| is a vector that is orthogonal to p, and pj:

ki-py=ky-py=0. (B17)
As for the first splitting, we have defined the scalar
kr = [—k3]"/2. This definition gives p? = 0. The variable
n describes the rapidity of p, with respect to the emitting
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dipole, with a constant log(p, - Q/ps - Q)/2 added [16].
We need one more splitting variable, the azimuthal angle ¢
of k, in the dipole c.m. frame.

There is a limit to how large # can be: #yin < 7 < Nimax-
The limits are fixed by the requirements that the compo-
nents of p, along p3 and p, cannot be larger than 1:

NMmax = 10g <|Q> - log(ASZ)’

Mmin = 10g <|Q|) + 10g<A2'§) (B18)

The lines n = Nyax and 1 = y, are indicated in Fig. 15 as
the lines labeled collinear. This is a large integration range.
We will assume in what follows that # is not near to the
endpoints of the integration range:

NMmin <K< 77 << Nmax- (B19)

For emission from parton 3, we let the momentum of
parton 3 after the emission be

ﬁSN 1 - A32€ :|

-
I

0*2p5- ps

-1
326'7@] p2—ki. (B20)

With this definition, p3 = 0 and p; — p3 + Py lies entirely
in the direction of p,. Then we can maintain momentum
conservation, p, + po + p3 + ps = p1 + p2 + p3 by set-
ting p; = p; and obtaining p, by performing a small boost
on p,:

-

P = P2 (BZl)

With a few algebraic steps, we find

log(kr/|QI)

kr =k
T T v(ii—71) =1
/collincar soft collinear
FIG. 15. Integration regions for second splitting.

k -1
0 =1 —A23€_”|—QT’ |: Agze |Q|:| . (B22)

These definitions have been exact for the kinematic
variables and momentum mapping chosen. We can now
make some approximations. Given our kinematic condi-
tions (B6) for the first emission, the momentum p; has
large rapidity. That is, it makes a small angle with the z axis.
The transverse momentum vector defined in Eq. (B15) is
orthogonal to p3 and p, whereas the transverse momentum
vector in DEDUCTOR is orthogonal to p; and Q. However,
since p; makes a small angle with the z axis, this is almost
the same thing. In DEDUCTOR, momentum is conserved by
applying a boost in the plane of p; and Q. Since p; makes a
small angle with the z axis, this boost is almost exactly
along the z axis. The boost is applied to both p, and p, but
this difference has only a tiny effect on the resulting thrust.
Thus in the limit considered, the DEDUCTOR kinematics and
the kinematics used here are equivalent.

We now examine the change in thrust produced by the
emission of parton 4 from parton 3. We assume that p, is
in the right thrust hemisphere. This is always the case
when 7 > 0. There is a region near 7~ 0 in which this
assumption fails. With the kinematics that we are using,
the thrust axis is along —p,. That is, it is the z axis. Then
we have

%—T:E[ﬁl+ﬁ§—P3 + b3 —r3]
1 o
=E[p5—p2 + Py = 3] (B23)

We have pi =0, p,=ep, from Eq. (B21), and
p5/0~ =2p, - Q/Q> This gives us
20,
% - 7T = péz Q [1 _ e—u}].

Now the condition 7 < 17, that we assume implies that
Azekr/|Q| < 1. Thus in Eq. (B22), we can replace the
factor 1 — Asyeky/|Q| in e by just 1. Then

2ps - k
%—rzpz—zQA23e"7—T.
0 0|

Since p; makes a small angle with the z axis, we obtain
the approximations

(B24)

(B25)

2P -02p5- 0
~ —Q2 ,
Q2
2p;-Q’
QZ
2p,-Q°

2py-p3

A32 ~

A23 ~ (B26)
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With these approximations, we have

ke
v(t—1)mre T —.
0l
With the same approximations, we obtain for the change in
thrust produced by an emission from parton 2 with the
dipole partner being parton 3,

(B27)

7 — ~re' ﬁ
v(t—1)mve 0ol
Again, this is for || > 0. For the soft emission region near
n = 0, there is the possibility that p, is in the opposite
thrust hemisphere from the parton that emitted it, so that the
thrust calculation changes.

These relations are significant because the second
emission is accompanied by a measurement function
1 — exp(—v(% — 7)). The measurement function is approx-
imately 1 for 1 <v(%—17) but approximately zero for
v(% — 1) < 1. Thus we effectively integrate over the range

(B28)

v(t—1)> 1. (B29)
The boundary of this integration region is indicated in
Fig. 15 as straight lines with the labels v(% — 7) = 1.

There is one more restriction on the integration range
for the second splitting. We are analyzing a kr ordered
shower, so

kp < kr. (B30)
The line kr = ky is indicated in Fig. 15.

To analyze Eq. (B30), we will need to know the value
kt . of kr at the point labeled with a star in Fig. 15. We first
note that the line for # > 0 labeled collinear in Fig. 15 is
given by # = . in Eq. (B13), e"kr/|Q| = 1/A3,. We can
use Eqgs. (B26) and (B14) for As,, giving
kr ok
T el —T, collinear.

To] o)

Then using Eq. (B12) to eliminate 77 and Eq. (B27) to
eliminate # we have

e (B31)

B -0k

Q2 Ut Q2 ’
The point labeled with a star in Fig. 15 is the intersection of
the collinear line and the line v(# — 7) = 1. Thus,

collinear. (B32)

K, 1k
Since in the dominant integration region vz < 1, we

conclude that kt, > kr. Thus the line kr = kr lies below
the point (7, , k1, ) in Fig. 15. This implies that the effective

(B33)

integration region for the second splitting is the region
shaded in yellow in Fig. 15. Inside this region, the integrand
is approximately 1.

Now consider the case in which the first splitting is
virtual. The corresponding contribution comes from the
term S (kr, 77, p)e™"]p in the last line of Eq. (B1). We
integrate over the splitting variables for the first splitting,
including the measurement function e**, but we start the
second splitting from the gg state with just partons with
momenta p; and p,, but with the kr ordering requirement
kr < kr. Now the limits on # in Fig. 15, indicated by the
lines labeled collinear, are expanded to the dotted lines in
the figure. However, the effective integration region for the
second splitting is the region shaded in yellow in Fig. 15.
When we subtract the virtual contribution from the real
contribution, we get zero within the approximations that we
have used.

In Eq. (B33), we have equality, kr = kr,, when the
value of 7 for the first splitting is given by vt = 1. The value
of kr in the first splitting can be less than &t ,, but if ky is
too small then the integration region in Fig. 15 disappears.
From Eq. (B27) atn = 0, (% — 7) = 1 and ky = kr, we see
that this limits &y to

L > 1 (B34)
ol v

Our analysis above has assumed that the first emission is
at large rapidity, 77 > 0. What happens when # =~ 0? The
approximations that we have used are not adequate in this
situation, so it might seem that there is nothing that we can
say. However, we can examine what happens when 7 is
large enough that the approximations are still valid, but 7
becomes smaller and smaller. Start with Eq. (B31) for the
collinear line in Fig. 15 and use Eq. (B12) to eliminate &y
and Eq. (B27) to eliminate kt, giving

vt " )
e, collinear.

(B35)

The point labeled with a star in Fig. 15 is the intersection of
the collinear line and the line v(# — z) = 1. Thus,

e x yre?, (B36)

In the effective integration range for the first splitting, we
have vz < 1. Thus

e <j. (B37)
This tells us that when the rapidity of the first splitting
becomes small, 7 — 0, we have 5, — 0. In this limit, the

real-virtual cancellation in this region deteriorates, but this
deterioration does not matter because the allowed
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integration region for the second splitting in Fig. 15 shrinks
to zero.

The cancellation will fail on a certain surface in the
integration region. On this surface, the splitting variables
for the second emission are given by

(kr, 1) & (kras ) (B38)

In this region, the second emission is collinear rather than
both soft and collinear, so that the emission probability
does not match the constant that appears in the region in
which the second emission is both soft and collinear.
However in the virtual subtraction the second emission
is both soft and collinear so that the emission probability is
this constant. Thus the emission probabilities do not match
between the real emission and the subtraction.

The surface of non-matching probabilities is specified as
follows. If kt = kr ,, then the line kt = kr in Fig. 15 must
pass through (k1 ,,7,), so that ky = kr.. Then Eq. (B33)
implies that the value of 7 for the first emission is given by
vt = 1. Then Eq. (B12) gives

k
i1 ~log(v) + log (—T> .

0 (B39)

The transverse momentum for the first emission varies in
the range

—log(v) < log <k—QT> < —%log(v). (B40)

Here the lower limit is from Eq. (B34) and the upper limit is
from Egs. (B6), (B12), and (B13). For the second emission,

(kTv ;7) ~ (kT,*a ’/I*):
’7 ~ ;]7
) uls)

Thus the integration region inside which cancellation fails
]

(B41)

is one dimensional, so we are left with a contribution to Z [22
proportional to log! (v).
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