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We propose a method to examine how a parton shower sums large logarithms. In this method, one works
with an appropriate integral transform of the distribution for the observable of interest. Then, one
reformulates the parton shower so as to obtain the transformed distribution as an exponential for which one
can compute the terms in the perturbative expansion of the exponent. We apply this general program to the
thrust distribution in electron-positron annihilation, using several shower algorithms. Of the approaches
that we use, the most generally applicable is to compute some of the perturbative coefficients in the
exponent by numerical integration and to test whether they are consistent with next-to-leading-log
summation of the thrust logarithms.
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I. INTRODUCTION

Parton shower event generators provide a way to
approximately sum large logarithms in QCD. Consider
an infrared safe observable labeled by J in hadron-hadron,
lepton-hadron, or lepton-lepton collisions at a large energy
scale μH. Suppose that one is interested in a cross section
σ̂JðvÞ for the observable to take the value v. The observable
is characterized by a scale Q̂2

JðvÞ, such that the σ̂JðvÞ is not
sensitive to parton splittings at a scale smaller than Q̂2

JðvÞ.
For instance, one might be interested in the k⊥ distribution
in the Drell-Yan process in hadron-hadron collisions.
Then v ¼ k⊥ and Q̂2

JðvÞ ∼ k2⊥. If Q̂2
JðvÞ ∼ μ2H, one can

use straightforward QCD perturbation theory to calculate
σ̂JðvÞ. However, if Q̂2

JðvÞ ≪ μ2H, the perturbative expansion
for σ̂JðvÞ will contain large logarithms, logðμ2H=Q̂2

JðvÞÞ.
Often, one can analyze these logarithms by taking an

appropriate integral transform of σ̂JðvÞ. Then one calculates
a cross section σJðrÞ depending on a variable or variables r.
The cross section σJðrÞ contains logarithms LðrÞ that are
large when r approaches a limit. For instance, one might
take the Fourier transform, with transverse position b, of the
Drell-Yan k⊥ distribution. In this example, r stands for b,

the limit is b2 → ∞, and the logarithm is L ¼ logðb2μ2HÞ.
Typically the cross section then has the form

σJðrÞ ¼ c0

�
1þ

X∞
n¼1

X2n
j¼0

cðn; jÞαns ðμ2HÞLjðrÞ
�
: ð1Þ

The logarithms LjðrÞ arise in QCD from the soft and
collinear singularities of the theory. These same soft and
collinear singularities are contained in the splitting func-
tions of a parton shower algorithm. Thus running a parton
shower event generator to calculate σJðrÞ will produce an
approximation to the series in Eq. (1). That is, the parton
shower approximately sums the large logarithms. The
object of this paper is to investigate the form of the result
of this summation.1

To exhibit the summation of logarithms, we rearrange the
parton shower algorithm so that it is specialized to calculate
just σJðrÞ and so that it expresses σJðrÞ directly in terms of
an exponential

T exp

�Z
μ2H

μ2f

dμ2

μ2
SYðμ2; rÞ

�
; ð2Þ

where T indicates ordering in μ2. The integral of SYðμ2; rÞ
in the exponent has an expansion
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1The analysis applies not just when σJðrÞ represents an integral
transform of some other distribution, but also whenever the
operator OJðrÞ that we use to measure σJðrÞ after the shower has
an inverse. That is,OJðrÞmust have no eigenvalues equal to zero.
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Z
μ2H

μ2f

dμ2

μ2
SYðμ2; rÞ ¼

X∞
n¼1

αns ðμ2HÞ
X2n
j¼0

eðn; jÞLjðrÞ: ð3Þ

The operator SYðμ2; rÞ is determined by the parton splitting
operator Sðμ2Þ in the original shower. This gives one direct
access to the coefficients eðn; jÞ. With this representation,
one has the potential to prove that eðn; jÞ ¼ 0 for
j > nþ 1. The terms with j ¼ nþ 1 are called leading-
log (LL) terms and the terms with j ¼ n are called next-to-
leading-log (NLL) terms. One also has the potential to
prove that eðn; jÞ for j ¼ nþ 1 and for j ¼ n are what is
expected in full QCD if a full QCD result is known.
There is a long history of investigations of how well

parton shower event generators reproduce the expectation
from full QCD for the large logarithm expansion of Eq. (3).
We can provide some examples. For instance, Marchesini
and Webber argued that a parton shower event generator
based on angular ordering would better sum large loga-
rithms than alternative formulations [1]. Ref. [2] found that
the event generator [1] of Marchesini and Webber, a
precursor to HERWIG [3,4], agreed with the analytic
QCD summation of double logarithms [5] for the
energy-energy correlation function in eþe− annihilation
better than an alternative event generator due to Gottschalk
[6]. In 1991, Catani, Webber, and Marchesini compared
QCD theory and the structure of parton shower algorithms
for several observables that involve large logarithms and
concluded that a small adjustment in the parton shower
algorithm could improve the summation of the large
logarithms [7]. The connection between parton showers
and large nonglobal logarithms was investigated in [8]. One
paper [9] argued that a dipole parton shower might not
properly sum the logarithms that are encoded in the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equation for the distribution of hadrons in a final
state parton. However, two investigations [10,11] showed
that this argument was not correct. A similar investigation
showed analytically that a virtuality ordered dipole shower
correctly sums the double logs that appear in the Drell-Yan
transverse momentum distribution [12]. Some issues in
large logarithm summations in dipole parton showers were
investigated in [13]. The logarithmic accuracy of final state
parton showers was investigated at order α2s in [14,15].
A more powerful analysis for eþe− annihilation was
undertaken in [16]. A very recent paper [17] addresses
corrections to the leading color approximation in a dipole
parton shower in order to maintain proper color factors for
leading logarithm terms.
Our plan for Secs. II through X of this paper is to develop

the general theory behind the representation (2) along the
lines of Ref. [18]. In this exposition, we also present the
main steps of the construction of Ref. [18] in a form that, in
our opinion, makes these steps more transparent. Then,
starting in Sec. XI, we apply the representation (2) to an

important example, the thrust distribution in electron-
positron annihilation. We consider just the thrust distribu-
tion and not other distributions involving large logarithms.
However, we look in some detail at how the exact form of
the shower algorithm affects the results.
Since the construction presented in this paper is simpler

for eþe− annihilation than for hadron-hadron or electron-
hadron collisions and since Secs. XI through XXVIII are
quite self-contained, some readers may prefer to jump to
the later sections before reading the more general analysis
in the earlier sections.

II. PARTON SHOWER FROM
PERTURBATION THEORY

The starting point for the general analysis is the
perturbative cross section for an infrared safe observable
in hadron-hadron collisions. This starting point also applies
with some simplifications also to electron-hadron and
electron-positron collisions. We describe this structure
briefly here. A more detailed explanation can be found
in Ref. [18].
The parton shower is described as in our parton shower

event generator DEDUCTOR [19–26] using operators on a
vector space, the “statistical space,” that describes the
momenta, flavors, colors, and spins for all of the partons
created in a shower as the shower develops. The colors and
spins are quantum variables and are described using a
density matrix. With m final state partons plus two initial
state partons with labels “a” and “b,” the partons carry
labels a; b; 1; 2;…; m. The partons have momenta fpgm ¼
fpa; pb; p1;…; pmg and flavors ffgm. We take the partons
to be massless: p2

i ¼ 0. For color, there are ket color basis
states jfcgmi and bra color basis states hfc0gmj. We use the
trace basis, as described in Ref. [19]. For spin, there are ket
basis states jfsgmi and bra basis states hfs0gmj. Then the
m-parton basis states for the statistical space are denoted by
jfp; f; c; c0; s; s0gmÞ. Avector jρÞ in the statistical space is a
linear combination of the basis states. The statistical space
is introduced in some detail in Secs. 2 and 3 of Ref. [19].
These sections also show how shower evolution is
expressed using evolution operators that act on the stat-
istical space. (However, in the present paper the names of
the operators follow Ref. [18] rather than Ref. [19].) The
spin basis is described in Sec. 5 of Ref. [19] and the color
basis is described in Sec. 7 of Ref. [19].
In Secs. II through X of this paper, we maintain a general

framework with full color and spin. Practical parton shower
programs [4,27,28] typically average over spins, so that
no spin quantum numbers appear in the shower equations.
One can then carry out the analysis of the summation of
large logarithms using the spin averaged shower, as we do
starting in Sec. XI. For color, parton shower programs often
use the leading color (LC) approximation, which provides
the leading term in an expansion in powers of 1=N2

c ¼ 1=9.
With this approach, the color states fc; c0gm do not affect
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the splitting probabilities, which are simply proportional to
a factor CF or CA. Our program, DEDUCTOR, uses what is
called the LC+ approximation [22]. Thus we mostly use
full color in this paper with the understanding that one
could approximate to the LC+ or LC level if desired.
We discuss this further and relate the discussion to Ref. [17]
in Sec. XXV.

A. Perturbative cross section

If the QCD matrix element is calculated up to a given
order, αKs , the cross section is

σJðrÞ¼ð1jOJðrÞF 0jρðμ2RÞÞþOðαKþ1
s ÞþOðΛ2

QCD=Q
2
JðrÞÞ:

ð4Þ

Here the renormalized perturbative QCD density operator
is represented by a vector in the statistical space jρðμ2RÞÞ.
It is based on the exact matrix elements and contains all
the possible partonic final states at order K. The density
operator is already renormalized, typically in the modified
minimal subtraction (MS) scheme, thus it is independent of
the renormalization scale, μ2R, up to the desired order

μ2R
d
dμ2R

jρðμ2RÞÞ ¼ OðαKþ1
s Þ: ð5Þ

The next factor in Eq. (4) is the operator of the bare
parton distribution functions (PDFs),

F 0 ¼ ½F Rðμ2RÞ∘Kðμ2RÞ∘ZFðμ2RÞ�: ð6Þ

Here the circles, a∘b, represent convolutions in the
momentum fraction variables. The renormalized PDF
operator for the hadron-hadron initial state is F Rðμ2RÞ.
The corresponding MS subtraction of initial state singu-
larities is done by the ZFðμ2RÞ operator, which contains
factors 1=ϵn in dimensional regularization. As described in
Ref. [18], one should typically use something other than the
MS scheme to define the parton distribution functions used
internally in the shower. The factor Kðμ2RÞ transforms to
the shower scheme for the parton distribution functions
F Rðμ2RÞ. The bare PDF is scale independent,

μ2R
d
dμ2R

½F Rðμ2RÞ∘Kðμ2RÞ∘ZFðμ2RÞ� ¼ OðαKþ1
s Þ: ð7Þ

This equation leads to the proper evolution equation of the
renormalized PDFs.
The next factor in Eq. (4) is the operator OJðrÞ

representing an infrared (IR) safe measurement, charac-
terized by a set of parameters r.
After applying these operators, we have a sum and

integral over basis states jfp; f; c; c0; s; s0gmÞ. Finally, we

multiply by the statistical bra vector ð1j and obtain a cross
section after performing the integrations using

ð1jfp; f; c; c0; s; s0gmÞ ¼ hfc0gmjfcgmihfs0gmjfsgmi: ð8Þ

(The spin states jfsgmi are orthogonal and normalized,
but the color states jfcgmi in the trace basis that we use are
not orthogonal and some of them are not normalized
exactly to 1 [19]. The statistical bra vector ð1j is defined
in Sec. 3.5 of Ref. [19].)
If the calculation includes perturbative contributions up

to αKs , then there is an error term OðαKþ1
s Þ in Eq. (4). The

formula is based on standard QCD factorization for infrared
safe observables. This has power suppressed corrections of
order ½Λ2

QCD=Q
2
JðrÞ�p where Q2

JðrÞ is the lowest scale that
the measurement operator OJðrÞ can resolve and p > 0. In
the rest of this paper, we mostly omit explicit mention
of these error terms.
The expression in Eq. (4) simplifies substantially in

electron-positron annihilation. In this case, we can replace
the operator F 0 by 1.
We point out that Eq. (4) is valid only in d ¼ 4 − 2ϵ

dimensions. It is not directly useful for practical
calculations.

B. IR singular operator

To define a good subtraction scheme for a fixed order
calculation one can use the IR singular operator Dðμ2R; μ2SÞ
[18]. This operator has a perturbative expansion

Dðμ2R; μ2SÞ ¼ 1þ
X
n≥1

�
αsðμ2RÞ
2π

�
n

DðnÞðμ2R; μ2SÞ: ð9Þ

The operators DðnÞðμ2R; μ2SÞ are key to defining a parton
shower algorithm in a general framework. For a first
order shower, one uses only Dð1Þðμ2R; μ2SÞ, but in a general
framework we consider DðnÞðμ2R; μ2SÞ for any n. This
operator describes the IR singularity structure of partonic
states jρðμ2RÞÞ. When DðnÞðμ2R; μ2SÞ acts on a state jfp; f; c;
c0; s; s0gmÞ it produces new states jfp̂; f̂; ĉ; ĉ0; ŝ; ŝ0gm̂Þ with
m ≤ m̂ ≤ mþ n such that the IR singularities of

ðfp̂; f̂; ĉ; ĉ0; ŝ; ŝ0gm̂jDðnÞðμ2R; μ2SÞjfp; f; c; c0; s; s0gmÞ

match the singularities of nth order QCD Feynman dia-
grams that connect these two states. Here the singularities
include the factors 1=ϵ from virtual loop diagrams and they
include the singular behavior of the diagrams when any two
or more momenta p̂ become collinear or some of the p̂
become soft. A toy model with operators DðnÞðμ2R; μ2SÞ
beyond n ¼ 1 is presented in Appendix A of Ref. [18].
The operator DðnÞðμ2R; μ2SÞ depends on two scales, the

standard renormalization scale μ2R and the shower scale μ2S .
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The shower scale acts as an ultraviolet (UV) cutoff
that separates the IR and UV regions associated with
DðnÞðμ2R; μ2SÞ. All IR singularities are included, but only
regions near these singularities with a scale, specified by a
parameter k2, satisfying k2 < μ2S are included. There is, of
course, some freedom in choosing how the UV cutoff is
defined. Different prescriptions lead to differences in the
shower ordering prescription in the parton shower algo-
rithm produced by DðnÞðμ2R; μ2SÞ.
The singular operator is based on the MS renormalized

matrix elements and is independent of the renormalization
scale. Thus we have

μ2R
∂
∂μ2R Dðμ2R; μ2SÞ ¼ OðαKþ1

s Þ: ð10Þ

This allows us to choose the renormalization scale
conveniently.
In order to avoid large logarithms of μ2R=μ2S , it is useful

to relate the renormalization scale to the shower scale.
We define

μ2R ¼ κRμ
2
S : ð11Þ

Then we can avoid large logðκRÞ factors by choosing κR of
order 1.
The singular operator is perturbative and we can always

define its perturbative inverse operator,

Dðμ2R; μ2SÞD−1ðμ2R; μ2SÞ ¼ 1; ð12Þ

by working order by order in the perturbative expansion
of Eq. (12).

C. Fixed order cross section

We can make Eq. (4) more useful by inserting 1 in the
form DD−1,

σJðrÞ ¼ ð1jOJðrÞF 0Dðμ2R; μ2SÞD−1ðμ2R; μ2SÞjρðμ2RÞÞ: ð13Þ

We notice that the expression D−1ðμ2R; μ2SÞjρðμ2RÞÞ is well
defined in d ¼ 4 dimensions since the inverse of the
singular operator removes all the IR singularities of
jρðμ2RÞÞ. Accordingly, we define the subtracted hard matrix
element by

jρHðμ2R; μ2SÞÞ ¼ lim
ϵ→0

D−1ðμ2R; μ2SÞjρðμ2RÞÞ: ð14Þ

This gives us

σJðrÞ ¼ ð1jOJðrÞF 0Dðμ2R; μ2SÞjρHðμ2R; μ2SÞÞ: ð15Þ

We will use Eq. (15) to explore parton showers. First,
however, suppose that we are interested only in the fixed

order cross section. Then we can choose the scale μ2S small
enough that the measurement operator OJðrÞ does not
resolve parton momentum scales of order μ2S. Then OJðrÞ
commutes with F 0Dðμ2R; μ2SÞ, giving us

σJðrÞ ¼ ð1jF 0Dðμ2R; μ2SÞOJðrÞjρHðμ2R; μ2SÞÞ: ð16Þ

One can calculate ð1jF 0Dðμ2R; μ2SÞ in d ¼ 4 − 2ϵ dimen-
sions. The operator Dðμ2R; μ2SÞ creates singularities, but the
initial state singularities are removed by the operator
ZFðμ2RÞ in F 0 and the final state singularities cancel after
we multiply by ð1j and integrate over the parton variables.
Thus we obtain a finite result in the ϵ → 0 limit.

D. Operators V and X1

The operators Dðμ2R; μ2SÞ and F 0 are defined only in
d ¼ 4 − 2ϵ dimensions and are singular as ϵ → 0 and as
parton momenta become soft or collinear. However, we
have noted that ð1jF 0Dðμ2R; μ2SÞ is finite in d ¼ 4 dimen-
sions. It will prove useful to introduce an operator,
Vðμ2R; μ2SÞ, that is finite in four dimensions, does not change
the number of partons, leaves the parton momenta and
flavors fp; fgm unchanged, and satisfies

ð1jVðμ2R; μ2SÞ ¼ lim
ϵ→0

ð1jF 0Dðμ2R; μ2SÞF−1
R ðμ2RÞ: ð17Þ

The operator Vðμ2R; μ2SÞ leaves fp; fgm unchanged, but it
can act nontrivially on the color and spin space. Eq. (17)
does not fully define the color and spin content of
Vðμ2R; μ2SÞ. We discuss the definition further in Sec. IV,
but for now, we need only Eq. (17).
Using Vðμ2R; μ2SÞ we define a singular operator

X1ðμ2R; μ2SÞ as

X1ðμ2R; μ2SÞ ¼ F 0Dðμ2R; μ2SÞF−1
R ðμ2RÞV−1ðμ2R; μ2SÞ; ð18Þ

so that

ð1jX 1ðμ2R; μ2SÞ ¼ ð1j: ð19Þ

The “1” subscript distinguishes the operator X1 from the
operatorX used in Ref. [18] and suggests the normalization
condition (19).
With V and X1, the cross section in Eq. (15) can be

written as

σJðrÞ ¼ ð1jOJðrÞX1ðμ2R; μ2SÞVðμ2R; μ2SÞF Rðμ2RÞjρHðμ2R; μ2SÞÞ:
ð20Þ

This form will be useful to help us define a parton shower.
Before we continue with the discussion of the parton

shower cross section we introduce a more compact notation
for operators with renormalization scale dependence.
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According to Eq. (11) the renormalization scale is always
related to the shower scale; thus we can define

Dðμ2Þ≡DðκRμ2; μ2Þ;
X1ðμ2Þ≡ X1ðκRμ2; μ2Þ;
Vðμ2Þ≡ VðκRμ2; μ2Þ;

jρHðμ2ÞÞ≡ jρHðκRμ2; μ2ÞÞ: ð21Þ

The PDF operator depends only on the renormalization
scale and in this case the convention is a little different,

F ðμ2Þ ¼ F RðκRμ2Þ: ð22Þ

The functions specified above then depend on κR, but we do
not display this dependence. With this more compact
notation, Eq. (20) is written as

σJðrÞ ¼ ð1jOJðrÞX1ðμ2ÞVðμ2ÞF ðμ2ÞjρHðμ2ÞÞ: ð23Þ

E. Operator U and parton shower

The formula for the cross section σJ given in Eq. (23) is
of limited usefulness if the scale Q2

JðrÞ, representing the
lowest scale that the measurement operator OJðrÞ can
resolve, is much smaller than the scale μ2H of the hardest
momentum transfer in jρHðμ2ÞÞ. When that happens, σJ will
contain logarithms logðμ2H=Q2

JðrÞÞ that need to be summed
by looking for the most important terms at all orders of
perturbation theory. To that end, one can use a parton
shower algorithm.
To provide a parton shower, first set the scale μ2 in

Eq. (23) to μ2H. Then define a scale μ2f that is certainly
smaller than Q2

JðrÞ. Typically, one chooses μ2f on the order
of 1 GeV2. Finally, insert 1 ¼ X1ðμ2fÞX−1

1 μ2fÞ into Eq. (23),
giving

σJðrÞ ¼ ð1jOJðrÞX 1ðμ2fÞX−1
1 ðμ2fÞX1ðμ2HÞ

× Vðμ2HÞF ðμ2HÞjρHðμ2HÞÞ: ð24Þ

Since μ2f < Q2
JðrÞ, the operator OJðrÞ does not resolve

partons at the scale μ2f. ThusOJðrÞ commutes with X1ðμ2fÞ,
giving us

σJðrÞ ¼ ð1jX1ðμ2fÞOJðrÞX−1
1 ðμ2fÞX1ðμ2HÞ

× Vðμ2HÞF ðμ2HÞjρHðμ2HÞÞ: ð25Þ

With the use of Eq. (19), this is

σJðrÞ ¼ ð1jOJðrÞX−1
1 ðμ2fÞX1ðμ2HÞVðμ2HÞF ðμ2HÞjρHðμ2HÞÞ:

ð26Þ

The operator X−1
1 ðμ2fÞX1ðμ2HÞ is of special importance.

We give it the name

Uðμ2f; μ2HÞ ¼ lim
ϵ→0

X−1
1 ðμ2fÞX1ðμ2HÞ: ð27Þ

This is the shower operator. It generates a parton shower
starting at the scale μ2H and ending at the scale μ2f. Because
of Eq. (19), the shower operator is probability preserving

ð1jUðμ2f ; μ2HÞ ¼ ð1j: ð28Þ

Using the notation Uðμ2f; μ2HÞ, the cross section is

σJðrÞ ¼ ð1jOJðrÞUðμ2f; μ2HÞVðμ2HÞF ðμ2HÞjρHðμ2HÞÞ: ð29Þ

We have perturbatively calculated matrix elements with
their IR divergences subtracted in jρHðμ2HÞÞ. Then the
operator F ðμ2HÞ supplies parton distribution functions.
The factor Vðμ2HÞ serves to sum threshold logarithms
[18,26]. An approximation to this factor is contained in
DEDUCTOR although it is lacking in other current parton
shower event generators. Next, the operator Uðμ2f; μ2HÞ
generates the parton shower and the operator OJðrÞ
measures the desired observable in the multiparton state
created by the shower. Finally, we multiply by ð1j and
integrate to get the desired cross section. We discuss
Uðμ2f ; μ2HÞ and Vðμ2HÞ in more detail in Secs. V and VI.

III. OBSERVABLE DEPENDENT
SHOWER EVOLUTION

The operator OJðrÞ in Eq. (29) could represent any
infrared safe observable. In this paper, we have a particular
sort of operator in mind. Consider, for example, the
transverse momentum distribution of a Z boson produced
in the Drell-Yan process. The operator that measures the
transverse momentum k⊥ of the Z boson is defined as

ÔZðk⊥Þjfp;f;c;c0; s; s0gmÞ
¼ ð2πÞ2δð2Þðk⊥− kZðfpgmÞÞjfp;f;c;c0; s; s0gmÞ; ð30Þ

where kZðfpgmÞ is the transverse momentum of the
observed Z boson. The standard method for summing
logarithms of k2⊥=M2

Z is to start with the Fourier transform
of the k⊥ distribution. To measure this with a parton shower
event generator, we can use the measurement operator

OZðbÞjfp; f; c; c0; s; s0gmÞ

¼
Z

dk⊥
ð2πÞ2 e

ib·k⊥ð2πÞ2δð2Þðk⊥ − kZðfpgmÞÞ

× jfp; f; c; c0; s; s0gmÞ
¼ eib·kZðfpgmÞjfp; f; c; c0; s; s0gmÞ: ð31Þ
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We let OZðbÞ serve as an example of the observable OJðrÞ
that we consider in this paper. There are many other similar
examples. We will need one property of the observable
OJðrÞ beyond infrared safety: we assume that the operator
OJðrÞ has an inverse O−1

J ðrÞ.
To analyze the cross section σJðrÞ, we start with the

representation (23) with μ2 ¼ μ2H,

σJðrÞ ¼ ð1jOJðrÞX1ðμ2HÞVðμ2HÞF ðμ2HÞjρHðμ2HÞÞ: ð32Þ

Define an operator Yðμ2; rÞ that is finite in d ¼ 4 dimen-
sions, leaves the number of partons and their momenta and
flavors unchanged, and is related to X 1 by

ð1jYðμ2; rÞ ¼ ð1jOJðrÞX1ðμ2ÞO−1
J ðrÞ: ð33Þ

Then define a new version of X1 that depends on the
measurement parameters r by

X1ðμ2; rÞ ¼ OJðrÞX1ðμ2ÞO−1
J ðrÞY−1ðμ2; rÞ: ð34Þ

This gives us

ð1jX1ðμ2; rÞ ¼ ð1j ð35Þ

and

OJðrÞX 1ðμ2Þ ¼ X1ðμ2; rÞYðμ2; rÞOJðrÞ: ð36Þ

Then our cross section is

σJðrÞ ¼ ð1jX1ðμ2H; rÞYðμ2H; rÞOJðrÞVðμ2HÞF ðμ2HÞjρHðμ2HÞÞ:
ð37Þ

With the use of Eq. (35), and commuting OJðrÞ past Vðμ2HÞ
and F ðμ2HÞ, which do not change the partonic state, this
becomes

σJðrÞ ¼ ð1jYðμ2H; rÞVðμ2HÞF ðμ2HÞOJðrÞjρHðμ2HÞÞ: ð38Þ

Here we measureOJðrÞ at the hard state jρHðμ2HÞÞ, obtaining
typically a very simple result. Then we measure OJðrÞ
inside the operator Yðμ2H; rÞ. This operator has the potential
to sum large logarithms.
We can also relate Yðμ2; rÞ to the shower operator

Uðμ2f; μ2Þ with a small final scale μ2f. From Eq. (33),
we have

ð1jYðμ2; rÞOJðrÞ ¼ ð1jOJðrÞX1ðμ2Þ: ð39Þ

Insert 1 ¼ X1ðμ2fÞX−1
1 ðμ2fÞ and use X−1

1 ðμ2fÞX1ðμ2Þ ¼
Uðμ2f; μ2Þ from Eq. (27):

ð1jYðμ2; rÞOJðrÞ ¼ ð1jOJðrÞX 1ðμ2fÞUðμ2f; μ2Þ: ð40Þ

Since μ2f < Q2
JðrÞ, the operator OJðrÞ does not resolve

partons at the scale μ2f. ThusOJðrÞ commutes with X1ðμ2fÞ,
giving us

ð1jYðμ2; rÞOJðrÞ ¼ ð1jX1ðμ2fÞOJðrÞUðμ2f; μ2Þ: ð41Þ

Recall from Eq. (19) that ð1jX 1ðμ2Þ ¼ ð1j. This gives us

ð1jYðμ2; rÞOJðrÞ ¼ ð1jOJðrÞUðμ2f; μ2Þ: ð42Þ

That is, we compare two calculations. In the first calcu-
lation, we generate a parton shower down to a very small
scale starting with any statistical state at a scale μ2. Then we
measure OJðrÞ inclusively using ð1jOJðrÞ. In the second
calculation, we first operate with OJðrÞ on the state at scale
μ2 then measure Yðμ2; rÞ inclusively using ð1jYðμ2; rÞ.
These two calculations give the same result.

IV. THE OPERATOR MAPPING P

In Sec. II D we defined an operator Vðμ2Þ which is
to obey Eq. (17), ð1jVðμ2Þ ¼ ð1jF 0Dðμ2ÞF−1ðμ2Þ. In
Sec. III, we defined an operator Yðμ2; rÞ in the same
way. In each case, we start with a singular operator A and
we want to define a second, nonsingular, operator B with
the property

ð1jB ¼ ð1jA: ð43Þ

When the operator B acts on an m-parton basis state
jfp; f; c; c0; s; s0gmÞ, it is to leave the number of partons,
their momenta, and their flavors unchanged. It may,
however, act nontrivially on the colors and spins.
These requirements do not fully specify B. We can be

somewhat more definite by requiring that there be a linear
mapping A → B, which we write in the form

B ¼ ½A�P: ð44Þ

This mapping must satisfy

ð1j½A�P ¼ ð1jA ð45Þ

and ½A�P must leave m and fp; fgm unchanged,

½A�Pjfp; f; c; c0; s; s0gmÞ ¼
X

fĉ;ĉ0;ŝ;ŝ0gm
Aðfp; fgmÞfc;c

0;s;s0gm
fĉ;ĉ0;ŝ;ŝ0gm

× jfp; f; ĉ; ĉ0; ŝ; ŝ0gmÞ: ð46Þ

The requirement (43) is then a restriction on the spin and
color matrix A,

ZOLTÁN NAGY and DAVISON E. SOPER PHYS. REV. D 104, 054049 (2021)

054049-6



ð1jAjfp; f; c; c0; s; s0gmÞ
¼

X
fĉ;ĉ0;ŝ;ŝ0gm

hfĉ0gmjfĉgmihfŝ0gmjfŝgmi

× Aðfp; fgmÞfc;c
0;s;s0gm

fĉ;ĉ0;ŝ;ŝ0gm: ð47Þ

We can place another requirement on ½� � ��P: if A has the
property that it leaves m and fp; fgm unchanged, then

½A�P ¼ A: ð48Þ

One consequence of this is that ½½A�P�P ¼ ½A�P.
These requirements do not fully specify the mapping

½� � ��P. For now we do not need to be more specific.
However in Sec. XVI C we provide an example (without
spin) that is useful for the analysis of a first order shower.
We will find that the combination A − ½A�P appears

frequently in formulas. It useful to define an operation
½� � ��1−P by

½A�1−P ¼ A − ½A�P: ð49Þ

V. GENERATOR OF SHOWER

We now turn to a more detailed study of the operator
Uðμ2f; μ2HÞ that creates a parton shower between a hard scale
μ2H and a small, cutoff scale μ2f. The generator of this shower
evolution is the operator

1

μ2
Sðμ2Þ ¼

�
X−1

1 ðμ2R; μ2Þ
∂
∂μ2 X1ðμ2R; μ2Þ

�
μ2R¼κRμ

2

: ð50Þ

Here, we differentiate with respect to the shower scale.
Because of Eq. (10) [with the use of Eqs. (17) and (18)],
this is the same as

1

μ2
Sðμ2Þ ¼ X−1

1 ðμ2Þ ∂
∂μ2 X1ðμ2Þ: ð51Þ

Because of Eq. (19),

ð1jSðμ2Þ ¼ 0: ð52Þ

Equation (51) gives us a differential equation for U

μ2
∂
∂μ2 Uðμ

2
2; μ

2Þ ¼ Uðμ22; μ2ÞSðμ2Þ: ð53Þ

We use the notation

Uðμ22; μ21Þ ¼ T exp

�Z
μ2
1

μ2
2

dμ2

μ2
Sðμ2Þ

�
ð54Þ

to represent the solution of this equation. Here T indicates
the instruction to order the operators Sðμ2Þ with the
smallest μ2 to the left.

VI. THE THRESHOLD FACTOR

In Sec. II D we have defined an operator Vðμ2R; μ2SÞ. With
our notation in Eq. (21) for the scale dependence of V, the
crucial property given in Eq. (17) can be written

ð1jVðμÞ ¼ ð1jF 0Dðμ2ÞF−1ðμÞ: ð55Þ

In Eq. (29) or Eq. (38), the perturbative expansion of Vðμ2HÞ
contains large logarithms [18,25,26]. These are the much
studied threshold logarithms [29]. We sum the threshold
logarithms by writing Vðμ2HÞ as an exponential. Define

UVðμ22; μ21Þ ¼ V−1ðμ22ÞVðμ21Þ: ð56Þ

Then Vðμ2HÞ can be written as

Vðμ2HÞ ¼ Vðμ2fÞUVðμ2f; μ2HÞ: ð57Þ

Define a generator operator SVðμ2Þ by

1

μ2
SVðμ2Þ ¼ V−1ðμ2Þ dVðμ

2Þ
dμ2

: ð58Þ

Then UVðμ22; μ21Þ is the solution of the differential equation

μ2
∂
∂μ2 UVðμ22; μ2Þ ¼ UVðμ22; μ2ÞSVðμ2Þ: ð59Þ

We write the solution of this equation as

UVðμ2f; μ2HÞ ¼ T exp

�Z
μ2H

μ2f

dμ2

μ2
SVðμ2Þ

�
: ð60Þ

As long as we expand the running coupling αs in Eq. (60) to
some finite order in αsðμ2HÞ, the integral in Eq. (60) is
convergent in the limit μ2f → 0 [18]. Thus Vðμ2Þ at small
scales is almost the unit operator,

Vðμ2fÞ ≈ 1: ð61Þ

That is

Vðμ2HÞ ≈ UVðμ2f; μ2HÞ: ð62Þ

VII. PERTURBATIVE EXPANSIONS

The operator Sðμ2Þ can be expanded in powers of
αsðμ2RÞ ¼ αsðκRμ2Þ:
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Sðμ2Þ ¼
X∞
n¼1

�
αsðκRμ2Þ

2π

�
n

SðnÞðμ2Þ: ð63Þ

In the general theory from Ref. [18], Sðμ2Þ is constructed
from the singular operatorDðμ2R; μ2SÞ. If we use only the first
order part Dð1Þðμ2R; μ2SÞ of D because that is all we know,
then all we get is Sð1Þðμ2Þ. However, in a practical parton
shower program (such as the Λ-ordered DEDUCTOR), one
often takes a guess at approximate higher order contribu-
tions SðnÞ. The approximate form is obtained by changing
the argument of αs in the splitting functions to κRk2T and,
additionally, making a special choice for κR. Expanding
αsðκRk2TÞ in powers of αsðκRμ2Þ then produces contributions
SðnÞðμ2Þ for n > 1.
In DEDUCTOR, the first order contribution has three parts

[18,25]:

Sð1Þðμ2Þ ¼ Sð1;0Þðμ2Þ − ½Sð1;0Þðμ2Þ�P þ iπSð0;1Þ
iπ ðμ2Þ: ð64Þ

The operator Sð1;0Þðμ2Þ describes parton splitting, changing
an m parton state to an mþ 1 parton state. The operator
½Sð1;0Þðμ2Þ�P leaves m and fp; fgm in an m parton state
unchanged, although it can modify the color state.2 In a
leading color parton shower, the color is unchanged and the
eigenvalue of this operator then gives the order αs con-
tribution to the integrand in the exponent of the Sudakov
factor that represents the probability not to split between

two scales. The final operator, Sð0;1Þ
iπ ðμ2Þ, leaves m and

fp; fgm unchanged. It gives the imaginary part of virtual

graphs [18,25] and obeys ð1jSð0;1Þ
iπ ðμ2Þ ¼ 0.

The operator SVðμ2Þ has a perturbative expansion

SVðμ2Þ ¼
X∞
n¼1

�
αsðκRμ2Þ

2π

�
n

SðnÞ
V ðμ2Þ: ð65Þ

The first order operator Sð1Þ
V ðμ2Þ has the form [18,25,26]

Sð1Þ
V ðμ2Þ ¼ ½Sð1;0Þðμ2Þ�P þ ReSð0;1Þ

pert ðμ2Þ
− ½F ðμ2Þ∘Pð1Þ�F−1ðμ2Þ: ð66Þ

Here ½Sð1;0Þðμ2Þ�P is proportional to the integral of the first
order splitting function over the splitting variables and
appears also in Eq. (64). In the third term, ½F ðμ2Þ∘Pð1Þ�
denotes the convolution of F ðμ2Þ with the first order PDF
evolution kernel Pð1Þ. In the second term,

1

μ2
Sð0;1Þ
pert ðμ2Þ ¼

� ∂
∂μ2D

ð0;1Þðμ2R; μ2Þ
�
μ2R¼κRμ

2

ð67Þ

is the derivative with respect to the shower scale of the
singular operator for a one loop virtual graph. It is some-
times assumed that the effect of virtual graphs and PDF
evolution cancels the integral over the splitting variables
of parton splitting [30]. However, this cancellation is

not complete, so that the effect of Sð1Þ
V ðμ2Þ is quite

important [26,30].

VIII. GENERATOR OF Y

We now turn to a more detailed study of the operator
Yðμ2; rÞ. This operator sums logarithms, so we want to
write it as an exponential. Define

1

μ2
SYðμ2; rÞ ¼ Y−1ðμ2; rÞ d

dμ2
Yðμ2; rÞ: ð68Þ

This gives us a differential equation for Yðμ2; rÞ

μ2
d
dμ2

Yðμ2; rÞ ¼ Yðμ2; rÞSYðμ2; rÞ: ð69Þ

We solve this equation with a boundary condition at the
shower cutoff scale μ2f :

Yðμ2; rÞ ¼ Yðμ2f; rÞ þ
Z

μ2

μ2f

dμ̄2

μ̄2
Yðμ2; rÞSYðμ2; rÞ: ð70Þ

Recall the defining condition Eq. (33) for Yðμ2; rÞ. At
μ2 ¼ μ2f this condition is

ð1jYðμ2f; rÞ ¼ ð1jOJðrÞX1ðμ2fÞO−1
J ðrÞ: ð71Þ

The measurement operator OJðrÞ is an infrared safe
operator that is not sensitive to parton scales below a scale
Q2

JðrÞ. We suppose that μ2f < Q2
JðrÞ. ThenOJðrÞ commutes

with X1ðμ2fÞ and we can use Eq. (19), which gives us
ð1jYðμ2f; rÞ ¼ ð1j. Thus we can define

Yðμ2f; rÞ ¼ 1: ð72Þ

This allows us to write the solution of Eq. (69) as

Yðμ2; rÞ − 1 ¼
Z

μ2

μ2f

dμ̄2

μ̄2
Yðμ̄2; rÞSYðμ̄2; rÞ: ð73Þ

We can also write Yðμ2H; rÞ as a hardness-ordered expo-
nential,

Yðμ2H; rÞ ¼ T exp

�Z
μ2H

μ2f

dμ2

μ2
SYðμ2; rÞ

�
: ð74Þ

To find the generator SYðμ2; rÞ we start with Eq. (42),
which we write as

2½Sð1;0Þðμ2Þ�P was denoted by ½F ðμ2Þ∘S̄ð1;0Þðμ2Þ�F−1ðμ2Þ in
Ref. [18].
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ð1jYðμ2; rÞ ¼ ð1jOJðrÞUðμ2f; μ2ÞO−1
J ðrÞ: ð75Þ

This applies for Uðμ2f; μ2Þ and Yðμ2; rÞ evaluated at any
order K of perturbation theory, with corrections of order
αKþ1
s . We can also use Eq. (75) if Uðμ2f; μ2Þ is an

approximate shower evolution operator as defined in a
particular parton shower algorithm. In this case, the shower
splitting operator Sðμ2Þ may be based on lowest order
perturbation theory. If Uðμ2f; μ2Þ is approximate, then
Eq. (75) defines the corresponding approximate operator
Yðμ2; rÞ and Eq. (68) defines the corresponding approxi-
mate generator SYðμ2; rÞ.
We can differentiate Eq. (75) with respect to μ2 and use

Eq. (69) for the derivative of Y and Eq. (53) for the
derivative of Uðμ2f; μ2Þ,

ð1jYðμ2; rÞSYðμ2; rÞ ¼ ð1jOJðrÞUðμ2f; μ2ÞSðμ2ÞO−1
J ðrÞ:

ð76Þ

We insert 1 ¼ O−1
J ðrÞOJðrÞ to give

ð1jYðμ2; rÞSYðμ2; rÞ ¼ ð1jOJðrÞUðμ2f; μ2ÞO−1
J ðrÞ

×OJðrÞSðμ2ÞO−1
J ðrÞ: ð77Þ

Using Eq. (75) then gives us

ð1jYðμ2; rÞSYðμ2; rÞ ¼ ð1jYðμ2; rÞOJðrÞSðμ2ÞO−1
J ðrÞ:

ð78Þ

The operators Y and SY are nonsingular operators that
leave the number of partons and their momenta and flavors
unchanged. Thus we can use the mapping ½� � ��P defined in
Sec. IV to write this as

Yðμ2; rÞSYðμ2; rÞ ¼ ½Yðμ2; rÞOJðrÞSðμ2ÞO−1
J ðrÞ�P: ð79Þ

The expansion of Y in powers of αs starts at Y ¼ 1þ � � �,
so a useful way to write this is

SYðμ2; rÞ ¼ ½Yðμ2; rÞOJðrÞSðμ2ÞO−1
J ðrÞ�P

− fYðμ2; rÞ − 1gSYðμ2; rÞ: ð80Þ

Now we can use Eqs. (80) and (73) recursively to
generate SY and Y in powers of αs. We write

SYðμ2; rÞ ¼
X∞
n¼1

�
αsðκRμ2Þ

2π

�
n

SðnÞ
Y ðμ2; rÞ;

Yðμ2; rÞ ¼
X∞
n¼0

�
αsðκRμ2Þ

2π

�
n

YðnÞðμ2; rÞ; ð81Þ

with

Yð0Þðμ2; rÞ ¼ 1: ð82Þ

For SY, Eq. (80) gives

SðnÞ
Y ðμ2; rÞ ¼ ½OJðrÞSðnÞðμ2ÞO−1

J ðrÞ�P

þ
Xn−1
j¼1

½Yðn−jÞðμ2; rÞOJðrÞSðjÞðμ2ÞO−1
J ðrÞ�P

−
Xn−1
j¼1

Yðn−jÞðμ2; rÞSðjÞ
Y ðμ2; rÞ: ð83Þ

This gives us SðnÞ
Y if we know SðjÞ

Y for j < n and YðkÞ

for k < n.
For Y we use Eq. (73), in which an integration over an

intermediate scale μ̄2 appears. We can expand αsðκRμ̄2Þ in
powers of αsðκRμ2Þ in the form

�
αsðκRμ̄2Þ

2π

�
k

¼
X∞
n¼k

γðk; n; μ̄2=μ2Þ
�
αsðκRμ2Þ

2π

�
n

; ð84Þ

with coefficients γ derived from the QCD β-function. Using
this expansion in Eq. (73), we obtain

YðnÞðμ2; rÞ ¼
Z

μ2

μ2f

dμ̄2

μ̄2
Xn
j¼1

Xn−j
k¼0

γðkþ j; n; μ̄2=μ2Þ

× YðkÞðμ̄2; rÞSðjÞ
Y ðμ̄2; rÞ: ð85Þ

This gives us YðnÞ if we know YðkÞ for k < n and SðjÞ
Y

for j ≤ n.

These recursion relations successively generate Sð1Þ
Y ,

Yð1Þ, Sð2Þ
Y , Yð2Þ, …. The first order terms are

Sð1Þ
Y ðμ2; rÞ ¼ ½OJðrÞSð1Þðμ2ÞO−1

J ðrÞ�P ð86Þ

and

Yð1Þðμ2; rÞ ¼
Z

μ2

μ2f

dμ̄2

μ̄2
½OJðrÞSð1Þðμ̄2ÞO−1

J ðrÞ�P: ð87Þ

IX. USING Y

We now outline how the operator Yðμ2; rÞ can be used.
This operator is the key to calculating an observable cross
section σJðrÞ according to a parton shower algorithm. The
operator OJðrÞ that defines this cross section must be
infrared safe. That is, there is a scale Q2

JðrÞ such that σJðrÞ
does not resolve parton splittings at scales μ2 smaller than
Q2

JðrÞ. In order to define Yðμ2; rÞ, the inverse operator
O−1

J ðrÞmust exist. The anticipated use case is that there is a
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distribution of direct interest that involves large logarithms
and the logarithms can be summed analytically by taking an
integral transform of the distribution that depends on
parameters r. Then σJðrÞ represents the value of this
integral transform. Starting in Sec. XI, we examine an
important example, the thrust distribution in electron-
positron annihilation. Then one uses the Laplace transform
of the thrust distribution and r is the Laplace parameter ν.
In the applications that we have in mind, the perturbative

expansion of σJðrÞ contains powers of a large logarithm
LðrÞ when the parameter or parameters r approach some
limit. Typically, we have

σJðrÞ ¼ c0

�
1þ

X∞
n¼1

X2n
j¼0

cðn; jÞαns ðμ2HÞLjðrÞ
�
: ð88Þ

In favorable cases, there is an analytical formula that sums
these logarithms in the form

σJðrÞ ¼ c0 exp

�X∞
n¼1

Xnþ1

j¼0

dðn; jÞαns ðμ2HÞLjðrÞ
�
: ð89Þ

It is crucial here that the maximum power of L at order αns is
j ¼ nþ 1, not 2n. We can say that a σJðrÞ with this
property exponentiates. One never knows all of the coef-
ficients dðn; jÞ, but when the coefficients for j ¼ nþ 1 are
known, we can say that the formula sums the logarithms at
the leading-log (LL) level. When the coefficients for j ¼ n
are also known, we can say that the formula sums the
logarithms at the next-to-leading-log (NLL) level.
In some important cases, the color space for the partons

involved in the hard scattering process is trivial. For
instance, for shape observables in electron-positron anni-
hilation, there is only one color basis vector for the qq̄ state
in eþe− → qq̄. Then the coefficients dðn; jÞ are numbers.
The initial partonic state in hadron-hadron scattering has a
nontrivial color structure. Then the coefficients dðn; jÞmay
be integrals of matrices in the parton color space, with some
specification for the ordering of noncommuting matrices in
the exponent.
What does a parton shower algorithm say about σJðrÞ?

Different parton showers can give different answers, so we
should have a particular parton shower algorithm in mind.
We have seen that there are two ways to express σJðrÞ as

given by a parton shower. First, we can use Eq. (29),

σJðrÞ ¼ ð1jOJðrÞUðμ2f; μ2HÞVðμ2HÞF ðμ2HÞjρHðμ2HÞÞ: ð90Þ

Typically the splitting operator S in Uðμ2f; μ2HÞ is based on
lowest order perturbation theory, as discussed at the
beginning of Sec. VII. Additionally, Vðμ2HÞ is present in
DEDUCTOR, but for many parton shower algorithms V ¼ 1.
Equation (90) says to run the parton shower to its cutoff
scale and then measure the observable by applying

ð1jOJðrÞ. The perturbative expansion of this result has
the form (88), but not directly the form (89). One can run
the corresponding parton shower event generator to obtain
a numerical result with statistical errors and other numerical
errors. Even with errors, it is possible [2,16] to use
numerical results from Eq. (90) to check these results
against a known QCD analytic result, as we will see later in
this paper.
The second way to express σJðrÞ as given by a parton

shower is contained in Eq. (38),

σJðrÞ ¼ ð1jYðμ2H; rÞVðμ2HÞF ðμ2HÞOJðrÞjρHðμ2HÞÞ; ð91Þ

with Yðμ2H; rÞ given by Eq. (74) as an exponential of a
generator SY

Yðμ2H; rÞ ¼ T exp

�Z
μ2H

μ2f

dμ2

μ2
SYðμ2; rÞ

�
: ð92Þ

The operator SY is obtained from the shower generator S
using Eqs. (83) and (85). This second expression for σJðrÞ
gives exactly the same σJðrÞ as given by Eq. (90). However,
now the logarithms L appear in the exponent in SY . Thus
we have a representation that is very close to the repre-
sentation in Eq. (89).
The exponent in Y is3

IðrÞ ¼
Z

μ2H

μ2f

dμ2

μ2
SYðμ2; rÞ: ð93Þ

If we use the perturbative expansion of SY , this is

IðrÞ ¼
X∞
n¼1

Z
μ2H

μ2f

dμ2

μ2

�
αsðκRμ2Þ

2π

�
n

SðnÞ
Y ðμ2; rÞ: ð94Þ

For SðnÞ
Y we have

SðnÞ
Y ðμ2;rÞ¼ ½OJðrÞSðnÞðμ2ÞO−1

J ðrÞ�PþΔSðnÞ
Y ðμ2;rÞ: ð95Þ

Here ½OJðrÞSðnÞðμ2ÞO−1
J ðrÞ�P is the first term in Eq. (83)

and is the only term for n ¼ 1. For n > 1, ΔSðnÞ
Y ðμ2; rÞ is

everything else in Eq. (83).
We can now expand IðrÞ in powers of αsðμ2HÞ. The

perturbative coefficients will contain powers of the large
logarithm LðrÞ. Let us divide IðrÞ into two pieces

IðrÞ ¼ I0ðrÞ þ ΔIðrÞ; ð96Þ

where

3This includes, possibly, ordering of operators or matrices in
the exponential. For simplicity, we ignore questions of ordering
here.
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I0ðrÞ ¼
X∞
n¼1

Z
μ2H

μ2f

dμ2

μ2

�
αsðκRμ2Þ

2π

�
n

× ½OJðrÞSðnÞðμ2ÞO−1
J ðrÞ�P;

ΔIðrÞ ¼
X∞
n¼2

Z
μ2H

μ2f

dμ2

μ2

�
αsðκRμ2Þ

2π

�
n

ΔSðnÞ
Y ðμ2; rÞ: ð97Þ

If we use just I0ðrÞ, we put just one shower splitting S into
the exponent. This is the candidate for the summation of
logarithms LðrÞ as given by the shower. Its lowest order
contribution, proportional to αsðμ2HÞ, will normally contain
two powers of L after integrating over μ2. One power comes
from integrating over a momentum fraction z inside

Sð1Þ
Y ðμ2; rÞ and the second power comes from integrating

over μ2. Thus we have a LL contribution α1sL2. We also
generate terms with higher powers of αsðμ2HÞ, both from
expanding the factor αsðκRμ2Þ inside the integral and from
using SðnÞðμ2Þ for n > 1. With appropriate choices for the
algorithm that constitutes Sðμ2Þ, one may be able to
generate a whole series of terms αns ðμ2HÞLnþ1 and
αns ðμ2HÞLn that match a known QCD result at the LL and
NLL levels.
Suppose that I0ðrÞ gives the expected QCD result for the

summation of logarithms at the NLL level. What, then,
does the complete shower algorithm give? For this, we

must examine ΔIðrÞ. We need to ask whether ΔSðnÞ
Y ðμ2; rÞ

is sufficiently small that it does not ruin the result from
I0ðrÞ. If ΔIðrÞ contains no nonzero contributions propor-
tional to αNs ðμ2HÞLjðrÞ with j > N þ 1, then the logarithms
L exponentiate. If there are no nonzero contributions with
j ≥ N þ 1, then the shower sums the logarithms at the LL
level. If there are no nonzero contributions with j ≥ N, then
the shower sums the logarithms at the NLL level.
Equations (96) and (97) provide a way to check how

accurately the parton shower algorithm sums the large
logarithms LðrÞ. Suppose that we wish to check whether
the shower sums the logarithms at NLL accuracy. The best
method is to prove analytically that ΔIðrÞ meets the
requirement for log summation at NLL accuracy. A second
approach is to calculate the perturbative terms in ΔIðrÞ as
numerical integrals and check how many powers of LðrÞ
they contain. Although one can never check every term in
ΔIðrÞ, this method has the advantage that if the check for
NLL summation fails for any one contribution, then we
know that NLL summation fails.

X. REMARKS ABOUT THE GENERAL ANALYSIS

It is, we think, of some importance to understand how
accurately a parton shower algorithm sums large logarithms
in an observable σ̂JðvÞ.
In analytical approaches to summing such logarithms,

one typically defines an integral transform of the original
distribution so that one considers a cross section σJðrÞ that

depends on parameters r. Then the perturbative expansion
of σJðrÞ contains large logarithms LðrÞ.
Sometimes, one can compare the results of the shower

for σJðrÞ to the results in full QCD by writing the same
differential equations as for full QCD but applying the
differential operators to the shower approximation rather
than full QCD [10,12]. This method has the disadvantage
that one needs a separate and quite elaborate analysis for
each observable to be studied.
An alternative is to calculate the observable σ̂JðvÞ

numerically with the parton shower event generator of
interest and to compare the result with a known QCD result
[2,16]. This method can work, at least for electron positron
annihilation, but presents significant numerical challenges.
We have presented a reformulation of the calculation of

σJðrÞ according to a parton shower so that the large
logarithms appear directly as an exponential. The exponent
can be expanded perturbatively. This gives us a path to an
analytical understanding the summation of these logarithms
in the parton shower. It also provides a simple way to test
this summation numerically.
In the sections that follow, we find interesting results for

the thrust distribution in electron-positron annihilation. The
analysis for electron-positron annihilation, we represent
IðrÞ in a form that is somewhat less general than the form
presented above but is better adapted to practical applica-
tions. Then we analyze IðrÞ analytically and numerically
for the trust distribution in electron-positron annihilation.

XI. ANALYSIS FOR ELECTRON-POSITRON
ANNIHILATION

As outlined in the previous sections, a parton shower
event generator can provide a QCD based approximation
for a cross section σ̂JðvÞ for an observable J to take a value
v in hadron-hadron, lepton-hadron, or electron-positron
collisions. In the following sections, we concentrate on
electron-positron annihilation, which is simpler because
parton distribution functions do not appear. We begin in this
section by framing the issues in a little more detail than we
presented in Sec. I.
We suppose that the observable J is infrared safe with a

scale Q̂2
JðvÞ substantially greater than 1 GeV2. Then we

can, at least in principle, omit a model for hadronization in
the event generator. The QCD perturbative expansion for
σ̂JðvÞ will contain logarithms, L ¼ logðμ2H=Q̂2

JðvÞÞ, where
μ2H is the scale of the hardest interaction in the event.
Typically one finds perturbative contributions to σ̂JðvÞ
proportional to αnsðμ2HÞL2n. If 1 GeV2 ≪ Q̂2

JðvÞ ≪ μ2H,
and L2 ≳ 1=αsðμ2HÞ, one must try to sum the contributions
at each order of perturbation theory that have the most
powers of L.
For some observables J one can derive an analytical

approximation, σ̂Jðv; analyticalÞ, to σ̂JðvÞ that sums the
large logarithms in an appropriate sense. It is then of
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interest to see whether the parton shower generator sums
the large logarithms at a specified level of approximation.
Normally, the approximation σ̂Jðv; showerÞ obtained

with a parton shower is limited to a numerical result
obtained by averaging over many generated events. In
the limit of very large hard scattering scales μ2H,
σ̂Jðv; showerÞ should match σ̂Jðv; analyticalÞ. However,
for μ2H in the kinematic range of experiments, σ̂Jðv; showerÞ
contains effects that are numerically important but are not
included in σ̂Jðv; analyticalÞ. Thus it is difficult to tell
whether σ̂Jðv; showerÞ agrees with σ̂Jðv; analyticalÞ.
One approach to comparing σ̂Jðv; showerÞ to

σ̂Jðv; analyticalÞ is to directly calculate σ̂Jðv; showerÞ
for a sequence of very large hard scattering scales μ2H that
are far from the range of experiments. This approach can
work [16], and in fact we use it to a limited extent in this
paper. However, it is difficult to maintain the required
numerical accuracy at very large values of μ2H in a practical
parton shower event generator.
In an analytical approach, one typically starts by taking

an appropriate integral transform of σ̂JðvÞ. Then one
calculates a cross section σJðrÞ depending on a variable
or variables r. For instance, one may be interested in the
distribution of the thrust parameter, T, so that one examines
σ̂JðτÞ where τ ¼ 1 − T. Then one takes the Laplace trans-
form of σ̂JðτÞ with Laplace parameter ν. Then we need to
sum logarithms L ¼ logðνÞ, which is large when ν → ∞.
The aim of the following sections is to follow the general

method outlined in Secs. II through X so as to redesign the
calculation of the parton shower cross section so that it
produces the same result for the integral transform of the
cross section as before but so that it produces a calculation
of this quantity and not a cross section for other observ-
ables. The redesigned calculation gives the integral trans-
form of interest as an exponential of a quantity that can be
expanded in powers of the shower splitting operator. The
leading order term in the exponent is simple and is the
candidate for the summation of large logarithms produced
by the shower. If the higher order contributions to the
exponent are suitably small, then they to not interfere with
the summation represented by the leading order terms. In
some favorable cases, we can analyze all higher order
contributions to the exponent analytically. In other cases,
we calculate low order contributions to the exponent
numerically.
Our example is the thrust distribution. There is much to

be learned from this example. In particular, we learn that
the shower result depends on some details of the parton
shower algorithm that one might have thought are not
important.

XII. THE PARTON SHOWER FRAMEWORK

We begin with a brief review of the parton shower
framework that we will use, expanding on the material at
the start of Sec. II, but simplifying this material with respect

to initial state partons, which do not appear in electron-
positron annihilation, and with respect to spin.
A parton shower can be described using operators on a

vector space, the “statistical space,” that describes the
momenta, flavors, colors, and spins for all of the partons
created in a shower as the shower develops. We use this
description in the parton shower event generator
DEDUCTOR [18–25,31,32]. The general theory includes
parton spins but DEDUCTOR simply averages over spins, so
our explanation in the following sections will leave out
parton spins. Withm final state partons in electron-positron
annihilation, the partons carry labels 1; 2;…; m. The
partons have momenta fpgm ¼ fp1;…; pmg and flavors
ffgm. We take the partons to be massless: p2

i ¼ 0. For
color, there are ket color basis states jfcgmi and bra color
basis states hfc0gmj. We use the trace basis (or color-string
basis), as described in Sec. 7 of Ref. [19]. Color appears in
the statistical space as the density matrix, with basis
elements jfcgmihfc0gmj. Then the m-parton basis states
for the statistical space are denoted by jfp; f; c; c0gmÞ. The
statistical space is described in Secs. 2 and 3 of Ref. [19].
These sections also show how shower evolution is
expressed using evolution operators that act on the stat-
istical space. (However, in this paper the names of the
operators follow Ref. [18] rather than Ref. [19].)
Parton shower programs often use the leading color (LC)

approximation, which provides the leading term in an
expansion in powers of 1=N2

c ¼ 1=9 [4,27,28]. With this
approach, the color states fc; c0gm obey fc0gm ¼ fcgm. The
splitting probabilities are simply proportional to a factor CF
or CA, with CF being equivalent to CA=2 within the LC
approximation.
Our program, DEDUCTOR [23], uses what is called the

LC+ approximation [22]. The LC+ approximation consists
of simply dropping some color operator contributions in the
splitting functions. The LC+ approximation is more power-
ful than the LC approximation because it has corrections
only for soft, finite angle emissions but is exact in the limit
of collinear emissions [22]. For this reason, the LC+
approximation is more accurate than the LC approximation
for summing large logarithms correctly in a parton shower.
Reference [17] analyzes the effect of various forms of the
LC approximation on the summation of large logarithms.
In this paper, we focus on the effect on the summation of

large logarithms from characteristics of the parton shower
formulation such as the ordering variable, the momentum
mapping, and the splitting functions. We do not focus on
the treatment of color. Thus we mostly use full QCD color
without approximation. Where we simply run DEDUCTOR

to produce the thrust distribution, we use DEDUCTOR’s
default color approximation, LC+. There, for the
DEDUCTOR default ordering variable and momentum map-
ping, we verify numerically that the LC+ approximation is
essentially exact for the thrust distribution. (See Fig. 4.) At
one point, in Fig. 5, we make contact with Ref. [17] by
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investigating what happens when one uses a less exact
color approximation that is one version of the LC
approximation.
DEDUCTOR uses specific choices with respect to shower

kinematics, the shower ordering variable, and the parton
splitting functions. In the remainder of this section, we
outline some of these choices that play a role in the analysis
of the following sections.
In DEDUCTOR, the default is to order splittings according

to decreasing values of a hardness parameter Λ2 [24]. This
hardness parameter is based on virtuality. For massless
final state partons in electron-positron collisions, the
definition is4

Λ2 ¼ ðp̂l þ p̂mþ1Þ2
2pl ·Q

Q2: ð98Þ

Here the mother parton in a final state splitting has
momentum pl and the daughters have momenta p̂l and
p̂mþ1. Here Q is the total momentum Q of all of the final
state partons, which remains the same throughout the
shower. It proves convenient to use a dimensionless
virtuality variable y ¼ Λ2=Q2:

y ¼ ðp̂l þ p̂mþ1Þ2
2pl ·Q

: ð99Þ

Thus y decreases from one shower splitting to the next.
One could use a hardness parameter other thanΛ to order

the shower. We will consider also a shower ordered by the
transverse momentum [25] in a splitting,

k2T ¼ zð1 − zÞðp̂l þ p̂mþ1Þ2 ¼ zð1 − zÞyQ2=al; ð100Þ

where z is the momentum fraction in the splitting and

al ¼
Q2

2pl ·Q
: ð101Þ

We denote the hardness scale of a splitting by μ2. When we
use the default ordering variable Λ for the shower, then
μ2 ¼ Λ2. If we use kT ordering, then μ2 ¼ k2T.
To measure an infrared-safe observable OJ in electron-

positron annihilation, we can use the notation

σJ ¼ ð1jOJUðμ2f; Q2ÞjρHÞ: ð102Þ
Here jρHÞ is the starting parton state for the hard scattering
process. If we were to evaluate jρHÞ beyond leading order,
then it would contain appropriate subtractions to remove
infrared singularities. In this paper, we evaluate jρHÞ at
lowest order so that it is simply a qq̄ state. We associate a
scale μ2H ¼ Q2 with the hard scattering, where Q is the qq̄

momentum. The operator Uðμ2f; Q2Þ expresses the evolu-
tion of the system from the scale Q2 to a scale μ2f of order
1 GeV2, at which the shower is turned off. After this
evolution, we have a statistical state that can be expanded in
the basis states jfp; f; c; c0gmÞ. This expansion is realized
as an integral, which takes the form of a Monte Carlo
integration that is obtained by generating many
Monte Carlo events. We then apply an operator OJ that
embodies the desired measurement. We still have a sum and
integral of basis states. We take the product with the
statistical bra state ð1j, which is defined by

ð1jfp; f; c; c0gmÞ ¼ hfc0gmjfcgmi: ð103Þ

This leaves us with the numerical result for σJ. The use
of the statistical bra vector ð1j is discussed in Sec. 3.5
of Ref. [19].
The shower operator U takes the form

Uðμ22; μ21Þ ¼ T exp

�Z
μ2
1

μ2
2

dμ2

μ2
Sðμ2Þ

�
: ð104Þ

There is an instruction T that indicates that if we expand the
exponential, the operators Sðμ2Þ with the smallest values of
μ2 belong on the left. This is simply a compact way of
saying that Uðμ22; μ21Þ obeys the differential equation

μ21
∂
∂μ21 Uðμ

2
2; μ

2
1Þ ¼ Uðμ22; μ21ÞSðμ21Þ: ð105Þ

In general, the generator Sðμ2Þ is a sum of terms
with approximations to nR real emissions and nV virtual
exchanges,

Sðμ2Þ ¼
X∞

nR ;nV¼0
nRþnV≥1

S½nR;nV�ðμ2Þ: ð106Þ

In existing parton shower event generators like DEDUCTOR,
only the terms with nR þ nV ¼ 1 are implemented. This is
also the case for other parton shower algorithms that we
consider here. Thus we assume

Sðμ2Þ ¼ S½1;0�ðμ2Þ þ S½0;1�ðμ2Þ: ð107Þ

The operator S½1;0�ðμ2Þ creates a splitting, changing an m
parton state to an mþ 1 parton state. The operator
S½0;1�ðμ2Þ leaves the number of partons and their momenta
and flavors unchanged, although in a full color treatment it
modifies the parton color state. The operator S½0;1�ðμ2Þ is
related to the inclusive sum over splitting variables in
S½1;0�ðμ2Þ by ð1jS½0;1�ðμ2Þ ¼ −ð1jS½1;0�ðμ2Þ, so that

ð1jSðμ2Þ ¼ 0: ð108Þ
4In hadron-hadron collisions, Q in Eq. (98) is replaced by the

momentum Q0 of the final state partons at the start of the shower.
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If we had contributions to the shower generator with
nR þ nV > 1, we would still have ð1jSðμ2Þ ¼ 0 [18].
The operator S½1;0�ðyQ2Þ in DEDUCTOR [22,25] is not

simple. However, in the cases for which we need an explicit
expression in our analytical formulas here, we need only its
form when y ≪ 1 and ð1 − zÞ ≪ 1. This is the limit in
which S½1;0�ðyQ2Þ expresses the soft × collinear double
singularity of QCD. (However, our numerical results use
the full S½1;0�ðyQ2Þ.) In this limit, we have

S½1;0�ðyQ2Þjfp; f; c; c0gmÞ

≈ −
Xm
l¼1

Xm
k¼1
k≠l

½Tl ⊗ T†
k þ Tk ⊗ T†

l �jfc; c0gmÞ

×
Z

dϕ
2π

Z
dz

1 − z
αsðλRð1 − zÞyQ2=alÞ

2π

× Θ
�

aly
ϑðl; kÞ < 1 − z < 1

�
jfp̂; f̂gmþ1Þ: ð109Þ

There is a sum over parton indices l and k. We split parton l
with dipole partner parton k, creating a new parton mþ 1,
which we consider to be a gluon. The momenta fp̂gmþ1 of
the partons after the splitting are functions of the momenta
fpgm before the splitting and the splitting variables y, z, ϕ,
as specified in Eqs. (189) and (194).
In Eq. (109), ½Tl ⊗ T†

k� and ½Tk ⊗ T†
l � are operators on

the parton color space. The notation ðCket ⊗ C†
braÞ for color

operators represents the following. A color basis vector
jfc; c0gmÞ in the statistical space represents the color
density operator jfcgmihfc0gmj. Here jfcgmi and jfc0gmi
are basis vectors for color amplitudes. Let Cket and Cbra
be operators on color amplitudes for m partons that yield
color amplitudes for m̂ partons with m̂ ≥ m. In the case of
S½1;0�ðyQ2Þ, m̂ ¼ mþ 1. The statistical space vector
ðCket ⊗ C†

braÞjfc; c0gmÞ then represents the color density
operator Cketjfcgmihfc0gmjC†

bra. In the case of ½Tl ⊗ T†
k�,

the operator creates a new gluon with color index a by
inserting a color generator matrix Ta on the color line for
parton l in the ket state and inserting Ta on the color line for
parton k in the bra state.
The argument of αs in Eq. (109) contains the standard

factor [7]

λR ¼ exp
�
−
CAð67 − 3π2Þ − 10nf

3ð11CA − 2nfÞ
�
: ð110Þ

The rest of the argument of αs is k2T, Eq. (100), except that
we drop the factor z because we are interested only in small
1 − z. Although the operators S½1;0�ðμ2Þ contain one power
of αs, this αs is evaluated at a scale that is not μ2. Thus if we
expand Sðμ2Þ in powers of αsðμ2Þ, all powers will appear.

The parameter ϑðl; kÞ is

ϑðl; kÞ ¼ 1

2
½1 − cosðθðl; kÞÞ�; ð111Þ

where θðl; kÞ is the angle between partons l and k in
jfp; f; c; c0gmÞ. With this definition, ϑ ≈ θ2=4 for small θ.
The angle θ̂ðl; mþ 1Þ between partons l and mþ 1 after a
splitting is given by

1 − cosðθ̂ðl; mþ 1ÞÞ ¼ Q2

p̂l ·Qp̂mþ1 ·Q
p̂l · p̂mþ1

∼
2aly

zð1 − zÞ þOðy2Þ: ð112Þ

For small y and small (1 − z), this gives

ϑ̂ðl; mþ 1Þ ≈ aly
1 − z

: ð113Þ

Thus the lower limit on (1 − z) is equivalent to an upper
limit on the splitting angle, ϑ̂ðl; mþ 1Þ < ϑðl; kÞ. The
splitting angle should be smaller than the angle between
the two partons l and k. The restriction ð1 − zÞ < 1 gives a
lower limit on the splitting angle. The net range for the new
splitting angle is

aly < ϑ̂ðl; mþ 1Þ < ϑðl; kÞ: ð114Þ

XIII. PREVIEW

In the following sections, we propose a way, for electron-
positron annihilation, to gain more direct access to the
summation of large logarithms in a parton shower than by
simply running the shower and examining the result
numerically. The analysis adapts the general formulation
of the method in Secs. II through X to the practical analysis
of first order parton shower algorithms. Our example is the
thrust distribution in electron-positron annihilation. Here is
a brief preview.

(i) We are interested in the thrust distribution gðτÞ with
τ ¼ 1 − T, where T is the thrust.

(ii) As in analytical approaches, we work with the
Laplace transform g̃ðνÞ of gðτÞ.

(iii) g̃ðνÞ contains large logarithms, αsðμ2HÞnlogjðνÞ with
j ≤ 2n.

(iv) We suppose that we know the proper summation of
the logðνÞ factors in full QCD at a certain level of
accuracy, but a leading order parton shower is not
full QCD. We wish to know what result the parton
shower gives.

(v) The result of simply running the shower and
examining the result numerically can be expressed
as in Eq. (102),
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g̃ðνÞ ¼ 1

σH

ð1jOðνÞUðμ2f; Q2ÞjρHÞ: ð115Þ

Here σH is the total hard scattering cross section and
ð1j � � � jρHÞ indicates an ensemble average in the
statistical state jρHÞ representing the perturbative
hard scattering. Then Uðμ2f;Q2Þ represents the
operator on the statistical space that generates the
shower. This gives us states consisting of tens of
partons. We could measure any operator OJ that we
like in this many-parton state. We apply a simple
operator OðνÞ that measures the Laplace trans-
formed thrust distribution on this state.

(vi) In this paper, we rewrite g̃ðνÞ in the form

g̃ðνÞ ¼ 1

σH

ð1jT expðIðνÞÞOðνÞjρHÞ: ð116Þ

The notation T indicates an ordering instruction for
the exponential, as in Eq. (104) and later in
Eq. (145). In the example used in this paper, the
operator OðνÞ applied to the hard state jρHÞ simply
gives an eigenvalue 1.

(vii) With this form, we have expressed g̃ðνÞ in terms of
the exponential of an operator IðνÞ. This operator
has an expansion5

IðνÞ ¼
X∞
k¼1

I ½k�ðνÞ; ð117Þ

where each term in I ½k�ðνÞ contains k factors of the
splitting operator S.

(viii) We can further expand in powers of αs evaluated at a
fixed scale Q2=ν:

I ½k�ðνÞ ¼
X∞
n¼k

�
αsðQ2=νÞ

2π

�
n

I ½k�
n ðνÞ: ð118Þ

(ix) The most important feature of Eq. (116) is that the
operators I ½k�ðνÞ can be computed using two fairly
simple recursion relations.

(x) The first order contribution, I ½1�ðνÞ, is obtained
rather trivially from one power of the shower
splitting operator Sðμ2Þ. This operator is then the
obvious candidate for the exponentiation of g̃ðνÞ
generated by the shower. If Sðμ2Þ is suitably defined,
I ½1�ðνÞ matches the exponentiation in full QCD.

(xi) If I ½1�ðνÞ generates the desired exponentiation, then
I ½k�ðνÞ for k ≥ 2 should be small, so as not to destroy
the desired exponentiation.

(xii) For next-to-leading-log summation (NLL), this im-

plies that I ½k�
n ðνÞ should not contain more than n − 1

powers of logðνÞ.
(xiii) In one case examined in this paper, we can show

analytically that I ½k�
n ðνÞ does not contain more than

n − 1 powers of logðνÞ.
(xiv) The operator I ½2�

2 ðνÞ is of special interest. It should
not contain more than one power of logðνÞ.

(xv) In some cases, we can show analytically that I ½2�
2 ðνÞ

does not contain more than one power of logðνÞ.
(xvi) We can write the integral for I ½2�

n ðνÞ and evaluate it
numerically to see if it contains more than n − 1
powers of logðνÞ.

(xvii) For some shower algorithms examined here, I ½2�
n ðνÞ

passes this test. For one algorithm examined, it fails.

XIV. THE THRUST DISTRIBUTION AND ITS
LAPLACE TRANSFORM

We will examine the distribution of thrust, T, defined for
parton momenta fpgm by [33,34]

T ¼ max
n⃗T

P
ijp⃗i · n⃗TjP

ijp⃗ij
¼ 1ffiffiffiffiffiffi

Q2
p max

n⃗T

X
i

jp⃗i · n⃗Tj: ð119Þ

The axis defined by the unit vector n⃗T that maximizes the
sum is the thrust axis. We will be interested in the behavior
of the thrust distribution for small values of

τ ¼ 1 − T: ð120Þ

We can write τ in a useful form by defining sets R and L
of partons by p⃗i · n⃗T > 0 for i ∈ R and p⃗i · n⃗T < 0 for
i ∈ L. Then,

τ ¼ 1ffiffiffiffiffiffi
Q2

p
�X
i∈R

ðEi − p⃗i · n⃗TÞ þ
X
i∈L

ðEi þ p⃗i · n⃗TÞ
�
: ð121Þ

Using the thrust axis, we define � components of
vectors by

p� ¼ ½p0
i � p⃗ · n⃗T�=

ffiffiffi
2

p
: ð122Þ

Then we can write

τ ¼ τR þ τL; ð123Þ

where, using Q2 ¼ 2QþQ− with Qþ ¼ Q−,

5In Secs. II through X, we expanded operators in powers of
αsðμ2Þ at a running scale μ2 appropriate to the operator. Here, we
expand operators in powers of the splitting operator S of the
parton shower. This technique simplifies the analysis of a shower
algorithm that is based on lowest order perturbation theory.
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τR ¼
X
i∈R

p−
i

Q− ; τL ¼
X
i∈L

pþ
i

Qþ : ð124Þ

In order to use a parton shower to analyze the thrust
distribution, we begin with the cross section

gðτÞ ¼ 1

σH

dσ
dτ

; ð125Þ

where σH is the hard scattering cross section, equal to
dσ=dτ integrated over τ. We wish to analyze the small τ
behavior of gðτÞ. For this purpose, it is standard to work
with the Laplace transform of gðτÞ,

g̃ðνÞ ¼
Z

∞

0

dτe−ντgðτÞ: ð126Þ

The coefficient of αns in the perturbative expansion of gðτÞ is
not a normal function but is a distribution with logj−1ðτÞ=τ
singularities at τ ¼ 0. In order to work with normal
functions, we define the integral of gðτÞ,

fðτÞ ¼
Z

τ

0

dτ̄gðτ̄Þ: ð127Þ

The coefficients in the perturbative expansion of fðτÞ
are functions with logjðτÞ integrable singularities. The
cross section gðτ̄Þ vanishes for τ̄ > 1=2, so fðτÞ ¼ 1
for τ > 1=2.
Consider the Laplace transform of fðτÞ:

f̃ðνÞ ¼
Z

∞

0

dτe−ντfðτÞ: ð128Þ

We have

f̃ðνÞ ¼
Z

∞

0

dτ0e−ντ0
Z

τ0

0

dτgðτÞ

¼
Z

∞

0

dτgðτÞ
Z

∞

τ
dτ0e−ντ0

¼ 1

ν

Z
∞

0

dτgðτÞe−ντ: ð129Þ

Thus

f̃ðνÞ ¼ g̃ðνÞ
ν

: ð130Þ

The function fðτÞ is given by the inverse Laplace transform
of f̃ðνÞ:

fðτÞ ¼ 1

2πi

Z
C
dνeντ

g̃ðνÞ
ν

: ð131Þ

The contour C runs from ν0 − i∞ to ν0 þ i∞ parallel to the
imaginary ν axis, where ν0 > 0 so that the contour is to the
right of the singularity of g̃ðνÞ=ν at ν ¼ 0.
We expect the coefficient of αns in the perturbative

expansion of fðτÞ to contain terms proportional to
logjðτÞ for τ → 0. To see how this translates to g̃ðνÞ, we
can start by noting that

fðτÞ ¼ τA ⇒ g̃ðνÞ ¼ Γð1þ AÞν−A: ð132Þ

Thus

fðτÞ ¼
X∞
j¼0

Aj

j!
logjðτÞ ⇒

g̃ðνÞ ¼ Γð1þ AÞ
X∞
j¼0

ð−AÞj
j!

logjðνÞ: ð133Þ

Matching powers of A, we learn that logarithms of τ for
small τ translate into logarithms of ν for large ν.
We wish to use the parton shower formalism to find an

analytical formula that sums the logarithms of ν in g̃ðνÞ. We
can then compare what we find to the standard QCD
formula that sums these logarithms. The final step needed
to obtain something that can be compared to experiment
would be to perform the inverse Laplace transform (131).
This step is the same for the parton shower method or the
normal analytical methods. We discuss this step only
briefly in this paper.

XV. THE MEASUREMENT OPERATOR

If we want to measure the thrust distribution, then we
define, following Eq. (102),

gðτÞ ¼ 1

σH

ð1jδðτ − τopÞUðμ2f; μ2HÞjρHÞ; ð134Þ

where τ is a real number times the unit operator on the
statistical space and τop is the operator defined by

τopjfp; f; c; c0gmÞ ¼ τðfpgmÞjfp; f; c; c0gmÞ; ð135Þ

where τðfpgmÞ is 1 − T for partons with momenta fpgm, as
defined in Eqs. (123) and (124). Here σH ¼ ð1jρHÞ. This is
the Born cross section for eþe− → qq̄ since, in this paper,
we evaluate jρHÞ at lowest order.
Rather than measuring gðτÞ, we wish to measure the

Laplace transform g̃ðνÞ. For this we have, using Eq. (126)
in Eq. (134),

g̃ðνÞ ¼ 1

σH

ð1jOðνÞUðμ2f; Q2ÞjρHÞ; ð136Þ

where
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OðνÞ ¼ e−ντop : ð137Þ

We will analyze g̃ðνÞ in the subsequent sections. For this
analysis, it is important that OðνÞ has an inverse

OðνÞ−1 ¼ eντop : ð138Þ

XVI. SETTING UP THE SHOWER ANALYSIS

Equation (136) allows us to calculate g̃ðνÞ numerically
using the shower evolution operator Uðμ2f; μ2HÞ. We would
now like to reformulate the shower result so that it takes the
form of an exponential in which the exponent can be
perturbatively calculated.

A. The operators Y and SY

We begin with an operator Yðμ2; νÞ, which is defined in
Secs. III and VIII using the all-order formalism of Ref. [18]
for describing parton shower algorithms. The operator
Yðμ2; νÞ is defined to have two properties. First, it does
not change the number of partons or their momenta or
flavors. Second,

ð1jYðμ2; νÞ ¼ ð1jOðνÞUðμ2f; μ2ÞO−1ðνÞ: ð139Þ

These properties apply either for electron-positron, hadron-
hadron, or electron-hadron collisions. Now, we consider
only electron-positron annihilation. Although Yðμ2; νÞ
does not change the number of partons or their momenta
or flavors, it can change the parton colors. There is some
freedom to define what Yðμ2; νÞ does to the parton color
state. We will define the action of Yðμ2; νÞ on states in the
statistical space in Eqs. (170) and (171) below.
The property Eq. (139) can be written as

ð1jOðνÞUðμ2f ; μ2Þ ¼ ð1jYðμ2; νÞOðνÞ: ð140Þ

This result allows us to rewrite g̃ðνÞ as given by Eq. (136) as

g̃ðνÞ ¼ 1

σH

ð1jYðQ2; νÞOðνÞjρHÞ: ð141Þ

We see that instead of generating a complete parton shower
as in Eq. (136) and then measuring OðνÞ for the resulting
many parton state, we can measure OðνÞ just on the hard
state and then apply the operator Yðμ2; νÞ that depends on ν
but leaves the number of partons unchanged.
How can one evaluate Yðμ2; νÞ? We note first from the

form of Eq. (139), that Yðμ2; νÞ has a perturbative expan-
sion beginning with Yðμ2; νÞ ¼ 1þOðαsÞ and at μ2 ¼ μ2f
it is exactly

Yðμ2f; νÞ ¼ 1: ð142Þ

We define an infinitesimal generator SYðμ2; νÞ for
Yðμ2; νÞ by

1

μ2
SYðμ2; νÞ ¼ Y−1ðμ2; νÞ d

dμ2
Yðμ2; νÞ: ð143Þ

Then Yðμ2; νÞ obeys the differential equation

μ2
d
dμ2

Yðμ2; νÞ ¼ Yðμ2; νÞSYðμ2; νÞ; ð144Þ

with boundary condition Yðμ2f; νÞ ¼ 1. We can use the
notation

Yðμ2; νÞ ¼ T exp

�Z
μ2

μ2f

dμ̄2

μ̄2
SYðμ̄2; νÞ

�
ð145Þ

to indicate the solution to Eq. (144). The instruction T
indicates that the operators SYðμ̄2; νÞ with the smallest
values of μ̄2 belong on the left.
We will sometimes adopt the notation

IðνÞ ¼
Z

Q2

μ2f

dμ2

μ2
SYðμ2; νÞ ð146Þ

when the upper integration limit is Q2 and we do not need
to explicitly display SYðμ2; νÞ.6

B. Relation of SY to the shower generator S

We can relate SYðμ2; νÞ to Sðμ2Þ. From Eq. (105),
we have

μ2
∂
∂μ2 Uðμ

2
f; μ

2Þ ¼ Uðμ2f; μ2ÞSðμ2Þ: ð147Þ

Using Eqs. (147) and (144) to differentiate Eq. (139),
we have

ð1jYðμ2; νÞSYðμ2; νÞ ¼ ð1jOðνÞUðμ2f; μ2ÞSðμ2ÞO−1ðνÞ:
ð148Þ

Using Eq. (140), this becomes

ð1jYðμ2; νÞSYðμ2; νÞ ¼ ð1jYðμ2; νÞOðνÞSðμ2ÞO−1ðνÞ:
ð149Þ

We can also use Eq. (144), together with the boundary
condition (142), to write an equation for Yðμ2; νÞ,

Yðμ2; νÞ ¼ 1þ
Z

μ2

μ2f

dμ̄2

μ̄2
Yðμ̄2; νÞSYðμ̄2; νÞ: ð150Þ

6This is a useful definition even though Yðμ2; νÞ is not the
exponential of IðνÞ because of the T instruction in Eq. (145).
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C. Operator mapping P

To use Eq. (149), we introduce some useful notation,
expanding on Sec. IV. Let A be an operator that increases
the number of partons or leaves the number of partons
unchanged and changes momenta, flavors, and colors. Let
B be an operator on the statistical space that leaves the
number m of partons and their momenta and flavors
fp; fgm unchanged, although it can change the parton
color state.7 Let B be defined such that

ð1jB ¼ ð1jA: ð151Þ

We will define a linear relation A → B that realizes this
relation. To represent this linear relation, we adopt the
notation

B ¼ ½A�P: ð152Þ

The needed construction is straightforward. Suppose that
A maps states with m partons into states with m̂ partons,
with m̂ ≥ m. Let A have the form

A ¼ ðCket ⊗ C†
braÞR; ð153Þ

where R acts on the momentum and flavor factor of the
statistical space and ðCket ⊗ C†

braÞ acts on the color factor.
Recall from Sec. XII the meaning of the color operators
ðCket ⊗ C†

braÞ. Letting jfcgmi and jfc0gmi be basis vectors
for color amplitudes, a color basis vector jfc; c0gmÞ in the
statistical space represents the color density operator
jfcgmihfc0gmj. Then ðCket ⊗ C†

braÞjfc; c0gmÞ represents
the color density operator Cketjfcgmihfc0gmjC†

bra.
Let us evaluate ð1jAjfp; f; c; c0gmÞ for an arbitrary m-

parton basis state jfp; f; c; c0gmÞ. The inner product of ð1j
with a statistical basis state is given in Eq. (103). We insert a
sum over the basis states [19] with m̂ partons,

ð1jAjfp; f; c; c0gmÞ

¼ 1

m̂!

Z
½dfp; fgm̂�

X
fc;c0gm̂

ð1jfp̂; f̂; ĉ; ĉ0gm̂Þ

× ðfĉ; ĉ0gm̂jCket ⊗ C†
brajfc; c0gmÞ

× ðfp̂; f̂gm̂jRjfp; fgmÞ: ð154Þ

For the color, this gives us the trace of the color density
operator obtained by applying Cket ⊗ C†

bra to jfc; c0gmÞ,
namely the trace of Cketjfcgmihfc0gmjC†

bra. The result is

ð1jAjfp; f; c; c0gmÞ
¼ hfc0gmjC†

braCketjfcgmi

×
1

m̂!

Z
½dfp; fgm̂�ðfp̂; f̂gm̂jRjfp; fgmÞ: ð155Þ

We now need to define B ¼ ½A�P so that

ð1j½A�P ¼ ð1jA: ð156Þ

We distinguish two cases. First, if m̂ ¼ m we leave the
color operator in A unchanged,

½ðCket ⊗ C†
braÞR�Pjfp; f; c; c0gmÞ

¼ ðCket ⊗ C†
braÞjfp; f; c; c0gmÞ

×
1

m!

Z
½dfp̂; f̂gm�ðfp̂; f̂gmjRjfp; fgmÞ: ð157Þ

Evidently, this satisfies ð1j½A�P ¼ ð1jA.
Second, if m̂ > m we define, with one exception,

½ðCket ⊗ C†
braÞR�Pjfp; f; c; c0gmÞ

¼ 1

2
ðC†

braCket ⊗ 1þ 1 ⊗ C†
braCketÞjfp; f; c; c0gmÞ

×
1

m̂!

Z
½dfp̂; f̂gm̂�ðfp̂; f̂gm̂jRjfp; fgmÞ: ð158Þ

This also satisfies ð1j½A�P ¼ ð1jA.
The one exception concerns the first order splitting

operator describing real emissions, S½1;0�. This operator
contains a number of terms. There are some terms with
color content that can be written in a shorthand notation as
t†l ⊗ tk. This describes the splitting of parton l in the ket
state interfering with the splitting of parton k in the bra
state. Parton l is treated as the splitting parton in the
momentum dependent part of the splitting function, while
parton k is the dipole partner parton. We can have k ¼ l.
When the newly created parton is a gluon, we can also have
k ≠ l. There are also terms in the splitting operator of the
form t†k ⊗ tl in which the roles of the bra and ket color
states are reversed. For S½1;0�, we define

½t†l ⊗ tk�P ¼ 1 ⊗ tkt
†
l ;

½t†k ⊗ tl�P ¼ tlt
†
k ⊗ 1: ð159Þ

In the case k¼ l, the color operator is ðt†l ⊗ tkþ t†k⊗ tlÞ=2,
so one simply averages over the two cases in Eq. (159).8

This asymmetric definition that depends on whether the
dipole partner parton is in the bra state or the ket state7In Sec. IV, A is sometimes an operator that is defined in

d ¼ 4 − 2ϵ dimensions that contains poles 1=ϵ and singularities
when the momenta of partons created by A become soft or
collinear. However, ð1jA is well defined in d ¼ 4 dimensions.
Then B is well defined in 4 dimensions.

8Additionally, for k ¼ l, the operators tkt
†
l and tlt

†
k are color

Casimir operators, CF, CA, or TR, so the two cases in Eq. (159)
are really the same.
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makes the definition of ½S½1;0��P match the definition of
the virtual splitting operator S½0;1� in the LC+ approxi-
mation [22].
There is a special case of some importance. Suppose

that m̂ ¼ m and, in addition, A leaves the momenta and
flavors of all partons unchanged. That is, jfp; fgmÞ is an
eigenvector of R:

Rjfp; fgmÞ ¼ rðfp; fgmÞjfp; fgmÞ: ð160Þ

Then A applied to jfp; f; c; c0gmÞ takes the form

Ajfp; f; c; c0gmÞ ¼ ðCket ⊗ C†
braÞrðfp; fgmÞ

× jfp; f; c; c0gmÞ: ð161Þ

In this case, the definition (157) gives us

½A�P ¼ A: ð162Þ

There is some freedom available in fixing the color
part of ½ðCket ⊗ C†

braÞR�P, as discussed in Sec. VI D of
Ref. [18]. We could add any operator A0 to ½A�P if A0 has
the property that ð1jA0 ¼ 0. The form in Eqs. (157), (158),
and (159) is recommended by its simplicity, so we will use
it in this paper.
This defines the operator ½A�P in general. However,

when ½A�P acts on the qq̄ initial hard scattering state in
eþe− annihilation, the action of ½A�P is simpler. The color
space for qq̄ contains only one basis vector, jfc; cg2Þ,
with fc0g2 ¼ fcg2 and ð1colorjfc; cg2Þ ¼ hfcg2jfcg2i ¼ 1.
Therefore C†

braCket ⊗ 1 or 1 ⊗ C†
braCket acting on jfc; cg2Þ

can only return an eigenvalue:

½C†
braCket ⊗ 1�jfc; cg2Þ ¼ ½1 ⊗ C†

braCket�jfc; cg2Þ
¼ λcolorjfc; cg2Þ; ð163Þ

where

λcolor ¼ hfcg2jC†
braCketjfcg2i: ð164Þ

This tells us that jfp; f; c; cg2Þ is an eigenvector of ½A�P:

½A�Pjfp; f; c; cg2Þ ¼ λAjfp; f; c; cg2Þ: ð165Þ

Using ð1jfp; f; c; cg2Þ ¼ hfcg2jfcg2i ¼ 1, we have a very
simple result for the eigenvalue,

λA ¼ ð1jAjfp; f; c; cg2Þ: ð166Þ

D. Recursive definition of SY

We can now define SYðμ2; νÞ so that it satisfies
Eq. (149). Recall that Yðμ2; νÞ ¼ 1þOðαsÞ. Because of

this, it is possible to isolate SYðμ2; νÞ on the left-hand side
of Eq. (149):

ð1jSYðμ2; νÞ ¼ ð1jfYðμ2; νÞOðνÞSðμ2ÞO−1ðνÞ
þ ½1 − Yðμ2; νÞ�SYðμ2; νÞg: ð167Þ

Using the operator mapping ½� � ��P, this is

SYðμ2; νÞ ¼ ½Yðμ2; νÞOðνÞSðμ2ÞO−1ðνÞ�P
þ ½½1 − Yðμ2; νÞ�SYðμ2; νÞ�P: ð168Þ

Note that the operatorsYðμ2; νÞ and SYðμ2; νÞ in the second
line of Eq. (168) leave the number of partons, their
momenta, and their flavors unchanged. Thus Eq. (162)
applies and the ½� � ��P operation has no effect.
Equation (168) can be used to define SYðμ2; νÞ and

Yðμ2; νÞ recursively. We can write SYðμ2; νÞ, Yðμ2; νÞ, and
IðνÞ as expansions in powers of the shower evolution
operator S:

SYðμ2; νÞ ¼
X∞
k¼1

S½k�
Y ðμ2; νÞ;

Yðμ2; νÞ ¼ 1þ
X∞
k¼1

Y½k�ðμ2; νÞ;

IðνÞ ¼
X∞
k¼1

I ½k�ðνÞ; ð169Þ

where each of S½k�
Y ðμ2; νÞ, Y½k�ðμ2; νÞ, and I ½k�ðνÞ contain k

factors of S. Then we can write Eq. (168) as

S½k�
Y ðμ2; νÞ ¼ ½Y½k−1�ðμ2; νÞOðνÞSðμ2ÞO−1ðνÞ�P

−
Xk−1
j¼1

Y½k−j�ðμ2; νÞS½j�
Y ðμ2; νÞ: ð170Þ

Similarly, we can write Eq. (150) as

Y½k�ðμ2; νÞ ¼
Xk
j¼1

Z
μ2

μ2f

dμ̄2

μ̄2
Y½k−j�ðμ̄2; νÞS½j�

Y ðμ̄2; νÞ: ð171Þ

These equations apply for k ¼ 1; 2;…with Y½0�ðμ2; νÞ ¼ 1.
We now illustrate this for the first two orders. At order 1,

Eq. (170) gives us

S½1�
Y ðμ2; νÞ ¼ ½OðνÞSðμ2ÞO−1ðνÞ�P: ð172Þ

At order α2s, we have
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S½2�
Y ðμ2; νÞ ¼ ½Y½1�ðμ2; νÞOðνÞSðμ2ÞO−1ðνÞ�P

− Y½1�ðμ2; νÞS½1�
Y ðμ2; νÞ: ð173Þ

From Eq. (150) at first order, we have

Y½1�ðμ2; νÞ ¼
Z

μ2

μ2f

dμ̄2

μ̄2
S½1�
Y ðμ̄2; νÞ: ð174Þ

For S½1�
Y ðμ2; νÞ we can use Eq. (172). This gives us

S½2�
Y ðμ2; νÞ ¼

Z
μ2

μ2f

dμ̄2

μ̄2
½½OðνÞSðμ̄2ÞO−1ðνÞ�P

× ½OðνÞSðμ2ÞO−1ðνÞ�1−P�P: ð175Þ

Here we use the abbreviation

½A�1−P ¼ A − ½A�P: ð176Þ

The operator SYðμ2; νÞ is a complicated operator in
general. However, it is significant that, because of
Eqs. (165) and (166), the initial qq̄ state is an eigenvector
of SYðμ2; νÞ:

SYðμ2; νÞjfp; f; c; cg2Þ ¼ λSY
jfp; f; c; cg2Þ; ð177Þ

where

λSY
¼ ð1jSYðμ2; νÞjfp; f; c; cg2Þ: ð178Þ

XVII. EVALUATION OF S½1�
Y ðμ2; νÞ

Let us see what we can say about S½1�
Y ðμ2; νÞ as given in

Eq. (172). In a first order shower, like DEDUCTOR, we
divide Sðμ2Þ into its real emission and virtual parts as in
Eq. (107). Then Eq. (172) gives us

S½1�
Y ðμ2; νÞ ¼ ½OðνÞS½1;0�ðμ2ÞO−1ðνÞ

þOðνÞS½0;1�ðμ2ÞO−1ðνÞ�P: ð179Þ

The virtual operator S½0;1�ðμ2; 0Þ leaves the momentum and
flavor state unchanged, so this is

S½1�
Y ðμ2; νÞ ¼ ½OðνÞS½1;0�ðμ2ÞO−1ðνÞ þ S½0;1�ðμ2Þ�P: ð180Þ

Recall from Eq. (108) that ð1jS½0;1�ðμ2Þ ¼ −ð1jS½1;0�ðμ2Þ.
This tells us that

½S½0;1�ðμ2Þ�P ¼ −½S½1;0�ðμ2Þ�P: ð181Þ

Using Eq. (181), Eq. (180) becomes

S½1�
Y ðμ2; νÞ ¼ ½OðνÞS½1;0�ðμ2ÞO−1ðνÞ − S½1;0�ðμ2Þ�P: ð182Þ

This is a convenient form for calculations.

XVIII. CHANGE IN τ INDUCED
BY A SPLITTING

The operator OðνÞS½1;0�ðμ2ÞO−1ðνÞ appears in Eq. (182)

for S½1�
Y ðμ2; νÞ. This operator is

OðνÞS½1;0�ðμ2ÞO−1ðνÞ ¼ e−ντopS½1;0�ðμ2Þeþντop : ð183Þ

The operator S½1;0�ðμ2Þ is a sum of operators,

S½1;0�ðμ2Þ ¼
X∞
l¼1

S½1;0�
l ðμ2Þ; ð184Þ

where l is the label of the parton that splits. When we apply

S½1;0�
l ðμ2Þ to a state jfp; f; c; c0gmÞ, the splitting operator

creates a new state jfp̂; f̂; ĉ; ĉ0gmþ1Þ as long as l ≤ m. For
l > m, Sl just gives zero. The operators τop measure the
values of τ before and after the splitting. Thus

ðfp̂; f̂; ĉ; ĉ0gmþ1jOðνÞS½1;0�
l ðμ2ÞO−1ðνÞjfp; f; c; c0gmÞ

¼ e−νðτ̂−τÞðfp̂; f̂; ĉ; ĉ0gmþ1jS½1;0�
l ðμ2Þjfp; f; c; c0gmÞ;

ð185Þ

where τ ¼ τðfpgmÞ and τ̂ ¼ τðfp̂gmþ1Þ. Thus we need to
know how τ changes in a splitting. We are looking for the
leading contributions to logarithms of ν, so we can use the
approximations that τ is small and that the splitting is nearly
soft or collinear.
We start with momenta fpgm and suppose that the parton

that splits is in the right thrust hemisphere, l ∈ R. The
splitting produces a new parton l and a parton mþ 1. After
the splitting, we have partons with momenta fp̂gmþ1.
The emission of a parton changes the thrust axis.

However, in the case of a nearly soft or collinear splitting
of a parton in a state with small τ, the sum of the
momenta of the daughter partons is very close to the
momentum of the mother parton, so that the thrust axis
changes by very little [35]. For this reason, we calculate
τðfp̂gmþ1Þ for the new parton state using the thrust axis
of the old parton state fpgm. We also assume that after
the splitting partons l and mþ 1 are still in the right
thrust hemisphere.
Now we turn to the calculation of τ̂ − τ. We use the

definition, Eqs. (123) and (124), to write
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τ̂− τ ¼ p̂−
l þ p̂−

mþ1 −p−
l

Q− þ
X
i∈R

i≠fl;mþ1g

p̂−
i −p−

i

Q− þ
X
i∈L

p̂þ
i −pþ

i

Qþ :

ð186Þ

Now we need to evaluate ðp̂−
l þ p̂−

mþ1 − p−
i Þ=Q− and

ðp̂�
i − p�

i Þ=Q�. Following the notation of Appendix B of
Ref. [25], we define

h� ¼ ð1þ y� λÞ=2;
λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ yÞ2 − 4aly

q
;

al ¼
Q2

2pl ·Q
; ð187Þ

where y was defined in Eq. (99). We suppose that y ≪ 1.
We define a lightlike vector nl by

nl ¼
2pl ·Q
Q2

Q − pl: ð188Þ

Note that nl is independent of the normalization of Q.
We write the momentum vectors for partons l and mþ 1

after the splitting as

p̂l ¼ hþzpl þ h−ð1 − zÞnl þ k⊥;
p̂mþ1 ¼ hþð1 − zÞpl þ h−znl − k⊥; ð189Þ

where k⊥ · pl ¼ k⊥ · nl ¼ 0. The splitting is specified by y,
the momentum fraction z in Eq. (189), and the azimuthal
angle ϕ of k⊥. The magnitude of k⊥ is determined by the
condition p̂2

l ¼ 0 or p̂2
mþ1 ¼ 0:

−k2⊥ ¼ zð1 − zÞy2pl ·Q: ð190Þ

Define

Pl ¼ p̂l þ p̂mþ1 ¼ hþpl þ h−nl: ð191Þ

This gives us P2
l ¼ 2pl ·Qy. Using these results we obtain

ðQ − plÞ2 ¼ ðQ − PlÞ2: ð192Þ

We require that momentum be conserved in the splitting,
so that

Q − pl ¼
Xm
i¼1
i≠l

pi; Q − Pl ¼
Xm
i¼1
i≠l

p̂i: ð193Þ

The relation (192) allows the p̂i for i ∉ fl; mþ 1g to be
obtained from the pi by a Lorentz transformation,

p̂μ
i ¼ Λμ

νpν
i ; i ∉ fl; mþ 1g: ð194Þ

The needed Lorentz transformation can be a small boost in
the pl −Q plane. Let

pi ¼ αipl þ βinl þ pi;⊥; ð195Þ

where pi;⊥ · pl ¼ pi;⊥ · nl ¼ 0. Then define p̂i for i ∉
fl; mþ 1g by

p̂i ¼ eωαipl þ e−ωβinl þ pi;⊥: ð196Þ

The needed boost angle is small:

ω ¼ yþOðy2Þ: ð197Þ

Using Eq. (194) in Eq. (186), we have

τ̂ − τ ¼ p̂−
l þ p̂−

mþ1 − p−
l

Q− þ
X
i∈R
i≠l

ðΛ−
ν − δ−ν Þ

pν
i

Q−

þ
X
i∈L

ðΛþ
ν − δþν Þ

pν
i

Qþ : ð198Þ

We will see momentarily that ðp̂−
l þ p̂−

mþ1 − p−
l Þ=Q− is

small, of order y. This allows τ̂ − τ to be of order y.
In the third term, for i ∈ R, ðΛμ

ν − δμνÞ is of order y.
The thrust axis defines the � components of vectors in
Eq. (198). If pl were exactly aligned with the thrust axis,
then the only nonvanishing index choice for Λ−

ν would be
ν ¼ −. But p−

i =Q
− ≪ 1 for i ∈ R, since this quantity is

of order τ and we suppose that τ ≪ 1. This restriction on
the index choices is not exact. However, for i ∈ R,
the components pν

i =Q
− for ν ∈ f1; 2g are of order

pν
i =Q

− ∼ ½pþ
i p

−
i �1=2=Q−, which is at most of order

ffiffiffi
τ

p
.

The component pν
i =Q

− for ν ¼ þ can be of order 1.
However, Λ−þ ¼ Λ−− is at most of order y2 since Λ ¼
expðωwÞ where ω is given by Eq. (197) and the first order
contribution to Λ−− vanishes because the generator matrix
wμν is antisymmetric. Thus the second term in Eq. (198) is
of order y times a small factor, either τ,

ffiffiffi
τ

p
, or y. The same

reasoning applies to the third term.
We conclude that the only surviving term in Eq. (198) is

the first:

τ̂ − τ ≈
p̂−
l þ p̂−

mþ1 − p−
l

Q− : ð199Þ

We have

p̂−
l þ p̂−

mþ1 − p−
l

Q− ≈
ð1 − alÞyp−

l þ alyn−l
Q− : ð200Þ

With our kinematic conventions,
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p−
l

Q− ¼ 1 − cos θðl; n⃗TÞ
2al

;

n−l
Q− ¼ 1þ cos θðl; n⃗TÞ

2al
; ð201Þ

where

cos θðl; n⃗TÞ ¼
jp⃗l · n⃗Tj
jp⃗lj

: ð202Þ

This gives us

p̂l þ p̂−
mþ1 − p−

l

Q− ≈ ξly; ð203Þ

where

ξl ¼ 1 −
�
1 −

1

2al

�
½1 − cosðθðl; n⃗TÞÞ�: ð204Þ

That is

τ̂ − τ ≈ ξly: ð205Þ

The same result holds for l ∈ L if we change
1 − cosðθðl; n⃗TÞÞ to 1þ cosðθðl; n⃗TÞÞ.
If we are splitting the quark or the antiquark in the

two parton state created initially in eþe− annihilation, then
al ¼ 1 and θðl; n⃗TÞ ¼ 0. Then ξl ¼ 1.
In the general case, 0 < 1 − cosðθðl; n⃗TÞÞ < 1 for l ∈ R

and 1=2 < ð2al − 1Þ=ð2alÞ < 1, so

0 < ξl < 1: ð206Þ

We get ξl → 0 only when θl → π=2 and parton l is very
soft, 1=al → 0. Notice that there is no singularity for
θl → π=2, so there is no singularity for ξl → 0. There is
a singularity for θðl; n⃗TÞ → 0 for all partons l. This
corresponds to ξl → 1. Thus in the general case we can
treat ξl as being close to 1. We will argue in Appendix A
that for the purpose of finding next-to-leading logarithms of
ν we can simply set ξl to 1.
We conclude that the effect of the operators OðνÞ in a

splitting of parton l can be approximated by

OðνÞS½1;0�
l ðμ2ÞO−1ðνÞjfp; f; c; c0gmÞ

≈ S½1;0�
l ðμ2Þe−νξopl yjfp; f; c; c0gmÞ; ð207Þ

where ξopl is an operator that, acting on a state
jfp; f; c; c0gmÞ, has eigenvalue ξl as defined in Eq. (204)
as long as l ≤ m. For l > m, we can simply define ξl to
have eigenvalue 1. We recall that ξl is generally of order 1

and equals 1 exactly in the case of a splitting of one of
the partons in a two parton state. Using this in Eq. (182)
gives us

S½1�
Y ðμ2; νÞ ≈ −

X
l

½S½1;0�
l ðμ2Þ�Pð1 − e−νξ

op
l yÞ: ð208Þ

XIX. S½1�
Y FOR A QUARK-ANTIQUARK STATE

For the qq̄ state created initially in electron-positron
annihilation, Eq. (208) simplifies considerably. First, the
index l denoting the parton that splits can take only the
values l ¼ 1 (for the quark) and l ¼ 2 (for the antiquark).
Each choice gives the same result, so we can take l ¼ 1
and multiply by two. Also, the color factors are trivial. In

½S½1;0�
l ðμ2Þ�P we encounter color operators T1 · T1, T2 · T2,

and T1 · T2, where Ti · Tj ¼
P

a T
a
i T

a
j and Ta

i inserts a
color matrix Ta on parton line i. The operators T1 · T1 and
T2 · T2 simply give an eigenvalue CF times the unit color
operator, while T1 · T2 gives −CF. This gives us a result of
the form

S½1�
Y ðμ2; νÞjfp; f; c; c0g2Þ
≈ −ð1 − e−νyÞλðyÞjfp; f; c; c0g2Þ: ð209Þ

The eigenvalue λðyÞ is obtained in a straightforward
calculation from the q → qþ g splitting functions used
in DEDUCTOR [22]. There is an integral over the splitting
variables z and ϕ. The ϕ integral is trivial and gives simply
a factor 2π. The integration over the momentum fraction z
remains,

λðyÞ ¼ 2CF

Z
1

0

dz

�
αsðλRð1 − zÞyQ2Þ

2π
fsingðz; yÞ

þ αsðλRyQ2Þ
2π

fregðz; yÞ
�
: ð210Þ

The argument of αs contains the standard factor λR,
Eq. (110), and, in the first term, a factor (1 − z), as
in Eq. (109) with al ¼ 1. The functions fsingðz; yÞ and
fregðz; yÞ are taken directly from DEDUCTOR and are quite
complicated. However, they are simple in the relevant
limits, y → 0 with fixed z and y → 0 with 1 − z ∝ y. In
these limits, they are

fsingðz; yÞ ≈
2

1 − zþ y
− 2;

fregðz; yÞ ≈ 1 − z: ð211Þ

Note that fsingðz; 0Þ þ fregðzÞ ¼ ð1þ z2Þ=ð1 − zÞ is just
the DGLAP splitting kernel for q → qþ g. However in
fsingðz; yÞ the singularity at ð1 − zÞ → 0 is regulated by
adding y in the denominator.
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We have written these results in the form used in
DEDUCTOR. In fsingðz; yÞ, we could recognize that the
second term could have been transferred to fregðz; yÞ.
We would now like to compare this to the standard

results for the summation of logs of τ in Ref. [35]. We begin
by inserting Eq. (211) into Eq. (210):

λðyÞ ≈ 2CF

Z
1

0

dz

�
αsðλRð1 − zÞyQ2Þ

2π

2

1 − zþ y

−
αsðλRð1 − zÞyQ2Þ

2π
2þ αsðλRyQ2Þ

2π
ð1 − zÞ

�
:

ð212Þ

We will want to evaluate this approximately for small y
in such a way that if we expand the result in powers
of αsðyQ2Þ we retain all terms proportional to
αns ðyQ2Þ lognðyÞ and αns ðyQ2Þ logn−1ðyÞ. After integrating
over μ̄2 ¼ yQ2 as in Eq. (145), this will give contributions
αns ðQ2Þ lognþ1ðνÞ and αns ðQ2Þ lognðνÞ. These are the lead-
ing log (LL) and next-to-leading log (NLL) terms. In λðyÞ,
we neglect contributions proportional to fewer powers of
logðyÞ or to powers of y.
In order to carry out this approximate evaluation, we note

first that we can use

αsðAμ2Þ ¼ αsðμ2Þ − β0 logðAÞα2sðμ2Þ þOðα3sÞ; ð213Þ

where β0 ¼ ð11CA − 2nfÞ=ð12πÞ. Then we can omit the
λRð1 − zÞ factor in the argument of αs in the second
term in Eq. (212) and the λR in the third term, since
these terms do not have 1=ð1 − zþ yÞ singularities that
could produce logðyÞ factors after integration. In the first
term, there is a 1=ð1 − zþ yÞ singularity. For this term,
we need to keep the α2s contribution in Eq. (213). After
performing the z integration in the last two terms, this
gives us

λðyÞ ≈ 4CF

Z
1

0

dð1 − zÞ 1

1 − zþ y

×
αsðð1 − zÞyQ2Þ − β0 logðλRÞα2sðð1 − zÞyQ2Þ

2π

− 3CF
αsðyQ2Þ

2π
: ð214Þ

Now we note that the y in the denominator in the first
term of Eq. (214) places an effective lower cutoff on
(1 − z) at about ð1 − zÞ ¼ y. This observation suggests
that the integration over (1 − z) can be written in a simpler
form:

λðyÞ ≈ 4CF

Z
1

y

dð1 − zÞ
1 − z

×
αsðð1 − zÞyQ2Þ − β0 logðλRÞα2sðð1 − zÞyQ2Þ

2π

− 3CF
αsðyQ2Þ

2π
: ð215Þ

In fact, this correctly reproduces the αns lognðyÞ terms and
the αns logn−1ðyÞ terms in the expansion of the integral. To
see this, one can approximately solve the renormalization
group equation for αs in the form [36]

1

αsðAμ2Þ
¼ 1þ β0 logðAÞαsðμ2Þ

αsðμ2Þ
þ β1
β0

logð1þ β0 logðAÞαsðμ2ÞÞ þ � � � ; ð216Þ

with μ2 ¼ yQ2 and A ¼ 1 − z. Here β1¼ð17C2
A−5CAnf−

3CFnfÞ=ð24π2Þ. This yields αsðAμ2Þ as a series

αsðAμ2Þ ¼ αsðμ2Þ
�
1þ

X∞
n¼2

αns ðμ2Þ½cnlognðAÞ

þ dnlogn−1ðAÞ þ � � ��
�
: ð217Þ

Then one can check that the integral (214) agrees with the
integral (215) at the NLL level.
The current code in DEDUCTOR does not include

the β1 contributions in evaluating the z dependence of
αsðð1 − zÞyQ2Þ. This appears to be not particularly sig-
nificant numerically, but it is significant in principle
because it means that some of the NLL contributions to

S½1�
Y ðμ2; νÞ are absent.
We can now compare to Ref. [35] by changing the

integration variable to q2 ¼ ð1 − zÞyQ2:

λðyÞ ≈ 4CF

Z
yQ2

y2Q2

dq2

q2
αsðq2Þ − β0 logðλRÞα2sðq2Þ

2π

− 3CF
αsðyQ2Þ

2π
: ð218Þ

This agrees with the result in Eq. (64) of Ref. [35] for the
LL and NLL contributions to λðyÞ.
We have been seeking a formula for the summation of

logarithms of ν in the Laplace transform g̃ðνÞ of the thrust
distribution. We use Eq. (141) for g̃ðνÞ, choosing for jρHÞ
the state with a quark and an antiquark with opposite
momenta. The operator OðνÞ acting on this state is just 1.
Then

g̃ðνÞ ¼ 1

σH

ð1jYðQ2; νÞjρHÞ: ð219Þ
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We approximate YðQ2; νÞ, using Eq. (145), as the expo-

nential of the integral of the first order generator S½1�
Y , which

we take from Eq. (209). This gives

g̃ðνÞ ≈ exp

�
−
Z

1

μ2f=Q
2

dy
y
ð1 − e−νyÞλðyÞ

�
: ð220Þ

Here λðyÞ can be either the exact function from DEDUCTOR,
as in Eq. (210), or else the approximate function given in
Eq. (215). The factor ð1 − e−νyÞ puts an effective lower
cutoff on the y integration at y ¼ 1=ν. Then a factor lognðyÞ
in λðyÞ produces a factor lognþ1ðνÞ in the exponent
of Eq. (220).
We have seen that one can start with Eq. (136) for g̃ðνÞ as

given by a parton shower and rearrange the operators to
express g̃ðνÞ in the form Eq. (219). Then approximating

SYðμ2; νÞ by S½1�
Y ðμ2; νÞ in Y gives us a candidate result

(220) for the summation of logarithms of ν in g̃ðνÞ. We do
note that the shower splitting functions contain ingredients
related to the argument of αs in the parton splitting
function. These ingredients are somewhat ad hoc from
the perspective of just representing the soft and collinear
singularities of a single splitting. Their purpose was to build
into the first order splitting functions some approximation
to splitting functions beyond leading order so as to improve
the effectiveness of a parton shower in summing large
logarithms. We have seen the effect of these ingredients in
giving us the standard summation of thrust logarithms at
the NLL level.
Our analysis uses primarily the Laplace transform g̃ðνÞ

of the thrust distribution. One can take the inverse Laplace
transform of g̃ðνÞ to obtain the thrust distribution gðτÞ,
Eq. (125), itself. The function gðτÞ is the derivative of fðτÞ,
Eq. (127):

gðτÞ ¼ dfðτÞ
dτ

: ð221Þ

We can follow Ref. [35] to evaluate fðτÞ at NLL accuracy:

fðτÞ ¼ exp

�
−

CF

πβ20

�
f1ðλÞ
αsðQ2Þ þ f2ðλÞ

��
1

Γð1 − γðλÞÞ :

ð222Þ

Here

λ ¼ β0αsðQ2Þ logð1=τÞ; ð223Þ

the LL function f1ðλÞ is

f1ðλÞ ¼ ð1 − 2λÞ logð1 − 2λÞ − 2ð1 − λÞ logð1 − λÞ;
ð224Þ

the NLL function f2ðλÞ is

f2ðλÞ ¼ −
β1
2β0

2log2ð1 − λÞ þ β1
2β0

log2ð1 − 2λÞ

þ 2β0γE log

�
1 − λ

1 − 2λ

�

−
�
β1
β0

þ β0 logðλRÞ
�
log

�ð1 − λÞ2
1 − 2λ

�

þ 3β0
2

log ð1 − λÞ; ð225Þ

where γE is Euler’s constant, and the function γðλÞ is

γðλÞ ¼ −
2CF

πβ0
log

�
1 − λ

1 − 2λ

�
: ð226Þ

The logarithm of fðτÞ contains LL contributions propor-
tional to αsðQ2Þnlognþ1ð1=τÞ and NLL contributions
proportional to αsðQ2Þnlognð1=τÞ, but contributions pro-
portional to αsðQ2Þnlogjð1=τÞ with j < n are dropped. Of
course, a parton shower does not drop terms beyond NLL.

XX. RESULT FROM THE PARTON SHOWER

We have manipulated the operators used in a parton
shower to produce a candidate formula (220) for the
summation of logarithms for the thrust distribution. We
have seen that this formula reproduces the known result
[35] for g̃ðνÞ in QCD at the NLL level. We now ask what
the result for g̃ðνÞ is in a first order parton shower that uses
the DEDUCTOR algorithm or another algorithm of interest.
That is, what do we get from Eqs. (136) and (104),

g̃ðνÞ ¼ 1

σH

ð1jOðνÞT exp

�Z
Q2

μ2f

dμ2

μ2
Sðμ2Þ

�
jρHÞ; ð227Þ

when the shower generator Sðμ2Þ represents a first order
shower? This must be the same as the result of using
Eq. (145) in Eq. (141),

g̃ðνÞ¼ 1

σH

ð1jT exp
�Z

Q2

μ2f

dμ2

μ2
SYðμ2;νÞ

�
OðνÞjρHÞ: ð228Þ

Here we take jρHÞ to be the initial qq̄ state in eþe−
annihilation (with massless quarks). Then there is some
simplification because OðνÞjρHÞ ¼ jρHÞ. There is a more
significant simplification because jρHÞ is an eigenvector of
SYðμ2; νÞ. We use Eq. (177), Eq. (178), and ð1jρHÞ ¼ σH to
give

g̃ðνÞ ¼ exp

�Z
Q2

μ2f

dμ2

μ2
ð1jSYðμ2; νÞjfp; f; c; cg2Þ

�
:

ð229Þ
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Here jfp; f; c; cg2Þ is a color singlet qq̄ basis state with
p1 þ p2 ¼ Q. The results are independent of the direction
of p⃗1 ¼ −p⃗2 and independent of the quark flavor
f1 ¼ −f2. There is only one possible color state. The
basis state is normalized to ð1jfp; f; c; cg2Þ ¼ 1 [19].
We use the operator IðνÞ defined in Eq. (146),

IðνÞ ¼
Z

Q2

μ2f

dμ2

μ2
SYðμ2; νÞ; ð230Þ

to write Eq. (229) as

g̃ðνÞ ¼ exp ½ð1jIðνÞjfp; f; c; cg2Þ�: ð231Þ

In Eq. (231), IðνÞ is obtained from just Sðμ2Þ, not from any
higher order splitting functions that might be present in a
higher order shower algorithm. The result for g̃ðνÞ in
Eq. (231) could be very different from g̃ðνÞ as given by
Eq. (220) because a first order parton shower is not the
same as full QCD.
Using Eq. (169), we expand IðνÞ as a series of terms

I ½k�ðνÞ, where I ½k�ðνÞ contains k powers of the shower
splitting operator Sðμ2Þ. Thus I ½k�ðνÞ contains k powers
of αs evaluated at a running scale inside the integrations that
give I ½k�ðνÞ. We can expand I ½k�ðνÞ in powers of αs
evaluated at a fixed scale. A convenient choice9 is
μ2fixed ¼ Q2=ν. Thus we write

I ½k�ðνÞ ¼
X∞
n¼k

�
αsðQ2=νÞ

2π

�
n

I ½k�
n ðνÞ: ð232Þ

In I ½k�
k ðνÞ there are k integrations over scale variables y

and k integrations over momentum fractions z, so I ½k�
k ðνÞ

could contain 2k factors of logðνÞ. Changing the scale in αs
can produce one more factor logðνÞ for each factor αs, so

that I ½k�
n ðνÞ could contain nþ k factors of logðνÞ. However

the exponent in g̃ðνÞ in Eq. (220) contains only contribu-
tions proportional to αns ðQ2=νÞlogjðνÞ with j ≤ nþ 1.
Thus a minimal expectation for the parton shower is that

I ½k�
n ðνÞ contains only j factors of logðνÞ with j ≤ nþ 1.

If this is the case, we can say that the logðνÞ factors
exponentiate.
If we expand the QCD result for the exponent in g̃ðνÞ as

given by Eq. (220) in powers of αsðQ2=νÞ, the coefficients
of αns ðQ2=νÞlognþ1ðνÞ and αns ðQ2=νÞlognðνÞ take particular

values. These values are generated by I ½1�ðνÞ using αs with
its argument suitably specified by the shower algorithm.

Thus for k ≥ 2, I ½k�
n ðνÞ must not contain a factor lognþ1ðνÞ

if we are to maintain the logarithmic summation at LL level
and additionally must not contain a factor lognðνÞ if we are
to maintain the logarithmic summation at NLL level.
We investigate how many powers of logðνÞ are contained

in I ½k�
n ðνÞ in the following two sections.

XXI. PARTON SHOWER AT LEADING LOG

In this section we examine the operators S½k�
Y ðμ2; νÞ with

the aim of discovering the behavior of g̃ðνÞ as given by a
leading order parton shower using the Λ-ordered
DEDUCTOR algorithm with exact QCD color. The
Laplace transform of g̃ðνÞ can be represented according
to Eq. (231) in terms of the integral IðνÞ of SYðμ2; νÞ
defined in Eq. (146). We write the definition in the form

IðνÞ ¼
Z

ν

0

dx
x
SYðxQ2=ν; νÞ: ð233Þ

Here we have defined a standard scale Q2=ν and a scale
variable x that gives the ratio of μ2 to this standard scale:
μ2 ¼ xQ2=ν. If we expand the exponential (not just the
exponent) in Eq. (231) in powers of αsðQ2=νÞ, we will find
terms proportional to αns ðQ2=νÞlogjðνÞ with j ≤ 2n.
The simplest expectation would be that IðνÞ also has an

expansion with terms αns ðQ2=νÞlogjðνÞ with j ≤ 2n. Such a
representation would not be very useful, even if we knew
all of the coefficients for j ¼ 2n. It is much more useful if
there are nonzero contributions αns ðQ2=νÞlogjðνÞ only for
j ≤ nþ 1 and we knew the coefficients for terms with
j ¼ nþ 1. We then call the j ¼ nþ 1 terms the leading
log, LL, terms.
In the notation of this paper, the operator I ½1�ðνÞ is

proportional to one power of the shower splitting operator
and thus to one power of a running αs rather than the fixed
αsðQ2=νÞ. As we have seen, this operator generates a whole
LL series αns ðQ2=νÞlogjðνÞ with j ¼ nþ 1. We may hope
that this is all that survives at the LL level. That is, we may
hope that I ½k�ðνÞ for k ≥ 2 generates only terms
αns ðQ2=νÞlogjðνÞ with j ≤ n. If so, we will say that g̃ðνÞ
as given by the leading order parton shower exponentiates
at the LL level.
In this section, we demonstrate that g̃ðνÞ does exponen-

tiate at the LL level in this sense. In the following section,
we will turn our attention to the NLL level.
We will need a small preliminary analysis. We see

from Eq. (175) that for S½2�
Y ðxQ2=ν; νÞ we will need

½OðνÞSðμ̄2ÞO−1ðνÞ�P and ½OðνÞSðμ̄2ÞO−1ðνÞ�1−P.
For ½OðνÞSðμ̄2ÞO−1ðνÞ�P, we briefly repeat the deriva-

tion that gave us Eq. (208). We use Eq. (107), then
Eq. (181), then Eqs. (184) and (207):

9In Sec. XIX, we used μ2fixed ¼ Q2. Using Eq. (216), one can
transform between expansions

P
cðn; jÞαns ðQ2=νÞlogjðνÞ andP

c0ðn; jÞαns ðQ2ÞlogjðνÞ with j ≤ n in each case, so both choices
of μ2fixed work equally well in an analytical treatment. In a
numerical evaluation, μ2fixed ¼ Q2=ν has the advantage that this
scale is closer to the running scale at which αs is evaluated inside
the integrals for I ½k�ðνÞ.
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½OðνÞSðxQ2=νÞO−1ðνÞ�P
¼ ½OðνÞS½1;0�ðxQ2=νÞO−1ðνÞ þ S½0;1�ðxQ2=νÞ�P
¼ ½OðνÞS½1;0�ðxQ2=νÞO−1ðνÞ − S½1;0�ðxQ2=νÞ�P
¼

X
l

½S½1;0�
l ðxQ2=νÞe−ξopl x − S½1;0�

l ðxQ2=νÞ�P

¼ −
X
l

½S½1;0�
l ðxQ2=νÞ�Pð1 − e−ξ

op
l xÞ: ð234Þ

For ½OðνÞSðμ̄2ÞO−1ðνÞ�1−P, we need a somewhat
different argument. We use Eqs. (176) and (107). Then
we note that ½S½0;1�ðxQ2=νÞ�P ¼ S½0;1�ðxQ2=νÞ according to
Eq. (162) because S½0;1�ðxQ2=νÞ leaves the parton momenta
and flavors unchanged. Then we use Eqs. (184) and (207).
Finally, we use the definition (176) again. This gives

½OðνÞSðxQ2=νÞO−1ðνÞ�1−P¼fOðνÞS½1;0�ðxQ2=νÞO−1ðνÞþS½0;1�ðxQ2=νÞ− ½OðνÞS½1;0�ðxQ2=νÞO−1ðνÞþS½0;1�ðxQ2=νÞ�Pg
¼fOðνÞS½1;0�ðxQ2=νÞO−1ðνÞ− ½OðνÞS½1;0�ðxQ2=νÞO−1ðνÞ�Pg

¼
�X

l

S½1;0�
l ðxQ2=νÞe−ξopl x−

X
l

½S½1;0�
l ðxQ2=νÞ�Pe−ξ

op
l x

�

¼
X
l

½S½1;0�
l ðxQ2=νÞ�1−Pe−ξ

op
l x: ð235Þ

Now we can start with SYðxQ2=ν; νÞ at first order.
Equation (208) gives us the result on the right-hand side
of Eq. (234):

S½1�
Y ðxQ2=ν;νÞ≈−

X
l

½S½1;0�
l ðxQ2=νÞ�Pð1−e−ξ

op
l xÞ: ð236Þ

Recall that the eigenvalue ξl of ξ
op
l , given by Eq. (204), is

of order 1. We will also need Y½1�ðxQ2=ν; νÞ. When we
substitute Eq. (236) into Eq. (174), we obtain

Y½1�ðxQ2=ν; νÞ ¼ −
Z

x

0

dx̄
x̄

X
l

½S½1;0�
l ðx̄Q2=νÞ�Pð1 − e−ξ

op
l x̄Þ:

ð237Þ

Here, and in the remainder of this section, we set the
infrared cutoff μ2f to zero. We notice that the factor
ð1 − e−ξlx̄Þ is small for x̄ ≪ 1 and approaches zero like
x̄ when x̄ → 0. This provides an infrared cutoff for the x̄
integration.
Now look at SYðxQ2=ν; νÞ at second order. We use

Eq. (175):

S½2�
Y ðxQ2=ν; νÞ ¼

Z
x

0

dx̄
x̄
½½OðνÞSðx̄Q2=νÞO−1ðνÞ�P

× ½OðνÞSðxQ2=νÞO−1ðνÞ�1−P�P: ð238Þ

With the results (234) and (235), we obtain

S½2�
Y ðxQ2=ν; νÞ ¼ −

X
l̄;l

Z
x

0

dx̄
x̄
½½S½1;0�

l̄
ðx̄Q2=νÞ�Pð1 − e−ξ

op
l̄
x̄Þ

× ½S½1;0�
l ðxQ2=νÞ�1−Pe−ξ

op
l x�P: ð239Þ

We integrate this to form the contribution to I , Eq. (146),
with two powers of S:

I ½2�ðνÞ ¼
Z

ν

0

dx
x
S½2�
Y ðxQ2=ν; νÞ: ð240Þ

There are potentially two logðνÞ factors from the z

integrations inside the two factors of S½1;0�
l . After expanding

the running couplings in S½1;0�
l , at order αns ðQ2=νÞ there

could be a total of n factors of logðνÞ. Then we integrate
over x and x̄. This could produce two more factors of
logðνÞ, giving lognþ2ðνÞ at order αns ðQ2=νÞ. But what
happens in the x and x̄ integrations that we find based
on Eq. (239)? If x̄ ≪ 1, the factor ð1 − e−ξl̄ x̄Þ is small, so
that the x̄ integration is effectively limited to the range
1≲ x̄. If 1 ≪ x, the factor e−ξl̄x is small, so that the x
integration is effectively limited to the range x≲ 1. We also
have x̄ < x. Thus the net effective integration range is
1≲ x̄ < x≲ 1. This leaves only x̄ ∼ x ∼ 1. There are no
logðνÞ factors from the x̄ and x integrations.
A contribution to I ½2� proportional to αns ðQ2=νÞlognþ1ðνÞ

can be designated leading log. The result (239) shows
that there is no LL contribution to I ½2�. Rather, the LL

contributions to the integral I of SY come from S½1�
Y after

we account for the argument of the strong coupling αs in

S½1�
Y , Eq. (218). This leaves the possibility of a NLL,

αns ðQ2=νÞlognðνÞ, contribution to I ½2�. We will investigate
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the NLL contribution in the following section by looking at

the z integrations in S½2�
Y .

We will also need some qualitative information about the
behavior of Y½2�. From Eq. (171) we have

Y½2�ðxQ2=ν; νÞ ¼
Z

x

0

dx̄
x̄

n
S½2�
Y ðx̄Q2=ν; νÞ

þ Y½1�ðx̄Q2=ν; νÞS½1�
Y ðx̄Q2=ν; νÞ

o
: ð241Þ

Using Eqs. (239), (236), and (237),

Y½2�ðxQ2=ν; νÞ ¼
X
l1;l2

Z
x

0

dx1
x1

Z
x1

0

dx2
x2

×
nhh

S½1;0�
l2

ðx2Q2=νÞ
i
P

	
1 − e−ξ

op
l2
x2



×
h
S½1;0�
l1

ðx1Q2=νÞ
i
1−P

e−ξ
op
l1
x1
i
P

þ
h
S½1;0�
l2

ðx2Q2=νÞ
i
P
ð1 − e−ξ

op
l2
x2Þ

×
h
S½1;0�
l1

ðx1Q2=νÞ
i
P

	
1 − e−ξ

op
l1
x1

o

:

ð242Þ

In both terms we have a factor ð1 − e−ξl2x2Þ so there is an
effective integration range 1≲ x2 < x1 < x. This implies
that Y½2�ðxQ2=ν; νÞ → 0 for x ≪ 1. In the first term, there is
a factor e−ξl1x1, so that the integrand is small for 1 ≪ x1.
However the second term contains no such factor.

The operators S½1;0�
l1

ðx1Q2=νÞ and S½1;0�
l2

ðx2Q2=νÞ can give
us logarithms of their arguments. For this reason,
Y½2�ðxQ2=ν; νÞ can grow slowly, like a power of logðxÞ,
for 1 ≪ x.
If we take x ¼ 1 in Eq. (242), the effective integration

range for x1 and x2 is 1≲ x2 < x1 < 1. Thus x2 ∼ x1 ∼ 1.
Then there are no factors of logðνÞ produced by the

integrations over x1 and x2. Each factor of S½1;0�
l ðQ2=νÞ

contains one factor of logðνÞ. Thus Y½2�ðQ2=ν; νÞ contains
at most 2 factors of logðνÞ.
We can generalize these observations to suggest induc-

tion hypotheses for S½k�
Y and Y½k� for k ≥ 2:

(1) The operator S½k�
Y ðxQ2=ν; νÞ is suppressed by a factor

x times logarithms for x → 0 and by an exponential
e−cx times logarithms for x → ∞. Its only unsup-
pressed region is for x ∼ 1.

(2) The operator Y½k�ðxQ2=ν; νÞ is suppressed by a
factor x times logarithms for x → 0 and grows at
most logarithmically for x → ∞.

(3) The operators S½k�
Y ðQ2=ν; νÞ and Y½k�ðQ2=ν; νÞ each

contain at most k factors of logðνÞ at order αksðQ2=νÞ.
In property 3, we note that the operators S½k�

Y ðQ2=ν; νÞ
and Y½k�ðQ2=ν; νÞ contain higher powers of αsðQ2=νÞ that

arise from expanding the running couplings in their
definitions in powers of αsðQ2=νÞ. This expansion can
yield one more power of logðνÞ per power of αsðQ2=νÞ.
Thus there are at most n powers of logðνÞ at order
αns ðQ2=νÞ.
We have found that these properties hold at order k ¼ 2.

We now establish that they hold for any larger order by
assuming that they hold at order k and showing that they
hold at order kþ 1.

Begin with S½kþ1�
Y . From Eq. (170) we have

S½kþ1�
Y ðxQ2=ν; νÞ
¼

h
Y½k�ðxQ2=ν; νÞ

×
n
OðνÞSðxQ2=νÞOðνÞ − S½1�

Y ðxQ2=ν; νÞ
oi

P

−
Xk−1
j¼2

h
Y½kþ1−j�ðxQ2=ν; νÞS½j�

Y ðxQ2=ν; νÞ
i
P

−
h
Y½1�ðxQ2=ν; νÞS½k�

Y ðxQ2=ν; νÞ
i
P
: ð243Þ

We use Eq. (172) to simplify the first term and Eqs. (174)
and (172) to simplify the last term:

S½kþ1�
Y ðxQ2=ν; νÞ
¼ ½Y½k�ðxQ2=ν; νÞ½OðνÞSðxQ2=νÞOðνÞ�1−P�P

−
Xk−1
j¼2

h
Y½kþ1−j�ðxQ2=ν; νÞS½j�

Y ðxQ2=ν; νÞ
i
P

−
�Z

x

0

dx̄
x̄
½OðνÞSðx̄Q2=νÞOðνÞ�P

× S½k�
Y ðxQ2=ν; νÞ

�
P
: ð244Þ

Now we can use Eq. (235) in the first term and Eq. (234) in
the last term, giving us

S½kþ1�
Y ðxQ2=ν; νÞ
¼

X
l

h
Y½k�ðxQ2=ν; νÞ

h
S½1;0�
l ðxQ2=νÞ

i
1−P

i
P
e−ξ

op
l x

−
Xk−1
j¼2

h
Y½kþ1−j�ðxQ2=ν; νÞS½j�

Y ðxQ2=ν; νÞ
i
P

þ
X
l

�Z
x

0

dx̄
x̄

h
S½1;0�
l ðx̄Q2=νÞ

i
P

	
1 − e−ξ

op
l x̄



× S½k�
Y ðxQ2=ν; νÞ

�
P
: ð245Þ

In the first term, property 2 for Y½k�ðxQ2=ν; νÞ implies that
this term is unsuppressed only for 1≲ x, while the factor
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expð−ξopl xÞ implies that this term is unsuppressed only for
x≲ 1. Thus this term is unsuppressed only for x ∼ 1. In the

second term, property 1 for S½j�
Y ðxQ2=ν; νÞ implies that this

term is unsuppressed only for x ∼ 1. In the third term,

property 1 for S½k�
Y ðxQ2=ν; νÞ implies that this term is

unsuppressed only for x ∼ 1. This gives us property 1

for S½kþ1�
Y ðxQ2=ν; νÞ.

Now set x ¼ 1 in Eq. (245). There is an integration over
x̄ in the third term, but, accounting for the factor
½1 − expð−ξopl x̄Þ�, the integration region is 1≲ x̄ < 1.
That is, x̄ ∼ 1. We can then use property 3 for the operators
that appear in order to count the maximum possible number
of factors of logðνÞ in each term. At order αkþ1

s , this gives
the maximum number of factors of logðνÞ as kþ 1, thus

verifying property 3 for S½kþ1�
Y ðQ2=ν; νÞ.

Now we examine YðxQ2=ν; νÞ. We use Eq. (171) to
write for k ≥ 1,

Y½kþ1�ðxQ2=ν; νÞ

¼
Z

x

0

dx̄
x̄
Y½k�ðx̄Q2=ν; νÞS½1�

Y ðx̄Q2=ν; νÞ

þ
Xk
j¼2

Z
x

0

dx̄
x̄
Y½kþ1−j�ðx̄Q2=ν; νÞS½j�

Y ðx̄Q2=ν; νÞ

þ
Z

x

0

dx̄
x̄
S½kþ1�
Y ðx̄Q2=ν; νÞ: ð246Þ

We use Eq. (172) and (234) to simplify the first term:

Y½kþ1�ðxQ2=ν; νÞ

¼ −
X
l

Z
x

0

dx1
x1

Y½k�ðx1Q2=ν; νÞ
h
S½1;0�
l ðx1Q2=νÞ

i
P

× ð1 − e−ξ
op
l x1Þ

þ
Xk
j¼2

Z
x

0

dx1
x1

Y½kþ1−j�ðx1Q2=ν; νÞS½j�
Y ðx1Q2=ν; νÞ

þ
Z

x

0

dx1
x1

S½kþ1�
Y ðx1Q2=ν; νÞ: ð247Þ

In each term, condition 2 for Y½k�ðx1Q2=ν; νÞ or

Y½kþ1−j�ðx1Q2=ν; νÞ or condition 1 for S½kþ1�
Y ðx1Q2=ν; νÞ

implies that the integrand of the x1 integration is unsup-
pressed only for 1≲ x1. Since x1 < x, Y½kþ1�ðxQ2=ν; νÞ is
unsuppressed only for 1≲ x. This establishes property 2
for Y½kþ1�ðxQ2=ν; νÞ.
Now set x ¼ 1 in Eq. (247). There is an integration over

x1 in each term, but the integration region is 1≲ x1 < 1.
We can then use property 3 for the operators that appear in
order to count the maximum possible number of factors of
logðνÞ in each term. At order αkþ1

s ðQ2=νÞ, this gives the

maximum number of factors of logðνÞ as kþ 1, thus
verifying property 3 for Y½kþ1�ðQ2=ν; νÞ.
We call the properties 1,2, and 3 above the LL expo-

nentiation property of SYðμ2; νÞ, as discussed at the start of
this section. In the following section we analyze the NLL
contributions to SYðμ2; νÞ.

XXII. PARTON SHOWER AT
NEXT-TO-LEADING LOG

We have seen that SYðμ2; νÞ has the proper perturbative
structure to allow g̃ðνÞ as given by a leading order parton
shower using the Λ-ordered DEDUCTOR algorithm to
exponentiate correctly at the leading log level.

First, the operator S½1�
Y ðμ2; νÞ, constructed from one

power of the shower splitting operator Sðμ2Þ has the right
structure to reproduce the known QCD result [35] at LL
accuracy and even at NLL accuracy, provided that the
argument the running coupling αs in Sðμ2Þ is properly
defined. For I ½1�ðνÞ, we can state this in terms of an
expansion in powers of αsðQ2=νÞ. We consider the integral

I ½1�ðνÞ of S½1�
Y ðμ2; νÞ defined in Eq. (233). When the

running αs in I ½1�ðνÞ is expanded in powers of
αsðQ2=νÞ, the coefficients of αns ðQ2=νÞlognþ1ðνÞ, that is
the LL coefficients, are correct and the coefficients of
αns ðQ2=νÞlognðνÞ, the NLL coefficients, are also correct.

Second, each of the operators S½k�
Y ðμ2; νÞ for k ≥ 2 has

the right structure so that in the integral I ½k�ðνÞ, the
coefficient of αns ðQ2=νÞlognþ1ðνÞ, which contributes to
the exponent in g̃ðνÞ at LL accuracy, vanish. That is, the

coefficient I ½k�
n ðνÞ of αnsðQ2=νÞ in I ½k�ðνÞ contains at most n

powers of logðνÞ.
This LL exponentiation property arises from two features

of S½k�
Y ðμ2; νÞ. First, S½k�

Y ðμ2; νÞ is suppressed for μ2 ≫ Q2=ν
and for μ2 ≪ Q2=ν, so that only the integration region
μ2 ∼Q2=ν contributes to I ½k�ðνÞ and no factor of logðνÞ
arises from integrating over μ2 from Q2=ν to Q2. Second,

S½k�
Y ðQ2=ν; νÞ at order αns ðQ2=νÞ contains at most n factors

of logðνÞ.
Now, if the coefficients of αns ðQ2=νÞlognðνÞ in I ½k�ðνÞ

were to vanish for k ≥ 2, then I ½k�ðνÞ would not contribute
to g̃ðνÞ at NLL level. Then the only NLL contributions to
g̃ðνÞ would come from the expansion of the running
coupling in I ½1�ðνÞ. Since these contributions match the
known QCD result [35], we would conclude that the first
order parton shower according to the DEDUCTOR algorithm
generates the known QCD result at NLL accuracy.
Remarkably, this is the case: in I ½k�ðνÞ for k ≥ 2 the

coefficients I ½k�
n ðνÞ of αns ðQ2=νÞ contain at most n − 1

powers of logðνÞ for large ν. The proof of this result, with
exact color, is somewhat involved, so we present it in
Appendix A.
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XXIII. NUMERICAL BEHAVIOR OF I ½2�ðνÞ
We have considered analytically the coefficient I ½k�

n ðνÞ of
½αsðQ2=νÞ=ð2πÞ�n in I ½k�ðνÞ, Eq. (230). We have seen
analytically in Secs. XXI and XXII and in Appendix A

that I ½k�
n ðνÞ for k ≥ 2 contains no more than n − 1 powers of

logðνÞ for large ν.

The first nontrivial example of this is that I ½2�
2 ðνÞ, when

calculated at large logðνÞ, is proportional to logðνÞ plus a
constant but has no log2ðνÞ contribution. Similarly, I ½2�

3 ðνÞ
has at most a log2ðνÞ contribution at large ν. We can check
these results numerically.
We define the second order term in the exponent in g̃ðνÞ,

Eq. (231):

hI ½2�ðνÞi ¼
Z

Q2

0

dμ2

μ2
ð1jS½2�

Y ðμ2; νÞjfp; f; c; cg2Þ: ð248Þ

We expand hI ½2�ðνÞi in powers of αsðQ2=νÞ=ð2πÞ and

calculate numerically the first two coefficients, hI ½2�
2 ðνÞi

and hI ½2�
3 ðνÞi,

hI ½2�ðνÞi ¼ hI ½2�
2 ðνÞi

�
αsðQ2=νÞ

2π

�
2

þ hI ½2�
3 ðνÞi

�
αsðQ2=νÞ

2π

�
3

þ � � � : ð249Þ

The state jfp; f; c; cg2Þ in Eq. (248) is a color singlet,
flavor singlet, qq̄ state with p1 þ p2 ¼ Q. The results are
the same with any quark flavor choice and there is only
one possible color state. The state is normalized to

ð1jfp; f; c; cg2Þ ¼ 1. The operator S½2�
Y ðμ2; νÞ is calculated

using the exact DEDUCTOR splitting functions according to
Eq. (175). We use the exact definition of thrust to calculate
τ in OðνÞ, Eq. (137). The calculation is performed with
full color, not just leading color or the LC+ approximation.

The integrals over scale in hI ½2�
n ðνÞi are infrared convergent

so there is no need to impose a lower cutoff on the shower

scale μ2. Then the coefficients hI ½2�
n ðνÞi are independent

of Q2.

We plot hI ½2�
2 ðνÞi versus logðνÞ as the solid red curve in

Fig. 1. We first note that hI ½2�
2 ðνÞi is small. For instance,

logðνÞ ¼ 8 corresponds roughly to τ ¼ e−8 ≈ 3 × 10−4

in the thrust distribution. For logðνÞ < 8, we find

jhI ½2�
2 ðνÞij≲ 1. Then if we take αs ≈ 0.1, we have

½αs=ð2πÞ�2jhI ½2�
2 ðνÞij≲ 0.0003. The function I ½2�ðνÞ

appears in the exponent of the Laplace transform of the
thrust distribution, but for such a small value of I ½2�ðνÞ, one
would not have needed to exponentiate it.

Our primary concern is the behavior of hI ½2�
2 ðνÞi for very

large logðνÞ.10 Our analytical results indicate that hI ½2�
2 ðνÞi

should be a straight line for large logðνÞ. The numerical
result supports this conclusion. We also evaluate the

integrand for dhI ½2�
2 ðνÞi=d logðνÞ analytically and then

integrate this expression numerically and display the result
as the dashed blue curve in Fig. 1. The analytical result

implies that dhI ½2�
2 ðνÞi=d logðνÞ should approach a constant

for large logðνÞ and the numerical result supports this
conclusion.
In our analysis, we argued that τ̂ − τ ¼ y should be a

good approximation in the second splitting for the purpose
of determining how many powers of logðνÞ can appear in

hI ½2�
2 ðνÞi. We tried calculating hI ½2�

2 ðνÞi with this approxi-
mation. The result is shown as the dotted red line in Fig. 1.
This curve is, as expected, a straight line for large logðνÞ
and has the same slope as the curve for the exact hI ½2�

2 ðνÞi.

FIG. 1. Plot of hI ½2�
2 ðνÞi, Eqs. (248) and (249), versus logðνÞ

(solid red curve). For large logðνÞ the graph is approximately a
straight line, corresponding to only one factor of logðνÞ,
indicating that the shower generates hI ½2�

2 ðνÞi at NLL accuracy.

The dashed blue curve is dhI ½2�
2 ðνÞi=d logðνÞ. The dotted red

curve shows an approximate version of hI ½2�
2 ðνÞi described in the

text. These calculations and calculations of hI ½2�
k ðνÞi in later

figures use full QCD color.

10The function τðfpgmÞ is a complicated function of the parton
momenta. Evaluation of this function becomes numerically
unstable for parton states fpgm that give very small τ. For this
reason, in this and later figures, we limit logðνÞ to logðνÞ < 16,
although in some cases the numerical results appear to be reliable
for larger values of logðνÞ.

SUMMATIONS OF LARGE LOGARITHMS BY PARTON SHOWERS PHYS. REV. D 104, 054049 (2021)

054049-29



We were a bit surprised to find that hI ½2�
2 ðνÞi with the exact

τ̂ − τ differs by a noticeable amount from the result with the
approximate thrust value. The difference is in the direction

of making jhI ½2�
2 ðνÞij smaller. We do not have an analytical

explanation for this behavior.

We also calculated hI ½2�
3 ðνÞi as a numerical integral.

We plot hI ½2�
3 ðνÞi versus logðνÞ as the solid red curve in

Fig. 2. We note first that ½αs=ð2πÞ�3jhI ½2�
3 ðνÞij is small for

logðνÞ < 8 if we take αs ≈ 0.1. Our analytical results
indicate that for large ν the highest power of logðνÞ in

hI ½2�
3 ðνÞi should be log2ðνÞ. This implies that for large ν the

highest power of logðνÞ in dhI ½2�
3 ðνÞi=d logðνÞ should be

log1ðνÞ. The numerical result, graphed as the dashed blue
line in Fig. 2, supports this conclusion.

XXIV. NUMERICAL BEHAVIOR OF THE
THRUST DISTRIBUTION

We have seen that the operator SYðμ2; νÞ directly
generates the Laplace transform g̃ðνÞ of the thrust distri-
bution according to Eq. (231). The first order term

S½1�
Y ðμ2; νÞ in this operator is obtained from the shower

splitting function for a first order Λ-ordered parton shower.
We have further seen that this term generates the known
[35] summation of logarithms of τ at the NLL level as
long as the shower splitting function is suitably defined.

Furthermore, the higher order terms S½k�
Y ðμ2; νÞ obtained

from this first order shower splitting function generate only
contributions beyond the NLL level.
According to Eq. (227), the same result for g̃ðνÞ as in

Eq. (231) is obtained by running the Λ-ordered shower and
measuring the Laplace transform of the thrust distribution.
However, we do not need to take the Laplace transform. We
can simply run the Λ-ordered shower and measure the
thrust distribution gðτÞ, as in Eq. (134). Will this give the
same result as the NLL analytical result listed in Eqs. (221)
and (222)?
In this section, we try this experiment. It is not useful to

set Q2 ¼ M2
Z, which would be relevant for LEP (large

electron positron) experiments because a parton shower
needs an infrared cutoff. We can take the cutoffs on allowed
shower splittings to be Λ > 1 GeV and kT > 1 GeV, but
then there is not much range between ð1 GeVÞ2 and the
starting scaleQ2 of the shower. The result is that there is not
a wide range in τ in which we can examine the dependence
of gðτÞ on logð1=τÞ free of the effects of the infrared
cutoffs. Instead, we retain ð1 GeVÞ2 cutoffs but set
Q2 ¼ ð10 TeVÞ2. We then run the Λ-ordered DEDUCTOR

shower with the LC+ approximation for color [22]. We turn
off the top quark, so that the shower is based on
5-flavor QCD.
We compare τgðτÞ according to DEDUCTOR with τgðτÞ

according to the NLL formula, Eqs. (221) and (222), in
Fig. 3. We see that the DEDUCTOR curve is a bit higher than
the NLL curve around τ ¼ 0.01 and a bit lower at the

FIG. 2. Plot of hI ½2�
3 ðνÞi, Eqs. (248) and (249), versus logðνÞ

(solid red curve). The dashed blue curve is dhI ½2�
3 ðνÞi=d logðνÞ.

For large logðνÞ the graph of dhI ½2�
3 ðνÞi=d logðνÞ is approx-

imately a straight line, indicating that the shower generates

hI ½2�
3 ðνÞi at NLL accuracy.

FIG. 3. Plot of ðτ=σHÞdσ=dτ according to DEDUCTOR with Λ
ordering at Q2 ¼ ð10 TeVÞ2 compared to the NLL expectation,
Eqs. (221) and (222). In DEDUCTOR, we use a cutoff for splittings:
kT > 1 GeV and Λ > 1 GeV. The DEDUCTOR curve is higher
than the NLL curve at τ ≈ 0.01 and lower for small τ. The
DEDUCTOR calculation uses the LC+ approximation for color.
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smallest values of τ. Generally, the results agree to within
about 0.01.
Do these results agree within the expected errors?
(i) The DEDUCTOR shower produces contributions be-

yond the NLL level. If we look at τ ¼ 0.01 so that
logð1=τÞ ¼ 4.6, NNLL terms lack a factor 4.6
compared to NLL terms. A simple calculation shows
that the NLL terms contribute approximately −0.03
to τgðτÞ at τ ¼ 0.01. Thus we might expect that
the NNLL terms in DEDUCTOR would contribute
�0.03=4.6 ≈�0.007 to τgðτÞ. This gives us an error
estimate from terms in DEDUCTOR beyond NLL
of �0.007.

(ii) There are typically about 20 parton splittings be-
tween the 10 TeV scale at which the shower starts
and the 1 GeV scale at which it ends. We cannot be
confident that there are not 0.1% errors for each
splitting resulting from approximations within the
DEDUCTOR code, so we cannot rule out a 2%
systematic error in gðτÞ resulting from these ap-
proximations. A 2% error on the value τgðτÞ ≈ 0.2 at
τ ¼ 0.01 amounts to an error of �0.004 in τgðτÞ.

(iii) The infrared cutoffs have some effect. The most
important effect comes from the limit on the trans-
verse momentum in a splitting, which we set to
kT > 1 GeV. To test for sensitivity to this cutoff,
we change the cut to kT > 3 GeV. In the range
0.0005 < τ < 0.2, we find that this change in cutoff
produces a change in τgðτÞ that is generally smaller
than 0.003. Thus we estimate an error of �0.003 in
τgðτÞ due to the influence of the infrared cutoff.

(iv) The DEDUCTOR splitting kernel omits the β1 term
in Eq. (216) for evaluating the dependence of αsðð1 −
zÞyQ2Þon (1 − z). This changes theDEDUCTOR result
at the NLL level. We examine this effect below.

(v) The LC+ approximation used by default in DEDUC-

TOR is not the same as exact color. This can
introduce spurious terms of order 1=N2

c times
logarithms of 1=τ into the LC+ DEDUCTOR result,
where Nc ¼ 3 is the number of colors. We examine
this effect below.

We examine the effects of missing NLL terms and of
color in Fig. 4. Here the NLL curve is copied from Fig. 3
and the DEDUCTOR curve from Fig. 3 is displayed as a
dashed (black) line. The remaining two curves are modified
versions of the curves in Fig. 3.
We first address the fact that DEDUCTOR omits the β1

term for evaluating the dependence of αsðð1 − zÞyQ2Þ
on (1 − z). This means that in the summation of logari-
thms of logð1=τÞ, DEDUCTOR is missing the term
−ðβ1=β0Þ logðð1 − λ2Þ=ð1 − 2λÞÞ in f2ðλÞ in Eq. (225).
In order to see the effect of this term, we calculate the ratio

rðτÞ ¼ gNLLðτÞ
gmod
NLLðτÞ

; ð250Þ

where gmod
NLLðτÞ is obtained by omitting the term

−ðβ1=β0Þ logðð1 − λ2Þ=ð1 − 2λÞÞ in the calculation of
gðτÞ. Then we correct the DEDUCTOR result for gðτÞ by
multiplying it by rðτÞ. We plot the corrected DEDUCTOR

curve in Fig. 4. We see that the corrected DEDUCTOR curve
is quite close to the uncorrected curve. However the
difference is visible in Fig. 4 and acts in the direction of
reducing the discrepancy between the analytical summation
of logarithms and the numerical DEDUCTOR result.11

We next address the fact that in Fig. 3 we used the default
color approximation in DEDUCTOR, the LC+ approximation
[22]. This approximation is an improvement over the
leading color approximation, but it is far from being exact.
In the LC+ approximation, we replace the exact first
order splitting function Sðμ2Þ ¼ S½1;0�ðμ2Þ þ S½0;1�ðμ2Þ by

an approximate version SLCþðμ2Þ¼S½1;0�
LCþðμ2ÞþS½0;1�

LCþðμ2Þ.
DEDUCTOR has the option of expanding in powers of
Sðμ2Þ − SLCþðμ2Þ and keeping terms up to and including
½Sðμ2Þ − SLCþðμ2Þ�n, where n can be chosen by the user
[31]. In order to assess what difference a more exact
treatment of color could make, we plot in Fig. 4 the result of
calculating the thrust distribution at 10 TeV with n ¼ 2 for

FIG. 4. Plots of ðτ=σHÞdσ=dτ using DEDUCTOR with Λ ordering
at Q2 ¼ ð10 TeVÞ2. The black dashed curve is the DEDUCTOR

curve from Fig. 3. The blue solid curve is the NLL formula from
Fig. 3. The red solid curve is the DEDUCTOR result corrected with
the factor rðτÞ to include more exact αs evolution. The purple
solid curve, with noticeable statistical fluctuations, is the cor-
rected DEDUCTOR result with two units of extra color beyond the
LC+ approximation.

11In a future version of DEDUCTOR, we may add this con-
tribution to the splitting kernel, although its practical effect is
quite small.
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those splittings that have Λ > 10 GeV. We have corrected
this result using the factor rðτÞ from Eq. (250). Of course,
using n ¼ 2 slows the calculation down, increasing the
statistical errors. Within the statistical errors, we find that
improving the color treatment makes no difference.
In summary,we havemade a numerical comparison of the

expected NLL result for the thrust distribution and a direct
calculation using a Λ-ordered parton shower with a global
momentummapping, settingQ2 to ð10 TeVÞ2 so as to allow
logð1=τÞ tobe adequately large toprovidea real test.Wehave
found good agreement within the estimated errors.

XXV. COLOR AND LOGARITHMS

Our analysis in this paper mostly does not examine the
effect of approximating color on the summation of loga-
rithms in the thrust distribution. For instance, the analytical
analysis in Secs. XXI and XXII and the numerical results in
Figs. 1 and 2 use exact QCD color. The DEDUCTOR result in
Fig. 3 is calculated with the LC+ approximation, which is a
numerically very good color approximation for the thrust
distribution, as seen in Fig. 4. It would certainly be of
interest to examine analytically or numerically as in Figs. 1
and 2 whether the use of the LC+ approximation preserves
the NLL accuracy of a parton shower that has NLL
accuracy with exact color. Such a study is beyond the
scope of this paper. However, we provide some brief
comments on color approximations in this section.
Typically, parton shower event generators use the LC

approximation [4,27,28]. In the simplest formulation,
the LC approximation is obtained by using U(3) as the
color group and then dropping all terms suppressed by a
factor 1=N2

c. Then at every step of the shower the color
state fc; c0gm has fc0gm ¼ fcgm and there is a factor
CA=2 for every gluon emission vertex. At some places,
one can include a 1=N2

c correction by changing CA=2
to CF ¼ ðCA=2Þð1 − 1=N2

cÞ.
DEDUCTOR uses the LC+ approximation [22]. The

generator SLCþðμ2Þ of splittings with the LC+ approxima-
tion differs from the generator Sðμ2Þ with full color.12

Define

ΔSðμ2Þ ¼ Sðμ2Þ − SLCþðμ2Þ: ð251Þ

For the first splitting from the initial qq̄ state in eþe−
annihilation, the LC+ approximation is exact in color

ΔSðμ2Þjfp; f; c; cg2Þ ¼ 0: ð252Þ

Furthermore, as noted in Sec. XI, for later splittings the
difference ΔSðμ2Þ is singular only for fixed angle soft

splittings but not for collinear splittings or soft × collinear
splittings [22].
We can illustrate this with an example adapted from a

1993 paper [39] by Gustafson that sorted out the CA=2
versus CF choice for qggq̄ production in electron-positron
annihilation. Let us start with a state containing a quark
with momentum p1, an antiquark with momentum p2 and a
gluon with momentum p3. Now we can emit the fourth,
soft, gluon with momentum p̂4. The other partons have
momenta p̂1, p̂2, p̂3 after the splitting. We take p̂4 to be
very small, so that we can neglect recoil and take p̂i ¼ pi
for i ∈ f1; 2; 3g. We denote the energy of p̂i in the rest
frame of the total momentum Q by Ei and we denote the
angles between p̂i and p̂j in the rest frame of Q by θij. We
assume that θ12 is not small since θ12 ≈ π most probably
and θ12 ≪ 1 is not probable. Without loss of generality, we
can assume that θ13 < θ23. We consider both the possibility
that θ13 is of order 1 and the possibility that θ13 ≪ 1.
For the emission of gluon 4 use just the dipole approxi-

mation for soft gluon emissions. With this approximation,
the emission probability is

Φlk ¼ A0
lkw̄

dipole
lk : ð253Þ

Here w̄dipole
lk is the familiar probability density for emitting a

soft gluon with index 4 from parton lwith interference from
emitting the same soft gluon from a different parton k,

w̄dipole
lk ¼ 4παs

2p̂k · p̂l

p̂4 · p̂kp̂4 · p̂l
: ð254Þ

This probability density is symmetric under interchange of
l with k. In a partitioned dipole shower like DEDUCTOR, as
distinct from an antenna dipole shower line VINCIA [40],
we distinguish the emitting parton l from the dipole partner
parton k by multiplying by a partitioning function A0

lk with
A0
lk þ A0

kl ¼ 1. DEDUCTOR uses

A0
lkðfp̂gmþ1Þ ¼

p̂4 · p̂kp̂l ·Q
p̂4 · p̂kp̂l ·Qþ p̂4 · p̂lp̂k ·Q

; ð255Þ

where Q is the total momentum of the final state.
The emission probability is accompanied by an operator

on the partonic color state. Let us call the color state after
the emission

Clk ¼
X
fc;c0g4

jfcg4iglkðfc; c0g4Þhfc0g4j: ð256Þ

Here jfcg4i are color basis states for qggq̄ states in the
“trace” or “string” basis used in DEDUCTOR [19]. In the
notation of Ref. [19], we will need basis states ½1; i3; i4; 2�
for a state with a quark with index 1 and an antiquark with
index 2 joined by a color string with gluons i3, i4 along the
string. The probability associated with this color state is then

12The LC+ approximation, including the calculation of the
overlap hfc0gmjfcgmi at the end of each event, is computationally
efficient. The code for hfc0gmjfcgmi is available in the DEDUC-
TOR code at [37] and [38].
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TrClk ¼
X
fc;c0g4

hfc0g4jfcg4iglkðfc; c0g4Þ: ð257Þ

The color state of the starting qgq̄ state, in the notation used
for qggq̄ states, is

jfcg3i ¼ j½1; 3; 2�i;
hfc0g3j ¼ h½1; 3; 2�j: ð258Þ

After the emission of the soft gluon, the statistical state is
proportional to

2

CF
C31 ¼ ðj½1; 4; 3; 2�i − j½1; 3; 4; 2�iÞh½1; 4; 3; 2�j

þ j½1; 4; 3; 2�iðh½1; 4; 3; 2�j − h½1; 3; 4; 2�jÞ;
2

CF
C32 ¼ ðj½1; 3; 4; 2�i − j½1; 4; 3; 2�iÞh½1; 3; 4; 2�j

þ j½1; 3; 4; 2�iðh½1; 3; 4; 2�j − h½1; 4; 3; 2�jÞ;
2

CF
C13 ¼ ðj½1; 4; 3; 2�i − j½1; 3; 4; 2�iÞh½1; 4; 3; 2�j

þ j½1; 4; 3; 2�iðh½1; 4; 3; 2�j − h½1; 3; 4; 2�jÞ;
2

CF
C23 ¼ ðj½1; 3; 4; 2�i − j½1; 4; 3; 2�iÞh½1; 3; 4; 2�j

× j½1; 3; 4; 2�iðh½1; 3; 4; 2�j − h½1; 4; 3; 2�jÞ;
2

CF
C12 ¼ j½1; 4; 3; 2�ih½1; 3; 4; 2�j

þ j½1; 3; 4; 2�ih½1; 4; 3; 2�j;
2

CF
C21 ¼ j½1; 3; 4; 2�ih½1; 4; 3; 2�j

þ j½1; 4; 3; 2�ih½1; 3; 4; 2�j: ð259Þ

The trace of these states (using the normalization con-
ventions of Ref. [19]) is

TrC31 ¼ TrC32 ¼ TrC13 ¼ TrC23 ¼ Tk − T×;

TrC12 ¼ TrC21 ¼ T×; ð260Þ

where

Tk ¼ CF;

T× ¼ −
1

2Nc
: ð261Þ

This is with full color. We can use the LC+ approxi-
mation, which is a very simple approximation on the color
operators [22]. Let us define the difference between the
color states obtained with full color and the color states
obtained with the LC+ approximation:

ΔClk ¼ Clk − CLCþ
lk : ð262Þ

Then the LC+ approximation [22] gives

ΔC31 ¼ 0;

ΔC32 ¼ 0;

ΔC13 ¼ −ðCF=2Þj½1; 4; 3; 2�ih½1; 3; 4; 2�j
− ðCF=2Þj½1; 3; 4; 2�ih½1; 4; 3; 2�j;

ΔC23 ¼ −ðCF=2Þj½1; 3; 4; 2�ih½1; 4; 3; 2�j
− ðCF=2Þj½1; 4; 3; 2�ih½1; 3; 4; 2�j;

ΔC12 ¼ ðCF=2Þj½1; 4; 3; 2�ih½1; 3; 4; 2�j
þ ðCF=2Þj½1; 3; 4; 2�ih½1; 4; 3; 2�j;

ΔC21 ¼ ðCF=2Þj½1; 3; 4; 2�ih½1; 4; 3; 2�j
þ ðCF=2Þj½1; 4; 3; 2�ih½1; 3; 4; 2�j: ð263Þ

The traces of these states are

TrΔC31 ¼ TrΔC32 ¼ 0;

TrΔC13 ¼ TrΔC23 ¼ −T×;

TrΔC12 ¼ TrΔC21 ¼ T×: ð264Þ

This shows us what the LC+ approximation leaves out in a
shower that has just two soft gluon emissions:

X
l

X
k≠l

ΦlkTrΔClk ¼ ðΦ12 −Φ13ÞT× þ ðΦ21 −Φ23ÞT×:

ð265Þ

We note first that this is color suppressed compared to the
result using full color,Clk, since a factor 1=ð2NcÞ replaces a
factor CF. Second, we see immediately from Eqs. (253),
(254), and (255) that ðΦ12 −Φ13Þ is not singular when p̂4

becomes collinear with p̂1, p̂3, or p̂2. Similarly ðΦ21 −
Φ23Þ has no collinear singularities. These functions still
have a soft singularity: they have a 1=E2

4 singularity when
E4 → 0 at a fixed θ14, θ24, and θ34.
Although E2

4

P
ΦlkTrΔClk is never singular, it can be

large in certain angular regions. Consider the case that
θ13 ≪ 1. Then E2

4ðΦ21 −Φ23Þ is never large. Additionally,
E2
4ðΦ12 −Φ13Þ is not large when θ14 ≪ θ13 because Φ13

cancels Φ12 in this limit. However, when θ13 ≪ θ14, E2
4Φ13

is small and E2
4Φ12 ∝ 1=θ214 is large when θ13 ≪ θ14 ≪ 1.

Thus we can approximate

X
l

X
k≠l

ΦlkTrΔClk ≈ θðθ13 < θ14ÞΦ12T×: ð266Þ
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This is a good approximation when θ13 ≪ 1 and works also
when θ13 is not small since then θðθ13 < θ14ÞE2

4Φ12 is
never large.
We have seen that the LC+ approximation is sufficient

to capture most of the enhanced contributions to
E2
4

P
ΦlkTrClk, leaving just the contribution in

Eq. (266) (assuming θ13 < θ23). Using the LC+ approxi-
mation, the probability density associated with the emission
of gluon 4 is

X
l

X
k≠l

ΦlkTrC
LCþ
lk ¼ ðΦ31 þΦ32Þ

CA

2
þ ðΦ13 þΦ23ÞCF:

ð267Þ

Compare the terms proportional to Φ31 and Φ13. The
emission probabilities Φ31 andΦ13 contain the same dipole
factor w̄dipole

31 ¼ w̄dipole
13 . They differ in their partitioning

factors A0
31 and A0

13, which are positive and satisfy
A0
31 þ A0

13 ¼ 1. The factor A0
31 is dominant when the

direction of the momentum p̂4 of the new gluon is closer
to the direction of the first gluon than it is to the direction of
the quark. In this case, the color factor in the emission
probability is CA=2. The factor A0

13 is dominant when the
direction of p̂4 is closer to the direction of the quark than it
is to the direction of the first gluon. In this case, the color
factor in the emission probability is CF. The analogous
conclusion applies to the dipole formed by the first gluon
and the antiquark.
Adding the contribution from Eq. (266), we have

(assuming θ13 < θ23)

X
l

X
k≠l

ΦlkTrClk ≈ ðΦ31 þΦ32Þ
CA

2
þ ðΦ13 þΦ23ÞCF

− θðθ13 < θ14ÞΦ12

1

2Nc
: ð268Þ

The added term is important when θ13 ≪ θ14 ≪ 1. In this
region, Φ12 ≈Φ32 and the added term changes the coef-
ficient of Φ32 from CA=2 to CF.
We have discussed the case of four partons in electron-

positron annihilation. For cases with an arbitrary number of
partons, the LC+ approximation remains accurate up to
corrections that may be large in some angular regions but
that lack collinear singularities. The calculation of proba-
bilities by taking the trace of the color density matrix is
simple and is built into DEDUCTOR.
We have emphasized the real emission operators in the

preceding discussion. There are also virtual exchange
operators that create the Sudakov factor in a probability
preserving shower. With full color, the virtual exchange
operators can change the color vectors jfc; c0gmÞ to which
they are applied. However, with the LC+ approximation,
applying the color operators to a vector jfc; c0gmÞ returns

just an eigenvalue times the vector. For gluon emission, the
eigenvalue is either CA=2 (for emission from a gluon)
or CF (for emission from a quark). Thus the Sudakov
operators are simple in the LC+ approximation. They are
part of DEDUCTOR.
Unfortunately, we do not currently know of a way to

enhance the LC+ approximation so as to incorporate
contributions like those in Eq. (266) while still avoiding
the possibility that the revised virtual exchange operators
change the color vectors jfc; c0gmÞ to which they are
applied, making it difficult to build the Sudakov operators
in a computationally manageable way. Although we do not
know of a practical way to put the virtual exchange parts of
ΔS into a Sudakov exponential, it is possible to calculate
the contributions from ΔS perturbatively [31]. Typically,
we have found that these contributions are numerically
small, as in Fig. 4.
The result on the right hand side of Eq. (268) was found,

with a different notation, by Gustafson in 1993 [39] as
being a good approximation to the full qggq̄ cross section.
The analysis used what are now called Lund diagrams. In
order to account for the 1=Nc terms that distinguish CF
from CA=2, Gustafson called on the idea of color coherence
for wide angle soft gluon emission from partons with nearly
collinear momenta. According to color coherence, we are to
add amplitudes, not probabilities. In the formalism of the
present paper, color coherence does not need to be invoked
separately. It is built in because we add color amplitudes
in Eq. (259).
After the present paper was submitted [41,42], Hamilton,

Medves, Salam, Scyboz and Soyez [17] extended the
analysis of Gustafson to more parton emissions in elec-
tron-positron annihilation, providing prescriptions for mak-
ing the choice between color factors CA=2 or CF for real
gluon emissions. This paper omits direct analysis of color
amplitudes or the effect on color amplitudes of the virtual
exchanges needed to build a Sudakov operator.13 For more
than four partons, a direct, term-by-term analysis like that
given above is cumbersome because there are many terms
and because the color state before the soft gluon emission
now has fc0gm ≠ fcgm. For this reason, we do not under-
take a comparison to the results of Ref. [17] here.
We have, however, undertaken a simple calculation to

check the effects on the thrust distribution of degrading
the LC+ approximation to just an LC approximation.
DEDUCTOR has the capability to turn off the LC+ approxi-
mation at some point in the shower by changing the color
group from SU(3) to U(3). With this treatment, a gluon is
the same, in color, as a quark-antiquark pair. Then splittings
with color connections that produce 1=N2

c factors are

13The paper states that for four or more partons “one should
worry about amplitude-level evolution [43], which is beyond the
accuracy and scope of this article.”
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omitted. This gives a variety of LC approximation with a
factor CA=2 factor at each splitting.
In Fig. 5, we compare the thrust distribution calculated

with this U(3) leading color approximation to the thrust
distribution calculated with the LC+ approximation, taken
from Fig. 4. In both cases, we apply the correction factor
rðτÞ that was used in Fig. 4. We see that replacing the LC+
approximation with this LC approximation makes a sub-
stantial difference. The first splitting must be q → qþ g,
for which a factor CF would be more sensible than a factor
CA=2, even though these are equivalent within the LC
approximation. We tried the same calculation with CA=2
replaced by CF in the first splitting. This gives the dashed
curve in Fig. 5. This results in substantially improving the
agreement with the LC+ curve. The discrepancy is reduced
by a factor of roughly 7.

XXVI. kT ORDERING

The default ordering variable in DEDUCTOR is Λ,
Eq. (98). However, there is an option to use kT ordering,14

still with exact color. We can define I ½2�ðνÞwith kT ordering
using Eqs. (175) and (248). We simply set the scale

parameters to μ2 ¼ k2T for the first splitting and μ̄2 ¼ k̄2T
for the second splitting. Then kT ordering means that k̄2T <
k2T in Eq. (175).
With kT ordering, the reasoning supporting NLL accu-

racy of the Λ-ordered shower from Sec. XXI and
Appendix A is lost. However, it appears that we can still

get cancellation of logðνÞ factors in I ½2�
2 ðνÞ at the NLL level.

That is, the integral has contributions proportional to
log4ðνÞ at large logðνÞ, but after these contributions are
summed, only terms proportional to log1ðνÞ and log0ðνÞ
remain. The mechanism is that the contributions from the
two terms specified by the ½� � ��1−P operation in the last line
of Eq. (175), representing real emissions and virtual
emissions, cancel each other. A complete proof is beyond
the scope of this paper, but we present an argument that
makes this conclusion plausible in Appendix B.
We can check the effect of the choice of ordering variable

on the summation of logðνÞ factors in the thrust distribution
by calculating hI ½2�

2 ðνÞi numerically using the DEDUCTOR

shower algorithm with kT ordering and exact color. The
result is shown as the solid red curve in Fig. 6. We see that

hI ½2�
2 ðνÞi is quite small, jhI ½2�

2 ðνÞij < 2 for logðνÞ < 8. For
NLL accuracy, this curve should be linear for large logðνÞ.
To quite good, but not perfect, accuracy, it is.

We have also checked the behavior of hI ½2�
3 ðνÞi as a

function of logðνÞ. The results are shown in Fig. 7. For

large ν the highest power of logðνÞ in hI ½2�
3 ðνÞi should be

log2ðνÞ. This implies that for large ν the highest power

of logðνÞ in dhI ½2�
3 ðνÞi=d logðνÞ should be log1ðνÞ. The

FIG. 5. Plots of ðτ=σHÞdσ=dτ using DEDUCTOR with Λ ordering
at Q2 ¼ ð10 TeVÞ2. All three curves are DEDUCTOR results
corrected with the factor rðτÞ to include more exact αs evolution.
The red solid curve uses the LC+ approximation and is taken from
Fig. 4. In the green solid curve the color approximation is reduced
from LC+ to color using U(3) as the color group. This puts a factor
CA=2 at qqg vertices. The purple dashed curve also uses U(3) as
the color group but inserts a factor CF at the first emission.

FIG. 6. Plot of hI ½2�
2 ðνÞi versus logðνÞ, as in Fig. 1, for the

DEDUCTOR shower algorithm with kT ordering. The blue dashed

curve is dhI ½2�
2 ðνÞi=d logðνÞ.

14For kT ordering, k2T ¼ −k2⊥ where the vector k⊥ is orthogonal
to the momentum pl of the emitting parton and to Q, rather than
being orthogonal to pl and the momentum pk of the dipole
partner parton.
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numerical result, graphed as the dashed blue line in Fig. 7,
supports this conclusion.

Wehave investigatedonly hI ½2�
2 ðνÞi and hI ½2�

3 ðνÞi.Wehave
found results consistent with NLL accuracy for the
DEDUCTOR shower with kT ordering, but there could still

be inconsistencies with NLL accuracy for hI ½k�
n ðνÞi for other

values of k and n. A promising approach to investigating this

issuewouldbe to automate the calculation of hI ½k�
n ðνÞi so that

these functions could be calculated numerically for any not-
too-large values of k and n. We leave this approach to
future work.
We can also look directly at ðτ=σHÞdσ=dτ with

Q2 ¼ ð10 TeVÞ2. We use either DEDUCTOR with its default
Λ ordering or DEDUCTOR with kT ordering, both with LC+
color. The result with Λ ordering, from Fig. 4, includes the
correction factor rðτÞ from Eq. (250). The result with kT
ordering needs no correction factor because k2T in αsðλRk2TÞ
in the DEDUCTOR splitting function is the same as the
ordering variable. We do not include hadronization. Thus
we examine only perturbative effects and the effects of the
shower cutoff. With Λ ordering, the shower stops at
Λ ¼ 1 GeV and there is also a cut that prevents the kT
in any splitting from being smaller than 1 GeV. With kT
ordering, the shower stops at kT ¼ 1 GeV. The result is
shown in Fig. 8. We see that the shower ordering does make
a difference. Although ðτ=σHÞdσ=dτ calculated with kT
ordering is similar to the NLL expectation τgðτÞ from
Eqs. (221) and (222), the difference between these two
results is greater than the expected uncertainties discussed
for Λ ordering in Sec. XXIV.

As an alternative, we can follow the method of Ref. [16]
and calculate ðτ=σHÞdσ=dτ for various values of Q2, and
thus for various values of αsðQ2Þ. We choose Q2 ¼
ð1 TeVÞ2, ð10 TeVÞ2, and ð100 TeVÞ2, corresponding to
αsðQ2Þ ¼ 0.087, 0.069, and 0.058.15 For each value of Q2,
we calculate the expected NLL function τgðτÞ, Eqs. (221)
and (222). Then we plot the ratio

Rðτ; Q2Þ ¼ ðτ=σHÞdσ=dτ
τgðτÞ : ð269Þ

The results are displayed in Fig. 9. In the case
Q2 ¼ ð100 TeVÞ2, there are typically around 100 partons
produced in each event. This causes DEDUCTOR to operate
very slowly, which leads to substantial statistical fluctua-
tions that are visible in the plot.
If the log summation is working at the NLL level, the

ratio plotted should be close to 1 and should get closer to 1
as Q2 increases. We note two features of the results. First,
for any fixed value of Q2, τgðτÞ fails to match the parton
shower result for sufficiently small τ. The value of τ at
which this failure sets in decreases as Q2 grows. For larger
values of τ, but still with τ < 0.1, Rðτ; Q2Þ is approximately
constant:

Rðτ; Q2Þ ≈ R0ðQ2Þ: ð270Þ

FIG. 7. Plot of hI ½2�
3 ðνÞi versus logðνÞ, as in Fig. 2, for the

DEDUCTOR shower algorithm with kT ordering. The blue dashed

curve is dhI ½2�
3 ðνÞi=d logðνÞ.

FIG. 8. Plot of ðτ=σHÞdσ=dτ with Λ ordering and kT ordering at
Q2 ¼ ð10 TeVÞ2. Both are compared to the NLL expectation,
Eqs. (221) and (222). We use a cutoff on the transverse
momentum in splittings: kT > 1 GeV.

15Reference [16] considers αsðQ2Þ as small as 0.005, corre-
sponding to Q2 ≈ ð1070 GeVÞ2 but DEDUCTOR is not capable of
working with values of Q2 as large as this.
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These values (R0 ¼ 1.190, 1.112, 1.070) are shown as
dashed lines in Fig. 9. Second, we note that Rðτ; Q2Þ is
fairly close to 1 and gets closer to 1 asQ2 increases. In fact,
to within about 10%,

R0ðQ2Þ − 1 ≈ 23α2sðQ2Þ: ð271Þ

This is consistent with the expectation that R0ðQ2Þ → 0 as
αsðQ2Þ → 0. We tentatively conclude from these results
that the kT-ordered DEDUCTOR shower is correctly sum-
ming thrust logarithms at the NLL level, even though the
difference between the shower result and the NLL ana-
lytical result is larger for kT ordering than for Λ ordering.

XXVII. EFFECT OF THE MOMENTUM
MAPPING FOR Λ ORDERING

Recall from Sec. XVIII that in a splitting
pl → p̂l þ p̂mþ1, we always have pl ≠ p̂l þ p̂mþ1. In order
to conserve momentum, we need to map the momenta pi
into new momenta p̂i such that

Xmþ1

i¼1

p̂i ¼
Xm
i¼1

pi: ð272Þ

In the DEDUCTOR algorithm, this is accomplished by using
a Lorentz transformation [19]

p̂μ
i ¼ Λμ

νpν
i ; i ∉ fl; mþ 1g: ð273Þ

The Lorentz transformation is defined to be a boost in the
plane of pl and Q. We have found in Sec. XVIII that the
boost angle ω is small, of order y, and that the effect of this
small Lorentz transformation on the thrust is small com-
pared to the order y effect produced by the splitting itself.
For any parton shower, one will need a momentum

mapping that preserves the total momentum. The global
mapping produced by a Lorentz transformation is not the
only possibility. A more widely used local choice is
provided by the Catani-Seymour dipole splitting formalism
[44] or the local mapping in PYTHIA [45]. For the Catani-
Seymour choice, we start with the parton l that splits and its
dipole partner k, with momenta pl and pk. After the
splitting, we have a new parton mþ 1 and new momenta
p̂i, p̂mþ1 and p̂k. The definition is

p̂mþ1 ¼ ð1 − zÞpl þ zypk þ k⊥;
p̂l ¼ zpl þ ð1 − zÞypk − k⊥;
p̂k ¼ ð1 − yÞpk; ð274Þ

with k⊥ · pj ¼ k⊥ · pk ¼ 0. Here z, y, and k⊥ are different
from z, y and k⊥ defined for DEDUCTOR kinematics. The
momenta of the other partons are unchanged:

p̂i ¼ pi i ∉ fl; k;mþ 1g: ð275Þ

With this definition,

pl þ pk ¼ p̂l þ p̂mþ1 þ p̂k: ð276Þ

Thus the total momentum is conserved. We have p̂mþ1 þ
p̂l ¼ pl þ ypk so

y ¼ p̂l · p̂mþ1

pl · pk
: ð277Þ

From p̂2
mþ1 ¼ 0 we derive

−k2⊥ ¼ zð1 − zÞy2pl · pk: ð278Þ

Note that if we start with a two parton state, m ¼ 2, and
let one of the two partons, l, split to produce parton mþ 1,
then there is precisely one parton i with i ∉ fl; mþ 1g in
Eq. (273) and this is the same as parton k in Eq. (274). That
is, the global and local mappings are the same for

S½1�
Y ðμ2; νÞ for m ¼ 2. The operators S½k�

Y ðμ2; νÞ, with k real
or virtual splittings, do depend on the choice of momentum
mapping for k ≥ 2.
The local momentum mapping has a feature for thrust

that one might regard as peculiar. Suppose that parton l is in
the right thrust hemisphere, l ∈ R. Then for a small angle
splitting, the daughter partons l and mþ 1 will also be in
the right hemisphere. In the case that k ∈ R, we split a
dipole that is entirely in R. Then Eqs. (275) and (276) imply

FIG. 9. Ratio of ðτ=σHÞdσ=dτ with kT ordering to the NLL
expectation, τgðτÞ, Eqs. (221) and (222). The ratio is calculated
at Q2 ¼ ð1 TeVÞ2, Q2 ¼ ð10 TeVÞ2, and Q2 ¼ ð100 TeVÞ2.
We use a cutoff on the transverse momentum in splittings: kT >
1 GeV in each case.
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that both τR and τL in Eq. (124) are unchanged by the
splitting, so that τ ¼ τR þ τL is unchanged. Since, in this
class of choices for the dipole that splits, the thrust is not
changed, the real-virtual cancelation between S½1;0�ðμ2Þ and
S½0;1�ðμ2Þ simply removes contributions of these dipoles
from the calculation of the thrust distribution.
With Λ ordering and a local momentum mapping, the

argument in Sec. XXI that the shower sums logarithms of
thrust at the LL level still works, but the argument in
Appendix A for cancellations at the NLL level fails. Thus
we cannot expect a Λ-ordered parton shower that uses a
local momentum mapping following Eqs. (275) and (276)
to properly sum the logarithms of ν at NLL accuracy.
We can check what happens numerically by calculating

hI ½2�
2 ðνÞi, Eq. (248), using the Λ-ordered DEDUCTOR parton

shower algorithm with exact color but with the Catani-
Seymour momentum mapping substituted for the global
momentum mapping. The result is shown as the solid red
curve in Fig. 10. We note immediately that this result is
completely different from the result in Fig. 1: in the range

logðνÞ < 8, jhI ½2�
2 ðνÞij with the global momentum mapping

is less than 1 while with the local mapping it reaches values

greater than 30. Leaving aside the magnitude of hI ½2�
2 ðνÞi, if

the parton shower algorithm with a local momentum
mapping produced NLL accuracy for summing logðνÞ
factors, the graph of hI ½2�

2 ðνÞi would be a straight line,

but it is not. The dashed blue curve is dhI ½2�
2 ðνÞi=d logðνÞ.

This curve is not a constant but rather a straight line.

This implies that at large logðνÞ, hI ½2�
2 ðνÞi is has contribu-

tions up to log2ðνÞ.
We conclude from the combination of the analytical

argument and the numerical results that using a local
momentum mapping destroys the NLL accuracy of the
result from a Λ-ordered parton shower, although LL
accuracy is maintained.

XXVIII. LOCAL MOMENTUM MAPPING
WITH OTHER ORDERINGS

As we have seen in Sec. XXVII, a parton shower
algorithm needs to conserve momentum while accommo-
dating the approximation that a parton that splits to two
partons was on shell before the splitting. DEDUCTOR uses a
global recoil strategy that spreads the needed momentum
over all of the other partons in the event. With a local
momentum mapping in the style of Catani-Seymour,
Eq. (274), the recoil momentum is taken up by a single
parton, possibly a very soft parton. For this reason the
global recoil strategy seems less likely to lead to problems
than the local recoil strategy.
Nevertheless, a local momentum mapping can certainly

work. Indeed, we present an argument in Appendix B that

I ½2�
2 ðνÞ in DEDUCTOR with kT ordering is well behaved. In

this construction, the local and global momentum map-

pings were equivalent in the limits considered. Thus I ½2�
2 ðνÞ

with kT ordering and a local momentum mapping should be
well behaved.

We can investigate this issue by calculating hI ½2�
2 ðνÞi

using two shower algorithms with a local momentum
mapping following Eq. (274). The algorithms we use
follow closely the PANLOCAL shower of Ref. [16], but
with color treated exactly. In the first algorithm that we
use, the parameter β that defines the ordering variable in
the PANLOCAL algorithm is set to β ¼ 0. That corre-
sponds to kT ordering. In the second algorithm, we
choose β ¼ 0.5. Roughly, that is half way between kT
ordering and Λ ordering. Reference [16] claims that these
PANLOCAL showers sum the trust distribution at NLL
accuracy at leading color.
The results are shown in Figs. 11 and 12. In each case, in

the range logðνÞ < 8, jhI ½2�
2 ðνÞij reaches values greater than

10, while for DEDUCTOR with Λ ordering this same
quantity is less than 1. Nevertheless, in each case, we

see that hI ½2�
2 ðνÞi is, to a good approximation, a linear

function of logðνÞ for large logðνÞ. This is consistent with
NLL accuracy for summing logarithms of ν.

In Figs. 13 and 14, we plot hI ½2�
3 ðνÞi for the two

PANLOCAL shower algorithms. To be consistent with

NLL accuracy, hI ½2�
3 ðνÞi at large logðνÞ should not contain

terms logjðνÞ for j ¼ 3 or higher. The numerical results are
consistent with this NLL expectation. In fact, in each case

FIG. 10. Plot of hI ½2�
2 ðνÞi, as in Fig. 1, for the DEDUCTOR

splitting functions with the Catani-Seymour local momentum

mapping [44]. hI ½2�
2 ðνÞi is approximately quadratic in logðνÞ,

indicating that I ½2�
2 ðνÞ changes the NLL result.
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the highest power of logðνÞ numerically is log1ðνÞ. The
coefficient of log2ðνÞ vanishes to a good approximation.
This tells us that the average value of the scale of the
coupling inside the integrations is about Q2=ν.

FIG. 11. Plot of hI ½2�
2 ðνÞi, as in Fig. 1, for a shower with kT

(β ¼ 0.0) ordering and the Catani-Seymour local momentum
mapping [44] according to an algorithm based on the PANLOCAL
dipole shower of Ref. [16] with exact color. For large logðνÞ,
hI ½2�

2 ðνÞi is approximately linear in logðνÞ, indicating that I ½2�
2 ðνÞ

leaves the NLL result intact.

FIG. 12. Plot of hI ½2�
2 ðνÞi, as in Fig. 1, versus logðνÞ, for a

shower with β ¼ 0.5 ordering and the Catani-Seymour local
momentum mapping [44] according to an algorithm based on the
PANLOCAL dipole shower of Ref. [16] with exact color. For large

logðνÞ, hI ½2�
2 ðνÞi is approximately linear in logðνÞ, indicating that

I ½2�
2 ðνÞ leaves the NLL result intact.

FIG. 13. Plot of hI ½2�
3 ðνÞi, as in Fig. 2, for a shower with kT

(β ¼ 0.0) ordering and the Catani-Seymour local momentum
mapping [44] according to an algorithm based on the PANLOCAL
dipole shower of Ref. [16] with exact color.

FIG. 14. Plot of hI ½2�
3 ðνÞi, as in Fig. 2, versus logðνÞ for a

shower with β ¼ 0.5 ordering and the Catani-Seymour local
momentum mapping [44] according to an algorithm based on the
PANLOCAL dipole shower of Ref. [16] with exact color.
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XXIX. CONCLUSIONS

In Secs. II through X, we presented a general program
for gaining direct access to how a parton shower sums large
logarithms in either hadron-hadron, electron-hadron, or
electron-positron collisions. We provided some summariz-
ing remarks on the general program in Sec. X. In Secs. XI
through XXVIII, we applied this program to electron-
positron annihilation. We have limited ourselves to just one
example, the thrust distribution. We have, however, looked
at results for more than one shower algorithm.
The method that we propose works with the appropriate

integral transform of the distribution of interest. In this case,
we need the Laplace transform g̃ðνÞ, Eq. (126), of the thrust
distribution. We seek to find how g̃ðνÞ behaves for large ν.
We rearrange the cross section calculation so as to write

g̃ðνÞ in the form from Eq. (231),

g̃ðνÞ ¼ expðð1jIðνÞjfp; f; c; cg2ÞÞ: ð279Þ

Here jfp; f; c; cg2Þ is a color and flavor singlet qq̄ basis
state with p1 þ p2 ¼ Q and the operator IðνÞ is an integral,

IðνÞ ¼
Z

Q2

μ2f

dμ̄2

μ̄2
SYðμ̄2; νÞ: ð280Þ

We expand IðνÞ in powers of the shower evolution operator
Sðμ2Þ. Then the coefficients I ½k�ðνÞ, proportional to k
powers of Sðμ2Þ, can be further expanded as

I ½k�ðνÞ ¼
X∞
n¼k

�
αsðQ2=νÞ

2π

�
n

I ½k�
n ðνÞ; ð281Þ

in which the strong coupling is evaluated at a fixed scale
Q2=ν. Thus the shower result is quite directly expressed in
exponentiated form in terms of an operator IðνÞ with a
known perturbative expansion.
For the DEDUCTOR shower algorithm with either Λ or kT

ordering, I ½1�ðνÞ provides the standard NLL summation of

logðνÞ factors.16 In order for the contributions I ½k�
n ðνÞ for

k ≥ 2 to not spoil the NLL summation, I ½k�
n ðνÞ should not

contain more than n − 1 powers of logðνÞ.
For the DEDUCTOR shower algorithm with its default Λ

ordering, we find analytically that I ½k�
n ðνÞ does not contain

more than n − 1 powers of logðνÞ.
We have no such result for DEDUCTOR with kT ordering,

but we outline an argument in Appendix B that real-virtual

cancellations in I ½2�
2 ðνÞ reduce its large ν behavior from

log4ðνÞ to log1ðνÞ.

We evaluate I ½2�
2 ðνÞ numerically. In order not to spoil

NLL summation, its large ν behavior should be no more
than log1ðνÞ. For the DEDUCTOR algorithm with Λ ordering
but with a local momentum mapping instead of the global
momentum mapping used in DEDUCTOR, we find log2ðνÞ
behavior, implying a failure of NLL accuracy (Fig. 10). In
other cases, we find log1ðνÞ behavior, consistently with
NLL accuracy. These cases include DEDUCTOR-Λ (Fig. 1),
DEDUCTOR-kT (Fig. 6), PANLOCAL-(β ¼ 0) (Fig. 11), and
PANLOCAL-(β ¼ 0.5) (Fig. 12).

We also evaluate I ½2�
3 ðνÞ numerically for the shower

algorithms DEDUCTOR-Λ (Fig. 2), DEDUCTOR-kT (Fig. 7),
PANLOCAL-(β ¼ 0) (Fig. 13), and PANLOCAL-(β ¼ 0.5)
(Fig. 14). In each case, we find large logðνÞ behavior with
no more than 2 powers of logðνÞ, consistently with NLL
accuracy.
We emphasize in this paper writing the appropriate

integral transform of the distribution of interest, such as
the thrust distribution, as an exponential and examining the
exponent IðνÞ. However, it is also possible to simply look
directly at the distribution of interest as it is generated by a
given parton shower. For this, one needs to simulate
collisions at large values of Q2. We have not pushed this
method to nearly as large a value of Q2 as in Ref. [16].
However, we find that, at least for electron-positron
annihilation, this direct method can be useful.
Specifically, we examine directly the thrust distribution

τgðτÞ for DEDUCTOR with Λ and kT ordering, using
Q2 ¼ ð10 TeVÞ2. With Λ ordering, this works well
(Figs. 3 and 4). With kT ordering (Fig. 8), the agreement
with the analytic NLL expectation is not as good. However,
when we compare τgðτÞ to the NLL expectation at a
sequence of values of Q2, we find what appears to be
convergence to the NLL result as Q2 increases (Fig. 9).

For both analytical and numerical analyses of I ½k�
n ðνÞ,

we have used exact QCD color. For direct calculations
of the thrust distribution using DEDUCTOR we have used
the LC+ approximation for color. We have seen in
Fig. 4 that the LC+ approximation is numerically very
accurate for the thrust distribution, although we have
noted in Sec. XXV that the LC+ approximation may

change the coefficients of some logðνÞ factors in I ½k�
n ðνÞ

from what they are with full color. We have also seen in
Sec. XXV that the use of just the leading color approxi-
mation can lead to loss of accuracy if one does not
carefully adjust the choice between CF and CA=2, as
studied in Ref. [17].
There are several avenues available for future research

that extends the results of this paper.
First, the method of this paper applies to several

observables in electron-positron annihilation. We have
tried variations on the shower algorithm examined, but
have looked at only one observable, the thrust distribution.

16The current DEDUCTOR code with Λ ordering, as distinct
from the algorithm that it is based on, lacks the term with
coefficient β1 needed to evaluate the dependence of αsðð1 −
zÞyQ2Þ on (1 − z). This changes the DEDUCTOR result at the NLL
level.
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It is certainly worthwhile to see what patterns emerge if we
look at other observables.
Second, the method developed in Secs. II through X

applies to observables in hadron-hadron collisions as well
as in electron-positron collisions. It is of interest to see how
this method works in practice for some hadron-hadron
observables, starting with the kT distribution in the Drell-
Yan process.
Third, we construct numerical implementations of

I ½2�
2 ðνÞ and I ½2�

3 ðνÞ for the particular observable examined
and for several shower algorithms. This allows one to test

numerically if the large ν behaviors of I ½2�
2 ðνÞ and I ½2�

3 ðνÞ
are consistent with NLL summation. When we find for a
certain shower algorithm that NLL summation fails at the

level of I ½2�
2 ðνÞ or I ½2�

3 ðνÞ, then NLL summation fails for
that shower algorithm and observable. However, if NLL

summation is not spoiled by I ½2�
2 ðνÞ or I ½2�

3 ðνÞ, it could still

fail in I ½k�
n ðνÞ for some larger values of k and n. Thus it

would be valuable to have numerical implementations of

I ½k�
n ðνÞ for some larger values of k and n. Then one would

have more stringent numerical tests of NLL summation for
a given shower algorithm and a given observable.
Fourth, it would be helpful to have analytical insight into

thebehaviorof theoperatorsI ½k�ðνÞ fork ≥ 3 in cases that are
similar to the thrust distribution using a kT-ordered shower.
Fifth, it would be worthwhile to examine in detail the

effect of using the LC+ approximation for color instead of
exact color for maintaining LL or NLL summation of large
logarithms.
Sixth, although the LC+ approximation for color is

numerically quite accurate in cases like that exhibited in
Fig. 4, we have seen in Eq. (266) that it leaves out some
contributions that are potentially important. Thus it would
be worthwhile to find an improved approximation for color
in a parton shower.
We close with the observation that it is expecting a lot

to expect that a first order shower algorithm will sum
logarithms at the LL or NLL level. If we had a parton
shower based on splitting functions at order αNs [18], then
we could expect to correctly produce contributions to IðνÞ
of order αns logjðνÞ with n ≤ N, j ≤ nþ 1. We might not
correctly produce contributions of order αns logjðνÞ with
n > N, j ≤ nþ 1 because we lack the order αns contribu-
tions to the shower splitting functions. However, contribu-
tions of order αns logjðνÞ with j > nþ 1 should vanish
because these contributions can never be provided by αns
contributions to the shower splitting functions. Currently,
all that we have (in several variations) is a first order
shower, N ¼ 1. Thus we can expect to correctly produce
contributions of order α1s log2ðνÞ and α1s log1ðνÞ. We can also
expect to obtain exponentiation of logarithms of ν: con-
tributions of order αns logjðνÞ with j > nþ 1 should vanish.
With care, we can hope to have LL or NLL summation of

logðνÞ factors, but this relies on incorporating the most
important parts of higher order splitting operators into the
first order operator S.
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APPENDIX A: STRUCTURE OF SY

AT NLL ACCURACY

We examine S½k�
Y ðxQ2=μÞ for x of order 1 and k ≥ 2. We

prove that this operator has at most n − 1 factors of logðνÞ
at order αns ðQ2=νÞ.
Recall from Sec. XXI that Y½k�ðxQ2=μÞ for x of order 1

and k ≥ 2 has at most n factors of logðνÞ at order αns ðQ2=νÞ.
We also note that S½1;0�

l ðxQ2=νÞ for x of order 1 has one
power of logðνÞ at order αsðQ2=νÞ, where the logðνÞ factor
arises from an integration dð1 − zÞ=ð1 − zÞ down to a
lower limit proportional to 1=ν, as in Eq. (215). Thus

S½1;0�
l ðxQ2=νÞ for x of order 1 has at most n powers of

logðνÞ at order αns ðQ2=νÞ.
To proceed, we prove that S½k�

Y ðxQ2=μÞ with k ¼ 2

contains at most n − 1 factors of logðνÞ at order
αns ðQ2=νÞ and we prove that if this property holds for
k ¼ 2; 3;…; N, then it holds for k ¼ N þ 1.

Consider Eq. (245) for S½kþ1�
Y ðxQ2=ν; νÞ for k ≥ 2. In the

first term, at order αkþ1
s ðQ2=νÞ, there are k powers of logðνÞ

from Y½k� and one power from S½1;0�
l . In the second term (if

k ≥ 3) at order αkþ1
s ðQ2=νÞ there are there are kþ 1 − j

powers of logðνÞ from Y½kþ1−j� and j − 1 powers from S½j�
Y ,

for a total of just k powers of logðνÞ. That is, this
contribution is NNLL. In the third term, at order

αkþ1
s ðQ2=νÞ there is one power of logðνÞ from S½1;0�

l and

k − 1 powers of logðνÞ from S½k�
Y , for a total of k powers of

logðνÞ. That is, this contribution is NNLL. If we expand the
NNLL contributions to higher order in αsðQ2=νÞ, we add
just one power of logðνÞ per αs, so the contributions remain
NNLL. This gives us

S½kþ1�
Y ðxQ2=ν; νÞ
¼

X
l

h
Y½k�ðxQ2=ν; νÞ

h
S½1;0�
l ðxQ2=νÞ

i
1−P

i
P
e−ξ

op
l x

þ NNLL: ðA1Þ

This leaves us with an NLL contribution if the NLL
contribution does not cancel. This result does not include
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S½2�
Y . For S½2�

Y , Eq. (239) gives us 2 powers of logðνÞ at order
α2sðQ2Þ. This is an NLL contribution if the NLL contribu-
tion does not cancel.
If we use Eq. (A1), then we need information on Y½k�. We

can use Eq. (247) for Y½kþ1�ðxQ2=ν; νÞ for k ≥ 1. In the first
term at order αkþ1

s ðQ2=νÞ there are k powers of logðνÞ from
Y½k� and one power of logðνÞ from S½1;0�

l , giving us a total
of kþ 1 powers of logðνÞ. This is an NLL contribution. In
the second term (for k ≥ 2) at order αkþ1

s ðQ2=νÞ there are

kþ 1 − j powers of logðνÞ from Y½kþ1−j� and j − 1 powers

of logðνÞ from S½j�
Y , giving us a total of k powers of logðνÞ.

This is an NNLL contribution. In the third term at order

αkþ1
s ðQ2=νÞ there are k powers of logðνÞ from S½kþ1�

Y . This
is an NNLL contribution. Again, if we expand the NNLL
contributions to higher order in αsðQ2=νÞ, we add just one
power of logðνÞ per αs, so the contributions remain NNLL.
This leaves us with

Y½kþ1�ðxQ2=ν; νÞ ¼ −
X
l

Z
x

0

dx1
x1

Y½k�ðx1Q2=ν; νÞ
h
S½1;0�
l ðx1Q2=νÞ

i
P
ð1 − e−ξ

op
l x1Þ þ NNLL: ðA2Þ

This derivation does not include Y½1�. For Y½1� we can use Eq. (237), which gives us just Eq. (A2) with Y½0� replaced by 1 and
no NNLL additional contribution.
Equation (A2) gives us a recursion relation that we can solve to NLL accuracy in the form

Y½k�ðxQ2=ν; νÞ ¼ ð−1Þk
X
l1…lk

Z
x

0

dx1
x1

Z
x1

0

dx2
x2

� � �
Z

xk−1

0

dxk
xk

h
S½1;0�
lk

ðxkQ2=νÞ
i
P

	
1 − e−ξ

op
lk
xk


� � �

×
h
S½1;0�
l2

ðx2Q2=νÞ
i
P

	
1 − e−ξ

op
l2
x2

h

S½1;0�
l1

ðx1Q2=νÞ
i
P

	
1 − e−ξ

op
l1
x1


þ NNLL: ðA3Þ

We can substitute this solution for Y½k� into Eq. (A1) to give us

S½kþ1�
Y ðx0Q2=ν; νÞ ¼ ð−1Þk

X
l0…lk

Z
x0

0

dx1
x1

Z
x1

0

dx2
x2

� � �
Z

xk−1

0

dxk
xk

hh
S½1;0�
lk

ðxkQ2=νÞ
i
P

	
1 − e−ξ

op
ln
xk


� � �

×
h
S½1;0�
l2

ðx2Q2=νÞ
i
P

	
1 − e−ξ

op
l2
x2

h

S½1;0�
l1

ðx1Q2=νÞ
i
P

	
1 − e−ξ

op
l1
x1

h

S½1;0�
l0

ðx0Q2=νÞ
i
1−P

i
P
e−ξ

op
l0
x0

þ NNLL: ðA4Þ

The explicit exponential factors restrict the xi integrations
to xi of order 1 (as we have already seen). We now want to
find how many factors of logðνÞ are contained in the

operators S½1;0�
l ðxQ2=νÞ. Since logðx=νÞ is equivalent for

this purpose to logð1=νÞ when x is of order 1, we can
replace all of the xi factors in the arguments of

S½1;0�
l ðxQ2=νÞ by 1.
In Eq. (A4), we have factors expð−ξ̂opl xiÞ. The param-

eters ξl, are defined in Eq. (204). They are close to 1: ξl − 1
is proportional to ½1 − cosðθðl; n⃗TÞÞ�. It is a good approxi-
mation to take the thrust axis n⃗T to be the direction of either
the quark or the antiquark in the q − q̄ state at the start of

the shower. Then the angle between p⃗l at a later stage of the
shower and n⃗ is determined by the emission angles at the
intervening stages. But in order to accumulate the maximal
number of logðνÞ factors in these splittings, all of these
emission angles must be small. That is, if we expand
expð−ξlxiÞ in powers of ½1 − cosðθÞ�, where θ is one of the
splitting angles, then a factor ½1 − cosðθÞ� will eliminate a
logðνÞ factor in an integration d cosðθÞ=½1 − cosðθÞ� with
limits analogous to the limits in Eq. (114). We conclude that
for the purpose of our present NLL calculation we can set
all of the ξopl factors in Eqs. (A4) to 1.
These changes gives us

S½kþ1�
Y ðx0Q2=ν; νÞjfp; f; c; c0gmÞ ¼ ð−1Þk

X
l0…lk

Z
x0

0

dx1
x1

Z
x1

0

dx2
x2

� � �
Z

xk−1

0

dxk
xk

hh
S½1;0�
lk

ðQ2=νÞ
i
P
ð1 − e−xkÞ � � �

×
h
S½1;0�
l2

ðQ2=νÞ
i
P
ð1 − e−x2Þ

h
S½1;0�
l1

ðQ2=νÞ
i
P
ð1 − e−x1Þ

h
S½1;0�
l0

ðQ2=νÞ
i
1−P

i
P
e−x0

× jfp; f; c; c0gmÞ þ NNLL: ðA5Þ

ZOLTÁN NAGY and DAVISON E. SOPER PHYS. REV. D 104, 054049 (2021)

054049-42



The first S½1;0�
l ðQ2=νÞ factor in Eq. (A5) is

½S½1;0�
l0

ðQ2=νÞ�1−P ¼ S½1;0�
l0

ðQ2=νÞ − ½S½1;0�
l0

ðQ2=νÞ�P:

The contribution from ½S½1;0�
l0

ðQ2=νÞ�P is rather simple and
we will consider it later.
We begin by considering the contribution from

S½1;0�
l0

ðQ2=νÞ. This operator, acting on the state
jfp; f; c; c0gmÞ, produces a linear combination of states
with mþ 1 partons, jfp̂; f̂; ĉ; ĉ0gmþ1Þ,

Xm
l0¼1

S½1;0�
l0

ðQ2=νÞe−x0 jfp; f; c; c0gmÞ

≈ −
Xm
l0¼1

Xm
k0¼1
k0≠l0

C0ðl0; k0Þjfc; c0gmÞ

×
Z

dϕ0

2π

Z
dz0

1 − z0

αsðλRð1 − z0ÞQ2=ðνal0ÞÞ
2π

× Θ
�

al0
νϑðl0; k0Þ

< 1 − z0 < 1

�

× e−x0 jfp̂; f̂gmþ1Þ: ðA6Þ

Here we use the approximate form of S½1;0�ðQ2=νÞ given in
Eq. (109). We split parton l0 with dipole partner parton k0,
creating a new parton mþ 1, which we consider to be a
gluon. The color operator is

C0ðl0; k0Þ ¼ Tl0 ⊗ T†
k0
þ Tk0 ⊗ T†

l0
; ðA7Þ

as defined below Eq. (109). We have specified a scale
argument based on the transverse momentum for the
splitting for αs. The new momentum p̂mþ1 and the new
momentum p̂l are given by the splitting variables y ¼ 1=ν,
z0 and ϕ0. The new momenta p̂i for i ≠ l0, mþ 1 are
slightly different from the starting momenta, as specified by
the momentum mapping.
Let us consider what the one of the operators,

½S½1;0�
li

ðQ2=νÞ�P, in Eq. (A5) does to this state. We consider
the quantity

jAiÞ ¼
Xmþ1

li¼1

½S½1;0�
li

ðQ2=νÞ�Pð1 − e−xiÞjfp̂; f̂; ĉ; ĉ0gmþ1Þ:

ðA8Þ

Again, we use the approximate form of S½1;0�ðQ2=νÞ given
in Eq. (109), so that

jAiÞ ≈ −
Xmþ1

l¼1

Xmþ1

k¼1
k≠l

Cðl; kÞ

×
Z

dϕ
2π

Z
dz

1 − z
αsðλRð1 − zÞQ2=ðνâlÞÞ

2π

× Θ
�

1

νϑ̂ðl; kÞ <
1 − z
âl

<
1

âl

�

× ð1 − e−xiÞjfp̂; f̂; ĉ; ĉ0gmþ1Þ: ðA9Þ

Here the hats in ϑ̂ðl; kÞ and âl indicate that these quantities
are based on the momenta in jfp̂; f̂gmþ1Þ. In Eq. (A9), we
split parton l with dipole partner parton k, creating a new
partonmþ 2, which we consider to be a gluon.17 However,
the ½� � ��P operation, Eqs. (157) and (158), returns us to the
starting momentum and flavor state jfp̂; f̂gmþ1Þ. With the
½� � ��P operation, Eq. (159), the color operator is

Cðl; kÞ ¼ ½Tl ⊗ T†
k þ Tk ⊗ T†

l �P
¼ 1 ⊗ Tl · Tk þ Tl · Tk ⊗ 1: ðA10Þ

In the first term in the second line, the operator Tl · Tk
operates on the bra color state and leaves the number of
partons in the color state unchanged. The operator inserts a
color matrix Ta with gluon color index a on line l and
another Ta on line k. The dot in Tk · Tl indicates a sum
over a. In the second term, the same operator is applied to
the bra state.
There is an integration over the splitting variables ϕ and

z. It will prove helpful to define a function Lðw; uÞ given by
performing this integration,

Lðw; uÞ ¼
Z

2π

0

dϕ
2π

Z
1=u

1=w

dx
x
αsðλRxQ2=νÞ

2π
: ðA11Þ

This function is to be expanded in powers of αsðQ2=νÞ.
At lowest order, this integration gives simply
½αs=ð2πÞ� logðw=uÞ. At higher orders in an expansion in
powers of αsðQ2=νÞ the result is more complicated. With
this notation,

jAiÞ ≈ −
Xmþ1

l¼1

Xmþ1

k¼1
k≠l

Cðl; kÞLðνϑ̂ðl; kÞ; âlÞ

× ð1 − e−xiÞjfp̂; f̂; ĉ; ĉ0gmþ1Þ: ðA12Þ

We break up the sums in the form

17We omit splittings g → qq̄ since these splittings lack a soft
singularity. For a q → qg or q̄ → q̄g splitting from an mþ 1
parton state, the daughter gluon is labeled mþ 2.
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jAiÞ ≈ −
�Xm

l¼1
l≠l0

Xmþ1

k¼1
k≠l

Cðl; kÞLðνϑ̂ðl; kÞ; âlÞ þ
Xm
k¼1
k≠l0

Cðl0; kÞLðνϑ̂2ðl0; kÞ; âl0Þ þ
Xm
k¼1
k≠l0

Cðmþ 1; kÞLðνϑ̂2ðmþ 1; kÞ; âmþ1Þ

þ Cðl0; mþ 1ÞLðνϑ̂2ðl0; mþ 1Þ; âl0Þ þ Cðmþ 1; l0ÞLðνϑ̂ðmþ 1; l0Þ; âmþ1Þ
�
ð1 − e−xiÞjfp̂; f̂; ĉ; ĉ0gmþ1Þ: ðA13Þ

Now, as long as neither l nor k equals mþ 1, the angle
variable ϑ̂ðl; kÞ is very close to the corresponding angle
variable ϑðl; kÞ in the state jfp; f; c; c0gmÞ before the first
splitting. The angle variable ϑ̂ðmþ 1; kÞ for k ≠ l0 is very
close to ϑðl0; kÞ in the state before the first splitting, since
partons l0 and mþ 1 are nearly collinear in the integration
region that can lead to a logðνÞ factor in the first splitting.
Thus we regard these angles as fixed when calcula-

ting S½kþ1�
Y ðx0Q2=ν; νÞjfp; f; c; c0gmÞ. On the other hand,

ϑ̂ðl0; mþ 1Þ is the angle variable for the first splitting and is
thus an integration variable in this calculation. Integrating
over this variable can produce a logðνÞ factor. Thus we treat
ϑ̂ðl0; mþ 1Þ as potentially small in Eq. (A13), but we treat
the other angle variables as being finite. For the purpose of
finding logðνÞ factors, we simply replace these finite angle
variables by 1. These substitutions give us

jAiÞ ≈ −
�Xm

l¼1
l≠l0

Xmþ1

k¼1
k≠l

Cðl; kÞLðν; âlÞ þ
Xm
k¼1
k≠l0

Cðl0; kÞLðν; âl0Þ

þ
Xm
k¼1
k≠l0

Cðmþ 1; kÞLðν; âmþ1Þ

þ Cðl0; mþ 1ÞLðνϑ̂ðl0; mþ 1Þ; âl0Þ

þ Cðl0; mþ 1ÞLðνϑ̂ðl0; mþ 1Þ; âmþ1Þ
�

× ð1 − e−xiÞjfp̂; f̂; ĉ; ĉ0gmþ1Þ: ðA14Þ

In two of the terms in Eq. (A14), the parameter âmþ1

appears. This parameter is large when the momentum
fraction 1 − z0 of partonmþ 1 in the first splitting is small:

âmþ1 ≈
al0

1 − z0
: ðA15Þ

We also note that the angle variable ϑ̂ðl0; mþ 1Þ is
proportional to 1=ð1 − z0Þ according to Eq. (113). We have

ϑ̂ðl0; mþ 1Þ ≈ al0
νð1 − z0Þ

: ðA16Þ

Combining these equations gives us

âmþ1 ≈ νϑ̂ðl0; mþ 1Þ: ðA17Þ

With this replacement, the function L, Eq. (A11), in the last
term in Eq. (A14) is approximately

Lðνϑ̂ðl0; mþ 1Þ; âmþ1Þ ≈ Lðâmþ1; âmþ1Þ ¼ 0: ðA18Þ

In the fourth term in Eq. (A14), we use this replacement to
eliminate ϑ̂ðl0; mþ 1Þ in favor of âmþ1. With these sub-
stitutions, we have

jAiÞ ≈ −
�Xm

l¼1
l≠l0

Xmþ1

k¼1
k≠l

Cðl; kÞLðν; âlÞ þ
Xm
k¼1
k≠l0

Cðl0; kÞLðν; âl0Þ

þ
Xm
k¼1
k≠l0

Cðmþ 1; kÞLðν; âmþ1Þ

þ Cðl0; mþ 1ÞLðâmþ1; âl0Þ
�

× ð1 − e−xiÞjfp̂; f̂; ĉ; ĉ0gmþ1Þ: ðA19Þ

Using the definition (A11) of Lðw; uÞ, this function in
the last term can be written as

Lðâmþ1; âl0Þ ¼ −Lðν; âmþ1Þ þ Lðν; âl0Þ: ðA20Þ

In the sum in the second term in Eq. (A19) we can add and
subtract a contribution from k ¼ mþ 1. After adding this
contribution, the sum includes k ¼ mþ 1, so that this sum
can be combined with the sums in the first term. Then in the
first termwe can include l ¼ l0 in the sum over l. In the third
term in Eq. (A19) we can add and subtract a contribution
from k ¼ l0, so that after adding this contribution the sum
includes k ¼ l0. With these changes, we have

jAiÞ ≈ −
�Xm

l¼1

Xmþ1

k¼1
k≠l

Cðl; kÞLðν; âlÞ

þ
Xm
k¼1

Cðmþ 1; kÞLðν; âmþ1Þ

− 2Cðl0; mþ 1ÞLðν; âmþ1Þ
�

× ð1 − e−xiÞjfp̂; f̂; ĉ; ĉ0gmþ1Þ: ðA21Þ

In the first term in Eq. (A21), we can use color
conservation to write
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Xmþ1

k¼1
k≠l

Cðl; kÞ ¼
Xmþ1

k¼1
k≠l

½Tl · Tk ⊗ 1þ 1 ⊗ Tl · Tk�

¼ −½Tl · Tl ⊗ 1þ 1 ⊗ Tl · Tl�
¼ −2Cl½1 ⊗ 1�; ðA22Þ

where Cl ¼ CA if parton l is a gluon and Cl ¼ CF if parton
l is a quark or antiquark. The same applies to the second
term:

Xm
k¼1

Cðmþ 1; kÞ ¼ −2CA½1 ⊗ 1�; ðA23Þ

where we have used Cmþ1 ¼ CA since parton mþ 1 must
be a gluon in order to give a leading logðνÞ contribution.
These substitutions give us

jAiÞ ≈
�Xm

l¼1

2Cl½1 ⊗ 1�Lðν; âlÞ

þ 2½CA½1 ⊗ 1� þ Cðl0; mþ 1Þ�Lðν; âmþ1Þ
�

× ð1 − e−xiÞjfp̂; f̂; ĉ; ĉ0gmþ1Þ: ðA24Þ

Consider now the term in Eq. (A24) that contains a color
operator Cðl0; mþ 1Þ, defined in Eq. (A10). We apply this
operator after the color operator for the initial splitting,
C0ðl0; k0Þ, defined in Eq. (A7). This gives us an operator
with four terms,

Ci ¼ ðTl0 · Tmþ1ÞTl0 ⊗ T†
k0
þ Tl0 ⊗ T†

k0
ðTl0 · Tmþ1Þ

þ ðTl0 · Tmþ1ÞTk0 ⊗ T†
l0
þ Tk0 ⊗ T†

l0
ðTl0 · Tmþ1Þ:

ðA25Þ

There can be several factors of ½S½1;0�
l ðxQ2=νÞ�P in Eq. (A5)

and in some of those factors we can select the Cðl0; mþ 1Þ
term in Eq. (A24). Finally, there is a ½� � ��P operation. This
gives us a sum of color operators of the form

½C�P ¼ ½ðTl0 · Tmþ1ÞATl0 ⊗ T†
k0
ðTl0 · Tmþ1ÞB

þ ðTl0 · Tmþ1ÞATk0 ⊗ T†
l0
ðTl0 · Tmþ1ÞB�P: ðA26Þ

Using Eq. (158), this becomes

½C�P ¼ ½ðTl0 · Tmþ1ÞAþBTl0 ⊗ T†
k0

þ Tk0 ⊗ T†
l0
ðTl0 · Tmþ1ÞAþB�P: ðA27Þ

Now consider the color operator Tl0 · Tmþ1Ta
l0
. In diagrams,

parton l0 emits a gluon with label mþ 1, leaving parton l0
in a new color state. Then a gluon is exchanged between

partons l0 and mþ 1. This gives us a color triangle
diagram,

Tl0 · Tmþ1Ta
l0
¼ ifabcTb

l0
Tc
l0
: ðA28Þ

Then we can use

ifabcTb
l0
Tc
l0
¼ 1

2
ifabc½Tb

l0
; Tc

l0
� ¼ 1

2
ifabcifbcdTd

l0
¼ −

CA

2
Ta
l0
:

ðA29Þ

Thus

Tl0 · Tmþ1Ta
l0
¼ −

CA

2
Ta
l0
: ðA30Þ

This gives us

ðTl0 ·Tmþ1ÞAþBTl0 ⊗T†
k0
¼
�
−
CA

2

�
AþB

Tl0 ⊗T†
k0
: ðA31Þ

The second term in Eq. (A27) gives the same result, so that
the net color operator defined in Eq. (A26) is

½C�P ¼
�
−
CA

2

�
AþB

½Tl0 ⊗ T†
k0
þ Tk0 ⊗ T†

l0
�P: ðA32Þ

We conclude that when Cðl0; mþ 1Þ in Eq. (A24) is part

of S½kþ1�
Y ðx0Q2=ν; νÞ in Eq. (A5), we get the same result for

S½kþ1�
Y ðx0Q2=ν; νÞ by making the replacement

Cðl0; mþ 1Þ → −CA½1 ⊗ 1�: ðA33Þ

There is a factor 2 for each CA here because there are two
Tl0 ⊗ T†

k0
terms and two Tk0 ⊗ T†

l0
terms in Eq. (A25).

With this replacement, the terms in Eq. (A24) propor-
tional to Lðν; âmþ1Þ cancel. Thus we get the same result for

S½kþ1�
Y ðx0Q2=ν; νÞ by making the replacement

jAiÞ → jAeff
i Þ; ðA34Þ

where

jAeff
i Þ ≈

Xm
l¼1

2Cl½1 ⊗ 1�Lðν; âlÞð1 − e−xiÞjfp̂; f̂; ĉ; ĉ0gmþ1Þ:

ðA35Þ

Note that jAeff
i Þ is a number, which we may call λi, times the

starting state vector,

jAeff
i Þ ¼ λijfp̂; f̂; ĉ; ĉ0gmþ1Þ: ðA36Þ
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Return now to Eq. (A5) for S½kþ1�
Y ðx0Q2=ν; νÞ applied to

the starting state jfp; f; c; c0gmÞ. In the last factor, we have

dealt with the operator S½1;0�
l0

ðQ2=νÞ, which creates a new
parton with label mþ 1. Now we turn to the remaining

operator, −½S½1;0�
l0

ðQ2=νÞ�P. This operator, acting on the
state jfp; f; c; c0gmÞ, produces a linear combination of
states with m partons, jfp; f; ĉ; ĉ0gmÞ. Here the momentum
and flavors are the same as in the initial state, but the colors
change. More precisely,

Xm
l0¼1

½S½1;0�
l0

ðQ2=νÞ�Pe−x0 jfp; f; c; c0gmÞ

≈ −
Xm
l0¼1

Xm
k0¼1
k0≠l0

½Cðl0; k0Þ�Pjfp; f; c; c0gmÞ

×
Z

dϕ0

2π

Z
dz0

1 − z0

αsðλRð1 − z0ÞQ2=ðνal0ÞÞ
2π

× Θ
�

al0
νϑðl0; k0Þ

< 1 − z0 < 1

�
e−x0 : ðA37Þ

Let us consider what the one of the operators,

½S½1;0�
li

ðQ2=νÞ�P, in Eq. (A5) does to this state. We consider
the quantity

jBiÞ¼
Xmþ1

li¼1

h
S½1;0�
li

ðQ2=νÞ
i
P
ð1−e−xiÞjfp;f;ĉ; ĉ0gmÞ: ðA38Þ

With an analysis similar to but simpler than our previous
analysis, we obtain

jBiÞ ≈
Xm
l¼1

2Cl½1 ⊗ 1�Lðν; âlÞð1 − e−xiÞjfp; f; ĉ; ĉ0gmÞ:

ðA39Þ

This gives us

jBiÞ ¼ λijfp; f; ĉ; ĉ0gmÞ; ðA40Þ

where the eigenvalue λi is exactly the λi in Eq. (A36).
We can substitute Eqs. (A40) and (A36) into Eq. (A5) to

obtain

S½kþ1�
Y ðx0Q2=ν; νÞjfp; f; c; c0gmÞ

¼ ð−1Þn
Z

x0

0

dx1
x1

Z
x1

0

dx2
x2

� � �
Z

xk−1

0

dxk
xk

λk � � � λ2λ1

×
X
l0

hh
S½1;0�
l0

ðQ2=νÞ
i
1−P

i
P
e−x0 jfp; f; c; c0gmÞ

þ NNLL: ðA41Þ

However

hh
S½1;0�
l0

ðQ2=νÞ
i
1−P

i
P
¼
h
S½1;0�
l0

ðQ2=νÞ−
h
S½1;0�
l0

ðQ2=νÞ
i
P

i
P

¼
h
S½1;0�
l0

ðQ2=νÞ
i
P
−
h
S½1;0�
l0

ðQ2=νÞ
i
P

¼ 0: ðA42Þ

Thus the NLL contributions to S½kþ1�
Y ðx0Q2=ν; νÞ vanish:

S½kþ1�
Y ðx0Q2=ν; νÞjfp; f; c; c0gmÞ ¼ NNLL: ðA43Þ

APPENDIX B: CANCELLATION
WITH kT ORDERING

In this appendix, we explore the cancellation of large

logðνÞ factors in I ½2�
2 ðνÞ with kT ordering. We can write

ð1jI ½2�
2 ðνÞjfp̃; f̃; c̃; c̃0g2Þ in the form

ð1jI ½2�ðνÞjfp̃; f̃; c̃; c̃0g2Þ

¼
Z

Q2

0

dk̃T
k̃T

Z
dη̃

Z
dϕ̃
2π

Z
Q2

0

dkT
kT

Z
dη

Z
dϕ
2π

× ΘðkT < k̃TÞð1 − eνðτ̂−τÞÞe−ντð1jS½1;0�ðkT; η;ϕÞ
× fS½1;0�ðk̃T; η̃; ϕ̃Þ − ½S½1;0�ðk̃T; η̃; ϕ̃Þ�Pg
× jfp̃; f̃; c̃; c̃0g2Þ: ðB1Þ

We begin with a qq̄ state with parton momenta p̃1 and p̃2

aligned along the þ and −z axis, respectively. Then one of
these two partons splits, producing parton 3. We suppose
that it is parton 1 that splits. After the splitting, we have
partons with momenta p1, p2, and p3. The value of 1 − T in
this state is τ and we suppose that τ ≪ 1. Then there is a
second splitting, producing partons with momenta p̂1, p̂2,
p̂3, and p̂4 with a thrust variable τ̂ ≪ 1. We consider either
the splitting of parton 3 with parton 2 as the dipole partner
or the splitting of parton 2 with parton 3 as dipole partner.
Other splitting possibilities are not as important and we
omit consideration of them here. We limit our consideration
to the leading color approximation.
We begin with the first splitting, which we describe with

splitting variables k̃T, η̃, ϕ̃ that relate p3 to p̃1 and p̃2:

p3 ¼ eη̃
k̃T
jQj p̃1 þ e−η̃

k̃T
jQj p̃2 þ k̃⊥: ðB2Þ

Here jQj ¼ ½Q2�1=2 ¼ ½2p̃1 · p̃2�1=2 and k̃⊥ is a vector that is
orthogonal to p̃1 and p̃2:

k̃⊥ · p̃1 ¼ k̃⊥ · p̃2 ¼ 0: ðB3Þ

We have defined the scalar k̃T by
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k̃T ¼ ½−k̃2⊥�1=2: ðB4Þ

This definition gives p2
3 ¼ 0. The variable η̃ is the rapidity

of p3. We need one more splitting variable, the azimuthal
angle ϕ̃ of k̃⊥.
For emission from parton 1, the splitting function is

small for η̃ < 0. There is a maximum value of η̃ for fixed k̃T,
set by the condition for a maximally collinear emission

eη̃
k̃T
jQj ¼ 1: ðB5Þ

When η̃ is close to this upper bound, the splitting
function tends to zero. Thus we integrate over the splitting
variables with measure dη̃d logðk̃T=jQjÞ over the range
0≲ η̃≲ − logðk̃T=jQjÞ. In this range, as long as η̃ is not
near either endpoint, the splitting function is approximately
constant. For small k̃T, this is a large range. The integration
gives us a large logarithm, which comes from integrating
over the interior of the range, omitting the regions near the
endpoints:

0 ≪ η̃ ≪ − logðk̃T=jQjÞ: ðB6Þ

We will assume that η̃ lies in this range in the analysis that
follows.
For an emission from parton 1, we define the momentum

of parton 1 after the emission to be

p1 ¼
�
1 − eη̃

k̃T
jQj

�
p̃1 þ

k̃2T=jQj2
1 − eη̃k̃T=jQj p̃2 − k̃⊥: ðB7Þ

With this definition, p2
1 ¼ 0 and p1 − p̃1 þ p3 lies entirely

in the direction of p̃2:

p1 − p̃1 þ p3 ¼
e−η̃k̃T=jQj

1 − eη̃k̃T=jQj p̃2: ðB8Þ

Finally, we need to define the momentum p2 of parton 2
after the splitting so that momentum is conserved:
p1 þ p2 þ p3 ¼ p̃1 þ p̃2. Using Eq. (B8) we obtain p2

by applying a small boost in the z direction to p̃2:

p2 ¼
�
1 −

e−η̃k̃T=jQj
1 − eη̃k̃T=jQj

�
p̃2: ðB9Þ

This is the exact relation. In the integration range (B6), this
relation becomes

p̃2 − p2 ≈ e−η̃
k̃T
jQj p̃2: ðB10Þ

We use Eqs. (123) and (124) to calculate the thrust for
the state after the first splitting:

τ ¼ 1

Q− ðp−
1 þ p−

3 þ pþ
2 Þ

¼ 1

Q− ðp̃−
2 − p−

2 þ p̃−
1 þ pþ

2 Þ: ðB11Þ

We can use p̃−
1 ¼ pþ

2 ¼ 0. Then we can use p̃−
2 ¼ Q− and

Eq. (B10) for p̃−
2 − p−

2 . This gives τ ≈ e−η̃k̃T=jQj or

ντ ≈ νe−η̃
k̃T
jQj : ðB12Þ

This relation is significant because this emission is
accompanied by a measurement function expð−ντÞ. The
measurement function is approximately 1 for ντ ≪ 1 but
approximately zero for 1 ≪ ντ. Thus we effectively inte-
grate over the range

ντ < 1: ðB13Þ

In the analysis that follows, we will need a relation
between 2p3 ·Q and the values of η̃ and k̃T for the splitting.
We can use Eq. (B2) with η ≫ 0 together with 2p̃1 ·Q ¼
Q2 to give

2p3 ·Q
Q2

¼ eη̃
k̃T
jQj : ðB14Þ

We now turn to the second splitting. We will describe the
splitting using variables and a momentum mapping that are
slightly different from what is used in DEDUCTOR with kT
ordering. In fact, we will use a local momentum mapping.
However, in the kinematic limit of interest, the description
used here reduces to the description used in DEDUCTOR.
The splitting kinematics are illustrated in Fig. 15. We
describe the second splitting with splitting variables kT, η,
ϕ that relate p̂4 to p2 and p3:

p̂4 ¼ A32eη
kT
jQjp3 þ A23e−η

kT
jQjp2 þ k⊥; ðB15Þ

where

A32 ¼
�

Q2

2p2 · p3

p2 ·Q
p3 ·Q

�
1=2

;

A23 ¼
�

Q2

2p2 · p3

p3 ·Q
p2 ·Q

�
1=2

: ðB16Þ

Here k⊥ is a vector that is orthogonal to p2 and p3:

k⊥ · p3 ¼ k⊥ · p2 ¼ 0: ðB17Þ

As for the first splitting, we have defined the scalar
kT ¼ ½−k2⊥�1=2. This definition gives p̂2

4 ¼ 0. The variable
η describes the rapidity of p̂4 with respect to the emitting
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dipole, with a constant logðp2 ·Q=p3 ·QÞ=2 added [16].
We need one more splitting variable, the azimuthal angle ϕ
of k⊥ in the dipole c.m. frame.
There is a limit to how large η can be: ηmin < η < ηmax.

The limits are fixed by the requirements that the compo-
nents of p̂4 along p3 and p2 cannot be larger than 1:

ηmax ¼ − log

�
kT
jQj

�
− logðA32Þ;

ηmin ¼ log

�
kT
jQj

�
þ logðA23Þ: ðB18Þ

The lines η ¼ ηmax and η ¼ ηmin are indicated in Fig. 15 as
the lines labeled collinear. This is a large integration range.
We will assume in what follows that η is not near to the
endpoints of the integration range:

ηmin ≪ η ≪ ηmax: ðB19Þ

For emission from parton 3, we let the momentum of
parton 3 after the emission be

p̂3 ≈
�
1 − A32eη

kT
jQj

�
p3

þ k2T
Q2

Q2

2p3 · p2

�
1 − A32eη

kT
jQj

�
−1
p2 − k⊥: ðB20Þ

With this definition, p̂2
3 ¼ 0 and p̂3 − p3 þ p̂4 lies entirely

in the direction of p2. Then we can maintain momentum
conservation, p̂1 þ p̂2 þ p̂3 þ p̂4 ¼ p1 þ p2 þ p3 by set-
ting p̂1 ¼ p1 and obtaining p̂2 by performing a small boost
on p2:

p̂2 ¼ e−ωp2: ðB21Þ

With a few algebraic steps, we find

e−ω ¼ 1 − A23e−η
kT
jQj

�
1 − A32eη

kT
jQj

�
−1
: ðB22Þ

These definitions have been exact for the kinematic
variables and momentum mapping chosen. We can now
make some approximations. Given our kinematic condi-
tions (B6) for the first emission, the momentum p3 has
large rapidity. That is, it makes a small angle with the z axis.
The transverse momentum vector defined in Eq. (B15) is
orthogonal to p3 and p2 whereas the transverse momentum
vector in DEDUCTOR is orthogonal to p3 and Q. However,
since p3 makes a small angle with the z axis, this is almost
the same thing. In DEDUCTOR, momentum is conserved by
applying a boost in the plane of p3 andQ. Since p3 makes a
small angle with the z axis, this boost is almost exactly
along the z axis. The boost is applied to both p2 and p1, but
this difference has only a tiny effect on the resulting thrust.
Thus in the limit considered, the DEDUCTOR kinematics and
the kinematics used here are equivalent.
We now examine the change in thrust produced by the

emission of parton 4 from parton 3. We assume that p4 is
in the right thrust hemisphere. This is always the case
when η ≫ 0. There is a region near η ≈ 0 in which this
assumption fails. With the kinematics that we are using,
the thrust axis is along −p⃗2. That is, it is the z axis. Then
we have

τ̂ − τ ¼ 1

Q− ½p̂−
4 þ p̂−

3 − p−
3 þ p̂þ

2 − pþ
2 �

¼ 1

Q− ½p−
2 − p̂−

2 þ p̂þ
2 − pþ

2 �: ðB23Þ

We have pþ
2 ¼ 0, p̂2 ¼ e−ωp2 from Eq. (B21), and

p−
2 =Q

− ¼ 2p2 ·Q=Q2. This gives us

τ̂ − τ ¼ 2p2 ·Q
Q2

½1 − e−ω�: ðB24Þ

Now the condition η ≪ ηmax that we assume implies that
A32eηkT=jQj ≪ 1. Thus in Eq. (B22), we can replace the
factor 1 − A32eηkT=jQj in e−ω by just 1. Then

τ̂ − τ ¼ 2p2 ·Q
Q2

A23e−η
kT
jQj : ðB25Þ

Since p3 makes a small angle with the z axis, we obtain
the approximations

2p2 · p3 ≈
2p2 ·Q2p3 ·Q

Q2
;

A32 ≈
Q2

2p3 ·Q
;

A23 ≈
Q2

2p2 ·Q
: ðB26Þ

FIG. 15. Integration regions for second splitting.
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With these approximations, we have

νðτ̂ − τÞ ≈ νe−η
kT
jQj : ðB27Þ

With the same approximations, we obtain for the change in
thrust produced by an emission from parton 2 with the
dipole partner being parton 3,

νðτ̂ − τÞ ≈ νeη
kT
jQj : ðB28Þ

Again, this is for jηj ≫ 0. For the soft emission region near
η ¼ 0, there is the possibility that p4 is in the opposite
thrust hemisphere from the parton that emitted it, so that the
thrust calculation changes.
These relations are significant because the second

emission is accompanied by a measurement function
1 − expð−νðτ̂ − τÞÞ. The measurement function is approx-
imately 1 for 1 ≪ νðτ̂ − τÞ but approximately zero for
νðτ̂ − τÞ ≪ 1. Thus we effectively integrate over the range

νðτ̂ − τÞ > 1: ðB29Þ
The boundary of this integration region is indicated in
Fig. 15 as straight lines with the labels νðτ̂ − τÞ ¼ 1.
There is one more restriction on the integration range

for the second splitting. We are analyzing a kT ordered
shower, so

kT < k̃T: ðB30Þ

The line kT ¼ k̃T is indicated in Fig. 15.
To analyze Eq. (B30), we will need to know the value

kT;⋆ of kT at the point labeled with a star in Fig. 15. We first
note that the line for η > 0 labeled collinear in Fig. 15 is
given by η ¼ ηmax in Eq. (B18), eηkT=jQj ¼ 1=A32. We can
use Eqs. (B26) and (B14) for A32, giving

eη
kT
jQj ≈ eη̃

k̃T
jQj ; collinear: ðB31Þ

Then using Eq. (B12) to eliminate η̃ and Eq. (B27) to
eliminate η we have

k2T
Q2

≈
νðτ̂ − τÞ

ντ

k̃2T
Q2

; collinear: ðB32Þ

The point labeled with a star in Fig. 15 is the intersection of
the collinear line and the line νðτ̂ − τÞ ¼ 1. Thus,

k2T;⋆
Q2

≈
1

ντ

k̃2T
Q2

: ðB33Þ

Since in the dominant integration region ντ < 1, we
conclude that kT;⋆ > k̃T. Thus the line kT ¼ k̃T lies below
the point ðη⋆; kT;⋆Þ in Fig. 15. This implies that the effective

integration region for the second splitting is the region
shaded in yellow in Fig. 15. Inside this region, the integrand
is approximately 1.
Now consider the case in which the first splitting is

virtual. The corresponding contribution comes from the
term ½S½1;0�ðk̃T; η̃; ϕ̃Þe−ντ�P in the last line of Eq. (B1). We
integrate over the splitting variables for the first splitting,
including the measurement function e−ντ, but we start the
second splitting from the qq̄ state with just partons with
momenta p̃1 and p̃2, but with the kT ordering requirement
kT < k̃T. Now the limits on η in Fig. 15, indicated by the
lines labeled collinear, are expanded to the dotted lines in
the figure. However, the effective integration region for the
second splitting is the region shaded in yellow in Fig. 15.
When we subtract the virtual contribution from the real
contribution, we get zero within the approximations that we
have used.
In Eq. (B33), we have equality, k̃T ¼ kT;⋆, when the

value of τ for the first splitting is given by ντ ¼ 1. The value
of k̃T in the first splitting can be less than kT;⋆, but if k̃T is
too small then the integration region in Fig. 15 disappears.
From Eq. (B27) at η ¼ 0, νðτ̂ − τÞ ¼ 1 and k̃T ¼ kT, we see
that this limits k̃T to

k̃T
jQj >

1

ν
: ðB34Þ

Our analysis above has assumed that the first emission is
at large rapidity, η̃ ≫ 0. What happens when η̃ ≈ 0? The
approximations that we have used are not adequate in this
situation, so it might seem that there is nothing that we can
say. However, we can examine what happens when η̃ is
large enough that the approximations are still valid, but η̃
becomes smaller and smaller. Start with Eq. (B31) for the
collinear line in Fig. 15 and use Eq. (B12) to eliminate k̃T
and Eq. (B27) to eliminate kT, giving

e2η ≈
ντ

νðτ̂ − τÞ e
2η̃; collinear: ðB35Þ

The point labeled with a star in Fig. 15 is the intersection of
the collinear line and the line νðτ̂ − τÞ ¼ 1. Thus,

e2η⋆ ≈ ντe2η̃: ðB36Þ

In the effective integration range for the first splitting, we
have ντ < 1. Thus

η⋆ < η̃: ðB37Þ

This tells us that when the rapidity of the first splitting
becomes small, η̃ → 0, we have η⋆ → 0. In this limit, the
real-virtual cancellation in this region deteriorates, but this
deterioration does not matter because the allowed
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integration region for the second splitting in Fig. 15 shrinks
to zero.
The cancellation will fail on a certain surface in the

integration region. On this surface, the splitting variables
for the second emission are given by

ðkT; ηÞ ≈ ðkT;⋆; η⋆Þ: ðB38Þ

In this region, the second emission is collinear rather than
both soft and collinear, so that the emission probability
does not match the constant that appears in the region in
which the second emission is both soft and collinear.
However in the virtual subtraction the second emission
is both soft and collinear so that the emission probability is
this constant. Thus the emission probabilities do not match
between the real emission and the subtraction.
The surface of non-matching probabilities is specified as

follows. If kT ¼ kT;⋆, then the line kT ¼ k̃T in Fig. 15 must
pass through ðkT;⋆; η⋆Þ, so that k̃T ¼ kT;⋆. Then Eq. (B33)
implies that the value of τ for the first emission is given by
ντ ¼ 1. Then Eq. (B12) gives

η̃ ≈ logðνÞ þ log

�
k̃T
Q

�
: ðB39Þ

The transverse momentum for the first emission varies in
the range

− logðνÞ ≪ log

�
k̃T
Q

�
≪ −

1

2
logðνÞ: ðB40Þ

Here the lower limit is from Eq. (B34) and the upper limit is
from Eqs. (B6), (B12), and (B13). For the second emission,
ðkT; ηÞ ≈ ðkT;⋆; η⋆Þ:

η ≈ η̃;

log

�
kT
Q

�
≈ log

�
k̃T
Q

�
: ðB41Þ

Thus the integration region inside which cancellation fails

is one dimensional, so we are left with a contribution to I ½2�
2

proportional to log1ðνÞ.
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